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Abstract. Communication is a point of central importance in swarms
of robots. This paper describes a set of simulations in which artificial
evolution is used as a means to engineer robot neuro-controllers capable
of guiding groups of robots in a categorisation task by producing
appropriate actions. In spite of the absence of explicit selective pressure
(coded into the fitness function) which favours signalling over non-
signalling groups, communicative behaviour emerges. Post-evaluation
analyses illustrate the adaptive function of the evolved signals and
show that they are tightly linked to the behavioural repertoire of the
agents. Finally, our approach for developping controllers is validated by
successfully porting one evolved controller on real robots.

1 Introduction

Recently, there has been a growing interest in multi-robot systems since, with
respect to a single robot system, they provide increased robustness by taking
advantage of inherent parallelism and redundancy. Moreover, the versatility
of a multi-robot system can provide the heterogeneity of structures and
functions required to undertake different missions in unknown environmental
conditions. Among the possible theoretical perspectives which currently guide
the design of multi-robot systems, the swarm robotics approach is characterised
by its emphasis on aspects such as decentralisation of the control, limited
communication abilities among robots, use of local information, emergence of
global behaviour and robustness [1].

Given a multi-robot system with such properties, a global distributed
knowledge of, for example, the status of the environment, can be achieved by
exploiting the local knowledge of each single robot and by propagating the latter
through various forms of communication. For this reason, research in swarm
robotics dedicates particular attention to the study of how local information can
be efficiently communicated among the robots, so to improve the adaptiveness
of the group (see [2]). In this paper, we describe a simulation work in which
we provide a group of two robots with a sound signalling system (i.e., “ears”
and “mouth”) and we investigate the conditions which favour the emergence
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of a communication protocol. In particular, our work studies the evolution
of signalling in a group of autonomous robots within the context of decision

making and action selection, where robots have to make decisions by categorising
their environment and perform different actions. The categorisation of the
environment results from how the robots’ sensory inputs unfold in time (see [3,4]
for similar examples). The decision making is performed at the individual level,
and a collective action should be the observed response to the individual decision.

In order to perform our study, we make use of the research method
referred to as Evolutionary Robotics (ER, see [5]). Roughly speaking, ER is
a methodological tool to automate the design of robots’ controllers. Based on
artificial evolution, ER finds sets of parameters for artificial neural networks
(ANN’s) that guide the robots to the accomplishment of their objective. ER
can be employed to look at the effects that the physical interactions among
embodied agents and their world have on the evolution of individual behaviour
and social skills (see [6]). ER also permits the co-evolution of communicative and
non-communicative behaviour, since it lets different characteristics co-adapt,
only requiring an overall evaluation of the group (see [7]). Note that one of
the main features of this work is that we do not explicitly reward the group
for displaying signalling behaviour. That is, the adaptive pressure coded into
the fitness function does not explicitly favour signalling over non-signalling
groups. Therefore, if the evolved robot controllers display any kind of signalling
behaviour, the adaptive significance of this feature has to be investigated.
The reason to entirely leave the development of communicative behaviour to
artificial evolution resides in the fact that in this way the co-adaptation of
all mechanisms can produce more effective ways to categorise sensory-motor
information. Evolution can produce solutions better adapted to the problem
than hand-coded signalling behaviour (see [2]).

Our aim is to examine the evolution of communication in a group of
homogeneous robots, in close relation to the mechanisms that govern the robots’
behaviour with respect to the task. We will show that communication is beneficial
for the group and that its adaptive function is tightly connected to action

selection and decision making. Finally, we will download the evolved controllers
on real robots, which is the only way to prove the validity of the chosen design
methodology (i.e., artificial evolution). Even though multiple works treat the
issue of porting a non-reactive controller to reality, the literature lacks works
addressing tasks where the integration over time of sensory input is required.
In these cases, the decision making relies on how the inputs unfold in time
and possible errors will accumulate through time and could severely disrupt the
performance. In what follows, we describe the task (Section 2), the simulation
model (Section 3), the controller and the evolutionary algorithm (Section 4), and
the fitness function employed (Section 5). Results in simulation are presented in
Section 6, results on real hardware are discussed in Section 7 and conclusions
are drawn in Section 8.
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2 Description of the task

