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Abstract. Population of simulated agents controlled by dynamical neu-
ral networks are trained by artificial evolution to access linguistic instruc-
tions and to execute them by indicating, touching or moving specific
target objects. During training the agent experiences only a subset of
all object/action pairs. During post-evaluation, some of the successful
agents proved to be able to access and execute also linguistic instruc-
tions not experienced during training. This is owe to the development of
a semantic space, grounded on the sensory motor capability of the agent
and organised in a systematised way in order to facilitate linguistic com-
positionality and behavioural generalisation.
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1 Introduction

During the last few years, several researchers have been building robotic and
simulated systems in which communication and linguistic skills are grounded
in perception and action [1–4]. One reason that explains the interest in these
works is constituted by the fact that they represent a suitable methodology to
investigate with precise operational models important aspects of cognition and
action [5–8]. This work is motivated by an intention to contribute to deepen our
understanding of the relation between action and language in order to verify the
nature of their strict interdependence. Indeed, as we will see, the results of this
type of research can help us to answer important questions such as: how agents
linguistic abilities are dependent on, and grounded in, other behaviours and
skills; how action-language interaction supports the bootstrapping of the agents
cognitive system, e.g. through the transfer of properties of action knowledge to
that of linguistic representations (and vice versa).

In this paper, we describe a model in which a simulated agent interacts with
coloured objects located in its peripersonal space by exhibiting three behaviours
(indicating, touching, and pushing) during a series of trials. In each trial, the
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agent receives as input a linguistic instruction (constituted by two units, one that
defines an object and another that defines an action) and is rewarded for the
ability to exhibit the corresponding behaviour (i.e., executing the action on the
target object). During training, an agent experiences only a subset of all possible
object/action instructions. The goal of this work is to design neural mechanisms
that allow the agent to access and execute both the experienced and the non
experienced linguistic instructions, through the development of a compositional
semantics that underpins linguistic and behavioural skills required by the task.
This study has been strongly inspired by the work illustrated in [9] in which the
authors trained a wheeled robot to interact with three coloured objects (located
on the left, frontal, and right side of the agent) through three actions (indicat-
ing, hitting, and pushing). Also the idea of studying semantic combinatoriality
through the co-development of linguistic and behavioural skills has been strongly
inspired by the above seminal work in which the authors demonstrated how the
linguistic and behavioural skills developed by the agents can be bounded to-
gether in order to allow the agent to react to a new linguistic instructions not
experienced during training. Yet, we look at the problem with different method-
ological tools to provide further alternatives to those issues that we perceive as
current limitations of the work described in [9]. In particular, in [9], the agent
is controlled by two separated modules (one dedicated to perception and action,
the other to linguistic comprehension) trained through a learning by demonstra-
tion process in which the sequence of sensory-motor states experienced while
the experimenter drives the agent actuators during a demonstration session are
used as teaching input for a supervised learning algorithm. Moreover, in [9] the
sensory-motor module is trained to execute all the possible behaviours, even
those associated to the linguistic instructions used to test the agent’s generalisa-
tion capabilities. Contrary to [9], we propose to study the emergence of situated
semantics in single non modularised artificial neural networks trained through
a trial and error process (based on an evolutionary algorithm) in which the
agents are rewarded on the basis of their ability to execute the linguistic instruc-
tions being free to determine how to execute such instructions. In our model,
behavioural and linguistic competences co-evolve in a single neural structure
in which the semantics is fully grounded on the sensory-motor capabilities of
the agents and fully integrated with the neural mechanisms that underpin the
agent’s behavioural repertoire. Moreover, the agents are evolved to execute only
the behaviours corresponding to the linguistics instructions experienced during
training. Therefore, the capability of the agents to generalise concerns both the
capability to access not experienced linguistic instructions as well as the capa-
bility to generate not experienced behaviours.

At the end of the training process successful agents display an ability to
translate the linguistic instructions experienced during training into the corre-
sponding situated behaviours. By analysing how successful agents react to spe-
cific combination of object/action instructions not experienced during training,
we observed that some of the agents display an ability to spontaneously produce
the appropriate behaviours, despite these behaviours have never been produced
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MOVE ActM
o

Object Action

I4 I5 I6 I7 I8 I9

Blue 0 0 1 1 0 0

Green 0 1 0 1 0 0

Red 1 0 0 1 0 0

TOUCH ActT
o

Object Action

I4 I5 I6 I7 I8 I9

Blue 0 0 1 0 1 0

Green 0 1 0 0 1 0

Red 1 0 0 0 1 0

INDICATE ActI
o

Object Action

I4 I5 I6 I7 I8 I9

Blue 0 0 1 0 0 1

Green 0 1 0 0 0 1

Red 1 0 0 0 0 1

(a)

