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Abstract. This study compares two different evolutionary approaches
to the design of homogeneous multi-robot teams in a task that requires
the agents to specialise in different roles. Our results diverge from what
illustrated in a previous similar comparative study, which advocates for
the superiority of the aclonal versus the clonal approach. We question
this argument in view of new empirical evidence showing that the two
approaches perform equally well in generating homogeneous teams.
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1 Introduction

Homogeneous multi-robot systems are a class of autonomous multi-agent sys-
tems in which all robots of a team have identical physical structure and iden-
tical decentralised control system. Like social insects, homogeneous robots are
generally required to coordinate their actions in order to maximise the efficiency
of the team [9]. The synthesis of controllers for homogeneous multi-robot teams
is a complex problem that has been faced with a large number of different tech-
niques [6]. Among the various possibilities, Evolutionary Robotics represents a
viable approach for the automatic synthesis of robot controllers requiring little
a priori knowledge about the solution of a given problem [5]. In recent years, a
number of studies have investigated the dynamics underlying the evolution of
multi-robot systems in order to develop a principled understanding of how to
guide self-organisation [7, 2, 10, 8]

One of the first papers to focus on this issue is the study described in [7], in
which the author compares the clonal and the aclonal approach for the design of
homogeneous controllers for teams of two agents required to move in a coordi-
nated way by remaining within sensor range. The clonal approach refers to the
use of a single genotype to generate a homogeneous team. The aclonal approach
uses different genotypes from the same evolving population to generate teams
in which the agents have different controllers (i.e., heterogeneous teams). The
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study shows that, regardless of the theoretical disadvantages clearly listed and
discussed in the paper, the aclonal approach can be a more efficient way than
the clonal approach to generate homogeneous systems in which the team mem-
bers have to autonomously specialise for the benefit of the team. To account for
these counter-intuitive results, the author formulates a hypothesis according to
which the aclonal approach takes advantages of specific evolutionary dynamics
that are precluded to the clonal approach. In particular, in the aclonal approach
behavioural roles can be developed and refined in genetically specialised agents,
prior to the evolution of generalist solutions; that is, genetically identical individ-
uals that use dynamic role allocation mechanisms to specialise in different roles.
In other words, specialised solutions pave the way to the evolution of generalist
ones. In the clonal approach, this gradual evolution from specialised to generalist
solutions is not possible, because, given that the agents are clones, the adoption
of complementary roles necessarily requires the existence of some dynamic role
allocation mechanisms. Thus, behavioural roles and the mechanisms to allocate
them have to (laboriously) evolve simultaneously.

This study provides further comparisons between clonal and aclonal ap-
proaches for the evolution of homogeneous multi-robot teams for tasks that
require individuals to take specific roles. We are moved by the hypothesis that
the results shown in [7], concerning the superiority of the aclonal versus the clonal
approach, may have been affected by task-specific features, such as: a) the fact
that functional differentiation between the roles may not be a prerequisite to
perform the task; and b) the use of an evaluation function composed of team-
based metrics (e.g., the position of the team given by the centre-point between
the robots). Point (a) calls into question the causal relationship between the
supposed nature of the task and the evolutionary dynamics observed. Point (b)
calls into question the strong constraints that the evaluation function may have
imposed to the evolutionary dynamics of the clonal approach. Contrary to what
shown in [7], in our scenario, the roles are clearly different, and the evaluation
function is made of robot-based (instead of team-based) factors. We show that
in these conditions the clonal and aclonal approaches perform equally well in
generating homogeneous teams. Our results indicate that the argument formu-
lated in [7] concerning the superiority of the aclonal versus the clonal approach
is based on an interpretation of the data that would require further empirical
support to be validated. This is because we reproduced those data showing that
they are open to alternative interpretations, not considered in [7].

