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Abstract. In this paper, a user-centred innovative method of knowledge 
extraction in neural networks is described. This is based on information 
visualization techniques and tools for artificial and natural neural systems. Two 
case studies are presented. The first demonstrates the use of various 
information visualization methods for the identification of neuronal structure 
(e.g. groups of neurons that fire synchronously) in spiking neural networks. The 
second study applies similar techniques to the study of embodied cognitive 
robots in order to identify the complex organization of behaviour in the robot’s 
neural controller.  

1 Introduction 

Knowledge extraction using neural networks typically involves the use of analytical 
methods for the automatic identification of information relevant to specific research 
goals. For example, the utilization of a finite union of open polytopes permits the 
transparent expression of knowledge embedded in recursive determinist 
perceptron [1]. In this paper, a complementary method for knowledge extraction from 
artificial and natural neural networks is presented. This is characterized by the active 
role of the researcher in the exploration of the neural network representation and the 
search for in-depth knowledge. This method is based on recent research and tools for 
information visualization in neural systems. 

Information visualization [2], [3] is one of the fields of computer science that deals 
with the innovative representation of vast quantities of data. Consequently, it exploits 
advances in interactive computer graphics hardware, mass storage, and data 
visualization in order to visualize information. One of the fundamental principles of 
this field is the role of the investigator interacting with the data being analyzed and 
their ability to steer the exploration, in order to achieve greater insight. Thus, the 
investigator needs to be able to navigate throughout the whole dataset, in order to 
identify and explore specific subsets of interest. However, when visualizing large 
datasets, the issue of efficient navigation is amplified. It is important that the user is 
able to move to points of interest quickly without becoming disoriented within the 
dataset. Thus, it can be beneficial to restrict the mechanisms by which the user can 



navigate within the dataset. Therefore, the user can be constrained to follow 
predetermined paths throughout the data space. In addition to navigation 
functionality, the investigator should also have control over the data representation 
itself. Thus, in order to truly steer the analysis, the investigator should be able to 
manage and overview the whole dataset, they should be able to filter and manipulate 
the data, select non-sequential subsets of interest and ultimately “drill-down” to 
inspect the actual data values that underpin the data represented. This follows the 
design principles of the much cited “information seeking mantra” coined by 
Shneiderman. 

Recent research has focused on the development of new information visualization 
techniques and tools for neural networks. This includes the visualization of 
information from neuroscience research and the analysis on neural activity in 
embodied cognitive systems. In this paper, two such case studies are described. The 
first study demonstrates the use of information visualization methods for the 
identification of structure (e.g. groups of neurons that fire synchronously) in spiking 
neural networks. The second study applies the same techniques to  embodied 
cognitive robots in order to identify the complex organization of sensorimotor 
behaviour and its management by a neural controller. 

2 VISA: Information Visualization for Spiking Neural Networks 

The key to numerous issues within the field of neuroscience is linked with the 
theoretical understanding of vast quantities of experimental neural data. In particular, 
investigation of information processing in the nervous system is associated with the 
analysis of this vast resource of neural data, namely, simultaneously recorded multi-
dimensional spike train data.  

Much of the research focus in this area is focused around the principle of 
synchronization of neural activity [4], [5]. However, the experimental evidence that is 
currently available requires further, in-depth analysis in order to extract the 
knowledge inherent in these datasets. It is clear that analysis of neural data such as 
multi-dimensional spike trains using traditional tools like raster plots and cross-
correlograms increases in complexity as the size of the datasets increase. Therefore, 
new methods of analyzing this data, designed specifically for large datasets, are 
required.   

Traditionally, analysis of multi-dimensional spike train data has not supported real-
time user interaction. In 1996, Shneiderman [2] identified user interaction as a 
primary essential component of information visualization representations. 
Shneiderman also introduced the “information–seeking mantra” that highlighted user 
requirements in this area. It specified that users should have the capability to 
overview data in order to see the whole dataset in a single display. The mantra also 
recommended that users needed to be able to zoom in on “interesting” areas of their 
datasets and to filter out parts of the datasets not required for the current 
investigation. Finally, the mantra specified that users needed to be able to get details-
on-demand, access to the fundamental data items which were used to create the visual 
representation.  



