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IRIDIA - Université Libre de Bruxelles, Bruxelles, Belgium
{campatzi,etuci,vtrianni,mdorigo}@ulb.ac.be,

http://iridia.ulb.ac.be/

Abstract. In this paper we aim to design an artificial neural network to
control a homogeneous group of two autonomous robots that are required
to solve a discrimination task based on time-dependent structures. The
network should produce alternative actions according to the discrimina-
tion performed. We evolved controllers that have been successfully ported
on the real robots. We also show that the system displays a simple form
of communication among the agents.

1 Introduction

In recent years, Evolutionary Robotics (ER) has been used as a method both to
engineer control structures for autonomous robots, and to study the evolution of
behaviour from a perspective complementary to biological analytical models [9].
As an engineering method, ER offers the possibility of automating a complex
design task. Since artificial evolution needs neither to understand, nor to decom-
pose a problem in order to find a solution, it offers the possibility of exploring
regions of the design space that conventional design approaches are often con-
strained to ignore (e.g., see [11]). As a biological tool, ER offers the possibility to
look at the effects of the physical interactions between an embodied and situated
agent and its environment, on the evolution of behaviour (e.g., see [12]).

Due to the number of trials needed to test individuals, the design of robot
controllers by means of artificial evolution is generally carried out by using sim-
ulation models. The latter are digital media that reproduce some of the physical
phenomena that can be observed when a real robot is located and acts in a real
world [5,7]. By speeding up the evaluation time, the use of simulation models
allows the ER practitioners to save time in the control-policies design process.
However, as claimed in [1], “There is real danger that programs which work well
on simulated robots will completely fail on real robots ...”. The digital medium
might miss to take into account phenomena that bear upon the functional prop-
erties of the evolved controllers. As a consequence, the latter result less effective
in managing the real world sensing and actuation (see also [6]).

The simulation-reality gap might be harder to cross whenever the robot’s
neural mechanisms are “sensitive” to a broad range of spatial and temporal
phenomena (i.e. how the sensor readings unfold in time). Noise and unpredictable
events inevitably make the dynamics of the real world somehow different from
those experienced in simulation [1]. These differences might not change the way
the robot reacts at any time cycle to its sensor readings, nevertheless, in a non-
reactive task, the same phenomena might severely disrupt the robot’s memory
structures and its capability to bring forth adaptive behaviour such as learning.



In spite of this, the recent advances in the design of artificial recurrent neural
networks controllers for robots engaged in non-reactive tasks have been hardly
validated by using real robots (e.g., see [14,13,2,10]). We believe that, unless
the “porting” is experimentally proved to be successful, it is always question-
able whether non-reactive mechanisms for memory and learning evolved in a
simulated world can deal with reality.

Within the context of the ECAgents project1, we intend to carry out re-
search work focused on the design of dynamic neural networks to control group
of homogeneous robots that use communication to “inform” each other about
things that are not currently accessible to the whole group: e.g., a robot’s own
experience and knowledge of parts of the environment not explored yet by other
members of the group. These studies are motivated by the following reasons: (i)
from an engineering point of view, we are interested in exploiting the evolution
of communicative behaviour to optimise the efficiency of the group in tasks in
which a “collective intelligence” may be beneficial; (ii) from a biological perspec-
tive, these kind of scenarios might be used as robot-based models to investigate
issues concerning the evolution of communication and foraging group strategies
in natural organisms.

Since the design of non-reactive neural mechanism through evolution requires
many evaluation trials, our studies strongly rely on a simulation environment (see
Section 2). The aim of this paper is to show the results of a first set of experiments
in which non-reactive controllers for learning and communicative behaviour have
been initially evolved in a simulated environment and subsequently ported on
real robots. We believe that going through the process of porting the controller
on the real robot is a necessary step to validate the results of our research
work. Section 3 shows a series of analysis which illustrate how different are the
performances of the real robots with respect to the simulated ones. Conclusion
are drawn in Section 4.

2 Methods

In this section, we describe the setup of the evolutionary experiments we con-
ducted. The goal of these experiments is to show how a group of robots can
perform a discrimination task between two different environments, based only
on temporal cues (i.e., integration over time of the robots’ perceptions) and/or
on communication signals. In the following, we describe in detail the task, the
simulation model, the controller and evolutionary algorithm and the evaluation
function used.