(b) (c)

Fig. 1. (a) The agent structure and its world. The vision system of the agent is drawn
only with respect to the arm initialised on the right initialisation area. (b) The structure
of neural network. Continuous line arrows indicate the efferent connections for the first
neuron of each layer. Underneath the input layer, it is shown the correspondences
between sensors/linguistic instructions, the notation used in equation 1a to refer to
them, and the sensory neurons. (c) The linguistic instructions. In grey the instructions
not experienced during training. INDICATE is considered only in Exp. A.

or rewarded before during training. Post-evaluation analyses on the behaviour
of successful agents suggest that their capability to access unlearnt instructions
and to generate the corresponding unlearnt behaviour partially results from the
emergence of temporal (rather than topological as in [9]) structures of the seman-
tic space. Finally, we observed that the development of systematised knowledge
underpinned by a compositional semantic system is facilitated by evolutionary
circumstances in which the agents are explicitly required to display elementary
behavioural skills that can be recruited for the generation of more complex be-
haviours.

2 Methods

The task and the agent
Each agent lives in a two-dimensional world and is comprised of an arm with two
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segments referred to as S1 (100 cm) and S2 (50 cm), and two degrees of freedom
(DOF). Each DOF is comprised of a rotational joint which acts as the fulcrum
and an actuator. One actuator causes S1 to rotate clockwise or anticlockwise
around point O, with the movement restricted within the right (−30◦) and the
left (210◦) bound. The other actuator causes S2 to rotate within the range [−90◦,
90◦] with respect to S1. Friction and momentum are not considered (see Fig. 1a).
In the environment there are three rounded objects of different colours (i.e., a
blue, a green, and a red object). The objects are placed at 150 cm from point
O with their centre placed anywhere on the cord delimiting their corresponding
Init. sector (see Fig. 1a). The objects do not move unless pushed by the arm.
The agent is equipped with a linear camera with a receptive field of 30◦, divided
in three sectors, each of which has three binary sensors (CB

i for blue, CG
i for

green, and CR
i for red, with i ∈ [1, 2, 3] sectors). Each sensor returns 1 if the

blue/green/red object falls with the corresponding sector. The camera and S1

move together. The experimental set up is built in a way that at each time
step there can be only one object in the camera view. If no coloured object is
detected, the readings of the sensors are set to 0. The agent is also equipped
with right and left bound binary sensors which activate (i.e., their reading is set
to 1) whenever S1 reaches the right or the left bound, respectively. Finally, three
binary touch sensors (i.e., T r, T f , T l) are placed on the right, front, and left side
of S2. Collisions between the agent and an object are handled by a simple model
in which whenever S2 pushes the object the relative contact points remain fixed.

In a first series of simulations (referred to as Exp. A), agents are trained
to execute the following three actions: TOUCH (ActTo ), MOVE (ActMo ), and
INDICATE (ActIo), where o is the object on which the action is executed, and
can be either the blue, the green or the red object (see Fig. 1c). TOUCH requires
an agent to remain in contact with the target object with the right side of S2

(that is, by activating the touch sensor T r) for an uninterrupted interval of 100
time steps. During this interval, S1 does not have to rotate. MOVE requires
an agent to rotate S1 more than 35◦ while S2 is touching the object with its
right side. The rotation of S1 while S2 is touching the object determines the
movement of the object. INDICATE requires an agent to rotate S1 until the
angular distance between S1 and the object is less than 30◦. INDICATE is
correctly executed only if S1 remains at less than 30◦ from the target object for
more than 100 time steps. During the execution of INDICATE, an agent must not
collide with any object. During the execution of TOUCH and MOVE, an agent
must not collide with the non target objects (i.e., the objects not mentioned in
the current linguistic instruction). In a second series of simulations (referred to
as Exp. B), agents are trained to execute only the action TOUCH (ActTo ), and
MOVE (ActMo ).

