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Chapter 61

Evolutionary Robotics

61.1 Introduction

Evolutionary Robotics is a method for the automatic
creation of autonomous robots [86]. It is inspired by
the Darwinian principle of selective reproduction of the
fittest captured by evolutionary algorithms [54]. In Evo-
lutionary Robotics, robots are considered as autonomous
artificial organisms that develop their own control sys-
tem and body configuration in close interaction with the
environment without human intervention. Drawing in-
spiration from principles of biological self-organization,
evolutionary robotics includes elements of evolutionary,
neural, developmental, and morphological systems. The
idea that an evolutionary process could drive the gen-
eration of control systems dates back to at least the
1950s [118] with a more explicit form appearing in the
mid 1980s with the ingenious thought experiments by
neuroscientist Valentino Braitenberg on neurally driven
vehicles [15]. In the early 90’s, the first generation of
simulated artificial organisms with a genetic code de-
scribing the neural circuitry and morphology of a sen-
sory motor system began evolving on computer screens
[9, 89, 56, 29]. At that time, real robots were still compli-
cated and expensive machines that required specialized
programming techniques and skillful manipulation. To-
wards the end of that period, a new generation of robots
started to emerge that shared important characteristics
with simple biological systems: robustness, simplicity,
small size, flexibility, modularity [16, 81]. Above all,
those robots were designed so that they could be pro-
grammed and manipulated by people without engineer-
ing training. Those technological achievements, together
with the growing influence of biological inspiration in ar-
tificial intelligence [111], coincided with the first evolu-
tionary experiments on real robots [30, 50, 68] and the
term Evolutionary Robotics was coined [20].

The major methodological steps in Evolutionary
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Figure 61.1: Evolutionary experiments on a single robot.
Each individual of the population is decoded into a cor-
responding neurocontroller which reads sensory infor-
mation and sends motor commands to the robot every
300 ms while its fitness is automatically evaluated and
stored away for reproductive selection.

Robotics proceed as follows (Figure 61.1). An initial
population of different artificial chromosomes, each en-
coding the control system (and possibly the morphology)
of a robot, is randomly created. Each of these chromo-
somes is then decoded into a corresponding controller,
for example a neural network, and downloaded into the
processor of the robot. The robot is then let free to
act (move, look around, manipulate the environment)
according to a genetically specified controller while its
performance for a given task is automatically evaluated.
Performance evaluation is done by a fitness function that
measures, for example, how fast and straight the robot
moves, how frequently it collides with obstacles, etc.
This procedure is repeated for all chromosomes of the
population. The fittest individuals (those that have re-
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CHAPTER 61. EVOLUTIONARY ROBOTICS 2

ceived more fitness points) are allowed to reproduce by
generating copies of their chromosomes with the addition
of random modifications introduced by genetic operators
(e.g., mutations and exchange of genetic material). The
newly obtained population is then tested again on the
same robot. This process is repeated for a number of
generations until an individual is born which satisfies
the fitness function set by the user. The control sys-
tem of evolved robots, encoded in an artificial genome,
is therefore generated by a repeated process of selective
reproduction, random mutation and genetic recombina-
tion, similarly to what happens in natural evolution.

61.2 First steps

Figure 61.2: Bird’s-eye view of the desktop Khepera
robot in the looping maze.

In an early experiment on robot evolution without
human intervention, carried out at EPFL [30], a small
wheeled robot was evolved for navigation in a looping
maze (Figure 61.2). The Khepera robot has a diame-
ter of 55 mm and two wheels with controllable veloci-
ties in both directions of rotation. It also has eight in-
frared sensors, six on one side and two on the other side,
that can function either in active mode to measure dis-
tance from obstacles or in passive mode to measure the
amount of (infrared) light in the environment. The robot
was connected to a desktop computer through rotating
contacts that provided both power supply and data ex-
change through a serial port.