Description of the task At the start of each trial, two simulated robots are
placed in a circular arena with a radius of 110 cm (see Fig. 1), at the centre of
which a light bulb is always turned on. The robots perceive the light through
their ambient light sensors. The colour of the arena floor is white except for a
circular band, centred around the lamp that covers an area between 40 cm and
60 cm from the light. The band is divided in three sub-zones of equal width but
coloured differently—i.e., light grey, dark grey, and black. Each robot perceives
the colour of the floor through its floor sensors, positioned under its chassis.

1 ECAgents is a project sponsored by the Future and Emerging Technologies program
of the European Community (IST-1940), http://ecagents.istc.cnr.it/



The primary goal of the robots is to approach the light bulb. They can freely
move within the arena as well as on the circular band, but they are not allowed
to cross the black edge of the band close to the light. This edge can be imagined
as an obstacle or a trough, that prevents the robot from further approaching
the light. Whenever a robot crosses the black edge, the trial is unsuccessfully
terminated for that robot. The light grey and the dark grey zones are meant
to work as a warning signal which indicate to each robot how close it is to the
danger—i.e., the black edge. There are two types of environment. In one type—
referred to as Env A—the band presents a discontinuity, called the way in zone,
where the floor is white (see Fig. 1, left). In the other type, referred to as Env
B, the band completely surrounds the light (see Fig. 1, center). The way in zone
represents the path along which the robots are allowed to safely reach the light
in Env A. On the contrary, they cannot reach the proximity of the light in Env
B, and in this situation their goal is to leave the band.

At the beginning of each trial, the robots do not know in which type of
environment they are located. They are initialized at a distance between 75 and
95 cm from the light, with a random orientation between −120◦ and +120◦ with
respect to the light. At this moment the task of the robots is to explore the
arena, in order to get as close as possible to the light. If they encounter the
circular band they have to start looking for the way in zone in order to continue
approaching the light, and once they find it, they should get closer to the light
and remain both in its proximity for 30 sec. After this time interval, the trial is
successfully terminated. If there is no way in zone (i.e., the current environment
is an Env B), the robots should be capable of (a) “recognising” the absence of
the way in zone, (b) notifying by a sound signal the absence of the way in zone,
(c) leave the band by performing anti-phototaxis.

Robots are provided with a dedicated communication channel, so whenever
a robot produces a signal (“talker”), this signal is “heard” by the other one. Due
to this channel, the system can display a simple form of co-operation among its
members. In detail, once a robot signals the absence of a way in zone in Env B,
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Fig. 1. The task. Env A (left) is characterised by the way in zone. The target area,
centred on the light, is indicated by the dashed circle. In Env B (center) there is no way
in zone and the target area cannot be reached. The continuous arrows are an example
of a good navigational strategy for one robot. Right: the influence of communication
in Env B : one robot signals earlier (S1), the other listens (H2) and they both leave the
band. The trajectories are displayed with a continuous line for the first robot and a
dashed line for the second one.



the other robot can “listen” to this signal and leave the band even though it has
not yet gathered enough information in order to conclude in which environment
it is located (see Fig. 1, right). Of course, it is up to the evolutionary process
to produce agents that react to the signal of the other robot and accordingly
modify their behaviour or simply ignore it and carry on with their task without
alterations. In the former case we can say that communication has evolved, while
in the latter not.

To summarise, a trial is successful in Env A if both robots reach the light
without having emitted a signal and without crossing the black edge of the band.
In Env B though, things are significantly different, since we consider successful
a robot that ends up away from the light, therefore at 110 cm from it. This
could be the result of either its own “realisation” that there is no way in zone,
or of the reaction to the signal emitted by the other member of the group.
Finally in both environments the robots are not allowed to crash against each
other, therefore should prove capable of avoiding each other, displaying obstacle
avoidance capabilities. During evolution, the emergence of robot-robot avoidance
has been favoured by the following implementation choices: (a) the robots are
initialised half of the times at the beginning of each trial close to each other, with
a distance between 3 and 20 cm and (b) before a trial is successfully concluded
in Env A, we force the robots to interact for 30 sec in a very small area of 25
cm around the light, called the “target area” (see Figure 1).

