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Abstract

Several kinds of empirical evidence point to the existence of 
an  asymmetry  between  linguistic  production  and  linguistic 
comprehension: in general, understanding words seems to be 
easier than producing them. In this contribution we propose a 
neural model of the relationships between the semantic and 
the  lexical  systems.  Our  model  explains  the  asymmetry 
between language comprehension and production as an effect 
of the difference between the dimensions of the brain areas 
which process semantic and lexical information. In fact, the 
model’s  performance  in  lexical  recall  is  worse  than  the 
performance  in  semantic  recall  due  to  the  fact  that  the 
semantic network is constituted of more computational units 
(neurons) then the lexical network.

Introduction
A considerable number of  empirical  evidences  of  various 
kind   point  to  the  presence  of  an  asymmetry  between 
linguistic  production  and  linguistic  comprehension.  In 
general, comprehension seems to be easier than production.

This asymmetry takes several forms. First, the asymmetry 
is well documented in developmental linguistics: it is in fact 
a  very  well  known fact  that  children  learn  to  understand 
words far earlier  than to produce them (see, for example, 
Bates, Thal, Finlay, & Clancy, 2002).

Another field in which the asymmetry is well documented 
is the psychology of aging. As people get older, in fact, it 
gets more and more difficult to retrieve known words (the 
so called ‘tip of the tongue’ or TOT phenomenon). On the 
other hand, there seems to be no decrease in the language 
understanding capacity whatsoever (see, for example, Burke 
& MacKay, 1997; Burke, MacKay, & James, 2000).

Furthermore,  the  fact  that  word  production  is  more 
difficult  than  word  comprehension  seems  to  hold  in  the 
whole lifetime, and not only in elderliness. In fact, everyone 
experiences  sometimes  the  tip  of  the  tongue  state,  and 
empirical  evidences  confirm that  such a phenomenon just 
increases with age, but is present also in all normal adults 

(see, for example, Brown, 1991; Heine, Ober, & Shenaut, 
1999).

Finally, there seems to be also some spare evidence that 
the  asymmetry  between  language  production  and 
comprehension exists even in neuropathologies. In this case, 
the asymmetry takes the form of a larger number of patients 
with  linguistic  production  deficits  than  patients  with 
linguistic comprehension ones. For example,  it  seems that 
all the various kinds of aphasias imply some deficit in word 
production  (anomia),  while  a  dysfunction  in  linguistic 
production is not necessarily correlated with comprehension 
problems  (see  Bates  &  Goodman,  1997;  Dick,  Bates, 
Wulfeck, Utman, & Dronkers, 2001).

Notwithstanding  the  fact  that  all  the  above  mentioned 
empirical  evidences  regard  very different  phenomena,  the 
phenomenon of an asymmetry between linguistic production 
and linguistic comprehension is common. This suggest that 
it could have a common cause. In this paper we model the 
relationships  between  semantics  and  the  lexicon  as  the 
coupling  (bi-directional  connection)  between  two 
associative, Hopfield-like (Hopfield, 1982) networks. With 
our  model  we  try  to  explain  the  asymmetry  between 
production and comprehension of language – in particular, 
the  fact  that  linguistic  production  is  more  difficult  than 
linguistic comprehension – as an effect of the quantitative 
difference  in  size  of  the  computational  spaces  which  are 
devoted to the processing of semantics (word meanings) and 
the  lexicon  (word  forms),  respectively.  In  particular,  our 
model assumes that the parts of the brain which are devoted 
to the processing of word forms are smaller, in terms of the 
number  of  recruited  neurons,  than  the  parts  of  the  brain 
which are devoted to the processing of word meanings. Our 
hypothesis is that the production-comprehension asymmetry 
is  determined  by  this  difference  in  size  between  the 
semantical and the lexical areas.

The rest of the paper is structured as follows. In the next 
section  we  describe  the  model  which  we  have  used  for 
modelling  the  semantic  and  the  lexical  systems,  that  is, 
Hopfield networks, and then we describe the details of our 



simulations.  In  the  following  section  we  describe  the 
principal results of the simulations, and finally, in the final 
section,  we  discuss  the  strengths  and  weaknesses  of  the 
proposed model together with possible future work.

The Model
We model the linguistic system as the coupling (reciprocal 
connection) between two auto-associative neural networks, 
that  is,  two  Hopfield  networks  (Hopfield,  1982;  Rolls  & 
Treves,  1998):  the  semantic  networks  and  the  lexical 
network.