A simple genetic algorithm [43] was used to evolve the
synaptic strengths of a neural network composed of eight
sensory neurons and two motor neurons. Each sensory

unit was clamped to one of the eight active infrared sen-
sors whose value was updated every 300 ms. Each mo-
tor unit received weighted signals from the sensory units
and from the other motor unit, plus a recurrent connec-
tion with itself with a 300 ms delay. The net input of
the motor units was offset by a modifiable threshold and
passed through a logistic squashing function. The result-
ing outputs, in the range [0, 1], were used to control the
two motors so that an output of 1 generated maximum
rotation speed in one direction, an output of 0 gener-
ated maximum rotation speed in the opposite direction,
and an output of 0.5 did not generate any motion in the
corresponding wheel. A population of 80 individuals,
each coding the synaptic strengths and threshold values
of the neural controllers, was initialized with all weights
set to small random values centered around zero. Each
individual was tested on the physical robot for 80 senso-
rimotor cycles (approximately 24 seconds) and evaluated
at every cycle according to a fitness function with three
components measured onboard the robot:

Φ = V

(

1 −
√

∆v

)

(1 − i) (61.1)

where V is the average rotation speed of the two wheels,
∆v is the absolute value of the algebraic difference be-
tween the signed speed values of the wheels (positive is
one direction, negative the other) and i is the normalized
activation value of the infrared sensor with the highest
activity. The first component is maximized by speed,
the second by straight motion, and the third by distance
from objects.

During the first 100 generations, both average and best
fitness values grew steadily, as shown in Figure 61.3. A
fitness value of 1.0 would correspond to a robot moving
straight at maximum speed in an open space and there-
fore was not attainable in the looping maze shown in
Figure 61.2, where some of the sensors were often active
and where several turns were necessary to navigate. Fig-
ure 61.4 shows the trajectory of the best individual of
the last generation.

Although the fitness function did not specify in what
direction the robot should navigate (given that it was
perfectly circular and that the wheels could rotate in
both directions), after a few generations all the best indi-
viduals moved in the direction corresponding to the side
with the highest number of sensors. Individuals moving
in the other direction had higher probability of collid-
ing into corners without detecting them and thus disap-
peared from the population. Furthermore, the cruising
speed of the best evolved robots was approximately half
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Figure 61.3: Average fitness of the population and fit-
ness of the best individual at each generation (error bars
show standard error over three runs from different initial
populations).

of the maximum speed that could be technically achieved
and did not increase even when the evolutionary exper-
iment was continued up to 200 generations. Further
analysis revealed that this self-limitation of the naviga-
tion speed had an adaptive function because, consider-
ing the sensory and motor refresh rate together with the
response profile of the distance sensors, robots that trav-
eled faster had a higher risk of colliding into walls before
detecting them. They gradually disappeared from the
population.

Despite its simplicity, this experiments shows that evo-
lution can discover solutions that match not only the
computational requirements of the task to be solved, but
also the morphological and mechanical properties of the
robot in relation to its physical environment.

61.2.1 Evolution of neural controllers for

walking

Over the past fifteen years or so, there has been a grow-
ing body of work on evolving controllers for various kinds
of walking robots - a non-trivial sensorimotor coordina-
tion task. Early work in this area concentrated on evolv-
ing dynamical network controllers for simple (abstract)
simulated insects (often inspired by cockroach studies)
which were required to walk in simple environments (e.g.,
[23, 10]). Earlier, Beer had introduced a neural architec-
ture for locomotion based on studies of cockroaches [13],
which is shown in Figure 61.5. The promise of this work
soon led to versions of this methodology being used on

Figure 61.4: Trajectory of the robot with the best neural
controller of the last generation. Segments represent the
axis between the two wheels. Data was recorded and
plotted every 300 ms using an external laser positioning
device.

real robots. Probably the first success in this direction
was by Lewis et al. [68, 69] who evolved a neural con-
troller for a simple hexapod robot using coupled oscil-
lators built from continuous-time, leaky-integrator, arti-
ficial neurons. All evaluations were done on the actual
robot with each leg connected to its own pair of coupled
neurons, leg swing being driven by one neuron and leg
elevation by the other. These pairs of neurons were cross
connected, in a manner similar to that used by Beer and
Gallagher [10] (see Figure 61.5), to allow coordination
between the legs. In order to speed up the process, they
employed staged evolution where first an oscillator capa-
ble of moving a leg was evolved and then an architecture
based on these oscillators was further evolved to develop
walking. The robot was able to execute an efficient tri-
pod gait on flat surfaces.

