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Introduction

Artificial neural networks are computational models of nervous systems. Natural
organisms, however, do not possess only nervous systems but also genetic
information stored in the nucleus of their cells (genotype). The nervous system is
part of the phenotype which is derived from this genotype through a process
called development. The information specified in the genotype determines aspects
of the nervous system which are expressed as innate behavioral tendencies and
predispositions to learn. When neural networks are viewed in the broader
biological context of Artificial Life they tend to be accompanied by genotypes
and to become members of  evolving populations of networks in which genotypes
are inherited from parents to offspring (Parisi, 1997).

Artificial neural networks can be evolved by using evolutionary algorithms
(Holland, 1975; Schwefel, 1995; Koza, 1992). An initial population of different
artificial genotype, each encoding the free parameters (e.g. the connection
strengths and/or the architecture of the network and/or the learning rules) of a
corresponding neural network, are created randomly. The population of networks
is evaluated in order to determine the performance (fitness) of each individual
network. The fittest networks are allowed to reproduce (sexually or a-sexually) by
generating copies of their genotypes with the addition of changes introduced by
some genetic operators (e.g., mutations, crossover, duplication). This process is
repeated for a number of generations until a network that satisfies the
performance criterion (fitness function) set by the experimenter is obtained (for a
review of methodological issue see Yao, 1993).

The genotype might encode all the free parameters of the corresponding
neural network or only the initial value of the parameters and/or other parameters
that affects learning. In the former case of the network is entirely innate and there
is no learning. In the latter networks changes both philogenetically (i.e. through
out generations) and ontogenetically (i.e. during the period of time in which they
are evaluated).

Evolution and development
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A cornerstone of biology is the distinction between inherited genetic code
(genotype) and the corresponding organism (phenotype). What is inherited from
the parents is the genotype. The phenotype is the complete individual that is
formed according to the instructions specified in the genotype.

Evolution is critically dependent on the distinction between genotype and
phenotype, and on their relation, i.e. the genotype-to-phenotype mapping. The
fitness of an individual, that affect selective reproduction, is based on the
phenotype, but what is inherited is the genotype, not the phenotype. Furthermore,
while the genotype of an individual is one single entity, the organism can be
considered as a succession of different phenotypes taking form during the
genotype-to-phenotype mapping process, each derived from the previous one
under genetic and environmental influences.

When the genotype-to-phenotype mapping process takes place during
individuals' lifetime we can talk of development. In this case, each successive
phenotype, corresponding to a given stage of development, has a distinct fitness.
The total fitness of a developing individual is a complex function of these
developmental phases. Evolution must ensure that all these successive forms are
viable and, at the same time, that they make a well-formed sequence where each
form leads to the next one until a mostly stable (adult) form is reached. This puts
various constraints on evolution but it also offers new means for exploring
novelty. Small changes in the developmental rates of different components of the
phenotype, for example, can have huge effects on the resulting phenotype. Indeed
it has been hypothesized that in natural evolution changes affecting regulatory
genes that control the rates of development played a more important role than
other forms of change such as point mutations (Gould, 1977).

Although the role of the genotype-to-phenotype mapping and of development
has been ignored in most of the experiments involving artificial evolution, there is
now an increasing awareness of its importance. Wagner & Altenberg (1996)
write: "In evolutionary computer science it was found that the Darwinian process
of mutation, recombination and selection is not universally effective in improving
complex systems like computer programs or chip designs. For adaptation to
occur, these systems must possess evolvability, i.e. the ability of random
variations to sometimes produce improvement. It was found that evolvability
critically depends on the way genetic variation maps onto phenotypic variation, an
issue known as the representation problem." (p. 967).

Genetic Encoding

To evolve neural networks one should decide how to encode the network in the
genotype in a manner suitable for the application of genetic operators. In most
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cases, all phenotypical characteristics are coded in an uniform manner so that the
description of an individual at the level of the genotype assumes the form of a
string of identical elements (such as binary or floating point numbers). The
transformation of the genotype into the phenotypical network is called genotype-
to-phenotype mapping.