2 Methods

2.1 The Task and the Simulation Environment
Teams comprising two simulated Khepera mini-robots are evaluated in the con-

text of a dynamic role-allocation task. By taking inspiration from the behaviour
of social insects, the roles are nest patrolling and foraging (hereafter, we refer to
them as role P, and role F, respectively). Roughly speaking, role P requires a
robot to remain within the nest (i.e., an area in which the colour of the floor is
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Fig. 1. a) Kheperas’ body-plan. The black circles refer to the position of infra-red
(IR), ambient-light (AL), and floor sensors (F ). The dotted lines indicated view with
the camera’s sectors. α and β are the parameters defining the set of 15 different initial
team positions. The grey circle is the light. b) The neural network. Continuous line
arrows indicate the efferent connections of the first neuron of each layer. Neurons on
the same layer share the same type of efferent connections. Underneath the input layer,
it is shown the correspondences between sensors and sensor neurons.

in shades of grey). Role F requires a robot to move back and forth between the
nest and any of the two foraging sites located in the environment. The robots are
required to execute both roles simultaneously. Therefore, they should go through
a role-allocation phase in which they autonomously decide who is doing what,
and then execute their role3.

The environment is a boundless arena with a light bulb positioned 6cm above
the floor, and two red cylindrical objects (2.7cm radius, and 10cm height) posi-
tioned at 40cm on the left and on the right of the light, respectively, and referred
to as L-Site, and R-Site. The colour of the arena floor is white except for a cir-
cular area (15cm radius), centred around the lamp, within which the floor is in
shades of grey. The inner part of the circular area (up to 5cm to the light) is
black, the middle part (from 5cm to 10cm from the light) is dark grey, and the
outer part (from 10cm to 15cm to the light) is light grey. The area in shades of
grey represents the nest. The cylindrical objects represent the foraging sites.

The robots kinematics are simulated using a modified version of the “min-
imal simulation” technique described by Jakobi in [3]. Our simulation models
a Khepera robot, a 2.7cm radius cylindrical robot. It is provided with eight
infra-red sensors (IRi with i = {0, .., 7}), which give the robot a noisy and non-
linear indication of the proximity of an obstacle (in this task, an obstacle can
be another robot or a foraging site); four ambient light (ALi with i = {0, .., 3})
sensors to detect light; a linear camera; and a floor sensor (F ) positioned facing
downward on the underside of the robot (see Fig. 1a). The IR and AL sensor val-

3 See also http://users.aber.ac.uk/elt7/suppPagn/sab2012/suppMat.html for fur-
ther methodological details, pictures, and movies of best teams.
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ues are extrapolated from look-up tables provided with the Evorobot simulator
(see [4]). The F sensor can be conceived of as a IR sensor capable of detecting
the level of grey of the floor. It returns 0 if the robot is on white floor, 0.5 if is
on light grey floor, 0.75 if is on dark grey floor, and 1 if is on black floor. The
robots camera has a receptive field of 30◦, divided in three equal sectors, each of
which has three binary sensors (CBi for blue, CGi for green, and CRi for red, with
i = {1, 2, 3} indicating the sector). Each sensor returns a value in between [0, 1].
The camera can detect coloured objects up to a distance of 60cm. The robots
can not see each other through the camera. The robot has left and right motors
which can be independently driven forward or reverse, allowing it to turn fully
in any direction. The robot maximum speed is 8cm/s.

2.2 Robot controllers and the Evolutionary Algorithm
The robot controller is composed of a continuous time recurrent neural network

(CTRNN) of 10 sensor neurons, 6 inter-neurons, and 4 motor neurons (see [1]).
The structure of the network is shown in Fig. 1b. The states of the motor neurons
are used to control the speed of the left and right wheels as explained later. The
sensor neurons are simply relay units. The states of inter and motor neurons are
updated using the following equations:

τiẏi = −yi +

10∑
j=1

ωjiσ(gIj + βj) +

16∑
j=11

ωjiσ(yj + βj); for i = {11, .., 16}; (1)