Gallagher et al. [38] described experiments where neu-
ral networks controlling locomotion in an artificial insect
were evolved in simulation and then successfully down-
loaded onto a real hexapod robot. This machine was
more complex than Lewis et al.’s, with a greater num-
ber of degrees of freedom per leg. In this approach, each
leg was controlled by a fully-connected network of five
continuous-time, leaky-integrator neurons, each receiv-
ing a weighted sensory input from that leg’s angle sen-
sor. Initially the architecture shown in Figure 61.5 was
used, with the connection weights and neuron time con-
stants and biases under genetic control. This produced
efficient tripod gaits for walking on flat surfaces. In order
to produce a wider range of gaits operating at a number
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Figure 61.5: Schematic diagram of a distributed neural
network for the control of locomotion as used by Beer
et al. [13]. Excitatory connections are denoted by open
triangles and inhibitory connections are denoted by filled
circles. C, command neuron; P, pacemaker neuron; FT,
foot motor neuron; FS and BS, forward swing and back-
ward swing motor neurons; FAS and BAS, forward and
backward angle sensors.

of speeds such that rougher terrain could be successfully
negotiated, a different distributed architecture, more in-
spired by stick insect studies, was found to be more ef-
fective [11].

Galt et al. [40] used a genetic algorithm to derive
the optimal gait parameters for a Robug III robot, an
8-legged, pneumatically powered walking and climbing
robot. The individual genotypes represented parame-
ters defining each leg’s support period and the timing
relationships between leg movements. These parameters
were used as inputs to a mechanistic finite state machine
pattern generating algorithm that drove the locomotion.
Such algorithms, which are often used in conventional
walking machines, rely on relatively simple control dy-
namics and do not have the same potential for the kind

Figure 61.6: The octopod robot built by Applied AI Sys-
tems Inc.

of sophisticated multi-gait coordination that complex dy-
namical neural network architectures, such as those de-
scribed in this section, have been shown to produce.
However, controllers were successfully evolved for a wide
range of environments and to cope with damage and sys-
tems failure (although an individual controller had to be
tuned to each environment; they were not able to self
adapt across a wide range of conditions). Gomi and Ide
[44] evolved the gaits of an 8-legged robot (Figure 61.6)
using genotypes made of eight similarly organized sets
of genes, each gene coding for leg motion characteris-
tics such as the amount of delay after which the leg be-
gins to move, the direction of the leg’s motion, the end
positions of both vertical and horizontal swings of the
leg, and the vertical and horizontal angular speed of the
leg. After a few dozen generations, where evaluation was
on the robot, a mixture of tetrapod and wave gaits was
obtained. Using the Cellular Encoding [45] developmen-
tal approach – which genetically encodes a grammar-tree
program that controls the division of cells growing into
a dynamical recurrent neural network of the kind used
by Beer and colleagues – Gruau [46] evolved a single-leg
neural controller for the same eight-legged robot used by
Gomi and Ide. This generated a smooth and fast quadri-
pod locomotion gait. Kodjabachian and Meyer [65] ex-
tended this work to develop more sophisticated locomo-
tion behaviors. Jakobi [62] successfully used his mini-
mal simulation techniques (described in Section 61.3) to
evolve controllers for the same 8-legged robot as Gruau.
Evolution in simulation took less than 2 hours on what
would today be regarded as a very slow computer, and
then transferred successfully to the real robot. Jakobi
evolved modular controllers based on Beer’s continuous
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recurrent networks to control the robot as it engaged in
walking about its environment, avoiding obstacles and
seeking out goals depending on the sensory input. The
robot could smoothly change gait, move backward and
forward, and even turn on the spot. More recent work
has used similar architectures to those explored by the
researchers mentioned above, to control more mechani-
cally sophisticated robots such as the Sony Aibo [119].