The agent controller and the evolutionary algorithm
The agent controller is composed of a continuous time recurrent neural network

(CTRNN) of 20 sensor neurons, 3 inter-neurons and 4 motor neurons [10]. At
each time step sensor neurons are activated using an input vector Ii with i ∈
[1, .., 20] corresponding to the sensors readings (see Fig. 1b).
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The inter-neuron network is fully connected. Additionally, each inter-neuron
receives one incoming synapse from each sensory neuron. Each motor neuron
receives one incoming synapse from each inter-neuron. There are no direct con-
nections between sensory and motor neurons. The states of the motor neurons
are used to control the movement of S1 and S2 as explained later. The states of
the neurons are updated using the following equations:

∆y

∆T
=



(
− yi + gIi

) 1
∆T

; for i ∈ {1, .., 20}; (1a)(
− yi +

23∑
j=1

ωjiσ(yj + βj)
) 1

τi
; for i ∈ {21, 22, 23}; (1b)

(
− yi +

23∑
j=21

ωjiσ(yj + βj)
) 1

∆T
; for i ∈ {24, .., 27}; (1c)

with σ(x) = (1+e−x)−1. In these equations, using terms derived from an analogy
with real neurons, yi represents the cell potential, τi the decay constant, g is a
gain factor, Ii the intensity of the perturbation on sensory neuron i, ωji the
strength of the synaptic connection from neuron j to neuron i, βj the bias term,
σ(yj + βj) the firing rate (hereafter, fi). All sensory neurons share the same
bias (βI), and the same holds for all motor neurons (βO). τi and βi with i ∈
{21, 22, 23}, βI , βO, all the network connection weights ωij , and g are genetically
specified networks’ parameters. At each time step the angular movement of S1 is
2.9H(f24 − 0.5)sgn(0.5− f25) degrees and of S2 is 2.9H(f26 − 0.5)sgn(0.5− f27)
degrees, where H is the Heaviside step function and sgn is the sign function.

A generational genetic algorithm is employed to set the parameters of the
networks [11]. The population contains 100 genotypes. Generations following the
first one are produced by a combination of selection with elitism, recombination
and mutation. For each new generation, the five highest scoring individuals from
the previous generation are retained unchanged. The remainder of the new popu-
lation is generated by fitness-proportional selection from the 70 best individuals
of the old population. Each genotype is a vector comprising 90 real values. Each
gene is chosen uniformly random from the range [0, 1]. Cell potentials are set to
0 when the network is initialised or reset, and circuits are integrated using the
forward Euler method with an integration time step ∆T = 0.05.

The fitness function
During evolution, each genotype is translated into an arm controller and eval-

uated more than once for different object-action pairs and different starting
positions. In Exp. A (i.e., with INDICATE), agents are evaluated 14 times ini-
tialised in the left and 14 times in the right initialisation area, for a total of 28
trials. For each initialisation area, an agent experiences 2 times all the linguistic
instructions with the exception of ActMblue and ActTgreen. These two instructions
are never experienced during the training phase. In Exp. B (i.e., without INDI-
CATE), agents are evaluated 8 times initialised in the left and 8 times in the
right initialisation area, for a total of 16 trials. 4 out of 6 linguistic instructions
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are experienced during the evolution process, while 2 are not (as before, the
instructions which are not experienced are ActMblue and ActTgreen). In both Exp.
A and Exp. B, at the beginning of each trial, the agent is randomly initialised in
one of the two initialisation area, and the state of the neural controller is reset.
A trial lasts 12 simulated seconds (T = 250 time steps). A trial is terminated
earlier in case the arm collides with a non target object.

In each trial k, an agent is rewarded by an evaluation function which seeks
to assess its ability to execute the desired action on the target object. The final
fitness FF attributed to an agent is the sum of two fitness components F 1

k and
F 2

k . F 1
k rewards the agent for reducing the angular distance between S1 and the

target object. F 2
k rewards the agent for performing the required action on the

target object. F 1
k and F 2

k are computed as follows:

F 1
k = max

(
0,

di − df

di
· P 1

k ,1df <4.6◦

)
(2)

where di and df are respectively the initial (i.e., at t = 0) and final (i.e., at
the end of the trail k) angular distances between S1 and the target object and
1df <4.6◦ is 1 if df < 4.6◦, 0 otherwise. P 1

k is the penalty factor, which is set to 0.6
if the agent collides with a non target object, to 1.0 otherwise. The angle between
S1 and the target object o can be measured clockwise (αclock

o ) or anticlockwise
(αanti

o ). In equation 2, di and df are the minimum between the clockwise and
anticlockwise distance, that is d = min

(
αclock

T , αanti
T

)
.

F 2
k =


steps-on-target

max-steps-on-target
· P 2

k for TOUCH or INDICATE (3a)

∆θ

max-angular-offset
· P 2

k for MOVE (3b)

where max-steps-on-target = 100, P 2
k = 0 if F 1

k < 1 otherwise P 2
k = 1, and

max-angular-offset = 34.4◦. For the action INDICATE, steps-on-target refers
to the number of time steps during which F 1

k = 1, and S2 does not touch the
target object. For the action TOUCH, steps-on-target refers to the number of
time steps during which F 1

k = 1, S2 touches the target object by activating the
touch sensor T r, and S1 does not change its angular position. ∆θ is the angular
displacement of the orientation of S1 recorded while F 1

k = 1, and S2 is touching
the target object by activating the touch sensor T r. A trial is terminated earlier
if steps-on-target = max-steps-on-target during the execution of INDICATE or
TOUCH and when ∆θ = max-angular-offset during the execution of MOVE.