This task is very similar to the one described in [15] since each robot is
required to make use of a temporal cue in order to discriminate between Env A
and Env B. This discrimination is based on the persistence of the perception of
a particular sensorial state (e.g., the perception of the grey floor, the light, or
both) for the amount of time that, given the trajectory and speed of the robot,
corresponds to the time required to make a loop around the light. Nevertheless,
this task is made significantly more complex. This time, the integration over time
of the robots’ sensorial inputs is used to trigger an alternative action, leaving
the band in shades of grey. The same network is responsible of producing all the
required actions, depending on the environment in which the robot is placed.
Furthermore, by using the robots’ proximity sensors, we allow interactions among
the agents that might affect the dynamics of our controller and even interfere
with the discrimination task. Finally, we use a homogeneous group of robots,
that is the same neural controller is cloned on both robots. Since our task is a
collective robotics task, we are interested in the evolution of communication (a
robot’s reaction to the signal produced by another robot) and in its effects on
the overall performance of the system.

The simulation model The robot and its world are simulated using the “min-
imal simulation” technique described in [5]. This technique uses high levels of
noise to guarantee that the simulated controller will transfer to a physically
realised robot with no loss of performance. Our simulator models some of the
hardware characteristics of the real s-bots [8]. The s-bots are small wheeled cylin-
drical robots, 5.8 cm of radius, whose mobility is ensured by a differential drive
system composed by tracks and wheels. They are equipped with infrared prox-
imity sensors, light and humidity sensors, accelerometers, omni-directional cam-
era, rotating base and rigid and semi-rigid grippers (see Fig. 2 left, and also
http://www.swarm-bots.org/ for more details). In this work, we make use of
four ambient light sensors, placed at −112.5◦ (L1), −67.5◦ (L2), 67.5◦ (L3),
and 112.5◦ (L4) with respect to its heading, fifteen infra-red proximity sensors
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Fig. 2. A picture of an s-bot on the left. Plan of the robot on the right, showing sensors
and motors. The robot is equipped with four ambient light sensors (L1 to L4), two floor
sensors F1 and F2, 15 proximity sensors (P1 to P15) and a binary sound input sensor,
called SI . The wheel motors are indicated by M1 and M2. A simple sound signalling
system is referred to as S.

placed around its turret (P1 to P15), two floor sensors F1 and F2 positioned fac-
ing downward on the underside of the robot with a distance of 4.5 cm between
them, an omni-directional sound sensor (SI), and a loud-speaker (see Figure 2
right). The motion of the robot implemented by the two wheel actuators (M1 and
M2) is simulated by the Differential Drive Kinematics equations, as presented
in [3]. Light and proximity sensor values are simulated through a sampling tech-
nique [7]. The robot floor sensors output the following values: 0 if the robot is
positioned over white floor; 1

3
if the robot is positioned over light grey floor; 2

3

if the robot is positioned over dark grey floor; 1 if the robot is positioned over
black floor. The speaker is simulated as producing a binary output (on/off); the
sound sensor has no directionality and intensity features. 10% uniform noise was
added to the light and proximity sensor readings, the motor outputs and the
position of the robot. We also added noise of 5% on the reading of the two floor
sensors, by randomly flipping between the 4 aforementioned values, in order to
deal with wrong readings produced by the real robot while it is moving.

The controller and the evolutionary algorithm Fully connected, thirteen
neuron CTRNNs are used. All neurons are governed by the following state equa-
tion:

dyi

dt
=

1

τi


−yi +

13∑

j=1

ωjiσ(yj + βj) + gIi


 , σ(x) =

1

1 + e−x
(1)

where, using terms derived from an analogy with real neurons, yi represents the
cell potential, τi the decay constant, βj the bias term, σ(yj + βj) the firing rate,
ωji the strength of the synaptic connection from neuron jth to neuron ith, Ii the
intensity of the sensory perturbation on sensory neuron i. Nine neurons receive
input from the robot sensors: i.e., neuron N1 takes input from L1+L2