Recently there has been successful work on evolving
coupled oscillator style neural controllers for the highly
unstable dynamic problem of biped walking. Reil and
Husbands [99] showed that accurate physics based sim-
ulations using physics-engine software could be used to
develop controllers able to generate successful bipedal
gaits. Reil and colleagues have now significantly devel-
oped this technology to exploits its commercial possi-
bilities, in the animation and games industries, for the
real time control of physically simulated 3D humanoid
characters engaged in a variety of motor behaviors (see
www.naturalmotion.com for further details). Coupled
neural oscillators have been evolved also to control the
swimming pattern of articulated, snake-like, underwater
robots using physics-based simulations [123].

Vaughan has taken related work in another direction.
He has successfully applied evolutionary robotics tech-
niques to evolve a simulation of a 3D ten-degree of free-
dom bipedal robot. This machine demonstrates many
of the properties of human locomotion. By using pas-
sive dynamics and compliant tendons, it conserves en-
ergy while walking on a flat surface. Its speed and gait
can be dynamically adjusted and it is capable of adapting
to discrepancies in both its environment and its bodies’
construction [121]. The parameters of the body and con-
tinuous dynamical neural network controller were under
genetic control. The machine started out as a passive
dynamic walker [77] on a slope, and then throughout
the evolutionary process the slope was gradually lowered
to a flat surface. The machine demonstrated resistance
to disturbance while retaining passive dynamic features
such as a passive swing leg. This machine did not have
a torso, but Vaughan has also successfully applied the
method to a simplified 2D machine with a torso above
the hips. When pushed, this dynamically stable bipedal
machine walks either forward or backwards just enough
to release the pressure placed on it. It is also able to
adapt to external and internal perturbations as well as
variations in body size and mass [122].

McHale and Husbands [79, 78] have compared many
forms of evolved neural controllers for bipedal and
quadrapedal walking machines. Recurrent dynamical

continuous time networks and GasNets (described in Sec-
tion 61.6.3) were shown to have advantages in most cir-
cumstances. The vast majority of the studies mentioned
above were conducted for relatively benign environ-
ments. Not withstanding this observation, we can con-
clude that the more complex dynamical neural network
architectures, with their intricate dynamics, generally
produce a wider range of gaits and generate smoother,
more adaptive locomotion than the more standard use
of finite state machine based systems employing param-
eterised rules governing the timing and coordination of
individual leg movements (e.g., [66]).

61.3 Simulation and reality

Few of the experiments in the previous section were car-
ried out entirely on physical robots because a) evolution
may take a long time, especially if it is carried out on
a single robot that incarnates the bodies of all the indi-
viduals of the evolving population; b) the physical robot
can be damaged because populations always contain a
certain number of poorly performing individuals (for ex-
ample, colliding against walls) by effect of random muta-
tions; c) restoring the environment to initial conditions
between trails of different individuals or populations (for
example, replenishing the arena with objects) may not
always be feasible without human intervention; d) evo-
lution of morphologies and evolution of robots that can
grow during their lifetime is almost impossible with to-
day’s technology without some level of human interven-
tion.

For those reasons, researchers often resort to evolution
in simulation and transfer the evolved controllers to the
physical robot. In the case of morphology evolution, the
physical robot is manually assembled according to the
evolved specifications. However, it is well known that
programs that work well in simulations may not func-
tion properly in the real world because of differences in
sensing, actuation and in the dynamic interactions be-
tween robot and environment [17]. This “reality gap” is
even more evident in adaptive approaches, such as Evo-
lutionary Robotics, where the control system and mor-
phology are gradually crafted through the repeated inter-
actions between the robot and the environment. There-
fore, robots will evolve to match the specificities of the
simulation, which differ from the real world. Although
these issues clearly rule out any simulation based on grid
worlds or pure kinematics, over the last 10 years simula-
tion techniques have dramatically improved and resulted
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in software libraries that model reasonably well dynam-
ical properties such as friction, collision, mass, gravity,
inertia, etc. [25]. These software tools allow one to simu-
late articulated robots of variable morphology and their
environment as fast as, or faster than, real time in a
desktop computer. Today, those physics-based simula-
tions are widely used by most researchers in Evolution-
ary Robotics and indeed most of the work with highly
articulated robots is carried out with those simulations.