At the start of each trial, two simulated robots are placed in a circular arena
with a radius of 120 cm (see Fig. 1), at the centre of which a light bulb is always
turned on. The robots are positioned randomly at a distance between 75 and 95
cm from the light, with a random orientation between −120◦ and +120◦ with
respect to it. The robots perceive the light through their ambient light sensors.
The colour of the arena floor is white except for a circular band, centred around
the lamp covering an area between 40 and 60 cm from it. The band is divided
in three sub-zones of equal width but coloured differently—i.e., light grey, dark
grey, and black. Each robot perceives the colour of the floor through its floor
sensors, positioned under its chassis. Robots are not allowed to cross the black
edge of the band close to the light. There are two types of environment. In one
type—referred to as Env A—the band presents a discontinuity, called the way

in zone, where the floor is white (see Fig. 1a). In the other type, referred to as
Env B, the band completely surrounds the light (see Fig. 1b). The way in zone
represents the path along which the robots are allowed to safely reach the target

area in Env A—an area of 25 cm around the light. On the contrary, they cannot
reach the proximity of the light in Env B, and in this situation their goal is to
leave the band and reach a certain distance from the light source. Robots have
to explore the arena, in order to get as close as possible to the light. If they
encounter the circular band they have to start looking for the way in zone in
order to continue approaching the light, and once they find it, they should get
closer to the light and remain both in its proximity for 30 sec. After this time
interval, the trial is successfully terminated. If there is no way in zone (i.e., the
current environment is an Env B), the robots should be capable of “recognising”
the absence of the way in zone and leave the band by performing antiphototaxis.
Artificial evolution is used to design controllers capable of providing the robot
with the mechanisms required to solve the task.

Each robot is required to use a temporal cue in order to discriminate between
Env A and Env B, as in [4]. This discrimination is based on the persistence of
the perception of a particular sensorial state (the floor, the light or both) for the

Env A Env B
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Target

area

(a) (b)

Fig. 1. The task. (a) Env A is characterised by the way in zone. The target area is
indicated by the dashed circle. (b) In Env B the target area cannot be reached. The
continuous arrows are an example of a good navigational strategy for one robot.
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Fig. 2. (a) A picture of an s-bot. (b) Plan of the simulated robot, showing sensors and
motors. The robot is equipped with four ambient light sensors (L1 to L4), two floor
sensors F1 and F2, 15 proximity sensors (P1 to P15) and a binary sound input sensor,
called SI (see text for details). The wheel motors are indicated by M1 and M2. A
sound signalling system (loud speaker) is referred to as S.

amount of time that, given the trajectory and speed of the robot, corresponds
to the time required to make a loop around the light. The integration over time
of the robots’ sensorial inputs is used to trigger antiphototaxis in Env B.

Communication is not required to solve the task described above. However,
robots are provided with a sound signalling system that can be used for
communication. Given that we provide the agents with “mouth” and “ears”,
whenever a robot produces a signal (“talker”), this signal is “heard” by itself
and the other agent. The fitness function we use does not explicitly reward the
use of signalling. We investigate whether or not the latter evolves and in case
it does, what its adaptive function is. Finally, we use a homogeneous group of
robots, that is the same neural controller is cloned on both robots.

3 The simulation model

The controllers are evolved in a simulation environment which models some of the
hardware characteristics of the s-bots (see Fig. 2a). The s-bots are small wheeled
cylindrical robots, 5.8 cm of radius, equipped with a variety of sensors, and whose
mobility is ensured by a differential drive system [8]. In this work, we make use
of four ambient light sensors, placed at −112.5◦ (L1), −67.5◦ (L2), 67.5◦ (L3),
and 112.5◦ (L4) with respect to its heading, fifteen infra-red proximity sensors
placed around its turret (P1 to P15), two floor sensors F1 and F2 positioned
facing down on the underside of the robot with a distance of 4.5 cm between
them, an omni-directional sound sensor (SI), and a loud-speaker (see Fig. 2b).
The motion of the robot implemented by the two wheel actuators (M1 and M2)
is simulated by the differential drive kinematics equations, as presented in [9].
Light and proximity sensor values are simulated through a sampling technique.
The robot floor sensors output the following values: 0 if the robot is positioned
over white floor; 1