Based on this mantra, a toolbox of interactive methods for exploring neural data 
was developed by Stuart and collaborators [6] as part a research project called VISA, 
Visualization of Inter-Spike Associations. This toolbox facilitates zooming, filtering 
and manipulation of neural data and supports the use of multiple views of the same 
data, as well as real time interaction. One of the key visualization tools currently 
included within VISA is subsequently described. 

2.1 Traditional parallel coordinates 

Interest in parallel coordinates was rejuvenated by Inselberg et al. [7]. The true 
value of parallel co-ordinates is their ability to represent vast quantities of multi-
variate data in a simply 2-d representation. Traditional presentation of parallel 
coordinates denotes a series of data points as vertical axis coordinate values 
distributed along a horizontal axis.  
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Figure 1 Representation of the points p(2,1,3) and q(3,2,0) using parallel coordinates. 

Thus, a specific point in n-dimensional Euclidean space is represented by n vertical 
axes values distributed along the horizontal axis. To illustrate this, consider the two 3-
dimensional points p(2,1,3) and q(3,2,0). Refer to Figure 1 for an illustration of these 
two points in 3-dimensional space represented in parallel coordinates. 

2.2 The use of parallel coordinates in VISA  

Parallel coordinates are traditionally used to identify correlations between 
variables and to convey aggregation information. Although the VISA parallel 
coordinate tool [8] is based on the original method, it has been adapted for use in the 
analysis of spiking activity in neural networks.  

In brief, the original multi-dimensional spike train dataset is transformed using a 
well known and respected method of analysis called the gravity transform algorithm 
defined by Gerstein et al [9]. Thus, the data under investigation is now the position of 
n particles in n-dimensional space where n is the number of neurons initially 
specified. The traditional means of displaying output from the Gravity Transform 
does not scale up easily for large numbers of particles. Thus, parallel coordinates 
were introduced to represent the n-dimensional positions of the n particles. Therefore, 
all n particle parallel coordinates were displayed simultaneously on the display to 
represent the position of all n particles at a specific point in time. Subsequently, 
animation was used to represent the movement of the particles over time. Numerous 
trials have been carried out using this technique to support the identification of 



neuronal assemblies from multi-dimensional spike train datasets. The success of these 
trials is well documented [8,10]. Furthermore, this work continues as the parallel 
coordinate tool undergoes further adaptation [11].  

3 Sensorimotor Knowledge Integration in the Neural Controller 
of Cognitive Robots 

Research in cognitive systems, including natural (animals and humans) and artificial 
(agents, robots) systems, supports increased understanding of the relationship 
between cognitive, neural, social and evolutionary factors. Various researchers are 
working on the design of cognitive robots that have sensorimotor capabilities, to 
interact with their environment, and cognitive and linguistic skills to build internal 
representations of their physical social environment and talk about them [12]. The 
complex patterns of interaction between the different sensorimotor and cognitive 
capabilities require the development of new methodologies to increase understanding 
of the cognitive systems. Information visualization has a role to play in the analysis of 
these complex sets of behavioural and cognitive data [13].  

A new study based on the application of parallel coordinates to the visualization of 
activity in the neural controllers of linguistic cognitive robots [14] is presented. The 
primary aim is to investigate the interaction between sensory neurons and the internal 
categorical and linguistic representations in simulated robotic agents that are able to 
interact with two different objects (i.e. touch a sphere and avoid a cube). These agents 
are also able to develop, through evolution, a shared lexicon to name the two objects.  

The cognitive robotic model consists of a 3-segment arm with 6 degrees of 
freedom (DOF). Each segment consists of a basic structure of two cylindrical bodies 
and two joints. This structure is replicated three times, with the final segment being 
shorter to represent the hand of the robot (with no fingers). The controller of each 
individual robot consists of an artificial neural network with 11 sensory neurons 
connected to 3 hidden neurons. These connect to 8 output neurons. The first 9 
sensory neurons encode the angular position (normalized between 0.0 and 1.0) of the 
6 DOFs and the state of three contact sensors located in the three corresponding arm 
segments. The other 2 sensory neurons receive their input from the other agents 
(name of objects). The first 6 motor neurons control the actuators of the 
corresponding joints. The motor is activated so that it is able to apply a force 
proportional to the difference between the current and the desired position of the 
joint. The last 2 output neurons encode the signal to be communicated to the other 
agents. Agents are evolved for their ability to interact with the objects, using a genetic 
algorithm.  