In direct encoding schemes there is a one-to-one correspondence between
genes and the phenotypical characters subjected to the evolutionary process (e.g.
Miller et al., 1989). Aside from being biological implausible, simple one-to-one
mappings has several drawbacks. One problem, for example, is scalability. Since
the length of the genotype is proportional to the complexity of the corresponding
phenotype, the space to be searched by the evolutionary process increases
exponentially with the size of the network (Kitano, 1990).

Another problem of direct encoding schemes is the impossibility to encode
repeated structures (such as network composed of several sub-networks with
similar local connectivity) in a compact way. In one-to-one mappings, in fact,
elements that are repeated at the level of the phenotype must be repeated at the
level of the genotype as well. This does not only affect the length of the genotype
and the corresponding search space, but also the evolvability of individuals. A full
genetic specification of a phenotype with repeated structures, in fact, implies that
adaptive changes affecting repeated structures should be independently
rediscovered through changes introduced by the genetic operators.

Growing methods

The genotype-to-phenotype process in nature is not only an abstract mapping of
information from genotype to phenotype but it is also a process of physical
growth (growth in size and in physical structure). By taking inspiration from
biology therefore, one may decided to encode in the genotype growing
instructions. The phenotype is progressively built by executing the inherited
growing instructions.

Nolfi et al. (1994) used a growing encoding scheme to evolve the architecture
and the connection strenghts of neural networks that controlled a small mobile
robot (for a similar method see Husband et al., 1994). These controllers were
composed of a collection of artificial neurons distributed over a 2-dimensional
space with growing and branching axons (Figure 1, top). Inherited genetic
material specified instructions that controlled the axonal growth and the branching
process of neurons. During the growth process, when a growing axonal branch of
a particular neuron reached another neuron a connection between the two neurons
is established. On the bottom of Figure 1 you can see the network resulting from
the growth process displayed in the top of the Figure after the elimination of
isolated and non-functional neurons. Axons grew and brunched only if the
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activation variability of the corresponding neurons was larger than a genetically-
specified threshold. This simple mechanism is based on the idea that sensory
information coming from the environment has a critical role in the maturation of
the connectivity of the biological nervous system and, more specifically, that the
maturation process is sensitive to the activity of single neurons (see Purves,
1994). Therefore the developmental process was influenced both by genetic and
environmental factors (i.e. the actual sequence of sensory states experienced by
the network influenced the process of neural growth).

Figure 1. Development of an evolved neural network. Top: The growing and branching process of
the axons. Bottom: the resulting neural network after removal of nonconnecting branches and the
elimination of isolated neurons and groups of interconnected neurons.
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This method allows the evolutionary process to select neural network
topologies that are suited to the task chosen. Moreover, the developmental
process, by being sensitive to the environmental conditions, might display a form
of plasticity. Indeed, as shown by the authors, if some aspects of the task are
allowed to vary during the evolutionary process, evolved genotypes display an
ability to develop into different final phenotypical structures that are adapted to
the current conditions.

Cellular Encodings

In natural organisms the development of the nervous system begins with a folding
in of the ectodermic tissue which forms the neural crest. This structure gives
origin to the mature nervous system through three phases: the genesis and
proliferation of different classes of neurons by cellular duplication and
differentiation, the migration of the neurons toward their final destination, and the
growth of neurites (axons, dendrites). The growing process described in the
previous section therefore characterizes very roughly only the last of these three
phases. A number of attempts have been made to include other aspects of this
process in artificial evolutionary experiments.