3
if the robot is positioned over light grey floor; 2

3
if the robot
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Fig. 3. The fully connected CTRNN architecture. Only the efferent connections for
N1 are drawn and all neurons behave in the same way. Neurons are represented as
circles. Circles with the light grey outline represent the input neurons, while circles
with the heavy grey outline represent the output neurons. We show for all input
neurons the combination of sensors that serve as inputs, and for all output neurons the
corresponding actuator. N10 is not connected to any sensor or actuator.

is positioned over dark grey floor; 1 if the robot is positioned over black floor.
The speaker is simulated as producing a binary output (on/off); the sound sensor
has no directionality and intensity features. During evolution, 10% uniform noise
was added to the light and proximity sensor readings, the motor outputs and
the position of the robot. We also added noise of 5% on the reading of the two
floor sensors, by randomly flipping between the 4 aforementioned values.

4 The controller and the evolutionary algorithm

Given that the task we want to study requires the use of time-dependent
structures, we use fully connected, thirteen neuron Continuous Time Recurrent
Neural Networks (CTRNN’s see [10])—see Fig. 3 for a depiction of the network.
All neurons are governed by the following state equation:

dyi

dt
=

1

τi



−yi +

13
∑

j=1

ωjiσ(yj + βj) + gIi



 , σ(x) =
1

1 + e−x
(1)

where, using terms derived from an analogy with real neurons, τi is the decay
constant, yi represents the cell potential, ωji the strength of the synaptic
connection from neuron j to neuron i, σ(yj + βj) the firing rate, βj the bias
term, g the gain and Ii the intensity of the sensory perturbation on sensory
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neuron i. The connections of all neurons to sensors and actuators is shown in
Fig. 3. Neurons N1 to N8 receive as input a real value in the range [0,1]. Neuron
N1 takes as input L1+L2

2
, N2 ←

L3+L4

2
, N3 ← F1, N4 ← F2, N5 ←

P1+P2+P3+P4

4
,

N6 ←
P5+P6+P7+P8

4
, N7 ←

P9+P10+P11+P12

4
and N8 ←

P13+P14+P15

3
.

Neuron N9 receives a binary input (i.e., 1 if a tone is emitted, 0 otherwise)
from the microphones of both robots (SI), while N10 does not receive input
from any sensor. The cell potentials (yi) of N11 and N12, mapped into [0,1] by a
sigmoid function (σ) and then linearly scaled into [-4.0,4.0], set the robot motors
output. The cell potential of N13, mapped into [0,1] by a sigmoid function (σ) is
used by the robot to control the sound signalling system (the robot emits a sound
if y13 ≥ 0.5). The strength of the synaptic connections ωji, the decay constant τi,
the bias term βj , and the gain factor g are genetically encoded parameters. Cell
potentials are set to 0 any time the network is initialised or reset, and circuits
are integrated using the forward Euler method with an integration step-size of
0.1.

A simple generational genetic algorithm is employed to set the parameters
of the networks [11]. The population contains 100 genotypes. Generations after
the first are produced by a combination of selection with elitism, recombination
and mutation. More details on the evolutionary algorithm employed and on the
genotypes’ component values can be found in [12].

5 The fitness function

During evolution, each genotype is coded into a robot controller, and is evaluated
for 10 trials, 5 in each environment. The sequence order of environments within
the ten trials has no bearing on the overall performance of the group since each
robot controller is reset at the beginning of each trial. Each trial differs from the
others in the initialisation of the random number generator, which influences
the robot’s starting position and orientation, the position and amplitude of the
way in zone (between 45◦ to 81◦), and the noise added to motors and sensors.
Within a trial, the robot life-span is 100 s (1000 simulation cycles). The final
fitness attributed to each genotype is the average fitness score of the 10 trials.
In each trial, the fitness function E is given by the following formula:

E =
E1 + E2

2 ∗ (nc + 1)

where nc is the number of (virtual) collisions in a trial, that is the number of
times the robots get closer than 2.5 cm to each other (if nc > 3, the trial is
terminated) and E1 and E2 are the fitness scores of each robot i, calculated as
follows:

Ei =

{

di−df

di

if during phototaxis, if cross or trial in Env A

1 +
df−40

dmax−40
if band is reached in Env B

By di we refer to the distance from the light at which the robot was initialised
and df is the distance from the light at which the robot is at the end of the trial
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Fig. 4. Box-and-whisker plot visualising the post-evaluated fitness of groups a1-a20 in
both environments. The box comprises observations ranging from the first to the third
quartile. The median is indicated by a horizontal bar. When the observations are too
close the box degenerates to the median. The whiskers extend to the most extreme data
point which is no more than 1.5 times the interquartile range. The gray area denotes
the area into which the average fitness value for both environments (black circles) must
be, in order for the group to be called successful.

and dmax = 120 cm is the maximum distance from the light a robot can reach.
By phototaxis we mean the phase where robots in either environment have not
yet touched the band in shades of grey. By cross we mean crossing the black
edge of the band in either environment. In case roboti ends up in the target area

in Env A, we set Ei = 2. From the above equation we can see that this is also
the maximum value Ei can get for a robot in Env B, and this corresponds to
the robot ending up at 120 cm from the light (df = 120). So if both robots are
successful, the trial gets the maximum score of 2. An important feature of this
fitness function is that it rewards agents that develop successful discrimination
strategies and end up doing the correct action in each environment, regardless
of any use of sound signalling. That is, a genotype that controls a group that
solves the task without any signalling/communication gets the same fitness as
one that makes use of communication.

6 Results

Twenty evolutionary simulations, each using a different random initialisation,
were run for 12000 generations. It is important to note that the fitness of the
best evolved controllers during evolution may have been an overestimation of
their ability to guide the robots in the task. In general, the best fitness scores
take advantage of favourable conditions, which are determined by the existence
of between-generation variation in starting position and orientation and other
simulation parameters. In order to have a better estimate of the behavioural
capabilities of the evolved controllers, we post-evaluate, for each run, groups
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controlled by the best genotype of the last generation. Groups controlled by
neural networks built by those genotypes will be from now on referred to as
a1-a20. The entire set of post-evaluations (500 trials in Env A and 500 trials
in Env B) should establish whether (i) a group of robots can solve the task
(ii) a sound signalling mechanism has been evolved and what its functionality
is. The results of the post-evaluation phase are shown in Fig. 4. We define as
successful a genotype that after this phase has an average fitness value above 1.8.
This roughly corresponds to both robots reaching the target area in Env A and
leaving the band performing anti-phototaxis in Env B. The results suggest that
five of the groups produced satisfying solutions to the task (a1, a2, a7, a10, a19).
Table 1 shows that four of the successful groups (a1, a2, a7, a19) make large use
of signalling in Env B, while in Env A signalling is negligible—see column 6 and
8, which refer to the average percentage of time either robot emits a signal during
a trial. Among the successful groups only a10 did not use signalling. To unveil
the relationship between the emission of sound signals and the completion of the
task we perform a behavioural analysis of the successful evolutionary runs. Thus,
we evaluate the five successful groups in a different setup in which the robots
are not able to perceive any sound from the environment: their sound input is
set to 0 all the time. We refer to this condition as the deaf setup. The results
of this analysis are shown in Table 1, together with the results for the normal

setup—i.e., without applying any disruption. The first observation that we make
is that, for group a10, the average fitness in the deaf setup (see Table 1 columns
10, 12) is exactly the same as the one in the normal setup (see Table 1 columns
2, 4). For the other groups, the average fitness for Env B drops considerably
in the deaf setup, while for Env A it remains approximately the same. This
suggests that group a10 does not rely on the activation of the sound input in
order to solve the task in Env B while the other groups do. Furthermore, for

Table 1. Further results of post-evaluation tests with normal and deaf setup for the five
successful groups. For the normal setup, the table shows: (i) the average and standard
deviation of the fitness over 500 trials in Env A (see columns 2, and 3) and in Env B
(see columns 4, and 5); (ii) the average and standard deviation of the percentage of
time-steps the sound was on by either robot over 500 trials in Env A (see columns 6,
and 7) and in Env B (see columns 8, and 9). For the deaf setup the table shows the
average and standard deviation of the fitness over 500 trials in Env A (see columns 10,
and 11) and in Env B (see columns 12, and 13).