∆yi = −yi +

16∑
j=11

ωjiσ(yj + βj); for i = {17, .., 20}; (2)

with σ(x) = (1+e−x)−1. In these equations, using terms derived from an analogy
with real neurons, yi represents the cell potential, τi the decay constant, g is a
gain factor, Ii with i = {1, .., 10} is the activation of the ith sensor neuron
(see Fig. 1b for the correspondence between robot’s sensors and sensor neuron),
ωji the strength of the synaptic connection from neuron j to neuron i, βj the
bias term, σ(yj + βj) the firing rate (hereafter, fi). All sensory neurons share
the same bias (βI), and the same holds for all motor neurons (βO). τi and βi
with i = {11, .., 16}, βI , βO, all the network connection weights ωij , and g are
genetically specified networks’ parameters. At each time step, the output of the
left motor is ML = f17 − f18, and the right motor is MR = f19 − f20, with
ML,MR ∈ [−1, 1]. Cell potentials are set to 0 when the network is initialised
or reset, and equation 1 is integrated using the forward Euler method with an
integration time step ∆T = 0.1.

A simple evolutionary algorithm using linear ranking is employed to set the
parameters of the networks. The population contains 100 genotypes. Generations
following the first one are produced by a combination of selection with elitism,
recombination and mutation. For each new generation, the three highest scoring
individuals (“the elite”) from the previous generation are retained unchanged.
The remainder of the new population is generated by fitness-proportional se-
lection from the 70 best individuals of the old population. Each genotype is a



On the Evolution of Homogeneous Multi-robot Teams 5

vector comprising 135 real values (120 connections, 6 decay constants, 8 bias
terms, and a gain factor). Initially, a random population of vectors is generated
by initialising each component of each genotype to values chosen uniformly ran-
dom from the range [0,1]. New genotypes, except “the elite”, are produced by
applying recombination with a probability of 0.3 and mutation. Mutation entails
that a random Gaussian offset is applied to each real-valued vector component
encoded in the genotype, with a probability of 0.05. The mean of the Gaussian
is 0, and its standard deviation is 0.1. During evolution, all vector component
values are constrained to remain within the range [0,1].

2.3 Evaluation and Fitness Function
At the beginning of each evaluation trial, the robots are placed in the nest,

located symmetrically on the left and on the right of the light, at 1.8cm away from
each other. Their controllers are reset. The initial relative orientation of the two
robots is sufficiently described by a vector of two variables (α, β, see Fig. 1a). A
sample set of starting configuration is chosen such that α, β ∈ (0, 2π5 ,

4π
5 ,

6π
5 ,

8π
5 ).

From these combinations, 10 have been removed because they are rotational
duplicates. This leaves the set of 15 team starting relative orientations that have
been used. Each trial differs from the others in the initialisation of the random
number generator, which influences the robots’ initial distance and orientation,
and the noise added to motors and sensors (see [3] for further details on sensors
and motor noise). Within a trial, the team life-span is 40s (T=400 simulation
cycles). Trials are terminated earlier if either one of the robot exceeds the arena
limits (i.e., a circle of 120cm radius, centred on the light), or the team exceeds
the maximum number of collisions (i.e., 10), or a robot completes two foraging
trips (i.e., twice the journey to any of the food sites and back to the nest).

The evaluation procedure for what concerns the clonal and aclonal runs sub-
stantially matches the one described in [7]. In clonal runs, the fitness of a geno-
type is its average team evaluation score after it has been assessed twice for
each of the 15 starting configurations, for a total of E = 30 trials. The fitness
of a genotype in an aclonal run is the average evaluation score of the team in
which it participates. In aclonal runs, a genotype is evaluated four times for each
starting configuration, twice from each of the robots positions (i.e., position A
and position B, see Fig. 1a) comprising each configuration, for a total of E = 60
trials. Each one of an aclonal individual 60’s trails is undertaken with a different,
randomly chosen, partner.

