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Abstract

This paper illustrates an agent-based simulation model fo-
cused on the acquisition of linguistic skills. Populations
of simulated agents controlled by dynamical neural net-
works are trained by artificial evolution to perfom two tasks:
the behaviour-production task which consists in accessing
and executing linguistic instructions; and the behaviour-
recognition task which consists in linguistically recognising
behaviours. During training the agent experiences only a sub-
set of all linguistic instructions/behaviours. Trained agents
successfully acquire an ability to perform both tasks. More-
over some of the successfull agents proved to be able to ac-
cess and execute also linguistic instructions not experienced
during training. However, none of the successfull agents
manage to linguistically recognise behaviours corresponding
to the execution of linguistic instructions not experienced dur-
ing training. We conclude by speculating on potential fac-
tors that may have inhibited the agents from developing fully
compositional semantics structures.

Introduction

The main objective of this study is to design neural mecha-
nisms to allow autonomous agents to develop the linguistic
skills necessary to perform both a behaviour-production task
and a behaviour-recognition task. The behaviour-production
task requires the agents to access linguistic instructions and
to correctly execute them. The instructions are made of
two parts: a part that defines the type of action, and a part
that defines the object on which to perform the action. The
behaviour-recognition task requires the agents to observe
their own behaviours during the successful execution of each
linguistic instruction and to generate the corresponding lin-
guistic instruction (i.e., the object label and the action label).

Successful agents will be further post-evaluated to learn
more about the semantics structures underpinning their lin-
guistic skills. We will look at how the development of be-
havioural and linguistic skills required for the comprehen-
sion and the generation of the linguistic instructions changes
the way in which the agents represent linguistic labels and
attach meaning to them. For example, in the behaviour-
production task, we are interested in whether, and eventu-
ally at which point in the learning phase, the agents per-

form the task by exploiting a flexible conceptual system in
which object labels and action labels are parsed in a way
that even never experienced object-action pair can be con-
ceived as a recombination of previously experienced linguis-
tic elements. In the behaviour-recognition task, we are also
interested in whether, and eventually when, the capability
of recognising the linguistic instructions associated with the
perceived behaviours is underpinned by a compositional se-
mantic system. Owing to this system, previously unexpe-
rienced behaviours are seen to be made of elementary be-
havioural units corresponding to already experienced ele-
mentary linguistic labels.

The broad objective of this study is to capture and to sys-
tematically investigate, through the use of simulated agent-
based modelling, phenomena related to language learning
observed in humans. Models of embodied (physical or sim-
ulated) agents focused on the study of phenomena related
to language learning have become more significant with
recent psychological and neuroscientific evidence of close
links between the mechanisms of action and those of lan-
guage (Glenberg and Kaschak, 2002; Gallese, 2008). This
is because embodied and situated agent-based models repre-
sent a suitable methodological platform to test or to gener-
ate various hypothesis concerning the relationship between
the development of motor and linguistic skills (Hutchins and
Johnson, 2009). In recent years, various types of agent-
based models have been employed to generate proof-of-
concept demonstrations on how language-like symbolic sys-
tems can be acquired by artificial agents through interactions
with a physical and/or social environment (e.g., Cangelosi
and Parisi, 2002; Steels, 2002; Roy, 2002; Cangelosi and
Riga, 2006).

Particularly inspiring for our work is a series of articles
specifically focused on the acquisition of a compositional
semantics (Sugita and Tani, 2005, 2008). That is, a com-
positional system grounded on the agent’s sensory-motor
skills (see Harnard, 1990, for the meaning of grounding in
language learning). In (Sugita and Tani, 2005, 2008), the au-
thors investigate this issue on tasks that require the shift from
rote knowledge to systematised knowledge. This work has
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Figure 1: The agent structure and its world. The vision sys-
tem of the agent is drawn only with respect to the arm ini-
tialised on the right initialisation area.

contributed evidence for a dynamical perspective on com-
positional semantic systems, an alternative perspective to
the one in which neural correlates of language are viewed
as atomic elements semantically associated to basic units of
the linguistics systems (see also Van Gelder, 1990, on this
issue).