group normal deaf

fitness signalling (%) fitness

Env A Env B Env A Env B Env A Env B

mean sd mean sd mean sd mean sd mean sd mean sd

a1 1.927 0.310 1.982 0.134 0.03 0.57 21.62 3.82 1.937 0.292 1.0526 0.239

a2 1.937 0.277 1.995 0.002 0.77 4.49 18.48 1.17 1.969 0.156 1.256 0.094

a7 1.988 0.113 1.950 0.198 0 0 17.19 2.54 1.988 0.113 1.266 0.250

a10 1.789 0.467 1.968 0.183 0 0 0 0 1.789 0.467 1.968 0.183

a19 1.914 0.236 1.984 0.059 0.08 0.72 13.88 1.03 1.923 0.214 1.137 0.016
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Fig. 5. The graphs show some features of the behaviour of robots of groups a2
(continuous lines) and a10 (dashed lines), during a successful trial in Env A and in
Env B. Top graphs a, b, c, and d show the distance to the light in cm. Bottom graphs
a, b, c, and d show the firing rate of neuron N13 (i.e., the sound output) of each robot
controller.

the latter groups, the fitness value in the deaf setup in Env B corresponds to
both robots not performing antiphototaxis; that is, the robots stay on the band
and keep circling around the light. In order to understand the function of these
signals, we looked more carefully at the behaviour of groups a2 and a10 during
a successful trial in each environment. In particular, our analysis focuses on the
relationship between the robot-light distances and the firing rate of neuron N13

of each controller of a group, since this neuron triggers the emission of sound.
Fig. 5a, b, c, d (top) show the distances of each robot to the light at every
timestep. The areas in shades of grey in these graphs represent the circular band.
Fig. 5a, b, c, d (bottom) show the firing rate of N13 (i.e., the sound output) of
both robots of a group. In all graphs, continuous lines refer to robots of group
a2, dashed lines refer to robots of group a10.
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As shown in Fig. 5a, b, c, d (top), the behaviour of the robots can be divided
in three phases. In the first two phases the robots of both groups (a2 and a10)
behave in the same way in both environments. The robot-light distance initially
decreases up to the point where the robots touch the band (phototaxis phase)
and then stays quite constant as the robots circle around the band trying to find
the way in zone (integration over time phase). In the third phase the groups
behave differently according to the characteristics of the environment. For both
groups, in Env A the robot-light distance decreases further as the robots end up
in the target area, while in Env B it increases and reaches the maximum distance
as the robots leave the band (antiphototaxis phase). Concerning the firing rate
of neuron N13, the two groups differentiate in both environments (see Fig. 5a,
b, c, d (bottom)). In Env B, the firing rate for both robots of group a10, never
goes beyond the threshold of 0.5 (see Fig. 5b, d (bottom) dashed lines). In the
case of a2 though, the firing rate of N13 of Robot 1 is rising until it passes over
the threshold of 0.5 just before the robot starts performing antiphototaxis (see
Fig. 5b, d, continuous lines). This behaviour of N13 for a2 reflects the integration
over time process, which leads to passing over the threshold of 0.5 in Env B

(decision making), while it is interrupted in Env A, when the way in zone is
found (see Fig. 5a, c, continuous lines). Differently, for a10 this neuron does not
perform the integration process, so the latter should be taking place in another
neuron of the network.

The observations above for a2, combined with the fact that this group in
the deaf setup does not display antiphototaxis in Env B, suggest that the
sound signalling system is connected to the discrimination between the two
environments. In other words, the antiphototaxis is a result of the perception of
the sound emitted by either robot. Furthermore, looking at Fig. 5d we observe
that for group a2 (continuous line), Robot 2 leaves the band the moment Robot
1 emits a signal, despite the fact that its own sound output is not yet over the
threshold of 0.5. We can summarise what happens as follows: the agent that
“realises” first that its group has been placed in Env B, emits a sound signal,
the perception of which triggers antiphototaxis in both robots of the group.
We refer to this process as external action selection, since the selection of the
appropriated action (i.e., the switch from phototaxis to antiphototaxis) is driven
by the perception of an environmental cue (i.e., the sound signal) produced by
either robot of the group. On the contrary, looking at the behaviour of group
a10, we observe a process that we refer to as internal action selection, since
the antiphototaxis is not triggered by a distinctive perceptual cue but solely
by the internal dynamics of the neural network controller. While the internal