To investigate the neural control strategies for the robot’s sensorimotor and 
cognitive behaviour, a dataset from two experimental trials was created. In the first 
trial, the activity of all the input, hidden and output units were recorded whilst the 
robot interacted with a sphere. The second trial records the neural activity during the 
interaction of the robot with the cube. Each trial produced a dataset of 16 variables 
consisting of the 4 linguistic units, the 9 input units (3 touch sensors and 6 
proprioceptive), and the 3 hidden nodes. In addition, each trial lasted for 150 cycles 
of actions (i.e. neural networks activations), thus producing 150 x 16 data points. All 



activation values (2 x 16 x 150) were plotted in the parallel coordinate representation. 
This was produced by a modified version of the VISA software.  

This parallel coordinate tool produces a dynamic and interactive representation of 
the whole dataset. For example, it is possible to search for the different patterns of 
activation that distinguish the two behavioural tasks. Initially, the whole dataset, 
150 x 16 cycles, was plotted using a different colour to represent each of the two 
tasks. During experimentation, the activation cycles were identified and eliminated. 
Note: these were the lines (parallel coordinates) from the two tasks which were 
coincident (i.e. the same unit has the same activation value in both tasks). This 
process of eliminating redundant (less informative) cycles gradually revealed the 
small number of critical cycles in the display. These are the lines (parallel 
coordinates) from each task that have distinct activation patterns. 

 

 
Figure 2: Parallel coordinate display for cognitive robotics. See text for explanation. 

 

Figure 2 shows a snapshot of the dynamic information visualization process with 
the data from the robotic experiment. The display shown solely depicts the six critical 
cycles of interaction (cycles 65-70 for each interaction) when the robot arm makes 
contact with the two objects (light gray for spheres, dark for cubes). This display 
clearly shows, with a single view, which input and hidden units are involved values in 
the two tasks. During interaction with the sphere, the units active solely for the 
touching behaviour are the first 2 proprioceptive sensors (vertical axes 5 and 6), the 
touch sensor of the second arm segment (axis 10) and the 3rd hidden unit (the final 
vertical axes). Instead, the units that specialize for the cube avoiding behaviour are 
the pairs of proprioceptive sensors for the 2nd and 3rd segment (respectively units 8-9 
and 11-12) and the 1st hidden units (vertical axis 14).  

4 Conclusions 
The two studies presented in this paper demonstrate the usefulness of information 
visualization methods for knowledge extraction in various types of neural network. In 
the first study, the parallel coordinate method included in the VISA software project 
has supported the identification of common activity in networks of spiking neurons. 
In the second study, research on cognitive robots and the further adapted parallel 



coordinate tool was used to identify the input and output units involved in the neural 
control of the sensorimotor behaviour in robots.  

The work presented here is an innovative approach to knowledge extraction in 
artificial neural networks. Instead of relying solely on formal methods for knowledge 
elicitation, this approach is based on an active exploration and visualization of neural 
network data. This design is largely based on Shneiderman’s information–seeking 
mantra, where users have the capability to “overview data”; to “zoom and filter” data 
and also to obtain “details-on-demand”. 

Future research is looking at the development of new information visualization 
tools for neural networks and cognitive robotics research as well as the further use of 
current tools. For example, extension of the parallel coordinate tool is required in 
order to support greater investigation of the various interrelationships between the 
neural network units. To achieve this, the tool will require the additional functionality 
to enable the user to move variables (the vertical axes) along the horizontal axis. This 
will enable users to analyse the precise relationships between any two variables 
which are not adjacent by default in the original display. In addition, the user 
interface will be further developed. It is important that the user is able to specify the 
colours used to represent both the lines (parallel coordinates) corresponding to correct 
and incorrect behaviours, and to highlight differences in the pattern of the neural 
network activation. 
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