This study complements previous research on the devel-
opment of compositional semantics by looking at circum-
stances in which the development of linguistic skills con-
cerns both the domain of language comprehension and lan-
guage production. The analysis of the obtained results in-
dicatates that the agents successfully develop a semantic
space, grounded on their sensory motor capability and or-
ganised in a way that enable linguistic compositionality and
generalisation in the case of behaviour generation but not in
the case of behaviour recognition. That is, the recognition
of behaviour through the production of linguistic instruction
seems to be acquired by rote knowledge. We conclude by
speculating on potential factors that may have inhibited the
agents from developing fully compositional semantics struc-
tures.

The task and the agent

Each agent lives in a two-dimensional world and is com-
posed of an arm with two segments referred to as S* (100
cm) and S? (50 cm), and two degrees of freedom (DOF).
Each DOF comprises a rotational joint which acts as the
fulcrum and an actuator. One actuator causes S! to rotate
clockwise or anticlockwise around point O, with the move-
ment restricted within the right (—30°) and the left (210°)
bound. The other actuator causes S? to rotate within the
range [—90°, 90°] with respect to S*. Friction and mo-
mentum are not considered (see Fig. 1). In the environment
there are three rounded objects of different colours (i.e., a
blue, a green, and a red object). The objects are placed at

Table 1: The linguistic instructions. In grey the non-regular
instructions, that is, those not experienced during training.

MOVE InstM
Object Action
Li; Lis ILir | is li9 I
Blue 1 1 0 0 1 1
Green 1 0 1 0 1 1
Red 0 1 1 0 1 1
TOUCH Instl
Object Action
Iis The ©Lir | hs Lo Ix
Blue 1 1 0 1 0 1
Green 1 0 1 1 0 1
Red 0 1 1 1 0 1
INDICATE Inst?
Object Action
Iis TLie DLz | s Ty Ix
Blue 1 1 0 1 1 0
Green 1 0 1 1 1 0
Red 0 1 1 1 1 0

150 cm from point O with their centre placed anywhere on
the chord delimiting their corresponding Init. sector (see
Fig. 1). The objects do not move unless pushed by the arm.
The agent is equipped with a linear camera with a recep-
tive field of 30°, divided in three sectors, each of which has
three binary sensors (C¥ for blue, C& for green, and C?
for red, with ¢ € [1,2, 3] sectors). Each sensor returns 1 if
the blue/green/red object falls with the corresponding sector.
The camera and S move together. The experimental set up
is built in a way that at each time step there can be only one
object in the camera view. If no coloured object is detected,
the readings of the sensors are set to 0. The agent is also
equipped with right and left bound binary sensors (B” and
B') which activate (i.e., their reading is set to 1) whenever
S1 reaches the right or the left bound, respectively. Finally,
three binary touch sensors (i.e., 77, T, T*) are placed on
the right, front, and left side of S2. Collisions between the
agent and an object are handled by a simple model in which
whenever S? pushes the object the relative contact points
remain fixed.

Agents are trained on both a behaviour-production task
and on a behaviour-recognition task. The behaviour-
production task consists, for the agents, in the execution
of the following instructions (which will be referred to in
the remaining part of the paper as regular instructions):
TOUCH BLUE object (Instl,,.), TOUCH RED object
(Inst® ), MOVE GREEN object (Inst}__ ), MOVE RED

red green

object (Inst ), INDICATE BLUE object (Inst/, ), IN-

red blue

DICATE GREEN object (Inst! .. ), and INDICATE RED

green



object (Inst!_,, see also Table 1). TOUCH and MOVE re-
quire the agent to rotate S* and S? until S? collides with the
target object. TOUCH requires an agent to remain in con-
tact with the target object with the right side of S? (that is,
by activating the touch sensor 7) for an uninterrupted in-
terval of 100 time steps. During this interval, S' must not
rotate. MOVE requires an agent to rotate S' more than 35°
while S? is touching the object with its right side. The ro-
tation of S* while S? is touching the object determines the
movement of the object. INDICATE requires an agent to ro-
tate S! until the angular distance between S and the object
is less than 30°. INDICATE is correctly executed only if
S remains at less than 30° from the target object for more
than 100 time steps. During the execution of INDICATE, an
agent must not collide with any object. During the execu-
tion of TOUCH and MOVE, an agent must not collide with
the non target objects (i.e., the objects not mentioned in the
current linguistic instruction).

