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Abstract. Swarm Cognition is the juxtaposition of two relatively un-
related concepts that evoke, on the one hand, the power of collective
behaviours displayed by natural swarms, and on the other hand the com-
plexity of cognitive processes in the vertebrate brain. Recently, scientists
from various disciplines suggest that, at a certain level of description, op-
erational principles used to account for the behaviour of natural swarms
may turn out to be extremely powerful tools to identify the neuroscien-
tific basis of cognition. In this paper, we review the most recent studies
in this direction, and propose an integration of Swarm Cognition with
Artificial Life, identifying a roadmap for a scientific and technological
breakthrough in Cognitive Sciences.

1 Introduction

What do ants and neurons have in common? A bit of reasoning reveals that they
share more than one would intuitively think. An ant is part of a colony, much as
a neuron is part of the brain. An ant cannot do much in isolation, but a colony is
a highly resilient adaptive system. Similarly, a neuron is individually able just of
limited interactions with other neurons, but the brain displays highly complex
cognitive processes. In other words, both ants and neurons behave/act in perfect
harmony with other conspecifics/cells to accomplish tasks that go beyond the
capability of a single individual. Self-organisation is the common mechanism
that allows simple units—e.g., ants and neurons—to display complex spatio-
temporal patterns. As a consequence, colony behaviour and cognitive processes
can be explained in terms of self-organising rules of interaction among the low-
level units and their environment. By describing the behaviour of ants, Aron
et al. recognise that “while no individual is aware of all the possible alternatives,
and no individual possesses an explicitly programmed solution, all together they
reach an ‘unconscious’ decision” [1]. This is particularly true also for neural
systems, where the relevance or the meaning of the self-organised pattern is not
found at the individual level, but at the collective one.

Recent work recognises this close relationship between brains and swarms [2—
4], giving birth to a novel approach in the study of collective intelligence and
computational neuroscience. This is the Swarm Cognition approach, which aims
at encompassing the above mentioned disciplines under a common theoretical



and methodological framework. In this paper, we suggest that Artificial Life can
give an essential contribution to Swarm Cognition studies. In fact, by synthesis-
ing distributed models of cognitive processes through ALife techniques, it could
be possible to discover the underlying mechanisms common to swarms and to
the vertebrate brain.

In the following, we will outline the background of Swarm Cognition, iden-
tified in studies of self-organising behaviours and in computational neuroscience
(see Section 2). We continue in Section 3 by reviewing two recent studies that
belong to Swarm Cognition, and we finally discuss how ALife can contribute in
this direction in Section 4. Section 5 concludes the paper.

2 Background

The foundations of Swarm Cognition has to be found in the study of self-
organising systems, particularly biological systems that can display cognitive
behaviour, which are treated in Section 2.1, and in computational models of
brain functions, discussed in Section 2.2.

2.1 Self-Organisation in Biological Systems

Self-organising systems can be found in living and non-living matter. Self or-
ganisation refers to a spatio-temporal pattern (e.g., a collective behaviour or a
physical structure) that is not explicitly programmed in each individual compo-
nent of the system, but emerges from the numerous interactions between them.
Each component only follows simple individual rules, which are performed with
approximation on the basis of local information only, without any global map
or representation [5]. Self-organised behaviour has been demonstrated in real
biological societies, particularly in insects, but also in fish, birds and mammals,
including humans (for some recent reviews, see [5-8]).

The basic ingredients of self-organisation are often recognised in multiple in-
teractions, which generate positive and negative feedback mechanisms that allow
the system to amplify certain random fluctuations, and to control the evolu-
tion of a coherent spatio-temporal pattern. A self-organising system is therefore
able to achieve and sustain a certain spatio-temporal structure despite external
influences [5]. A slightly different view of self-organisation focuses on its dynam-
ical aspects, by describing the self-organising system as a complex dynamical
system close to a bifurcation point. This means that the system, upon varia-
tion of some control parameter—e.g., temperature or chemical concentration—
rapidly changes presenting new spatio-temporal patterns—e.g., a new type of
collective behaviour or physical structure. This latter view of self-organisation
is particularly relevant for Swarm Cognition studies. Indeed, it suggests that
decision-making processes can be seen as the result of a bifurcation of a complex
dynamical system. This system is formed by simple units that interact to produce
the global spatio-temporal pattern, which results in the self-organised decision.
There is clearly room to include in this definition also distributed processes that



take place in the vertebrate brain. Here, the system units are individual neurons
or neuronal assemblies, and the interactions are in form of inter-neuron commu-
nication. As we shall discuss in the next section, the dynamical and self-organised
aspects of cognition are recently acquiring more and more attention.

