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Abstract

In this article we present an evolutionary technique for
developing a neural network based controller for an an-
thropomorphic robotic arm with 4 DOF able to exhibit a
reaching behaviour. Evolved neural controllers display an
ability to reach targets accurately and generalize their ability
to moving targets. This study demonstrates that it is possible
to obtain solutions that are extremely parsimonious from the
point of view of the control system. Evolutionary training
techniques allow us to evolve parameters of the control
system on the basis of the global effects that they produce
on the dynamics arising from the interaction between the
control system, the robot’s body and the environment.

1. Introduction
The control of arm and hand movements in human and non-
human primates is a fascinating research topic in robotics
and cognitive science.

In robotics, the design of adaptive robotic systems able
to perform complex object manipulation tasks is one of the
most important research issues (Schaal, 2002).

In cognitive science, the relationship between action con-
trol and other cognitive functions has been demostrated to
be important in the study of cognition (Pulvermuller, 2005;
Cangelosi et al., 2005). For example, variour theories of lan-
guage evolution have focused on the relationship between
hand use, tool making and language evolution (Corballis,
2003).

Within arm control, reaching and grasping behaviours
represent key abilities since they constitute a prerequisite
for any object manipulation. Despite the importance of the
topic, the large body of available behavioural and neuropsy-
chological data, and the vast number of studies based a vari-
ety of AI and neural network techniques, the issues of how
primates and humans learn to display reaching and grasping
behaviour still remains highly controversial (Schaal, 2002;
Shadmehr, 2002). Similarly, while many of the aspects that
makes these problems difficult have been identified, exper-
imental research based on different AI and neural networks

techniques does not seem to converge toward the identifica-
tion of a single general methodology.

In this article we present an evolutionary technique for de-
veloping a neural-network based controller for a simulated
anthropomorphic robotic arm able to exhibit a reaching be-
haviour.

In section 2, we define what we mean by reaching
behaviour in the context of arm control and we discuss the
aspects that make this problem hard to solve. In section
3, we point out the relation of our approach with the other
related models. In section 4, we describe our experimental
set-up and the method used to develop the control system
of a simulated anthropomorphic robotic arm. In section 5,
we describe the simulation experiments and results. Finally,
in section 6, we will present our conclusions and our future
plans.

2. Reaching
Primate arms consist of three segments (the arm, the fore-
arm, and the hand) attached to previous segments (the shoul-
der, the arm, and the forearm) through three actuated joints
(the shoulder, elbow, and wrist joints). Roughly speaking,
human arms have seven limited degrees of freedom (DOFs):
three in the shoulder, one at the elbow, and three at the
wrist. Anthropomorphic robotic arms typically consist of
three segments connected through motorized joints. Some
models use all the seven DOFs listed above, others may in-
clude only part of them.

From the point of view of the control system, reaching
consists in producing the appropriate sequence of motor ac-
tions (i.e. setting the appropriate torque force for each actu-
ated joint) that, given the current state of the arm and given
the current desired target point, will bring the endpoint of
the arm in the current desired target position.

Some of the most important issues in the study of reaching
behaviour are:

• When the number of DOFs is redundant (as in the case
of primate arms), there is an infinite number of trajec-



tories and of final postures for reaching any given target
point. This redundancy potentially allows anthropomor-
phic arms to reach a target point by circumventing obsta-
cles or by overcoming problems due to the limits of the
DOFs. However, the redundancy of DOFs, also, implies
that the space to be searched during learning is rather vast.

• Anthropomorphic arms are highly non-linear systems.
First, small variations in some of the joints might have
a huge impact on the end-position of the arm. At the
same time, significant variations of other joints might not
have any impact. Secondly, due to the limits on the joints’
DOFs and due to the interactions between joints, similar
target positions might require rather different trajectories
and final postures. At the same time, rather different tar-
get positions might require similar trajectories and final
postures.

• In articulated and suspended structures such as anthropo-
morphic arms, gravity and inertia play a key role. In pri-
mate arms, muscles and associated spinal reflex circuitry
seems to confer to the arm the ability to passively set-
tle into a stable position (i.e. an equilibrium point) inde-
pendently from its previous position. If this hypothesis is
true, the contribution of the central nervous system would
simply consists in the modification of the current equilib-
rium point (Shadmehr, 2002).