Hopfield Networks
An Hopfield network is a neural network constituted by a 
single  group  of  reciprocally  connected  processing  units 
(neurons).  Neuron's  activation  is  bipolar,  that  is  can  be 
either  –1  or  +1.  Every  neuron  is  connected  with  all  the 
others but not with itself, and connections are symmetrical: 
in other  words,  the weight of  the connection  which links 
neuron  i to  neuron  j is  equal  to  the  weight  which  links 
neuron  j to neuron i. This symmetry in connection weights 
is guaranteed by the learning rule which is used for training 
the network, which is a simple Hebbian rule (Hebb, 1949). 
Basically, the Hebb rule is such that connections which link 
neurons with correlated activation (that is, which are usually 
either both active or both inactive) increase their strength, 
while connections which link neurons whose activation is 
uncorrelated  decrease  their  strength.  Formally,  the  Hebb 
rule is expressed by the following formula:

Δwij = r ai aj

where Δwij is the change to the weights connecting unit i to 
unit j, ax is the activation of unit x, and r is a constant, called 
the learning rate.

The network learns to memorize in its connection weights 
a certain number of activation patterns across its units, with 
a  pattern  consisting  in  a  vector  of  N bipolar  (–1  or  +1) 
values, where  N is the number of network's nodes. In our 
case,  patterns  of  activation  stand  either  for  internal 
representations  of  words'  meaningsor  for  internal 
representations of words' forms, in the cases of the semantic 
and lexical networks, respectively.

Weights  learning happens in the following way. At the 
beginning,  weights  are  all  set  to  zero.  Then,  for  each 
activation pattern, network's nodes are all activated to the 
bipolar  values  of  that  pattern,  and  weights  are  modified 
according to the Hebb rule.

After  this  kind  of  training,  Hopfield  networks  have  an 
interesting property. If we present any, even random, pattern 
as the network's input, and we let the network re-calculate 
the activation of each node as a consequence of the input 
coming from other nodes through the connection weights, 
after a certain number of cycles (usually less than 15), the 
network  converges  to  a  stable  state,  called  an  attractor, 
which doesn't change any more.

To  understand  Hopfield  network's  functioning,  the 
activation state of  its neurons can be conceived as a surface 
in a multi-dimensional space, with  N + 1 dimensions: one 
dimension for each neuron, plus one dimension representing 
network's  energy (Figure 1). Each point of the surface is a 
possible  state  of  the  network,  and  the  local  minima  of 
energy (the valleys) are the network's attractors: given any 
given  pattern  the  network will  tend  to  follow the  energy 
gradient until it reaches one of its valleys, where it will stop 
indefinitely unless external interference is applied.

The property of having attractors is guaranteed just by the 
network's rules of connectivity: that connection weights are 
symmetrical and that there are no self-connections. The role 
of the above mentioned Hebbian learning procedure is that 
of shaping the network's activation space so that the patterns 
on  which  the  network  is  trained  become  its  attractors. 
Hence,  after  successful  training,  if  we  present  to  the 
network one of the learned patterns, it will be indefinitely 
maintained.  Furthermore,  if  we  present  a  partial  pattern, 
that  is a learned pattern in which some percentage of the 
nodes are set to 0, in a few activation cycles the network is 
able to perfectly reconstruct the learned pattern, which will 
be maintained constant in the following cycles.
 

Figure 1: Hypothetical activation space of an Hopfield with 
just two neurons (n1 and n2). The third dimension (vertical 
axis) represents the energy (E) of the point which stands for 

the corresponding state of the network. Valleys represent 
network's stable states (attractors), towards which the 

activity of the network converges.

The  choice  of  modeling  the  semantical  and the  lexical 
system through Hopfield networks is due to the fact that this 
kind of networks represent (reasonably) good models of the 
functioning of single brain areas (Rolls & Treves, 1998). In 
fact,  beyond  possessing  all  those  bio-mimetic  properties 
which  are  shared  by  all  kinds  of  parallel-distributed-
processing  neural  networks  (  Plaut  &  Shallice,  1993; 
Rumelhart, McClelland & the PDP Research Group, 1986), 
such  as  robustness  to  noise,  graceful  degradation,  and 
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pattern  completion,  Hopfield  networks  have  at  least  two 
other  properties  which  make  them biologically  plausible. 
First,  the  Hebbian  learning  rule,  of  which  the  neural 
implementation  has  been  found  in  the  phenomena  of 
synaptic  long term potentiation  and lond term depression 
(Kelso,  Ganong  &  Brown,  1986;  Stanton,  &  Sejnowski, 
1989). Second, connections' recurrencies, that is the fact that 
neurons  within  the  same  group  are  reciprocally 
interconnected,  represents  an  important  anatomic 
characteristic of the brain. Furthermore, it is the presence of 
these recurrencies that makes it possible for the network to 
show temporal dynamics which permits to model important 
empirical  phenomena  like  semantic  priming  or,  more 
generally,  differences  in reaction times (see,  for example, 
Masson, 1995; Sharkey & Sharkey, 1992).