2.2 Computational Neuroscience

Modelling of brain regions is not a novel endeavour: a long research tradition
attempted to shed some light on the mechanisms at the basis of human reason-
ing, not without any success. Early in the mid fifties, Connectionism postulated
the use of artificial neural networks (ANNs) as tools to study cognitive phe-
nomena, without the need of knowledge representation, symbols and abstract
reasoning [9]. With the advent of Computational Neuroscience, researchers have
started to recognise the exquisitely dynamical traits of cognitive processes [10].
Dynamical systems theory is recently acquiring more and more attention in cog-
nitive sciences as it can give explanations of cognitive phenomena while they
unfold over time. Concepts like “attractor” and “bifurcation” start to be com-
monly used, and dynamical models are developed—just to name a few—to give
new answers to classic psychology debates such as the A-not-B error in infant
reaching [11], or to account for intrinsically dynamical processes such as inter-
limb coordination [12,13]. To date, connectionist models are merged with the
dynamical systems approach, recognising that cognitive processes are the result
of a complex web of interactions in which both time-dependent and topologi-
cal factors play a crucial role. In [14], Deco et al. propose the study of brain
functional organisation at different space-time description levels, in order to
understand the fundamental mechanisms that underpin neural processes and re-
late these processes to neuroscience data. However, so far there has been only
limited room for holistic explanations of cognitive processes at different levels
of description. Neither the relation with embodiment and environmental inter-
actions has been thoroughly investigated. As we shall see in the following, the
Swarm Cognition approach, by drawing parallels between swarm behaviours and
the vertebrate brain, targets distributed processes in which cognitive units act in
interaction with their environment, therefore attempting an holistic explanation
of the phenomena under observation.

3 Case Studies: From Collective Intelligence to Cognition

Animal groups often display collective behaviours that allow to regulate the ac-
tivities of the group maintaining a coherent organisation. In [2], Couzin observes
that the dynamics of group behaviour show interesting similarities with those of
cognitive processes in the brain. Multistability, non-linear responses, positive and
negative feedback loops, population averaging and consensus decision-making
(winner-takes-all) are the ingredients of cognitive process both in animal groups
and in the brain. Recent studies argue that the massively parallel animal-to-
animal interactions which operationally explain collective processes of natural



swarms are functionally similar to neuron-to-neuron communication which un-
derlie the cognitive abilities of living organisms, including humans [3,4]. In this
section, we briefly review these studies highlighting the main features of Swarm
Cognition.

3.1 Swarm Cognition in Honey Bees

The nest site selection behaviour of honey bees Apis mellifera is the starting
point taken by Passino et al. for a comparison between the decision-making abil-
ities displayed by the swarm and the cognitive functions of primate brains [3].
Honey bees select a new nest site through a self-organising process, which is
mainly based on a positive feedback mechanism that differentially amplifies the
perceived quality of discovered nest sites. Scout bees explore the area surround-
ing the swarm in search of valuable sites. When they discover a potential nest
that has a supra-threshold perceived quality, they return to the nest and per-
form a waggle dance to recruit other scouts. The higher the perceived quality,
the longer the waggle dance, the stronger the recruitment. In this way, the differ-
ences between low quality nesting sites are amplified, allowing to quickly discard
poor sites in favour of the better ones. When a sufficient number of scouts has
been recruited to a nesting site (i.e., a quorum is reached), a second phase is
triggered that leads to the lift-off of the entire swarm.

It is important to notice that the selection of the best nest site is not per-
formed by individual bees that directly compare different options by visiting
different sites. Neither it is based on the comparison of different waggle dances.
The competition between sites is performed at the level of the group through
recruitment and quorum sensing, and not at the level of the individual bee. In
this respect, a strong parallelism with brain functions can be recognised. Scout
bees perform functions similar to individual neurons in the brain. Waggle dances
are analogous to action potentials, and the threshold in the estimated quality
of a discovered nest corresponds to the neuron activation threshold. The paral-
lelism between swarm and brain goes beyond these similarities, including lateral
inhibition, feature detection and attention. By developing a model of nest site
selection, tests have been performed to assess the discrimination abilities be-
tween different sites, as well as the ability of the swarm as a whole to discard
distractors and focus the attention on the highest quality site [3].