action selection does not involve any form of communication, the external action

selection determines the emergence of a simple form of communication between
the robots of a group, since the robot that does not emit the signal initiates
antiphototaxis by reacting to the other robot’s signal.

The results of a pairwise Wilcoxon test among the fitness values of successful
groups as recorded during 1000 evaluations in the normal setup, show that groups
relying on an external action selection process to discriminate between Env A
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and Env B (i.e., groups a1, a2, a7, a19) outperform with a confidence level of
99% the only successful group which relies on an internal action selection process
(a10). We also compared the fitness scores achieved by the former groups in the
normal setup, with fitness scores achieved if the communication channel between
the robots is disabled, that is the robots are only capable of perceiving their own
signals. The results show that these genotypes perform worse with a confidence
level of 99% with the communication channel disabled with respect to the
normal setup. These analyses seem to suggest that, once evolved through random
mutations, mechanisms involved in the process of external action selection give
to a group a selective advantage over those groups which do not possess these
mechanisms.

This advantage might be related to the communication that results from the
exploitation of an external action selection process. That is, by communicating
the outcome of their decision about the state of the environment, robots may
counterbalance the disruptive effect of the sensors and actuators’ noise on the
decision making mechanisms. In other words, the effectiveness of the mechanisms
which integrate sensory information over time in order to disambiguate Env A

from Env B may be sensibly disrupted by the noise inherent in the sensors’
reading and in the outcome of any “planned” action. Equally, by communicating
their decision, robots can eradicate decision delay between them: due to
initialisation noise, one robot will on average perform the discrimination first.
If the antiphototaxis is triggered by the perception of sound (external action

selection) rather than by an internal state of the controller (internal action

selection), then a robot which by itself is not capable or not yet ready to make a
decision concerning the nature of the environment can rely on the decision taken
by the other robot of the group. The former simply reacts to the sound signal
emitted by the latter by initiating an antiphototactic behaviour (as happens for
Robot 2 in Fig. 5d).

In order to test the “communication-noise hypothesis” (introduced above)
as the main factor which determines the selective advantage of signalling over
non-signalling groups, we run another set of twenty evolutionary runs. In these
further series of simulations we removed any source of environmental noise which
may interfere with the mechanisms for integration over time—i.e., no noise in
sensors/actuators—and initialised the robots at exactly the anti-diametrical
positions. Due to the latter choices, both robot controllers are at identical
states during their lifetime and thus, a potential advantage related to the
communication that results from the exploitation of an external action selection

process is eradicated. The results of the post-evaluation phase are shown in
Fig. 6. Groups controlled by the best genotypes of the last generation of runs 1
to 20 are called n1-n20, respectively. The results show that eleven of the groups
effectively solved the task (n3, n4, n5, n6, n8, n9, n12, n14, n17, n18, n20).
Table 2 shows results of the post-evaluation tests for two of the successful groups
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Fig. 6. Box-and-whisker plot visualising the post-evaluated fitness of groups n1-n20 in
both environments. The box comprises observations ranging from the first to the third
quartile. The median is indicated by a horizontal bar. When the observations are too
close the box degenerates to the median. The whiskers extend to the most extreme data
point which is no more than 1.5 times the interquartile range. The gray area denotes
the area into which the average fitness value for both environments (black circles) must
be, in order for the group to be called successful.

(n8, n17)3. These groups use signalling in Env B (see column 8), and given
their failure to produce antiphototaxis in the deaf setup in Env B (see column
12), we can conclude that they employ an external action selection process to
discriminate between Env A and Env B (exactly as a2). This suggests that
there may be other factor(s) which cause the evolution of groups that exploit

3 Other groups employ an external action selection process but use different signalling
conventions, and others employ an internal action selection process. The analysis of
these controllers is beyond the scope of this paper.