3 Results

For both Exp. A and Exp. B, we run for 10000 generations ten evolutionary sim-
ulations, each using a different random initialisation. Recall that our objective
is to generate agents that are capable of successfully performing all the possible
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Table 1. Result of post-evaluation test performed on the best agents of each generation
for each run and for Exp. A and Exp. B. The table shows the number of successful
agents on linguistic instructions experienced during evolution, and the percentage of
successful agents on linguistic instructions not experienced during evolution indicated
by the corresponding row (see text for details).

run n. 1 n. 2 n. 3 n. 4 n. 5 n. 6 n. 7 n. 8 n. 9 n. 10

Exp. A

Num. Suc. Agents 8634 0 7182 0 5491 3466 8812 8312 4627 8632

(%)

ActM
blue 30.87 0.00 17.96 0.00 0.00 57.73 29.43 27.96 12.19 3.56

ActT
green 17.88 0.00 0.56 0.00 2.77 1.13 16.00 21.19 3.41 1.00

ActM
blue and ActT

green 9.07 0.00 0.61 0.00 0.00 1.59 6.97 15.56 0.35 0.00

Exp. B

Num. Suc. Agents 6044 6011 8689 8893 0 8385 9060 7620 9151 8304

(%)

ActM
blue 20.43 14.59 11.67 19.98 0.00 0.01 1.10 16.18 3.05 7.70

ActT
green 0.00 0.32 1.63 2.11 0.00 10.10 1.62 0.59 1.22 0.87

ActM
blue and ActT

green 0.00 0.00 0.44 0.16 0.00 0.00 0.00 0.21 0.00 0.00

behaviours corresponding to the execution of all the possible linguistic instruc-
tions by undertaking a training focused only on a subset of them. We run two
different series of simulations (i.e., Exp. A and Exp. B) to see whether the train-
ing on a more elementary action (i.e., INDICATE) bears upon the development
of functionally compositional neural structures.

The best agents of each generation in both experimental conditions have
been post-evaluated by running sets of 80 trials for each linguistic instruction.
Agents of Exp. B are not tested on linguistic instructions that require action
INDICATE. In half of the trials the agents are randomly initialised in the right
and half of the trials in the left initialisation area (see Fig 1a). We considered
successful at the post-evaluation tests the agents that managed to obtain a suc-
cess rate higher that 80% in performing the behaviours corresponding to the
execution of the linguistic instructions experienced during evolution. Successful
agents have been further classified in i) non compositional agents, referring to
those successful agents that proved to be less than 80% successful at perform-
ing the behaviour corresponding to the execution of both the not experienced
instructions, ActMblue and ActTgreen; ii) partially compositional agents referring to
those successful agents that proved to be more than 80% successful at perform-
ing the behaviour corresponding to the execution of only one of the two non
experienced instructions, ActMblue or ActTgreen; iii) fully compositional agents re-
ferring to those successful agents that proved to be more than 80% successful at
performing the behaviour corresponding to the execution of both the not expe-
rienced instructions, ActMblue and ActTgreen. Results of post-evaluation tests are
shown in Table 1.

All the runs, with the exception of run n. 2 and n. 4 in Exp. A, and run
n. 5 in Exp. B, generated plenty of successful agents. For what concerns com-
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Fig. 2. Percentage of fully compositional, partially compositional and non compositional
agents in the two experimental conditions grouped by the number of failure.

positionality, the results can be summarised in few relevant points. First, fully
compositional agents are a very small percentage of the successful agents, in
Exp A, and they are almost absent in Exp. B. Moreover, in those run that
generated them, fully compositional agents keep on appearing and disappearing
during evolution, while successful agents once generated they are almost never
lost (data not shown). These data suggest that compositionality is not automat-
ically associated with, and is not a prerequisite for developing the capability of
successfully performing the evolutionary task. Second, in both Exp. A and Exp.
B,partially compositional agents are slightly more frequent than fully compo-
sitional agents. Moreover, partially compositional agents capable of performing
ActMblue are more frequent than partially compositional agents capable of per-
forming ActTgreen. Third, although successful agents are slightly less likely to be
generated in Exp. A than Exp. B, fully compositional or partially compositional
agents are definitely more frequent in Exp. A than in Exp B. This suggests that
the training on the more elementary action INDICATE seems to facilitate the
development of behavioural and linguistic compositionality.