Nonetheless, even physics-based simulations include
small discrepancies that can accumulate over time and
result in very different behavior from reality (for exam-
ple, a robot may get stuck against a wall in simulation
whereas it can get free in reality, or vice versa). Also,
physics-based simulations cannot account for diversity of
response profiles of the individual sensors, motors, and
gears of a physical robot. There are at least four meth-
ods to cope with these problems and improve the quality
of the transfer from simulation to reality.

A widely used method consists of adding independent
noise to the values of the sensors provided by the model
and to the end position of the robot computed by the
simulator [63]. Some software libraries allow the intro-
duction of noise at several levels of the simulation. That
solution prevents evolution from finding solutions that
rely on the specificities of the simulation model. One
may also sample the actual sensor values of the real robot
positioned at several angles and distances from objects
of different texture. Those values are then stored in a
look up table and retrieved with addition of noise ac-
cording to the position of the robot in the environment
[80]. This method proved to be very effective for gener-
ating controllers that transfer smoothly from simulation
to reality. A drawback of the sampling method is that it
does not scale up well to high-dimensional sensors (e.g.,
vision) or geometrically complicated objects.

Another method, also known as minimal simulations,
consists in modeling only those characteristics of the
robot and environment that are relevant for the emer-
gence of desired behaviors [60]. Those characteristics,
that are referred to as base-set features, should be ac-
curately modeled in simulation. Instead, all the other
characteristics, which are referred to as implementation
aspects, should be randomly varied across several trials
of the same individual in order to ensure that evolving
individuals do not rely on implementation aspects, but
rely on base-set features only. Base-set features must
also be varied to some extent across trials in order to
ensure some degree of robustness of the individual with
respect to base-set features, but that variation should

not be so large that reliably fit controllers fail to evolve
at all. This method allows very fast evolution of com-
plex robot-environment situations, as in the example of
hexapod walk described in Section 61.2.1. A drawback
of minimal simulations is that it is not always easy to
tell in advance which are the base-set features that are
relevant for the desired behavior.

Yet another method consists in the co-evolution of the
robot (control and/or morphology) and of the simula-
tor parameters that are most likely to differ from the
real world and that may affect the quality of the transfer
[14]. This method consists of co-evolving two popula-
tions, one encoding the properties of the robot and one
encoding the parameters of the simulator. Co-evolution
happens in several passes through a two-stage process. In
stage one, a randomly generated population of robots are
evolved in the default simulator and the best individual
is tested on the real robot while the time series of sensory
values are recorded. In stage two, the population of sim-
ulators is evolved for reducing the difference between the
time series recorded on the real robot and the time series
obtained by testing evolved robots within the simulator.
The best evolved simulator is then used for stage one
where a new randomly generated population is evolved
and the best individual is tested on the real robot to gen-
erate the time series for stage two of simulator evolution.
This two-stage co-evolution is repeated several times un-
til the error between simulated and real robot behavior
is the smallest possible. It has been shown that approx-
imately 20 passes of the two-stage process are sufficient
to evolve a good control system that could be transferred
to an articulated robot. In that case, the real robot was
used to test only 20 individuals.