2
, N2 from

L3+L4

2
, N3 from F1, N4 from F2, N5 from P1+P2+P3+P4

4
, N6 from P5+P6+P7+P8

4
,

N7 from P9+P10+P11+P12

4
, N8 from P13+P14+P15

3
, and N9 from SI. The neurons N1

to N8 receive as input a real value in the range [0,1], while the neuron N9 receives
a binary input (i.e., 1 if a tone is emitted, 0 otherwise). The other neurons do
not receive any input from the robot’s sensors. The cell potential (yi) of the



11th neuron, mapped into [0,1] by a sigmoid function (σ) is used by the robot to
control the sound signalling system (i.e., the robot emits a sound if y11 >= 0.5).
The cell potential (yi) of the 12th and the 13th neuron, mapped into [0,1] by
a sigmoid function (σ) and then linearly scaled into [-4.0,4.0], set the robot
motors output. The strength of synaptic connections ωji, the decay constant τi,
the bias term βj , and the gain factor g are genetically encoded parameters. Cell
potentials are set to 0 any time the network is initialised or reset, and circuits
are integrated using the forward Euler method with an integration step-size of
0.1.

A simple generational genetic algorithm (GA) is employed to set the param-
eters of the networks [4]. The population contains 100 genotypes. Each genotype
is a vector comprising 196 real values (169 connections, 13 decay constants, 13
bias terms, and a gain factor). Initially, a random population of vectors is gener-
ated by initialising each component of each genotype to values chosen uniformly
random from the range [0,1]. Generations following the first one are produced
by a combination of selection with elitism, recombination and mutation. For
each new generation, the three highest scoring individuals (“the elite”) from the
previous generation are retained unchanged. The remainder of the new popula-
tion is generated by fitness-proportional selection from the 70 best individuals
of the old population. New genotypes, except “the elite”, are produced by ap-
plying recombination with a probability of 0.3 and mutation. Mutation entails
that a random Gaussian offset is applied to each real-valued vector component
encoded in the genotype, with a probability of 0.13. The mean of the Gaussian
is 0, and its standard deviation is 0.1. During evolution, all vector component
values are constrained within the range [0,1]. Genotype parameters are linearly
mapped to produce CTRNN parameters with the following ranges: biases βj ∈
[-2,2], weights ωji ∈ [−6, 6] and gain factor g ∈ [1,12]. Decay constants are firstly
linearly mapped onto the range [−0.7, 1.7] and then exponentially mapped into
τi ∈ [10−0.7,101.7]. The lower bound of τi corresponds to a value slightly smaller
than the integration step-size used to update the controller; the upper bound
corresponds to a value slightly bigger than the average time required by a robot
to reach and to perform a complete loop of the band in shades of grey.

The evaluation function During the evolution, each genotype is coded into
a robot controller, and is evaluated for 15 trials, 12 trials in Env A, and 3
trials in Env B, sequentially. The latter choice stems from the fact that a bigger
proportion of Env A seems to favor the evolution of a robust discrimination
mechanism [15]. Each trial e differs from the others in the initialisation of the
random number generator, which influences the robot’s starting position and
orientation, the position and amplitude of the way in zone, and the noise added
to motors and sensors. The width of the way in zone can vary from 45◦ to 81◦.
Within a trial, the robot life-span is 110 s (1100 simulation cycles). In each
trial, the robots are rewarded by an evaluation function fe which is given by the
following formula:

fe =

∑2

i=1
fi

2
, fi =

Cp + Ca + Cs

nc

, i = 1, 2, where :

1) Cp rewards phototaxis, that is movement to the target area:

Cp =
di − dc

di



where di and dc represent respectively the initial and the current Euclidean
distance between the robot and the light bulb. In Env A, Cp is set to 1 if the
robot terminates the trial in the target area. In Env B, Cp is set to 1 as soon
as the robot reaches the circular band without crossing the black edge in the
direction of the light.

2) Ca rewards movements away from the light (anti-phototaxis):

Ca =

{
dc

dmax

if trial in Env B, Cp = 1 and SI = 1;
0 otherwise

where dmax = 110 cm is the maximum distance a robot can reach to the light.
3) Cs rewards agents that (i) never signal in Env A; (ii) signal in Env B. In

Env B if one robot signals, both are rewarded.