In each trial e, the team is rewarded by an evaluation function Fe which
corresponds to the product of the following components: Fe = max(Crole P

1 ×
Crole F

2 ;Crole F
1 ×Crole P

2 )×P ′×P ′′. Crole P
r ∈ [0, 1] rewards a robot r = {1, 2}

for staying in the nest; Crole F
r ∈ [0, 4] rewards a robot r for travelling twice

the distance from the nest and to any of the two food sites; the team collision
penalty P ′ is inversely proportional to the number of collisions, with P ′ = 1 with
no collisions, and P ′ = 0 with 10 collisions in a team; P ′′ is the team penalty for
exceeding the arena’s limits, with P ′′ = 1 if none of the robots exceeds the limits,
P ′′ = 0.3 otherwise. The average team evaluation score is F = 1

E

∑E
e=1 Fe.
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mean
ranking median

mean
(s.d.)

clonal 11.5 83.12
69.20

(35.28)

aclonal 9.5 85.44
69.80

(32.16)

Fig. 2. The histogram shows the distributions of the highest average re-evaluation
scores achieved by each run of the clonal (black bars) and aclonal approach (grey
bars). Values represent percentage of the theoretical optimum average evaluation score
F . The Table on the right shows, for clonal and aclonal approach, mean ranking,
median, mean and standard deviation of the scores mentioned above.

3 Results

10 evolutionary runs, each using a different random initialisation, were carried
out for each of the two approaches (i.e., clonal and aclonal). Each run lasted
2500 generations. Recall that our objective is to compare the performances of the
clonal and aclonal approach for the evolution of homogeneous team of two robots
capable of dynamically allocating and simultaneously executing role P (i.e., nest
patrolling) and role F (i.e., foraging). Following the procedure illustrated in [7], at
the end of the evolutionary phase, we run a first set of re-evaluations consisting of
60 trials per team (i.e., 4 times for each of the 15 starting orientation mentioned
in Sec. 2.3). In these tests, the 10 fittest genotypes of each generation of both
clonal and aclonal runs are re-evaluated in a homogeneous setup. The average
re-evaluation score of each genotype is measured using the metrics F illustrated
in Sec. 2.3. The highest average re-evaluation score recorded during a given run
is assumed to be an adequate measure of the success of that run.

Contrary to what illustrated in [7], the results of our re-evaluations show
no significant difference between the performances of homogeneous teams gener-
ated clonally and aclonally. 5 runs of the clonal approach produced high-scoring
teams exceeding 95% of the optimal score, with 4 of them 100% successful (see
Fig. 2, black bars). In contrast, only 1 out of 10 of the aclonal runs generated a
homogeneous team that exceeds 95% of the optimal score, with no teams capa-
ble of completing the 60 re-evaluation trials with the highest score. The Table
on the right of Fig. 2 shows a comparisons of mean and median scores and the
mean ranking of both approaches. The difference between the two set of results
is not significant (Mann-Whitney U test, p > 0.1);

From a statistical point of view, there is not enough evidence to prefer one
approach over the other for the evolution of homogeneous multi-robot teams en-
gaged in a dynamic task allocation scenario. From the point of view of generating
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optimal controllers, the clonal approach does better than the aclonal one. The 4
out of 10 teams generated clonally, with a 100% success rate at the re-evaluation
test (see Fig. 2, black bars), proved to be robust enough to deal with the vari-
ability concerning the robot relative starting positions and noise injected into
the simulation. None of the teams generated aclonally showed a similar robust-
ness. This evidence not only diverges from what shown in [7], but also questions
the argument, put forward in Quinn’s paper, concerning the superiority of the
aclonal approach. Recall that, according to Quinn, the aclonal approach takes
advantage of the fact that roles can be evolved and refined prior to the evolu-
tion of any dynamical allocation mechanism. This is assumed not possible in the
clonal approach for which the roles and the allocation mechanisms have to evolve
simultaneously. Our results do not fit into the explanatory framework proposed
by Quinn. To account for this divergence, we question the simultaneity argu-
ment. Should we always assume that in the clonal approach, behavioural roles
and mechanisms to allocate them have to evolve simultaneously?