3.2 Decision-Making in Brains and Insect Colonies

The work of Marshall et al. [4] goes a step further. They again focus on nest
site selection in rock ants (Temnothorax albipennis) and in honey bees, and
show that it has the same properties of diffusion models used to characterise
decision-making in the cortex [15]. Diffusion models describe the accumulation
of evidences trough time during a decision-making process as a random walk with
normally distributed step size (Wiener process or Brownian motion), subject to
a constant drift toward the better choice. When a threshold is passed toward
one or the other alternative, the decision is taken.



The remarkable fact is that similar diffusion models provide a statistically
optimal speed-accuracy tradeoff in decision-making, which reflects the tension
between the need to take a quick decision and the need to wait until enough
evidence is accumulated in favour of one or the other option. In fact, by varying
the decision threshold, the model can account for quick but unsafe decisions,
or for more conservative but time-demanding ones. The speed accuracy tradeoff
is well known from psychological experiments in humans and animals, and has
been also recognised in the nest site selection behaviour of rock ants: under
stormy weather conditions, ants lower their decision threshold (i.e., the quorum
necessary to select a site), therefore performing a quick decision at the expense
of a higher error rate [16].

In [4], the authors analyse a model of the ants nest site selection, as well as
two models of the same process performed by honey bees, also described above.
These models differ mainly in the possibility for scouts of direct switching of
commitment between alternative sites, without passing through an “uncommit-
ted” state. The model that allows direct switching corresponds to a diffusion
model, accounting for statistical optimality of the nest selection behaviour, and
suggesting that neural and swarm decision-making can be explained by func-
tionally similar mechanisms.

4 The Artificial Life Approach

In the previous section, we have described how comparative studies of cognitive
processes and swarm behaviours highlight surprising similarities. We believe that
this is not a fortunate case, and we suggest that similar comparisons should be
further developed, in search of common working mechanisms. This is the goal of
Swarm Cognition studies that involve the observation of the biological reality.
In this paper, we propose Artificial Life as a complementary approach to the
investigation of Swarm Cognition. ALife is intimately connected to Cognitive
Sciences. Bedau recognises this as he notices that “one of the fundamental open
problems in artificial life is to explain how robust, multiple-level dynamical hier-
archies emerge solely from the interactions of elements at the lowest-level. This is
closely analogous to the problem in cognitive science of explaining how cognitive
capacities ultimately emerge from the interactions of non-cognitive elements like
neurons” [17].

We propose the development of an ALife approach to Swarm Cognition,
aiming at improving our understanding of the mechanisms behind cognitive
processes by synthesising such processes in artificial systems. By paraphras-
ing Langton [18], we claim that ALife and Swarm Cognition can contribute to
Cognitive Sciences by locating cognition-as-we-know-it within the larger pic-
ture of cognition-as-it-could-be. This means that the ALife approach to Swarm
Cognition, by building bridges between computational neuroscience and swarm
intelligence, searches for the underlying mechanisms of cognition being inspired,
rather than constrained, by the biological reality.



4.1 Beyond Connectionism

A first contribution of ALife to Swarm Cognition is providing explanations of
cognition as the result of self-organising processes through computational mod-
els. Indeed, there is no doubt that cognitive processes involve a massive amount
of neuron-to-neuron interactions. There is also no doubt that neurons are organ-
ised in assemblies of coherent activities, and that they are spatially and func-
tionally segregated in different brain areas. It is anyway difficult to unveil causal
relationships between neurophysiological phenomena and cognition, without re-
ducing the latter to the former. The Swarm Cognition approach is expected to
shed light on such complex issue by explicitly searching for the emergence of
measurable phenomena from the interaction of low-level cognitive units. These
cognitive units should not necessarily be related to biological reality—e.g., neu-
rons, neuronal assemblies or populations—but may well be closer to a bee or to
a generic artificial agent.