The behaviour-recognition task consists, for the agents,
in recognising and correctly labelling own behaviours per-
ceived through sequences of «, 3 duplet. Each duplet cor-
responds to the angular rotation of the two segments of the
arm. In particular, o corresponds to the normalised clock-
wise angle from S* to the axis from O to the lower end po-
sition of the blue object Init. sector. 3 corresponds to the
normalised relative rotation of S? with respect to S! (see
Fig. 1). The duplets are recorded during the successful exe-
cution of the behaviours at the behaviour-production task.

We run two different series of simulations (referred to as
Exp. A and Exp. B) which differ in the training schema.
In Exp. A, the agents are evaluated on the behaviour-
recognition task only if they successfully perform all the
regular instructions during the behaviour-production task.
In Exp. B, each agent performs the behaviour-recognition
task as soon as it successfully executes at least one reg-
ular instruction at the behaviour-production task. In this
case, the behaviour-recognition task is limited only to those
regular instructions successfully executed at the behaviour-
production task. After training, all the agents are evaluated
for their capability to access regular and non-regular linguis-
tic instructions and to execute the corresponding behaviours
and also for their capability to label behaviours correspond-
ing to the execution of regular and non-regular instructions.

The agent controller and the evolutionary
algorithm

The agent controller is composed of a continuous time re-
current neural network (CTRNN) of 22 sensor neurons, 8
inter-neurons and 10 output neurons (Beer and Gallagher,
1992). During the behaviour-production task, at each time
step, sensor neurons from 1 to 20 are activated using an in-
put vector I; with ¢ € [1, .., 20] corresponding to the sensors
readings indicated in Flg. 2, and the input to sensor neuron
21 and 22 is set to 0. During the behaviour-recognition task,

st 52 { Object } { Action }

11 12 13 Iy Is 16 l7 18 Iy T Iy I12 I13 I14 115 Iw 117 113 119 120 I21 122
T ct ¢y c’* c" CG cy ¢y cy c3 B B {Object} {Amon} a B

Figure 2: The neural network. Continuous line arrows in-
dicate the efferent connections for the first neuron of each
layer. Underneath the input layer, it is shown the correspon-
dences between sensors/linguistic instructions, the notation
used in equation la to refer to them, and the sensory neu-
rons.

at each time step, the input to sensor neurons 1 to 20 is set to
0, and sensor neurons 21 and 22 are activated using an input
vector I; with ¢ € [21, 22] corresponding to the «, 3 gener-
ated by successfully executing the linguistic instructions at
the behaviour-production task.

The inter-neuron network is fully connected. Addition-
ally, each inter-neuron receives one incoming synapse from
each sensory neuron. Each output neuron receives one in-
coming synapse from each inter-neuron. There are no direct
connections between sensory and output neurons. The states
of the output neurons are used to control the movement of
St and S? as explained later. The states of the neurons are
updated using the following equations:

1
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fori € {1,..,22} ineq. la, fori € {23, ...,30} in eq. 1b, for
i €{31,.,,40} ineq. Ic, and with o(z) = (1 + e7%)"L. In

these equations, using terms derived from an analogy with
real neurons, y; represents the cell potential, 7; the decay
constant, g is a gain factor, I; the intensity of the pertur-
bation on sensory neuron %, wj; the strength of the synap-
tic connection from neuron j to neuron 4, §; the bias term,
o(y;j+ ;) the firing rate (hereafter, f;). All sensory neurons
share the same bias (37), and the same holds for all output
neurons (3°). 7; and 3; with i € {23, ...,30}, #1, B°, all
the network connection weights w;;, and g are genetically
specified networks’ parameters. At each time step the an-
gular movement of S' is 2.9H (f31 — 0.5)sgn(0.5 — f32)
degrees and of S? is 2.9H (f33 — 0.5)sgn(0.5 — f34) de-
grees, where H is the Heaviside step function and sgn is the
sign function.