• Sensors and actuators might be slow and noisy. For in-
stance in humans visual information and proprioceptive
information encoding changes of joints positions is avail-
able with a delay up to 100ms. Motor commands issued
by the central nervous system may take up to 50ms to
initiate muscle contraction (Mial, 2002). Moreover, sen-
sors might provide only incomplete information (e.g. the
target point might be partially or totally occluded by ob-
stacles and by the arm).

3. The State of the Art
There have been few previous attempts to use evolutionary
techniques to develop the controller for a robotic arm.

Bianco and Nolfi (2004) used a similar approach to
that described in this paper to develop the controller for a
simulated robotic arm with a two-fingered hand and nine
DOFs for the ability to grasp objects with different shapes.
The arm was only provided with tactile sensors. Evolved
robots displayed an ability to grasp objects with different
shapes, different orientations, and located in varying posi-
tions within a limited area. Evolving robots, however, were
not able to deal with larger variations of the objects posi-
tions. Indeed, in this paper we used a similar method to
solve the reaching problem and we plan to combine the two

approaches in future research to develop robotic arms that
can effectively reach and grasp objects in a large variety of
circumstances.

Buehrmann and Di Paolo (2004) evolved the control sys-
tem for simulated robotic arm with three DOFs for the abil-
ity to reach a fixed object placed on a plane and to track
moving objects. The arm was provided with two pan-tilt
”cameras” consisting of a two-dimensional array of ”laser
range sensors” placed above the robot arm and on the end-
point of the robotic arm. The controller consisted of several
separate neural modules. These receive different sensory in-
formation and control different motor joints. The networks
are separately evolved for the ability to produce different
elementary behaviours (e.g. change the orientation of the
above camera so to focus on the object, move the first joint
that determines the orientation of the arm so to orient toward
the object, approaching the object by controlling the second
and the third joint, etc.).

In the work described in this paper, we do not focus on
the vision system. Indeed, we assume that a pre-existing vi-
sion system can provide to the evolved controller the offset
between the target point and the endpoint of the arm. More-
over, rather than on an standard industrial type robotic arm
with three DOFs, we study the case of a realistic anthro-
pomorphic arm with four DOFs. This is quite a different
system in which each target point can be reached through
an infinite number of postures and in which the relation be-
tween the joint reference system and the Cartesian reference
system are much more complex and indirect.

Finally, rather than relying on an incremental approach in
which elementary components of the required behaviour are
identified by the experimenter, we select individuals only
on the basis of their ability to reach the desired target point
by letting them free to develop their own strategy to solve
the problem.

4. Experimental set-up

The aim of this study is to develop the control system for
an anthropomorphic robotic arm through an evolutionary
robotic technique (Nolfi and Floreano, 2000). The arm and
the arm/environmental interaction have been simulated us-
ing ODE (Open Dynamics Engine www.ode.org), a library
for accurately simulating rigid body dynamics and colli-
sions.

The control system consists of a simple neural network
that controls directly the direction and the intensity of the
forces that are applied to the motorized joints. Neural con-
trollers are selected for their ability to reach the desired tar-
get positions and are left free to determine the way in which
the problem is solved (i.e. the trajectory and the posture of
the arm).



Figure 1: The four DOF of the simulated robotic arm. The
two pictures on the top part of the figure indicate the abduc-
tion/adduction, extension/flexion of the shoulder joint, respectively
from left to right. The bottom figure indicates the rotation of shoul-
der and the extension/flexion DOF of the elbow. The arrows indi-
cates the frontal direction of robot.

The simulated robotic arm
The simulated robot consists of cylindrical segments artic-
ulated by revolute joints, as illustrated in Figure 1. More
specifically, the arm consists of two segments (the arm and
the forearm) that are attached to the previous segments (the
shoulder and the arm) through two joints (the shoulder and
the elbow joints). The arm and the forearm have a length
of 100cm and 80cm, a diameter of 8cm and 7cm, and a
weight of 13kg and 8kg respectively. The shoulder has three
DOF that allow abduction/adduction of [−45o,+45o], exten-
sion/flexion of [−150o,+45o] and rotation of [−90o,+90o].
The elbow has one DOF that allow extension/flexion of
[−126o,+0o]. Since the robot is only asked to reach a given
target position with the endpoint of its arm, we did not mod-
elled the wrist and the wrist joints. Therefore the arm has
four motorized joints and four DOF (Figure 1). The acceler-
ation of gravity has been set to 9.8m/s2. The robot sensory
system includes a simulated vision system that detect the an-
gle and the distance between endpoint of arm (hand) and the
target point.