Finally, another method consists of genetically encod-
ing and evolving the learning rules of the control system,
rather than its parameters (e.g., connection strengths).
The parameters of the decoded control system are always
initialized to small random values at the beginning of an
individual lifetime and must self-organize using the learn-
ing rules [120]. This method prevents evolution from
finding a set of control parameters that fit the specifici-
ties of the simulation model, and encourages emergence
of control systems that remain adaptive to partially un-
known environments. When such an evolved individual
is transferred to the real robot, it will develop online its
control parameters according to the genetically evolved
learning rules and taking into account the specificities of
the physical world. This method is described in more
detail in Section 61.7.2 on evolution of learning.
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61.4 Simple controllers, complex

behaviors
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Figure 61.7: Robot behavior results from non-linear in-
teractions, occurring at fast time rates, between the
agent’s control system, its body and the environment.

behavior is a dynamical process resulting from non-
linear interactions (occurring at a fast time rate) be-
tween the agent’s control system, its body, and the en-
vironment [75, 12]. At any time step, the environment
and the agent/environment relation influence the body
and the motor reaction of the agent, that in turn influ-
ences the environment and/or the agent/environmental
relation (Figure 61.7). Sequences of these interactions
lead to a dynamical process where the contributions of
the different aspects (i.e., the robot’s control system, the
robot’s body and the environment) cannot be separated.
This implies that even a complete knowledge of the el-
ements governing the interactions provides little insight
on the behavior emerging from these interactions [36, 84].

An important advantage of Evolutionary Robotics is
that it is not necessary to identify the relations between
the rules governing the interactions and the resulting be-
havior [86, 84]. Evolutionary Robotics is an adaptation
process where the free parameters of the robots that reg-
ulate the interactions, initially randomly assigned, are
modified through a process of random variation and are
selected and/or discarded on the basis of their effects at
the behavioral level. These characteristics allow evolving
robots to discover useful behavioral properties emerging
from the interactions without the need to identify the re-
lations between the rules governing the interaction and
the resulting behavior. An emergent behavioral property
or behavior is a form of behavior that can hardly be pre-

dicted or inferred by an external observer even when she
has a complete knowledge of the interacting elements and
of the rules governing those interactions. The possibil-
ity of developing robots that exploit emergent behavior,
in turn, allows evolutionary methods to come up with
simple solutions to problems that are complex from an
observer’s perspective.

Figure 61.8: The environment and the robot. The envi-
ronment consists of an arena of 60 × 35 cm and contains
a cylindrical objects placed in a randomly selected loca-
tion.

As an example (Figure 61.8), consider the case of a
Khepera robot placed in an arena surrounded by walls
and containing a food object (i.e., a cylindrical object)
that the robot should find and remain close to [83]. The
robot is provided with eight infrared sensors and two mo-
tors controlling the two corresponding wheels. From the
point of view of an external observer, solving this prob-
lem requires robots able to: (a) explore the environment
until an obstacle is detected, (b) discriminate whether
the obstacle detected is a wall or a cylindrical object,
and (c) approach or avoid the object depending on the
object type. A detailed analysis of the sensory patterns
experienced by the robot indicated that the task of dis-
criminating the two objects is far from trivial since the
two classes of sensory patterns experienced by robots
close to a wall and close to cylindrical objects overlap
significantly. However, robots evolved for the ability to
solve this task resorted to a strategy that does not re-
quire explicit discrimination of the two types of objects
[83].

In all replications of the experiment, evolved robot
moved away from walls, but when they encountered the
food object tended to oscillate back and forth or left and
right in its proximity (Figure 61.9). This solution con-
sists in producing a behavioral attractor near the cylin-
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Figure 61.9: Angular trajectories of an evolved robot
close to a wall (top graph) and to a cylinder (bottom
graph). The picture was obtained by placing the robot at
a random position in the environment, leaving it free to
move for 500 cycles, and recording its relative movements
with respect to the two types of objects for distances
smaller than 45 mm. For sake of clarity, arrows are used
to indicate the relative direction, but not the amplitude
of movements.

drical object. A behavioral attractor is a series of senso-
rimotor sequences that maintain the robot close to the
object. In this case, the forward movement in front of
the cylindrical object generates a variation of the sensory
pattern experienced by the robot that, in turn, triggers
a backward movement.

Therefore, evolved robots do not solve the problem by
discriminating the two type of objects (cylinder and wall)
and displaying an approaching or avoiding behavior, but
rather exploit behaviors that emerge from the interac-
tion between the robot’s control system, robots’ body,
and the environment. The possibility to discover and
rely on these forms of emergent behavior allows evolving
robots to find computationally simple solutions to appar-
ently complex problems. Indeed, the problem described
in this section only requires a simple reactive neural con-
troller with one layer of feedforward connections between
sensors and motors.