A generational genetic algorithm is employed to set the
parameters of the networks (Goldberg, 1989). The popula-
tion contains 100 genotypes. Generations following the first
one are produced by a combination of selection with elitism,
recombination and mutation. For each new generation, the
five highest scoring individuals from the previous generation
are retained unchanged. The remainder of the new popula-
tion is generated by fitness-proportional selection from the
70 best individuals of the old population. Each genotype is
a vector comprising 340 real values. At the beginning of the
evolutionary process, each gene is chosen randomly from a
uniform distribution in the range [0, 1]. Cell potentials are
set to 0 when the network is initialised or reset, and circuits
are integrated using the forward Euler method with an inte-
gration time step AT = 0.1.

The fitness function

During evolution, each genotype is translated into an
arm controller and evaluated more than once for all the
object-action regular instructions by varying the starting
positions. The agent fitness is computed on both the
behaviour-production task and the behaviour-recognition
task (Ftotal — Fproduction + Frecognition, see below for
details).

The behaviour-production task

During the behaviour-production task, the agents perceive
regular instructions and they are required to execute the cor-
responding behaviours. Agents are evaluated 14 times ini-
tialised in the left and 14 times in the right initialisation area,
for a total of 28 trials. For each initialisation area, an agent
experiences 2 times all the regular linguistic instructions.
The linguistic instructions Inst}! and I nstgmm are never
experienced during the training phase. At the beginning of
each trial, the agent is randomly initialised in one of the two
initialisation area, and the state of the neural controller is re-
set. A trial lasts 12 simulated seconds (7' = 250 time steps).
A trial is terminated earlier in case the arm collides with a
non target object.

In each trial k, an agent is rewarded by an evaluation func-
tion which seeks to assess its ability to execute the desired
action on the target object. The final fitness FProduction gt
tributed to an agent is the sum of two fitness components
F and F?. F} rewards the agent for reducing the angular
distance between S* and the target object. F}? rewards the
agent for performing the required action on the target object.

128

= g 2 (i + F); 2)
k=1

Fproduction

F} and F are computed as follows:

1 d—df
Fk = max O,T 'P]c?]ldf<4.6° ; (3)

where d’ and df are respectively the initial (i.e., at t =
0) and final (i.e., at the end of the trail k) angular dis-
tances between S and the target object and 1,54 go is 1
if df < 4.6°, 0 otherwise. Pk1 is the penalty factor, which
is set to 0.6 if the agent collides with a non target object,
to 1.0 otherwise. The angle between S! and the target
object o can be measured clockwise (ac°°*) or anticlock-
wise (™). In equation 3, d* and d’ are the minimum
between the clockwise and anticlockwise distance, that is

d = min (g, agnt?).
steps-on-target 2. for TOUCH (4a)
2 max-steps-on-target k* or INDICATE
2=
Af
N - P MOVE  (4b)

max-angular-offset

where max-steps-on-target = 100, P2 = 0 if F kl < 1 oth-
erwise P,f = 1, max-angular-offset = 34.4°, N = 2 for
TOUCH and MOVE, and N = 1 for INDICATE. For the ac-
tion INDICATE, steps-on-target refers to the number of time
steps during which F}} = 1, and S? does not touch the tar-
get object. For the action TOUCH, steps-on-target refers to
the number of time steps during which F}! = 1, 52 touches
the target object by activating the touch sensor 7", and S!
does not change its angular position. A is the angular dis-
placement of the orientation of S* recorded while F}} = 1,
and S? is touching the target object by activating the touch
sensor 1. A trial is terminated earlier if steps-on-target =
max-steps-on-target during the execution of INDICATE or
TOUCH and when A6 = max-angular-offset during the ex-
ecution of MOVE.