Cangelosi et al. (1994), for example, extended the model described in the
previous section by adding a cell division and migration stage to the already
existing stage of axonal growth. The genotype, in this case, is a collection of rules
governing the process of cell division (a single cell is replaced by two "daughter"
cells) and migration (the new cells can move in the 2D space). The genotype-to-
phenotype process therefore starts with a single cell which, by undergoing a
number of duplication and migration processes, produces a collection of neurons
arranged in a 2D space. These neurons grow their axons and establish connection
until a neural controller is formed (for a related approaches see Dellaert and Beer,
1994).

Gruau (1994) proposed a genetic encoding scheme for neural networks based
on a cellular duplication and differentiation process. The genotype-to-phenotype
mapping starts with a single cell that undergoes a number of duplication and
transformation processes ending up in a complete neural network. In this scheme
the genotype is a collection of rules governing the process of cell divisions (a
single cell is replaced by two "daughter" cells) and transformations (new
connections can be added and the strengths of the connections departing from a
cell can be modified). In this model, therefore, connection links are established
during the cellular duplication process.

The instructions contained in the genotype are represented as a binary-tree
structure as in genetic programming (Koza, 1992). During the genotype-to-
phenotype mapping process, the genotype tree is scanned starting from the top
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node of the tree and then following each ramification. The top node represents the
initial cell that, by undergoing a set of duplication processes, produces the final
neural network. Each node of the genotype tree encodes the operations that should
be applied to the corresponding cell and the two sub-trees of a node specify the
operations that should be applied to the two daughter cells. The neural network is
progressively built by following the tree and applying the corresponding
duplication instructions. Terminal nodes of the tree (i.e. nodes that do not have
sub-trees) represents terminal cells that will not undergo further duplications.
Gruau also considered the case of genotypes formed by many trees where the
terminal nodes of a tree may point to other trees. This mechanism allows the
genotype-to-phenotype process to produce repeated phenotypical structures (e.g.
repeated neural sub-networks) by re-using the same genetic informations. Trees
that are pointed to more than once, in fact, will be executed more times. This
encoding method has two advantages: (a) compact genotypes can produce
complex phenotypical networks, and (b) evolution may exploit phenotypes where
repeated sub-structures are encoded in a single part of the genotype. Since the
identification of sub-structures that are read more than once is an emergent result
of the evolutionary process, Gruau defined this method Automatic Definition of
Neural Subnetworks (ADNS) (Gruau, 1994).

Discussion

Artificial evolution can be seen as a learning algorithm for training artificial
neural networks. From this point of view, one distinctive feature is the limited
amount of feedback required. Supervised  learning algorithms require immediate
and detailed desired answers as a feedback. Reinforcement learning algorithms
require less - only a judgement of right or wrong which should not be necessarily
immediate. Viewed as a learning algorithm, artificial evolution requires still less -
only an overall evaluation of the performance of the network over the entire
evaluation period. A second distinctive feature is that any parameter of the neural
network (e.g. the connection strengths, the network topology, the learning rules,
the transfer function of the neurons) can be subjected to the evolutionary process.

Although systematic comparison between artificial evolution and other
algorithms are not been done yet, it is reasonable to claim that artificial evolution
tend to produce better results when detailed feedback is not available. This is the
case, for example, of a neural networks that should control mobile robots (Nolfi
and Floreano, 2000). In this case in fact, although the experimenter can provide a
general evaluation of how much the behavior of a robot approximates the desired
behavior, he or she cannot usually indicate what the robot should do each time
step to produce such a desired behavior. Moreover artificial evolution might result
more effective in those cases in which certain features of the network (such as the
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network topology or the transfer functions) that cannot be properly set by hand
are crucial. Artificial evolution, in fact, provide a way to co-adapt different type
of parameters.

The analogy with natural evolution however can also be considered more
strictly. In this case the evolutionary process is not seen as an abstract training
algorithm but as a process that mimics some of the key aspects of the evolutionary
process in nature. From this point of view neural networks tend to be viewed as a
part of a population of artificial organisms that adapt autonomously by interacting
with the external environment.
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