The Semantic and the Lexical Networks
Our  model  consists  in  two  Hopfield  networks  which 
represent, respectively, the semantic and the lexical systems. 
The two networks function in just the same way. The only 
difference between the two lies in their dimensionality.  In 
fact,  the  semantic  network  is  constituted  by  2500  nodes, 
while the lexical network is constituted by 500 nodes. This 
difference correspond to the assumption that the parts of the 
brain which are devoted to the processing of word forms are 
much smaller than the parts of the brain which are devoted 
to the processing of word meanings. The two networks are 
coupled,  that  is  mutually  interconnected  (Figure  2).  But 
while  nodes  which  belong to  the same network are  fully 
connected  between  each  other,  the  probability  p  for  two 
nodes  belonging  to  different  networks  is  very  low  (in 
between 0.02 and 0.001, see below). 

Figure 2:  Schematic representation of the model. Circles 
represent nodes (neurons), while lines represent 

bidirectional connection between nodes. Within the same 
network neurons are fully interconnected, while the 

connectivity between the two networks is much lower. See 
text for details.

Each sub-network is trained with 50 different patterns: the 
semantic network learns to memorize 50  patterns of 2500 
values,  which  each  pattern  representing  a  'meaning'.  The 

lexical  network  learns  to  memorize  50  patterns  of  500 
values, with each pattern representing a 'word' (form). All 
patterns are generated randomly, with a uniform probability, 
for each node, to be either in the active (1) or inactive (–1) 
state.

Each word form is  associated  with  one  word meaning, 
and the whole network, formed by the two semantical and 
lexical  networks,  learns  such  association in  the  following 
way.  For  each  word  form-word  meaning  pair,  the 
corresponding word form pattern is presented to the lexical 
network,  while,  simultaneously,  the  corresponding  word 
meaning  pattern  is  presented  to  the  semantic  network. 
Connection weights which link the nodes of the two sub-
networks  are  learned  through  the  Hebb  rule  described 
above,  in  a  way  which  is  completely  analogous  to  the 
learning of the intra-network connection weights.

Results
In  our  model  (correct)  linguistic  production  consists  in 
activating the pattern in the lexical network (the word form) 
which  corresponds  to  the  pattern  which  is  present  in  the 
semantic network (the word meaning). Viceversa, linguistic 
comprehension consists in activating, the semantic network, 
the meaning which corresponds to the word form which is 
present in the lexical network.

We  have  network's  performance  under  two  conditions: 
lexical  recall  and  semantic  recall.  The  lexical  recall  test, 
which is meant to test linguistic production, is done in the 
following  way.  For  each  pattern  representing  a  meaning, 
that pattern is presented to the semantic network while the 
activations of all the nodes of the lexical network are set to 
zero.  The whole network is  then let  relax,  that  is,  nodes' 
activations are updated until the net has reached an attractor. 
At this point, we verify whether the pattern which is present 
in the lexical network is the correct one, that is, the pattern 
representing the word forms which corresponds to the given 
meaning.  The semantic  recall  test,  which is  meant to test 
linguistic  comprehension,  is  done  in  an  analogous  way: 
given a word form as the input to the lexical network, we 
check whether the recalled semantic pattern is the correct 
one.

In  order  to  check  for  the  presence  of  an  asymmetry 
between linguistic production and linguistic comprehension 
in  our  model  we have studied  the  behavior  of  the whole 
network with various levels of connectivity between the two 
sub-networks:  in  particular,  with  inter-networks 
connectivity in between 0.020 and 0.001. 

For both conditions of semantic and lexical recall, and for 
each  connectivity  degree,  we  take  two  measures:  (a)  the 
percentage of correctly recalled patterns, and (b) the average 
recall  time  of  the  correctly  recalled  patterns  (this  is 
measured as the number of cycles which are necessary for 
the network to reach a stable point).