The behaviour-recognition task

During the behaviour-recognition task, the agent is evalu-
ated for labelling its behaviours corresponding to the suc-
cessful execution of each of the regular instructions. That is,
the arm of the agent is moved so as to display a behaviour
previously exhibited during the behaviour-production task
by the agent itself, and it is asked to produce the correspond-
ing linguistic instruction (without receiving it as input).

In Exp. A, an agent moves on to the behaviour-
recognition task only if it successfully completes all the tri-
als of the behaviour-production task (i.e., FProduction
2.57) . In Exp. B, an agent moves on to the behaviour-
recognition task as soon as it successfully completes at least
one trial at the behaviour-production task (i.e., Ik|(F}} +
F?) > 257 ). The behaviour-recognition task com-
prises only the trial/s successfully executed at the behaviour-
production task. In other words, in Exp. A, the evolution
of the mechanisms to accomplish the behaviour-recognition
task follows the evolution of the mechanisms to successfully
execute the behaviour-production task. In Exp. B, the evo-
lution of the mechanisms for the behaviour-production task
and the behaviour-recognition task evolve simultaneously,



since it suffices for an agent to successfully complete a sin-
gle trial of the behaviour-production task to move on to the
behaviour-recognition task. ‘

In each trial k, the functions F¢* and F{<! reward the
agents for matching with the firing rate of the output neu-
rons 35, 36, 37, 38, 39, and 40 the six digit regular instruc-
tion that tr1ggered the currently experienced successful be-
haviour. F 7 and F°* are computed as follow:

1 K
S B

T l_fkt Z fz
—2-ranky + i€Wy,
2 (2 e 4 t )

3 _ t=T-5
Fk —_

Frecognition

2.5 ’

| 5)
with F b = F 3 with Wy the subset of output neurons
defining the object label (i.e., neurons 35, 36, and 37) whose
activation should be 1, f; , the firing rate of the neuron defin-
ing the object label whose activation should be 0, ranky,
the rank of f;, when the output neurons defining the ob-
ject label are ranked in ascending firing rate order. Fy<

is computed as F}) bi considering the output neurons defin-
ing the action label (i.e., neurons 38, 39, 40). F,f = 0 if
(F} + F?) < 2.57 (i.e. if the behaviour at trial £ has not
been correctly executed).

Results

For each experimental condition (Exp. A, Exp. B), we run
ten evolutionary simulations for 10000 generations, each us-
ing a different random initialisation. Recall that our ob-
jective is to generate agents that are capable of success-
fully performing both the behaviour-production task and the
behaviour-recognition task. Moreover, we are interested in
investigating whether successful agents develop semantic
structures that are functionally compositional. Agents en-
dowed with a functionally compositional semantics should
be able to access and execute linguistic instructions never
experienced during training (i.e., from non-regular instruc-
tions to the execution of the corresponding behaviours).
They may also be able to linguistically describe a behaviour
never performed/experienced during training (i.e., from the
perception of behaviours never executed during training to
the generation of non-regular instructions). We run two dif-
ferent series of simulations (i.e., Exp. A and Exp. B) to see
whether a different training bears upon the development of
functionally compositional neural structures.

The best agents of each generation in both experimental
conditions have been post-evaluated by first running sets of
80 trials for each regular and non-regular linguistic instruc-
tion in which the agents are asked to perform the behaviour-
production task. Hereafter, we refer to this first phase of the

Table 2: Result of post-evaluation tests performed on the
best agents of each generation for four runs of Exp. A, and
for two runs of Exp. B. The tables show the number of suc-
cessful agents at the behaviour-production task on regular
linguistic instructions, and the percentage of them also suc-
cessful on the non-regular instructions. The tables also show
the number of successful agents at the behaviour-recognition
task on regular linguistic instructions, and the percentage of
them also successful on the non-regular instructions.