Table 2. Further results of post-evaluation tests with normal and deaf setup for two
of the successful groups among n1-n20. For the normal setup, the table shows: (i) the
average and standard deviation of the fitness over 500 trials in Env A (see columns 2,
and 3) and in Env B (see columns 4, and 5); (ii) the average and standard deviation
of the percentage of timesteps the sound was on by either robot over 500 trials in Env
A (see columns 6, and 7) and in Env B (see columns 8, and 9). For the deaf setup the
table shows the average and standard deviation of the fitness over 500 trials in Env A
(see columns 10, and 11) and in Env B (see columns 12, and 13).

group normal deaf

fitness signalling (%) fitness

Env A Env B Env A Env B Env A Env B

mean sd mean sd mean sd mean sd mean sd mean sd

n8 2 0 1.999 0.000 0 0 26.40 0.64 2 0 1.169 0.007

n17 2 0 1.998 0.007 0 0 26.70 1.14 2 0 1.084 0.002
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the external action selection. Genetic drift might be a possible explanation.
Alternatively, we may speculate that sound evolves simply because, if emitted
at the end of a complete tour around the light, it is a perceptual cue which an
emitter robot can employ to initiate antiphototaxis. Robots that do not emit
sound may find it more difficult to switch from phototaxis to antiphototaxis
in the absence of a clear perceptual cue which triggers the latter response.
Obviously, the latter hypothesis does not rule out the possibility that sound could
acquire a communicative function in a subsequent time owing to its potential
beneficial effect against environmental noise and decision delay on behalf of one
robot, as explained above.

7 Porting on real robots

The task described in this paper is characterised by the fact that not only the
change but also the persistence of particular sensorial states are directly linked
to the effectiveness of the evolved strategies (see previous section). However, the
evolved strategies are generated by robot controllers developed in a simulated
world, which is responsible for modelling the sensory states of s-bots acting in
Env A or Env B. If the physics of our simulated world are insufficiently and/or
incorrectly defined, the evolved behavioural strategies may exploit loop-holes
which strongly limit their effectiveness to an unrealistic scenario. Porting the
controllers evolved in simulation onto a real robot is the ultimate proof to rule
out the possibility of existence of the above mentioned circumstances (see [13]).
However, as already pointed out in Section 1, this practice has not been taken
into account in previous research work in which continuous time neural network
controllers have been evolved to deal with tasks that required integration over
time of sensory states. In this paper, we provide evidence of the “portability” of
the evolved controllers, by showing the results of tests in which real robots of
group a2 are repeatedly evaluated in Env A and Env B.

In [14], the author claims that the robot does not have to move identically
in simulation and reality in order for the porting to be called successful, but its
behaviour has to satisfy some criteria defined by the experimenter. Following
this principle, real robots are considered successful if they carry out the main
requirements of our task. That is, the robots have to reach the band in shades
of grey regardless of the type of environment and subsequently (i) end up in the
target area in Env A, without crossing the inner black edge of the circular band;
(ii) end up as far as possible from the light in Env B. The robots should also
avoid collisions.

Two s-bots (s-bot1 and s-bot2) were randomly positioned at a distance of
85 cm from the light, and with a random orientation. In Env A, we randomly
varied the position of the way in zone but we fixed its width to 45◦, which is
the smallest value encountered through evolution and the most difficult case for
a possible misinterpretation of an Env A for an Env B. We performed 40 trials,
20 in each environment. The results were 100% successful: there never was any
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misdiscrimination, collision or crossing the black edge of the band4. As it was
for the simulated robots of group a2, the s-bots accomplished the task through
an external action selection process. That is, it is the sound emitted by one s-

bot that triggers antiphototaxis in both robots. The results of our tests show
that in Env B it is always s-bot1 that emits a signal. Since the discrimination
of an Env B from an Env A—that is, the emission of a sound signal and the
following antiphototactic response—is based on the persistence of a particular
sensory state, we can attribute the fact that s-bot1 always signals earlier than
s-bot2 to mechanical and/or sensor differences between the two s-bots. However,
the fact that we did not have any misdiscrimination proves that the simulation
used to develop our controllers is sufficiently and correctly defined.