Figure 61.10: The gantry robot used in the visual dis-
crimination task. The camera inside the top box points
down at the inclined mirror which can be turned by the
stepper motor beneath. The lower plastic disk is sus-
pended from a joystick to detect collisions with obsta-
cles.

61.5 Seeing the light

The experiments described so far rely mainly on rela-
tively simple distance sensors, such as active infrared
or sonar. Pioneering experiments on evolving visually
guided behaviors were performed at Sussex University
[49] on a specially designed gantry robot (Figure 61.10).
Discrete-time dynamical recurrent neural networks and
visual sampling morphologies were concurrently evolved:
the brain was developed in tandem with the visual sensor
[50, 57, 61]. The robot was designed to allow real-world
evolution by having “off-board” power and processing so
that the robot could be run for long periods while be-
ing monitored by automatic fitness evaluation functions.
A CCD camera points down towards a mirror angled at
45 degrees as shown in Figure 61.10. The mirror can
rotate around an axis perpendicular to the camera’s im-
age plane. The camera is suspended from the gantry
allowing motion in the X, Y and Z dimensions. This ef-
fectively provides an equivalent to a wheeled robot with
a forward facing camera when only the X and Y dimen-
sions of translation are used. The additional dimension
allows flying behaviors to be studied.

The apparatus was initially used in a manner simi-
lar to the real-world experiments on navigation in the
looping maze with the miniature mobile robot described
in Section 61.2. A population of strings encoding robot
controllers and visual sensing morphologies were stored
on a computer to be downloaded one at a time onto the
robot. The exact position and orientation of the camera
head can be accurately tracked and used in the fitness
evaluations. A number of visually guided navigation be-
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Robot x=61.58, y=73.78, θ=2.1, Time-step=135

A B

Figure 61.11: The shape discrimination task. A: the
position of the robot in the arena, showing the target
area in front of the triangle. B: The robot camera’s field
of view showing the visual patches selected by evolution
for sensory input.

haviors were successfully achieved including navigating
around obstacles, tracking moving targets and discrimi-
nating between different objects [57]. The evolutionary
process was incremental. The ability to distinguish be-
tween two different targets was evolved on top of the
single target finding behavior. The chromosome was of
dynamic length so the neurocontroller was structurally
further developed by evolution to achieve the new task
(neurons and connections added). In the experiment
illustrated in Figures 61.10 and 61.11, starting from a
random position and orientation, the robot had to move
to the triangle rather than the rectangle. This had to
be achieved irrespective of the relative positions of the
shapes and under very noisy lighting conditions. Recur-
rent neural network controllers were evolved in conjunc-
tion with visual sampling morphologies. Only genetically
specified patches from the camera image were used (by
being connected to input neurons according to the ge-
netic specification). The rest of the image was thrown
away. This resulted in extremely minimal systems using
only 2 or 3 pixels of visual information, yet still able to
perform the task reliably under highly variable lighting
conditions [50, 57].

This was another example of staged, or incremental,
evolution to obtain control systems capable of solving
problems that are either too complex or may profit from
an evolutionary methodology that discovers, preserves,
and builds upon sub-components of the solution. For an
evolutionary method that incorporate strategies to ex-
plicitly address this issue, interested readers may refer
to [110]. However, staged evolution remains a poorly ex-
plored area of Evolutionary Robotics that deserves fur-
ther study and a more principled approach [2] in order
to achieve increasingly complex robotic systems.

61.5.1 Co-evolution of active vision and

feature selection

Machine vision today can hardly compete with biologi-
cal vision despite the enormous power of computers. One
of the most remarkable –and often neglected– differences
between machine vision and biological vision is that com-
puters are often asked to process an entire image in one
shot and produce an immediate answer whereas animals
take time to explore the image over time searching for
features and dynamically integrating information over
time.