Exp. A
run 1 8 9 10
Num. b-successful 5310 | 414 | 2079 | 6588
Inst 0.00 | 0.00 | 6.54 | 37.66
Instg,een 0.00 | 0.00 | 33.57 | 0.00
Inst),  and Instgmm 0.00 | 0.00 | 0.00 | 0.00
Num. [-successful 0 0 0 0
Inst) 0.00 | 0.00 | 0.00 | 0.00
Instgreen 0.00 | 0.00 | 0.00 | 0.00
Inst and Instqreen 0.00 | 0.00 | 0.00 | 0.00
Exp. B
run 5 7

Num. b-successful 3183 | 9613

Inst) 0.00 | 17.07

Insthreen 8.83 | 19.08

Inst} and Insthreen 0.00 | 21.49

Num. [-successful 0 1753

Inst) 0.00 | 0.00

Instgmm 0.00 | 0.00

Inst} and Instgmen 0.00 | 0.00

post-evaluation test as behaviour-production test. In half of
the trials the agents are randomly initialised in the right ini-
tialisation area and half of the trials in the left one (see Fig 1).
We considered those agents successful at the behaviour-
production test (hereafter, referred to as b-successful) that
manage to obtain a success rate higher than 80% in perform-
ing the behaviours corresponding to the execution of the
regular linguistic instructions (i.e., those experienced dur-
ing evolution). b-successful agents have been further clas-
sified into i) b-non-compositional agents, referring to those
b-successful agents that proved to be less than 80% success-
ful at performing the behaviour corresponding to the ex-
ecution of both the non-regular instructions, [ nsté‘ﬁe and
I nstgmen, it) b-partially-compositional agents referring to
those b-successful agents that proved to be more than 80%
successful at performing the behaviour corresponding to the
execution of only one of the two non-regular instructions,

InstM or I nstgmen, iit) b-fully-compositional agents re-



ferring to those b-successful agents that proved to be more
than 80% successful at performing the behaviour corre-
sponding to the execution of both the non-regular instruc-

; M T
tions, Insty,, . and Instg, ..,

During the second phase of the post-evaluation test,
b-successful agents are asked to perform the behaviour-
recognition task. That is, they are required to produce as
output the regular and non-regular linguistic instructions
that, during the behaviour-production test, triggered their
successful behaviour. Hereafter, we refer to this second
phase of the post-evaluation test as behaviour-recognition
test. Recall that, behaviour-recognition test on non-regular
instructions is performed only on b-partially- or b-fully-
compositional agents. Moreover, recall that the agents per-
ceive their successful behaviours through sequences of du-
plet «, (3, recorded during successful post-evaluation tri-
als of the behaviour-production test. As for the behaviour-
production test, we considered those agents successful at
the behaviour-recognition test (hereafter, referred to as I-
successful) that manage to obtain a success rate higher that
80% in generating the regular linguistic instructions. Note
that, the object label generated by the agent controller is
considered “blue” if the neuron with the lowest firing rate
is neuron 35, “green” if it is neuron 36, “red” if it is neu-
ron 37. The action label generated by the agent controller
is considered “touch” if the neuron with the lowest firing
rate is neuron 38, “move” if it is neuron 39, “indicate” if
it is neuron 40. L-successful agents have been further clas-
sified in i) I-non-compositional agents, referring to those [-
successful agents that proved to be less than 80% successful
at generating non-regular linguistic instructions, [ nst{,ﬁe
and [ nstgrem; ii) [-partially-compositional agents referring
to those I-successful agents that proved to be more than 80%
successful at generating only one of the two non-regular in-
structions, Inst} or I nstgreen; iit) I-fully-compositional
agents referring to those [-successful agents that proved to be
more than 80% successful at generating both the non-regular

. . M T
instructions, Insty, . and Insty, .,,.