Cs =

{
1 if proper signalling
0 otherwise

4) nc is the number of crashes in a trial (the number of times the robots get
closer than 2.5 cm). If nc > 3, the trial is considered finished.

An important feature of this evaluation function is that it simply rewards
agents that make proper use of their sound signalling system, without directly
interfering with the nature of the discrimination strategies. Last but not least,
we do not explicitly code a reward for the use of communication, nevertheless,
as will be shown in Section 3, there is an indication that implementation details
of our experimental setup lead to a selective pressure in favour of the evolution
of communication.

3 Results

Ten evolutionary simulations, each using a different random initialisation were
run for 10000 generations. Three of those runs were successful, therefore evolved
the required behaviour: in Env A, both robots reach the target area without
emitting any sound signal and in Env B (a) they reach the circular band and
start circling around the light looking for a way in zone, (b) after performing
approximately one tour around the light, they signal the absence of the way
in zone by emitting a tone (c) as a reaction to the sound signal (emitted or
perceived), they leave the band reaching a desired distance from the light. The
rest of the runs did not succeed to evolve the discrimination mechanism and
robots were never signalling in Env B. Therefore we succeeded in our first goal
which was to evolve the desired behaviour and obtain a controller capable of
solving the complex task described in Section 2. Given the fact that we use a
single integrated (i.e. non-modularised) network, we have the feeling that the
obstacle avoidance behaviour makes it significantly harder for evolution to solve
the discrimination task. Robot-robot interactions might require behaviour phy-
logenetically antecedent to other more complex responses. The evolution of such
behaviour might be based on some mechanism that does not facilitate the subse-
quent evolution of other neural structures required by the robot to successfully
perform other parts of the task (i.e. integration over time). This hypothesis
though demands further investigation in order to be confirmed, but might ex-
plain why only 30% of the runs were successful.



arena Env A Env B

Fig. 3. The experimental setup. Left: a picture of the arena, with the points around the
band showing the positions in which the robots were randomly initialised. Middle: a
snapshot of a trial in which two robots find the way in zone in Env A. Right: a snapshot
of a trial in Env B. The robot with the lighter turret colour is the one that has signalled
the absence of a way in zone, while both robots have left the band performing anti-
phototaxis.

Experiments with real s-bots As already pointed out in the introduction,
the aim of this paper is to test and evaluate the evolved controllers on the
real robots. A major issue is the choice of the genotype which will control the
robots. Since all genotypes of the latest generations of the three successful runs
achieve the maximum fitness score, we had to come up with some more specific
criteria in order to choose our controller. These criteria are plainly good sensory-
motor coordination and effective sound signalling behaviour. These properties
are quite obvious since they guarantee a better overall performance and better
visualisation of the solution, but also seem to be a prerequisite in order to avoid
misreadings from the robot’s ground sensors. Therefore, after testing various
controllers on the real robots, we made our choice according to these criteria
and only. We performed 40 trials, 20 for each environment, in the arena shown
in Figure 3, left2. The robots were initialised at a distance of 85 cm from the light
with a random orientation. In Env A we randomly varied the position of the way
in zone but we fixed its width to 45◦, which is the smallest value encountered
through evolution and the most difficult case for a possible misinterpretation
of an Env A for an Env B. The results for the 40 trials performed are 100%
successful: that is the robots never make any type of error, like crossing the
black edge of the band, crashing against each other, erroneously signalling in
Env A or failing to signal in Env B. This is an extremely successful result since
it is achieved on the real hardware.

Behavioural Analysis At this point we will give a description of the behaviour
exhibited by the robots trying to get an insight on how they come to solve the
task described in Section 2. The mechanism employed by the robots is displayed
in Figure 4 and is similar to what described in [15]. The robots encounter the
band at around 100 timesteps. At that point their sound output starts to increase
with a rather constant slope. In Env A it starts decreasing before reaching the
threshold of 0.5 once the way in zone is encountered. On the contrary, in Env B,
shortly after 750 timesteps it goes beyond the threshold of 0.5 for robot A and
that robot signals, while robot B does not. After that, light and floor readings of
both robots decrease since the robots leave the band performing anti-phototaxis.