To answer this question, we analyse the evolutionary trajectory of the best
clonal runs looking for the emergence of roles. In our scenario, the clonal ap-
proach generated optimal (in term of fitness) solutions by avoiding the simulta-
neous appearance of behavioural roles and role-allocation mechanisms. All the
best clonal runs follow a very similar evolutionary trajectory. Fig. 3a shows the
evolutionary history of the fitness components of the best genotypes of one of the
best clonal run. The graph shows that early generation teams are very good in
role P (see Ĉrole P in Fig 3a), and very bad in role F (see Ĉrole F in Fig 3a). Af-
ter some generations, in which no progress can be observed, the fitness starts to
increase owe to the evolution of the behavioural skills required to perform role F.
By visual inspection of the team behaviour, we noticed that foraging behaviour
appears first in a limited number of trials. These trials are those in which the
robots, due to their initial relative orientations, experience different perceptual
states which break the team symmetry and facilitate the role-allocation process.
In following generations, we observe that robots perform foraging behaviour in
a larger set of trials, and the role-allocation process becomes less dependent on
the robots’ initial perceptual states. Eventually, the robots acquire the skills
to negotiate their role regardless of their initial perceptual states and become
capable of performing the task in all the experienced initial conditions.

In Sec. 4, we will come back to the issue of simultaneity with further specu-
lations. In what remains of this section, we focus on another important aspect
of the Quinn’s argument, the specialisation in heterogeneous teams generated
aclonally. We run a second set of re-evaluation tests identical to the one used
in [7] to investigate whether in the aclonal approach specialisation appears be-
fore the role allocation ability. In these tests, the 10 fittest genotypes from every
generation of the best aclonal run are taken and retested in a heterogeneous
setup. That is, each genotype is re-evaluated in combination with every other
fittest genotypes of its generation, for 60 trials per combination. As in [7], for
each generation, we selected the highest average score F among those produced
by each combination, and we compared them with the highest average scores
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(a) (b)

(c)

Fig. 3. a) The evolutionary history of the fitness components of the best genotypes of
one of the best clonal run. At each generation, Ĉrole P , Ĉrole F , P̂ ′, and P̂ ′′ are the
mean values of Crole P

e , Crole F
e , P ′

e, and P ′′
e, respectively, over 60 trials. b) Average

evaluation score (F) of best heterogeneous combination of genotypes (continuous line),
and best homogeneous team (dashed line), computed during a set of re-evaluation
tests on the 10 fittest genotypes of the best aclonal run. c) Level of specialisation (S)
in the best heterogeneous combination of genotypes that contributed to the fitness
curve (continuous line) shown in (b).

F obtained by these genotypes when re-evaluated in a homogeneous setup (i.e.,
during the first set of re-evaluation tests). The continuous line in Fig 3b refers
to the average re-evaluation score (F) of the best heterogeneous combinations;
the dashed line refers to the average score of the best homogeneous team.

As in [7], we also have, for significant period of this aclonal run, a certain
disparity between the fitness of heterogeneous and homogeneous teams. This
disparity appears to be more prominent right after generation 1000, when the
fitness of heterogeneous teams oscillates around the optimum, while the fitness
of homogeneous teams is clearly decreasing. In [7], this disparity is accounted to
by the existence of genetic specialisation in aclonally generated heterogeneous
teams. The logic is rather simple. If robots are genetically predisposed to play
either one or the other role, they get high fitness (F) when they are evaluated in
combination with a partner that is specialised to play the complementary role,
and low or lower fitness when they are evaluated with their clones. In [7], evo-
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lutionary dynamics driven by the “specialisation factor” represent the basis of
the superiority of the aclonal over the clonal approach. Contrary to clonal runs,
aclonal runs can partition the task allocation scenario in two successive phases:
a first one, in which evolution generates genetically specialised behavioural roles;
a second one, in which evolution finds the way to move from specialised to gen-
eralist solutions (i.e., a single genotype that generates agents capable of dynamic
allocation and execution of the roles of the task).