Figure  3  shows  the  percentage  of  correctly  recalled 
patterns in the two experimental conditions as a function of 
the  inter-networks  connectivity,  while  Figure  4  shows 
average recall time. Reported data of both figures represent 
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2500 nodes

Lexical net
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average results of 10 replications of each test with different 
random values. 

Figure 3: Percentage of correctly recalled patterns in both 
the lexical and the semantic recall tests as a function of 

inter-networks connectivity.

Generally speaking, the results show a clear asymmetry 
between  production  and  comprehension,  with  a  pattern 
simular  to  that  which  is  found  in  reality:  in  fact,  word 
production  results  to  be  more  difficult  than  word 
comprehension,  both  in  terms  of  number  of  correctly 
recalled  patterns  (Figure  3)  and  in  terms  of  recall  times 
(Figure 4).

Figure 4: Average recall times of correctly recalled patterns 
in both the lexical and the semantic recall tests as a function 

of inter-networks connectivity.

Let's  compare,  for  example,  the  results  of  the  two 
conditions with a inter-nets connectivity degree of 0.002. In 
this case, while given a word form the correct meaning is 
recalled  in  about  50%  of  cases,  given  a  meaning  the 
probability of recalling the corresponding word form is just 

about 8%. Furthermore, with the same connectivity degree, 
while the average recall time in the semantic recall test is 
about  8  activation  cycles,  the  average  recall  time  in  the 
lexical recall test is about 12 cycles.

Another interesting result of our simulations regards the 
different  pattern  which  is  shown  by  the  production  and 
comprehension curves as inter-nets connectivity decreases. 
In fact, the differences between lexical and semantic recall 
seem to increase as the connectivity degree decreases. This 
is in line with the fact, mentioned in the introduction, that 
while  the  asymmetry  between  linguistic  production  and 
linguistic  comprehension  is  present  during  the  whole 
lifetime,  the  asymmetry  sharpens  with  aging,  with  a 
progressive impairment of linguistic production capabilities 
paralleled  by  an  apparent  preservation  of  linguistic 
comprehension  capabilities.  Our  model  suggests  that  this 
sharpening  of  the  production-comprehension  asymmetry 
could be due to the progressive decrease in the connectivity 
between  the  semantic  and  the  lexical  systems  due  to 
degenerative mechanisms related to aging.

Discussion and Conclusion
The model  we have proposed in  this  paper  represents  an 
attempt to explain the asymmetry between production and 
comprehension  of  language  which  seems  to  take  various 
forms: several different lines of evidence point to the fact 
that  producing words is more difficult  than understanding 
them, either for children, for normal adults, for elders, and, 
probably, also for patients with cerebral lesions. All these 
lines of evidence regard quite different phenomena and it is 
very  likely  that  the  various  forms  of  production-
comprehension  asymmetries  depend,  in  part,  on  different 
factors.  Just  to  make  an  example,  some  degree  of 
asymmetry between production and comprehension in child 
linguistic development is certainly due to the fact that words 
are socially learned. In fact, the capacity of comprehending 
a word, that is the ability to understand in which context that 
word is correctly applied, is of course a pre-requisite for the 
ability  to  produce  it  correctly,  that  is  in  the  appropriate 
context. In other words, you cannot appropriately produce 
words  which  you  do  not  understand.  Hence,  it  seems 
inevitable  that  the  number  of  understood words represent 
the superior limit with respect to the number of produced 
ones, and that linguistic production follow chronologically 
linguistic comprehension.

Notwithstanding the different factors which may underly 
the  various  forms  which  the  production-comprehension 
asymmetry can take,  it  is  also possible that  these various 
forms have also a common cause. 

In  this  contribution we proposed a neural model of  the 
relationships between the semantic and the lexical systems 
which  explains  the  greater  difficulty  in  producing  words 
than  in  comprehending  them  as  a  an  effect  of  the  size 
difference  between  the  computational  spaces  which  are 
devoted  to  the  processing  of  word  forms  and  word 
meanings,  respectively.  In fact,  by just  assuming that  the 
brain  regions  devoted  to  semantic  processing  are 



considerably  bigger  (in  terms  of  number  of  neurons 
involved) than those devoted to lexical processing, we have 
shown that  lexical  recall  is  more  difficult  than  semantic 
recall, and that a decrease in the connections between the 
two  areas  leads  to  a  decrease  in  lexical  recall,  while 
semantic recall remains more stable.