2 The movies that correspond to the 40 trials can be found in http://iridia.ulb.
ac.be/~campatzis
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Fig. 4. The behavioural analysis of the two real robots in the same trial in Env B.
Left: the inputs and outputs of robot A for 1000 timesteps. Right: same for robot B.
See text for details

We can clearly see the effect of communication for robot B, since it leaves the
band without having signalled. Concerning the anti-phototaxis behaviour, we
can deduce from Figure 4 that the mechanism for both robots is simply putting
both motor outputs at a value near 0, which corresponds to moving almost
straight backwards at full speed3.

To further analyse our results we need to introduce a measure of the difference
between the entrance position of the robot in the circular band and the position
at which the robot starts to signal. This measure, called offset ∆, is computed
as follows:

∆ = |α(te, ts)| − 2π, α(t1, t2) =

t2−1∑

t=t1

ÂOB, A = Xt,B = Xt+1 (2)

where O corresponds to the position of the light, and α is the angular displace-
ment of the robot around the light from the starting position—the position at
time te when the robot enters into the circular band—to the signalling position—
the position at time ts when the robot starts signalling. α is computed summing
up all the convex angles ÂOB comprised between two consecutive position of
the robot Xt, taking into account that an angle is negative if the robot moves
clockwise. Offset ∆ takes value 0◦ if the robot signals exactly after covering a
complete loop of the circular band. Negative values of the offset ∆ suggest that
the robot signals before having performed a complete loop, while positive val-
ues correspond to the situation in which the robot emits a tone after having
performed a loop around the light.

Looking at our results, we observed that in Env B it was always the same
robot (A) that was signalling first, regardless of the robots’ initialisation. Since
the integration of the light and floor sensors perception is used to make the
discrimination, and given the differences in the readings of the two robots (see
Figure 4), we can attribute the fact that robot A always signals earlier than B to
mechanical or sensor implementation differences. On average, as also shown in

3 In all experiments the robots are moving backwards—in a opposite direction of their
gripper



Table 1. Quantitative data about the performance of the system. We compare the
20 trials in Env B with the real robots with 500 evaluations in simulation, for the
same random initilisation methodology. We measure the average offset ∆ of the first
signalling robot in each trial—since the system uses communication—and the reaction
time of the signalling and listening robot (respectively treact,s(s) and treact,l(s)). We
compare them to the corresponding values obtained in simulation.

Offset ∆ treact,s(s) treact,l(s)
avg sd avg sd avg sd

Real Robots -30.6 11.75 8.78 0.75 7.69 0.57
Simulation +31.6 16.05 9.25 1.1 9 1.66

Table 1, we see that robot A signals before completing a loop, but given the fact
that our way in zone is fixed to 45◦, its behaviour is still safe and does not lead
to possible misinterpretations of Env A (thus signalling in those environments).
In a separate test we let robot B (which never signalled first) perform the task
alone in order to get an estimate of its offset4. We observed that it was always
signalling after completing a loop. However, thanks to the use of communication
between the two agents, both robots leave the band once the first robot signals.
The result is that the system is more effective than in the case where each
robot performs the task by itself, since in that case the second robot would
signal much after the first and thus would conclude the task with a considerable
temporal delay. As a comparison, we performed a test to see when the robots
signal in simulation. We re-evaluated the same genotype used in our real robot
experiments 500 times for Env B in exactly the same conditions as in reality
(same initialisation, orientation). As shown in Table 1, the robots signal after
completing the loop, and the behaviour of the real robots is slightly different
from the one of the simulated ones. The conclusion is that the two real robots
behave in a different way as a result of their sensorial differences. In our case
the behaviour was not disrupted by those differences with respect to simulation,
but in case our system presented noise far beyond the level encountered during
evolution, we might have errors like wrong discrimination or very late signalling.