The neural controller
The neural controller consists of a feedforward neural net-
work with 3 sensory neurons directly connected to 4 motor
neurons. The four motor neurons are updated on the basis of
a standard logistic function. The activation of the sensory
and motor neurons is updated every 0.015sec. The three
sensory neurons encode the distance, along the three axes,
between the endpoint of the arm and the target point normal-
ized in the range [−1,+1] and up to a maximum distance of
80cm. The four motor neurons, that are updated on the basis
of a standard logistic function, encode the angular velocity
of the four corresponding motorized joints. The activation

of the output neurons is normalized in the [−890,+890]rpm
range. The power of motors is set to 326W .

The evolutionary algorithm

The connection weights of the neural controller have been
evolved (Nolfi and Floreano, 2000). The genotype of evolv-
ing individuals encodes the connections weights of the neu-
ral controller (each connection weights is encoded with 16
bits and normalized in the range [−10,10]). Population size
is 100. The 20 best individuals of each generation were al-
lowed to reproduce by generating 5 copies with 1.5% of their
bits replaced with a new randomly selected value (reproduc-
tion is asexual). The evolutionary process lasted 1000 gen-
erations. The experiment was replicated 10 times starting
from different, randomly generated, genotypes.

Each individual of the population was tested for 16 tri-
als, with each trial consisting of 300 steps corresponding to
4.5sec. At the beginning of each trial the arm is set in a
random position (i.e. the area of possible angles in the joint-
space is divided in 16 non-overlapping sub-areas; for each
trials a random joint configuration is picked up from one
of that sub-areas) and the target is positioned in front of the
robot Figure 1 (at a distance 1m and 85cm from ”head” along
the horizontal and vertical planes, respectively). Evolving
robots are selected on the basis of their capacity to reach the
target point as fast as possible and stay on it. In details, the
fitness function selects robots that minimize the cumulative
sums over 300 steps of the follow function:

dist(x,r) =
{

100 if x < r
100 · e(−0.5∗(x−r)) if x ≥ r

(1)

where x is the euclidean distance between endeffector of
the arm and the target point, and r is a threshold (initially
set to 10cm and progressively reduced of 10% during the
evolutionary process, each time the average fitness of the
individuals overcome 78 units).

5. Results
By running the experiments we observed that, in all replica-
tions, evolved agents display an ability to reach the target
independently from their initial posture and to produce
rather accurate reaching behaviour.
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Figure 2: Performance on reaching a fixed target; Top: Percent-
age of trials in which the distance between the endpoint of the arm
and the target is below 1cm, at the end of the trial. Bottom: Aver-
age distance between the endpoint of the arm and the target at the
end of trials. Each column represents the performance obtained by
testing the best evolved individual of each replication for 100 tri-
als. Bold lines, grey hystograms and bars indicate average perfor-
mance, variance, and mininum and maximum values, respectively
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Figure 3: Performance on reaching a random positioned target;
Top: Percentage of trials in which the distance between the end-
point of the arm and the target is below 1cm, at the end of the trial.
Bottom: Average distance between the endpoint of the arm and
the target at the end of trials. Columns, hystograms, bars have the
same meanings of Figure 2.

Figure 2 shows, for each replication, the percentage of
successful reaching behaviour and the average distance be-
tween the endpoint of the arm and the target, at the end of
each trial. Reaching behaviour are considered successful
when the distance between the target and the endpoint of
the arm is less than 1cm.

Generalization
The evolved ability also generalize to different positions of
the target and to moving targets. Figure 3 shows the per-
formance of evolved robots tested with target placed in ran-
domly selected locations (within a distance of 200cm with
respect to the fixed location of the target used during the
evolutionary process). As shown in the Figure performance
significantly vary in different replications. In the case of
the best replication, however, performance are only slightly
worse with respect to the normal condition (see Figure 2).

Figure 4 shows the results obtained by testing evolved in-
dividuals with 125 targets points evenly distributed in front
of the robot on a 5×5×5 grid (for space reason we only re-
port the data for two typical evolved individuals). For each
target point individuals have been tested for 5 trials starting
from differently, randomly assigned, initial positions. As
can be seen performance qualitatively vary in different indi-
viduals.