Obviously,  our  model suffer  several  limitations.  A first 
limitation lies in the fact that in our model the asymmetry 
can be observed only when the network is able to recall, in 
both directions, only about 70% of the word forms or the 
word meanings of its repertoire. In reality, the asymmetry 
can be observed earlier: for example, elderly people begin to 
suffer  word-finding  problems  when  they  are  still  able  to 
comprehend all the words that they know. We are currently 
experimenting various ways in which this limitation might 
be overcome: for example, one possibility is to increase the 
size  difference  between  the  semantic  and  the  lexical 
networks;  another  one  is  to  decrease  intra-networks 
connectivity  (in  our  model,  as  in  standard  Hopfield 
networks, there is a full intra-net connectivity, but in the real 
brain  the  connectivity  is  certainly  lower);  still  another 
possibility  consists  in  abandoning  the  requirement  of 
symmetrical connections which holds for standard Hopfield 
networks (in other words, a possibility is to make it possible 
for  a  neuron  i to  be  connected  with  a  neuron  j without 
requiring  that  neuron  j  be connected  to  i:  this  is  another 
change  which  would  render  the  model  more  biologically 
realistic).

There are also more general limitations of our model. For 
example, in the current model the semantic system has no 
internal structure whatsoever. Meanings are represented, as 
it  is  common  in  neural  network  research,  as  patterns  of 
activation distributed on a single group of neurons, which 
stands for the 'semantic system'. We already know that this 
is a strong oversimplification. For example, we know that 
different  kinds  of  words,  like  names  and  verbs,  are 
represented, in the real brain, in distinct groups of neurons 
(see,  for  example,  Caramazza  & Hillis,  1991).  And even 
words  of  the  same  kind  seem  to  be  processed,  at  least 
partially, in different parts of the brain depending on their 
meaning  (Martin,  Wiggs,  Ungerleider  &  Haxby,  1996; 
Plaut,  2002;  Pulvermüller,  1999;  Tettamanti,  Buccino, 
Saccuman,  Gallese,  Danna,  Scifo,  Fazio,  Rizzolatti  & 
Cappa,  2005).  Furthermore,  the  connectivity  between 
different  sub-groups  of  neurons  devoted  to  processing 
different  kinds  of  words  it  is  certainly  not  uniform:  not 
every group is  connected  to  every  other,  or,  at  least,  the 
connectivity  degree  between  different  pairs  of  groups  is 
certainly different. As our model have already shown that 
the connectivity between groups influences inter-networks 
dynamics,  an  important  way  to  improve  the  model  is  to 
consider this kind of empirical constrains. This possible line 
of  future  research  might  also  allow  us  to  explain  other 
important  phenomena,  like  the  various  forms  of  double-
dissociations  which  are  found  language  neuropsychology 
(see, for example, Caramazza & Mahon, 2005).

Another,  even  more  general,  limitation  of  our  model 
consists in the fact that semantic representations (and also 
linguistic ones) are provided by us, the researchers, instead 
of being learnt (developed) by the network itself, as happens 
both in reality and in many other connectionist simulations. 
In order to solve this kind of limitation the model needs to 
be modified considerably, in that Hopfield networks, being 
constituted  of  a  single  group of  neurons,  cannot  develop 
internal representations by themselves which would mediate 
between network's input and output, as happens in layered 
networks.  Consequently,  Hopfield  networks  require  that 
memorized patterns be generated and provided directly by 
the researcher. 

Notwithstanding the limitations  we have just  discussed, 
we  claim  that  our  model  represents  an  important  first 
attempt to find an explanation to the very well documented 
asymmetry  between  linguistic  production  and  linguistic 
comprehension. In this respect, still another line of possible 
future  research  consists  in  trying  to  give  a  more detailed 
model of the various forms which the asymmetry can take. 
For example, we could differentiate between two possible 
different  causes  (beyond  the  size  difference  between  the 
semantic and the lexical systems) which might underly the 
Tip-Of-the-Tongue phenomenon in young and elder adults. 
The first cause, common to both young and elder people, 
would  be  the  presence  of  noise  in  neural  transmission, 
which  we  know  to  be  largely  present  in  real  brains  and 
which  could  be  easily  simulated  in  various  ways,  for 
example by adding some noise in the information transfer 
between  simulated  neurons  and/or  in  neurons'  activation 
function.  The  second  cause,  which  might  underly  the 
progressive deterioration of linguistic production in elderly 
people would lie, as already shown in our current model, in 
the decrease  of  connectivity both  within and between the 
semantic and the lexical networks due to neuro-degenerative 
processes  associated with aging.
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