In order to understand to what extent real world noise influences the
accomplishment of the task we performed further analysis. We compute the offset
between the entrance position in the circular band of the robot that first emits a
signal and the position at which this robot starts to signal. This measure, called
offset ∆, takes value 0◦ if the robot signals exactly after covering a complete loop
around the circular band. Negative values of the offset ∆ suggest that the robot
signals before having performed a complete loop, while positive values correspond
to the situation in which the robot emits a tone after having performed a loop
around the light (see [4] for details on how to calculate the value of ∆).

As shown in Table 3, we see that the s-bot that first emits a signal—which, as
mentioned above, is always s-bot1—does so on average before completing a loop.
However, being the magnitude of the offset ∆ smaller than the width of the way

in zone the group does not run into the risk of misinterpreting an Env A for an
Env B. Further tests have proved that, if let to act alone in an Env B, s-bot2
always signals after completing a loop (i.e., positive offset ∆, data not shown).
This result can be accounted for by calling upon the inter s-bot differences, that
can hardly be captured by the simulated world.

In Table 3 it is possible to compare the average offset ∆ of a group of s-bots

with the average offset ∆ recorded by simulated robots of group a2. Contrary to
the s-bots, the simulated robots signal on average after completing the loop. This
result can be accounted for by calling upon the differences between simulated
and real world. Quantitative descriptions of the behaviour of simulated and real
robots can be definitely employed to evaluate the reliability of a simulated world
as a tool to develop controllers for real robots. Our simulated world, which only

4 The movies that correspond to all experiments can be found in http://iridia.ulb.

ac.be/supp/IridiaSupp2006-004

Table 3. Average and standard deviation of the offset ∆ over: (i) 20 trials in Env B
performed by the s-bots; (ii) 500 trials in Env B performed by the simulated robots.

Offset ∆ avg sd

s-bots -30.6 11.75

simulated robots +31.6 16.05
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models a small subset of the s-bot -world physics, speeds up a particularly long
evaluation process. Random noise has been employed as a tool to compensate for
those physical phenomena not modelled (e.g., acceleration, friction, etc.). The
results of our tests proved that the noise injected into the simulated world was
sufficient to capture the variability of the behaviour of sensors and actuators of
real hardware, which can easily disrupt the effectiveness of the evolved neural
mechanisms. Of course, it should be mentioned that the simulated robots of
group a2 are rather “conservative”, that is, the robots emit signals rather late.
This fact leaves a big margin of fault tolerance on which our successful porting
to reality was also based.

8 Conclusions

In this work, we used artificial evolution as a means to engineer the emergence of
communication in a group of robots but also to design robot controllers that can
successfully cross the simulation-reality gap. Signals serve as “cues” that trigger
behavioural switches in the group. Obviously, the evolved signalling system is
simple, mainly due to the fact that we only allow agents to emit binary signals.
In order to move to more complex signalling behaviours, we need to consider
a sound system with more degrees of freedom, always in close relation to the
task under consideration. Still, we observed that when agents are provided with
“mouth” and “ears”, communication can emerge, even without explicit fitness
reward, providing groups that use it with a selective advantage over those that
do not. Given this result, the question that arises is if we should aim at evolving
communication in any swarm robotics task. Obviously this work does not provide
enough evidence to answer positively. Any communication system that escapes
from the local and simple interactions (e.g., communication through infra-red
sensors—see [6]) might present disadvantages as well as advantages. In fact,
when we move from a robot-to-robot to a robot-to-many interaction, not only
the benefit of the knowledge of the environment acquired, but also possible
errors spread faster. For example, in the task we studied, if a robot emits a
signal, both robots can exploit it. However, if the signal is the product of a
wrong decision (misinterpretation of environments) then both robots fail and
the whole system collapses. The importance and the effect of such an event on
the group performance is amplified as the swarm size increases. Therefore, issues
like the reliability of signals have to be considered, together with the possible
increase in the agent hardware and/or controller complexity that such, more
advanced, forms of communication demand. To summarize, the experimenter
has to balance the costs and benefits of communication before considering it as
a path that might lead to the solution of a given task.
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