Indeed, the individual represented in the top graph shows
slightly better performance in the central and distant areas
than in the near area. The individual represented on the bot-
tom graph, instead, shows close to optimal performance in
the left area and significantly worse performance in the right
area.

This qualitatively different performance can be explained
by considering that the four DOF are strongly interdepen-
dent. This clearly indicates that strategies that treat each
joint as an independent entity (that should be moved so to
reduce the distance with respect to the target independently
from the current position of the other joints) are insufficient.
Evolving robots should select control strategies that mini-
mize the problems resulting from the high interdependence
between the DOF.

Figure 5 shows the behaviour produced by one of the
best evolved individual that try to reach a target that moves
by following a circular and a eight-shaped trajectory. Also
in this case, although evolving robots were selected for the
ability to reach a fixed target, the robot generalizes their
ability to moving targets quite well (Figure 5).
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Figure 4: Performance obtained by testing with 125 targets points
evenly distributed in front of robot on a 5×5×5 grid area. The top
and bottom graphs report the result obtained by testing two typical
evolved individuals. The filled area of each bullet indicates the
average distance between the target area and the endpoint of the
arm in the following intervals: < 1cm , [1,10]cm , [10,50]cm

, > 50 . The two axis indicate the position of the target points
along the vertical and horizontal dimensions in meters.
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Figure 5: Top: trajectory produced by the endpoint of the arm
and by a moving target (solid and dotted lines, respectively). Re-
sults obtained in two tests in which the target move by displaying
a circular and an eight-shape trajectory (left and right picture, re-
spectively). The vertical and horizontal axis indicate the positions
of the target and of the end-point of the arm in meters. Bottom:
average distance between the target point and the end-point of the
arm during the tests for target moving at different speed (ranging
from 0.65 to 2.0m/s).

Finally, by testing evolved individuals in a control condi-
tion in which the update of the sensory neurons is delayed,
we observed that performance decreases gracefully with de-
lays from 60 to 150ms (see Figure 6).

Surprisingly, performance increases with a delay of 30ms
and remains almost constant with a delay of 15ms. By
replicating the evolutionary process in a condition in which
the update of the sensory neurons is delayed of 105ms,
we observed that obtained performance are very similar to
those obtained in the first evolutionary experiment without
delay. In fact, the percentage of trials in which the distance
between the endpoint of the arm and the target is below
1cm is 91.2% and the average distance between the target
at the endpoint of the arm is 1.34cm. Without sensory
delay these data are 92.2% and 1.31cm, respectively (see
Figure 2). Also in the condition in which the update of the
sensory neurons is delayed, evolved robots generalize their
ability to target located in varying positions (within limits).
In this test condition, the average number of successful
reaching behaviour and the average distance between the
endpoint of the arm and the target are 62.7% and 6.56cm,
respectively. Performance without sensory delay are 64.1%
and 9.81cm, respectively (see Figure 3). All these data refer
to the average performance of the best individuals of the 10
replications of the experiment.
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Figure 6: Performances obtained by testing robots evolved in a
normal condition in a test condition in which the update of the sen-
sory neurons is delayed. Top: Percentage of trials in which the
distance between the endpoint of the arm and the target is below
1cm, at the end of the trial. Bottom: Average distance between the
endpoint of the arm and the target at the end of trials. Columns and
bars have the same meanings of Figure 2. The x axis indicate the
sensory delay (in multiples of 15ms)



Analyzing evolved trajectories
To analyze how much the trajectories produced by evolved
individuals approximate hand-made trajetories produced by
moving the joints toward the values corresponding to the
final postures (produced by evolved individuals) we tested
evolved robots for 16 trials starting from randomly set ini-
tial position (i.e. arm postures). For each trial we:

1. allowed the arm to move on the basis of the evolved neural
controller. During this first phase, we recorded the initial
and the final posture and the vector of positions of the
endpoint of the arm during motion;

2. we placed the arm in the same initial posture of the previ-
ous phase and we manually set the desired position of the
joints on the basis of the final posture produced in the pre-
vious phase. The maximum velocity was sets to 890rpm,
i.e. the same value used for controlling the arm during
the first phase. During this second phase, we recorded
the vector of positions of the endpoint of the arm during
motion;

3. we measured the average difference between the positions
produced during the first and the second phase in each
time step.