In order to deepen our understanding on the causal relationship between
specialisation and the fitness disparity observed in Fig 3b, we measured the level
of specialisation (S) of the best heterogeneous combinations that contributed
to the generation of the fitness curve in Fig 3b, continuous line. In particular,
we looked at the number of times, in each combination, the robots play each
role during the 60 re-evaluation trials. The role that a robot plays in a trial is
determined by how it contributes to the team fitness in that trial. For example,
robot 1 plays role P and robot 2 plays role F if Crole P

0 ×Crole F
1 is bigger than

Crole F
0 × Crole P

1 , and vice versa. For each combination, S = |N role P−Nrole F |
60 ,

with N role P and N role F being the number of times in 60 trials in which one
of the robot plays role P and role F, respectively. S = 1 means that robots are
highly specialised; S = 0 no specialisation at all. Results are show in Fig 3c.

By comparing the graph in Fig 3b, continuous line, with the graph in Fig 3c,
in particular focusing on the performances after generation 1500, we clearly see
that not all the best combinations are highly specialised. While specialisation
rises and falls, the best average score of these heterogeneous combinations only
slightly fluctuates around the optimal score. This indicates that both specialisa-
tion and a certain level of generalist solutions are simultaneously present in the
aclonal population. As far as it concerns the argument formulated in [7], it seems
that the disparity between the scores of heterogeneous and homogeneous teams
is not necessarily a sign of specialisation among the individuals of an aclonal
population, as mentioned in [7]. To conclude, in our dynamic task allocation
scenario, the aclonal population dynamics appear to be more articulated than
what described in [7]. Specialisation did not turn out to be completely alternative
and antecedent to generalist solutions. We believe that this evidence points at
interesting evolutionary dynamics, not considered in [7], which suggests that the
argument concerning the superiority of the aclonal versus the clonal approach
in task-allocation scenario needs to be revisited.

4 Conclusions

This study aimed at testing the hypothesis that the results shown in [7], concern-
ing the superiority of the aclonal versus the clonal approach, have been affected
by task-specific features. We designed a similar task-allocation scenario which
mainly differs from what shown in [7] for the nature of the behavioural roles.
Basically, in our task the roles are clearly distinct, whereas in [7] the roles are
rather similar. Contrary to what illustrated in [7], we found no significant differ-
ence between the aclonal and clonal approach. The analysis of the evolutionary
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trajectories of clonal and aclonal runs produced evidence that did not support
the reasoning put forward in [7], to account for his results. First, we showed
that, in a scenario in which the differences between the roles is captured by an
evaluation function that multiply robot-based (instead of team-based) factors,
the clonal approach can rely on a broader range of evolutionary trajectories not
necessarily limited by the simultaneity argument formulated in [7]. In the clonal
approach, the fitness landscape can be successfully explored by capitalising on
gradual improvements on the execution of single behavioural roles, and on the
appearance of allocation mechanisms (initially) bounded to specific ecological
conditions. Second, we showed that the author in [7] drew conclusions on the
presence of role specialisation among the individuals generated aclonally from
empirical evidence (i.e., the fitness disparity shown in Fig. 3b) that do not seem
to be uniquely produced by genetically specialised individuals. We showed that
in the aclonal approach, specialised and generalist solutions can live together in
the same populations, with role allocation mechanisms evolving together with,
and not necessarily after, genetic specialisation. In conclusion, the evolutionary
dynamics of both clonal and aclonal approaches seem to be richer then what
assumed in [7]. Although further investigation is required, in view of this, we
speculate that the argument formulated in [7] applies to a rather restricted set
of task-allocation scenarios, in which the selective pressures limit the possible
successful evolutionary trajectories in the clonal approach.
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