We have also measured the reaction time of the system with respect to the
discrimination signal in Env B. As shown in Table 1, we observe that on average
the robot that hears the signal is reacting faster than the one that emits sound,
that is leaves the band and reaches a certain distance (85 cm) faster. Obviously,
the two controllers are in a different state once the signal is emitted, and that
could produce the difference in the reaction time, but also mechanical differences
of each robot could influence this behaviour. The difference though in simulation
is significantly smaller therefore it is very hard to infer any conclusions.

Evolution of communication We are also interested in investigating the evo-
lutionary significance and the effect of communication. Specifically, we want to
study the evolution of communication in a system where there is no explicitly
coded fitness advantage from it. To do so, we tested in simulation the behaviour
of two genotypes from the same run, that both score the maximum. As we will
prove, one (G1, of an earlier generation) is relying on robots that solve the task
using the information they themselves collect from their environment, while the
other (G2, of a later generation) also relies on communication. To prove that

4 Data not shown.



Table 2. Results of 500 re-evaluations in Env B for the genotype with (G2) and
without (G1) evolved reaction to the communication signal. We compare the average
and standard deviation of the task completion time of both robots—one initialised
close to the light and one further away.

Communication OFF Communication ON
treact s-bot near (s) treact s-bot far (s) treact s-bot near (s) treact s-bot far (s)
avg sd avg sd avg sd avg sd

G1 98.99 11.045 113.3 8.23 100.51 10.13 114.74 7.36
G2 99.33 8.03 108.09 6.18 99.5 7.38 99.15 8.53

communication can indeed influence the performance of the system, we came up
with the following setup: we initialised the two robots at two different positions:
one closer (75cm) to the light and one further away (95 cm) and performed two
tests with each genotype. In one test, the communication channel is “open”, so
the robots can hear the signal of the other robot, and react to it (G2) or ignore
it (G1). In the other test we deliberately “close” the channel by not allowing
each robot to listen to the signals of the other one. Thus, to what concerns the
genotype not relying on communication, there should be no difference while the
genotype exploiting communication should show different behaviours. By intro-
ducing the difference in the initial position, we make sure that on average one
robot will signal earlier than the other. Thus we will prove that (a) the first geno-
type indeed displays no communication properties while the second does, and
therefore communication has evolved and (b) communication can have a perfor-
mance effect on the system, in this case making it more efficient. We perform
the above re-evaluation for 500 times in Env B, for each setup (communication
channel on/off) and for both genotypes. Indeed, looking at Table 2 we see that
the time it takes for the robot initialized far away to reach the desired distance
(set to 85 cm) from the light is significantly reduced when communication is
used, while closing the channel in the case of the first genotype has no effect on
this measure. A crucial question is why did communication evolve since there
was no explicitly coded fitness gain for it, and under which circumstances. We
observe that communication evolved in our system after the two robots evolved
the individual discrimination mechanism. Due to some random mutation at that
point, the robot that signals later started to react to the signal of the other
robot, and that solution spread in the population, because the system cannot do
worse when communication is active. To prove that we ran a statistical analysis.
G2 was evaluated for 15000 times in simulation, 12000 in Env A and 3000 times
in Env B, keeping the proportion encountered during evolution, in two setups:
one setup with the communication channel open, and another with it closed.
We performed a pair-wise Wilcoxon test, which confirmed with a 99% confi-
dence that for this particular individual, the communicative setup performed
constantly better than the non-communicative one. Since the evaluation func-
tion as presented in Section 2 does not explicitly reward communicating agents,
the results of the test suggest that it is through the implementation details of the
experimental setup (initialisation of the robots, noise in the system, the choice
when to terminate a trial etc.) that the use of communication ends up to be
advantageous during the evolutionary process.



4 Conclusions

The main challenge of the work presented was to evaluate a solution obtained
by artificial evolution on real robots. Our results show that non-reactive mech-
anisms for memory and learning, evolved in a simulated world, can deal with
reality. The “coarse” nature of our simulator—no dynamics, friction or momen-
tum modelled—allowed us to find effective solutions to a complex task, without
loss of performance and gaining in computational time. Owing to these promis-
ing results, we can further exploit our approach in order to (i) investigate the
mechanisms involved in complex non-reactive tasks and (ii) pursue our studies
on the evolution of communication in embodied and situated agents.
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