Table 2 shows the results of post-evaluation tests on those
evolutionary runs in which we recorded the presence of
b-successful agents. First, only four out of ten runs in
Exp. A, and two out of ten runs in Exp. B produced b-
successful agents. Second, only run 7 in Exp. B produced
agents that are both b-successful and I-successful. This re-
sult indicates that, given our methodological setup, it is
extremely difficult to design the mechanisms to allow au-
tonomous agents to perform both the behaviour-production
task and the behaviour-recognition task as described in pre-
vious Sections. The experimental condition in which the
mechanisms to perform the behaviour-production task and
the behaviour-recognition task co-adapt simultaneously (i.e.,
Exp. B) seems to contain the necessary “ingredients” to
accomplish the objective of this study. However, the fact
that only one out of ten runs produced both b-successful

and [-successful agents suggests that there are elements that
severely hindered the evolution from generating the neural
structured required by the agents to accomplish their ob-
jective. What are these elements? At this stage of our in-
vestigation, we have evidence to claim that the number of
hidden neurons of the neuro-controllers has a bearing on
the evolution of b-successful agents. In a previous study
described in (Tuci et al., 2010), we have evolved agents
to perform only the behaviour-production task in evolu-
tionary circumstances identical to those illustrated in this
study. In (Tuci et al., 2010), agents were controlled by
neural controllers with only three hidden neurons. Almost
all the evolutionary runs generated b-successful agents. It
seems that smaller neural controllers corresponding to a
smaller evolutionary search space facilitates the evolution
of the mechanisms to accomplish the behaviour-production
task. However, when employed in this study, three-hidden-
neuron controllers proved to be insufficient to perform both
the behaviour-production task and the behaviour-recognition
task. We had to progressively increase the number of hid-
den neurons from three to eight to generate b-successful and
I-successful agents. Further tests are certainly required to
isolate other elements of our model that may have a strong
bearing on the capability to generate b-successful and I-
successful agents.

Table 2 also shows the results concerning compositional-
ity. Only run n. 7 in Exp B produced agents that turned out to
be b-fully-compositional. b-partially-compositional agents
can be found in run 9 and 10 of Exp. A, and in both runs of
Exp. B. None of the runs produced [-partially-compositional
or I-fully-compositional agents. It is worth noting that the
mechanisms to access non-regular instructions and to gener-
ate the corresponding behaviours do not underpin the inverse
process, that is, from the perception of behaviours never ex-
ecuted during training to the generation of the correspond-
ing non-regular instructions. This suggests that linguistic
skills related to the capability to comprehend and to gen-
erate linguistic instructions in b-fully-compositional and [-
successful agents are underpinned by different neural mech-
anisms. The mechanisms concerning the capability to be
b-fully-compositional work as a functionally compositional
semantic structure. The mechanisms concerning the capa-
bility to be I-successful allow the agents to learn by rote the
association between the perception of sequences of «, 3 du-
plet and regular instructions.

Figure 3 show several graphs which tell us more about
the evolutionary dynamics which led to the emergence of b-
successful and I-successful agents in run 7 of Exp. B. These
graphs show for each best agent of each generation of run
n. 7 the percentage of success for each instruction of the
behaviour-recognition test (see dotted, dashed, and contin-
uous lines in Figure 3) as well as the generations in which
the agents turned out to be b-successful, and the generation
at which the agents turned out to be b-fully-compositional
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Figure 3: Graphs showing for each best agent of each generation of run n. 7 the percentage of success for each instruction of
the behaviour-recognition test. Dotted lines refer to the percentage of success in generating the labels for both the object and
the action. Continuous lines refer to the percentage of cases in generating the correct label for the object and the wrong one for
the action. Dashed lines refer to the percentage of cases in generating the correct label for the action and the wrong one for the
object. At the bottom of each graph, the thin horizontal continuous line indicates the generations in which the agents turned out
to be b-successful. The tick horizontal line over-imposed on the thin one, indicates the generations in which the agents turned
out to be b-fully-compositional (see text for details). Data are smoothed with a moving average of window size 20.