The fact that differences are rather small (Figure 7) in-
dicates that the trajectories produced by evolved robots are
quantitatively similar to those that can be obtained by mini-
mizing the movements of the joints.
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Figure 7: Average distance in cm between the trajectories pro-
duced by an evolved neural controller and the trajectories produced
by manually setting the desired position of the joints on the ba-
sis of the final postures produced by the evolved neural controller.
Each column indicates the result obtained for the best individual
of a corresponding replication of the experiment. Bold line, grey
boxes, and dotted lines indicate the average the variance, and the
minimum and maximum values, respectively.

6. Discussion
The problem of controlling a robotic arm is often ap-
proached by assuming that the robot should posses, or
should acquire through learning, an internal model to: (a)
predict how the arm will move and the sensations that will
arise, given a specific motor command (direct mapping), and
(b) transform a desired sensory consequence into the motor
command that would achieve it (inverse mapping) - for a re-
view see Torras (2002).

We do not deny that primates rely on internal models of
this form to control their motor behaviour. However, this
does not necessarily implies that elementary movements are
learned on the basis on a detailed description of the sensory-
motor effects of any given motor command and of a detailed
specification of the desired sensory states. Direct and in-
verse mapping might operate at a higher level of organiza-
tion, for example might play a role in the determination of
the specific elementary behaviour to be triggered in a spe-
cific circumstance.

Assuming that natural organisms act on the basis of a
detailed direct and inverse mapping at the level of micro-
actions (i.e. at the level of the elements that constitute el-
ementary behaviours) is implausible for at least two rea-
sons. The first reason is that sensors provide only incom-
plete and noisy information about the external environment
and moreover, muscles have uncertain effects. The former
aspect makes the task of producing a detailed direct map-
ping impossible, given that this would require a detailed de-
scription of the actual state of the environment. The latter
aspect makes the task of producing an accurate inverse map-
ping impossible given that the sensory-motor effects of ac-
tions cannot be fully predicted. The second reason is that the
environment might have its own dynamic and typically this
dynamic can be predicted only to a certain extent. For these
reasons, the role of the internal models is probably limited
to the specification of macro-actions or simple behaviours,
rather than to micro-actions that indicate the state of the ac-
tuators and the predicted sensory state in any given instant.

This leaves open the question of how simple elementary
behaviour might be learned, i.e. how individuals might learn
to produce the right micro-actions that lead to a desired el-
ementary behaviour. One possible hypothesis is that ele-
mentary behaviours (e.g. reaching a certain class of target
points in a certain class of environmental conditions) are
produced through simple control mechanisms that exploit
the emergent result of fine grained interactions between the
control system of the organism, its body and the environ-
ment. From this point of view, simple behaviours might be
described more effectively through dynamical system meth-
ods that identify limit cycle attractors and the effects of pa-
rameters variation on the agent/environment dynamics (Ster-
nad and Schaal, 1999).

In this paper we demonstrated how effective reaching be-
haviours can be developed through a training procedure in



which variations, in the parameters of the control system, are
retained or discarded on the basis of the global effects that
they produce on the dynamics arising from the interaction
between the control system, the robot’s body and the envi-
ronment (Nolfi and Floreano, 2000). Moreover, our results
indicate that the possibility to discover and retain characters
that lead to useful emergent properties (through a process
bases on random variation and selection), allow to find solu-
tion that are extremely parsimonious from the point of view
of the control system.

In future work we plan to: (a) introduce costs in the fitness
function which are analogous to well known optimization
principles like minimum variance or minimum jerk (Jordan
and Wolpert, 1999) by eventually providing the robots with
more complex neural controllers, (b) combine the reach-
ing abilities described in this paper with the grasping abil-
ity based on tactile information described in Bianco and
Nolfi (2004) and (c) extend this model into cognitive robotic
agents to investigate the relationship between motor and
other linguistic and cognitive capabilities (Marocco et al.,
2003; Cangelosi et al., 2005).

Indeed, we believe that the main reason that explain why
we obtained such robust and effective results on the basis of
extremely simple neural controllers resides in the methodol-
ogy that we used in which variation in the free parameters of
the control system (that regulate the interaction between the
agent and the environment at the micro-level) are retained or
discarded on the basis of their affects at the macro-level (i.e.
the level of behaviour). This methodology, in fact, allow
the discovery and the retention of useful properties emerg-
ing from the interaction between the robots’ controller, its
body, and the environment (Nolfi, in press).
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