The main goal of these studies should be the identification of the mechanisms
underlying cognitive processes, as a result of the dynamical interactions among
cognitive units. The simulated approach brings these activities closer to compu-
tational neuroscience, and cross-fertilisation between the two disciplines should
be promoted whenever possible, in the attempt to complement neruophysiolog-
ical models and fit, at least qualitatively, experimental data.

4.2 Embodiment and Swarm Robotics

A distinctive feature of ALife is the attempt to study how life occurs not only in
computer simulation, but also in the physical world. “Wet” ALife seeks the syn-
thesis of living systems out of biochemical substances. Apart from this, robotics
is the other field of confrontation with the physical world. In Bedau’s view,
(evolutionary) robotics “is artificial life’s most direct overlap with cognitive sci-
ence, as its aim is to synthesize autonomous adaptive and intelligent behavior
in the real world” [17]. When adaptive behaviour is performed by a swarm of
robots, we deal with a Swarm Robotics system, characterised by limited abilities
at the level of the individual robot, which can anyway perform complex tasks
by coordinating in a group.

There are multiple reasons that justify the swarm robotics approach to cog-
nition. First of all, it is important to stress the relevance of using robots to
study cognitive processes. Robots are artifacts with a physical body situated
in the physical world, with physical sensors and actuators to perceive and act
within their environment. The embodiment of the robots is a very important as-
pect for the study of cognitive behaviour, which is not the result of “reasoning”
alone, but is rather the result of the dynamical interactions between brain, body
and environment. Robots therefore are excellent tools to study such brain-body-
environment dynamics and their bearing on the emergence of cognitive abilities
such as categorisation, decision making, attention and learning [19].

Additionally, a peculiar feature of Swarm Robotics systems is the transfer
of behavioural complexity from the individual to the interactions among indi-
viduals. Brought to the limit, this vision sees robots as neuron-like devices that



can move in the environment and interact, physically or trough communication,
with other robots, while bringing forth complex cognitive processes as a whole.
Within the Swarm Cognition framework, this transfer of complexity from the
individual behaviour to the interactions among individuals is fundamental to
understand how cognitive processes can be supported by distributed systems.
Swarm Robotics is therefore the only mean to study self-organisation in embod-
ied and situated systems. Each robot is a cognitive unit, in this case, playing
either the role of the individual insect in a swarm, or the role of a neuron or an
assembly in the brain. In our opinion, all these aspects make Swarm Robotics the
most appropriated method to instantiate the Artificial Life approach to Swarm
Cognition.

4.3 Bridging the gap between behaviour and cognition

Comparative studies in Swarm Cognition can pinpoint the relevant mechanisms
that support cognition, a significant breakthrough in Cognitive Sciences. The
AlLife approach offers the possibility to synthesise cognitive process in artificial
brains as well as in artificial swarms. With such a dual approach, it is possible
to study similar problems, such as decision-making or attention, in search of
common mechanisms. Similar discoveries in artificial systems may well be gen-
eralisable to natural ones, when some biological plausibility has been preserved
into the models.

Additionally, the knowledge acquired in Swarm Cognition studies could also
be integrated in a single experimental scenario in which a swarm of robots is
governed by neurocomputational controllers. In this way, the ALife approach to
Swarm Cognition is expected to advance the state of the art in robotics and com-
putational neuroscience. In fact, by integrating neurocomputational controllers
in swarm of robots, an highly complex system could be synthesised, composed
of three different organisational levels hierarchically stacked, from the neuro-
controller internal dynamics, through the embodied cognition displayed by the
individual robot, up to the cognitive processes displayed by the group dynam-
ics. In this way, we could have a physical realisation of multiple-level dynamical
hierarchies that truly generate cognition from the bottom-up.

5 Conclusions

In this paper, we have introduced Swarm Cognition as a multidisciplinary re-
search field that bridges studies in collective intelligence and computational
neuroscience under a common theoretical and methodological framework. We
suggest that ALife can give a significant contribution, by developing synthetic
models of cognition-as-it-could-be. This concerns both simulated models of the
brain and swarm robotics systems. The goal is understanding how cognitive pro-
cesses are brought forth as transient dynamics emerging from massively parallel
interactions among cognitive units, be they simulated neurons or physical robots.
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