(see thin and thick horizontal lines below zero in Figure 3).
First, we notice that b-fully-compositional agents keep on
appearing and disappearing during evolution, while success-
ful agents once generated, are almost never lost. These data
suggest that compositionality is not automatically associated
with, and is not a prerequisite for developing the capability
of successfully performing the behaviour-production task.
Second, [-successful agents appear very late in evolution. In
particular, the agents seemed to have hard time to correctly
label behaviours triggered by instructions concerning the red
object (see continuous and dashed lines in Figure 3g, 3h, 3i).
I-successful agents appear after generation 6000, definitely
later than the appearance of b-fully-compositional agents
(see dotted lines and the tick horizontal lines below zero
in Figure 3a, 3c, 3e, 3f, 3g, 3h, 3i). This suggest that the
emergence of a functionally compositional semantics is not
determined by the evolution of the mechanisms to success-
fully perform the behaviour-recognition task. Third, the

graphs concerning non-regular instructions tell us that the
agents are not completely unable to deal with these circum-
stances. For example, as far it concerns [ nsté\fues (see Fig-
ure 3b), several agents during evolution proved to be up to
50% successful in correctly labelling the object on which
the action was performed. As far it concerns [ nst;een (see
Figure 3d), up to generation 6000, the agents seemed to be
more effective in labelling the object, while after generation
6000 they proved to be at least 50% effective in correctly
labelling both the object and the action given the behaviour
corresponding to the execution of this instruction.

Conclusions

We have described a set of simulations which generated au-
tonomous agents, controlled by a single non a priori mod-
ularised neuro-controller, capable of successfully executing
both a language comprehension and a language production
task. Post-evaluation tests revealed that, successful agents



display a form of compositional semantics which allow them
to access linguistic instructions not experienced during train-
ing and to execute the corresponding behaviours also no ex-
perienced during training. That is, we observed generali-
sation capabilities in the behaviour-production task. The
same successful agents proved not capable of correctly la-
belling their own behaviours not experienced during train-
ing. That is, we did not observe generalisation capabilities
in the behaviour-recognition task. Although at this stage we
do not have enough empirical evidence to account for this
result, we can definitely formulate a number of not mutually
exclusive hypothesis that we will consider to identify future
directions of work.

Why successful agents show generalisation capabilities
at the behaviour-production task and no generalisation ca-
pabilities at the behaviour-recognition task? First, we can
hypothesise that, the agents have enough computational re-
sources (e.g., hidden neurons) to learn by rote the associa-
tion between behaviours represented by sequences of «, 3
duplet and linguistic labels. Alternatively, it could be that
the behaviour-recognition task did not produce sufficiently
selective evolutionary pressures to generate the mechanisms
required to shift from rote knowledge to a more flexible
conceptual system. Second, from the agent point of view,
the behaviour-production task and the behaviour-recognition
task are mostly uncorrelated tasks. This becomes clear if
we consider that the agent has two groups of input-output
neurons: one (comprising input neurons 1 to 20 and output
neurons 31 to 34) that is only used during the behaviour-
production task; the other (comprising input neurons 21 and
22 and output neurons 35 to 40) that is only used during the
behaviour-recognition task. Due to the different nature of
the two input-output groups, the input received during the
behaviour-recognition task is completely different from the
motor output and from any other input experienced during
the behaviour-production task. This may make it difficult
for the agent to develop a coherent internal structure, com-
mon to the language comprehension and language produc-
tion task. To try to cope with this problem we plan to ex-
plore two possibilities: one is to modify the agent body and
neural architecture, the other is to slightly modify the task.
As far as the agent is concerned, one possibility could be to
change the way the output controlling the arm movement is
encoded, so to have at least similar kinds of input and out-
put signal. Another possibility could be to feed the « and 3
input neurons also during the behaviour-production task (as
if the agent could “see” himself doing the task). On the task
side, we plan to implement setups in which the two abili-
ties have to be used together. For example, we could ask the
agent to produce the correct linguistic instruction during the
behaviour-production task. Even though this is a rather easy
task (the correct instruction is already present in the input
units), it could nonetheless favour the emergence of com-
mon structures underpinning both the language comprehen-

sion and language production task.
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