Having ascertained that some of the successful agents are also partially or fully
compositional, we try to understand more about the mechanisms underpinning
compositionality. Looking at the behaviour of all types of compositional agents,
we noticed that they first move S1 keeping S2 bent in order to point to the target
object (as required for the INDICATE instruction). After that, if TOUCH or
MOVE is required, they rotate S2 and eventually S1 again depending on the
current linguistic instruction. If INDICATE is required, they keep S1 pointing
to the object, and S2 fully bent as at start. A very parsimonious hypothesis
on how compositional agents generate these behavioural patterns is based on
the capability to “parse” the linguistic instruction and to “pay attention” to its
parts in a sequential order. According to our temporal sequencing hypothesis,
compositionality may result from the fact that at the beginning of a trial, when
the agents have to approach the target object, only the part of the instruction
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referring to the object bears on its behaviour. When an agent is ready to execute
the action on the target object, then only the part of the instruction referring to
the action bears on the agent behaviour. In other words, compositionality may
be underpinned by a systematised knowledge of the task obtained by paying
attention to different parts of the linguistic instruction at different times of a
trial. Linguistic instructions, including those not experienced during training,
would be “decomposed” in already experienced elementary units which trigger
known (i.e., already experienced) elementary behaviours in a specific temporal
sequence (i.e., first the movement on the target object, then the execution of the
desired action).

To test the temporal sequencing hypothesis, we run a further series of post-
evaluation tests on successful agents of both Exp. A and Exp. B. In these tests,
the linguistic command referring to the action is changed during the agents’
life time as soon as the agents have completed the movement toward the target
object (i.e., when df < 0.08, see Sec. 2). According to the temporal sequencing
hypothesis, compositional agents should pay attention to the part of the linguis-
tic instruction referring to the action only after having reached the target object.
Therefore, they should correctly execute the second-given action, while ignoring
the first-given one. The performance of non compositional agents should result
severely disrupted by this type of unexpected manipulation of the linguistic in-
struction. The agents undergo sets of 80 trials for each possible transition from
a first-given action to a second-given action different from the first one, and for
each object. In half of the trials the agents are randomly initialised in the right
and half of the trials in the left initialisation area. There are 18 possible transi-
tions in Exp. A and 6 in Exp. B. The performance of an agent on each specific
transition is considered a failure if the agent fails to execute the second-given
action in more than 64 out of 80 trials. The results shown in Fig. 2 indicate that
only some of the fully compositional agents are able to perform all transitions
without any failure. These agents appear to have acquired a systematised knowl-
edge of the task in accordance with what suggested by the temporal sequencing
hypothesis. The higher the number of failure, the less structured the knowledge
of the task with a higher number of linguistic instructions learnt by rote and
represented as “atomic” operations in a semantics space progressively less com-
positional. Note that it is possible to be a compositional agent and having few
linguistic instructions learnt by rote. This is probably the case of fully compo-
sitional agents that make several failure on specific transitions (remember that
we do not enforce by any means compositionality). Note also that Exp. A and
Exp. B generate similar results. This may imply that fully compositional agents
exploit the same mechanisms to achieve compositionality in spite of the fact that
in Exp. B the evolutionary conditions seem not to facilitate their evolution.

4 Conclusions

The results of this study shows that dynamical neural networks designed by ar-
tificial evolution can provide the required mechanism to develop a compositional
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semantic neural structures which allow autonomous agents to access linguistic
instructions not experienced during training and to execute the corresponding
behaviours also non experienced during training. Although we haven’t carried
out yet any analysis on the neural mechanisms, we run some behavioural tests
which showed that evolved compositional semantic systems seem to be under-
pinned by temporal structures. That is, fully compositional agents possess the
required mechanisms to “parse” different part of the instruction and to execute
different sub-behaviours at different time of their life span. Evolutionary con-
ditions in which the agents are explicitly required to execute more elementary
behaviour than those on which their compositional skills are evaluated seem to
facilitate the emergence of fully compositional agents. Leaving the agents free
to determine how to achieve the goals associated to each linguistic instruction
allowed the agents to organise their behavioural skills in ways that facilitate the
development of compositionality thus enabling the possibility to display a gen-
eralisation ability at the level of behaviours (i.e., the ability to spontaneously
produce new behaviours that have not been displayed or rewarded before). In
future research we plan to investigate the characteristics that favour the emer-
gence of compositional solutions (that ensure behavioural generalisation) and/or
that reduce the chance to converge on non-compositional solutions and the pos-
sibility to scale the model with respect to the number and the complexity of the
linguistic/behavioural repertoire.
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