Active vision is the sequential and interactive process
of selecting and analyzing parts of a visual scene [1, 3, 7].
Feature selection instead is the development of sensitiv-
ity to relevant features in the visual scene to which the
system selectively responds [47, e.g.]. Each of these pro-
cesses has been investigated and adopted in machine vi-
sion. However, the combination of active vision and fea-
ture selection is still largely unexplored. An intriguing
hypothesis is that co-evolution of active vision and fea-
ture selection could greatly simplify the computational
complexity of vision-based behavior by facilitating each
other’s task.

This hypothesis was investigated in a series of exper-
iments [26] on co-evolution of active vision and feature
selection for behavioral systems equipped with a primi-
tive moving retina and a deliberately simple neural ar-
chitecture (Figure 61.12). The neural architecture was
composed of an artificial retina and of two sets of output
units. One set of output units determined the move-
ment and zooming factor of the retina, and the other set
of units determined the behavior of the system, such as
the response of a pattern recognition system, the con-
trol parameters of a robot, or the actions of a car driver.
The neural network was embedded in a behavioral sys-
tem and its input/output values were updated every 300
ms while its fitness was computed. Therefore, the synap-
tic weights of this network were responsible for both the
visual features on which the system based its behavior
and for the motor actions necessary to search for those
features.

In a first set of experiments, the neural network was
embedded in a simulated pan-tilt camera and asked it
to discriminate between triangles and squares of differ-
ent size that could appear at any location of a screen
(Figure 61.13, left), a perceptual task similar to that ex-
plored with the gantry robot described in Section 61.5.
The visual system was free to explore the image for 60
seconds while continuously telling whether the current
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B) visual scene

A) visual
neurons

C) proprioceptive
neurons

D) system
behavior

E) vision
behavior
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retina

Figure 61.12: The neural architecture of the active vision
system is composed of A) a grid of visual neurons with
non-overlapping receptive fields whose activation is given
by B) the grey level of the corresponding pixels in the
image; C) a set of proprioceptive neurons that provide
information about the movement of the vision system;
D) a set of output neurons that determine the behav-
ior of the system (pattern recognition, car driving, robot
navigation); E) a set of output neurons that determine
the behavior of the vision system; F) a set of evolvable
synaptic connections. The number of neurons in each
sub-system can vary according to the experimental set-
tings.

screen showed a triangle or a square. The fitness was
proportional to the amount of correct responses accu-
mulated over the 60 seconds for several screenshots con-
taining various instances of the two shapes. Evolved
systems were capable of correctly identifying the type
of shape with 100% accuracy after a few seconds despite
the fact that this recognition problem is not linearly sep-
arable and that the neural network does not have hidden
units, which in theory are necessary to solve non-linearly
separable tasks. Indeed, the same neural network pre-
sented with the same set of images and trained with su-
pervised learning, but without the possibility to actively
explore the scene, was not capable of solving the task.
The evolved active vision system developed sensitivity
to vertical edges, oriented edges and corners, and used
its movement to search for these features in order to tell
whether the shape was a triangle or a square. These fea-
tures, which are found also in the early visual system of
almost all animals, are invariant to size and location.

In a second set of experiments, the neural network was
embedded in a simulated car and was asked to drive over

Figure 61.13: Left: An evolved individual explores the
screen searching for the shape and recognizes it by the
presence of a vertical edge. Right: Search for the edge
of the road at the beginning of a drive over a mountain
road.

Figure 61.14: A mobile robot with pan-tilt camera is
asked to move within the walled arena in the office envi-
ronment.

several mountain circuits (Figure 61.13, right). The sim-
ulator was a modified version of a car race video game.
The neural network could move the retina across the
scene seen through the windscreen at the driver’s seat
and control the steering, acceleration, and braking of
the car. The fitness was inversely proportional to the
time taken to complete the circuits without exiting the
road. Evolved networks completed all circuits with time
laps competitive to those of well-trained students con-
trolling the car with a joystick. Evolved network started
by searching for the edge of the road and tracked its rel-
ative position with respect to the edge of the windscreen
in order to control steering and acceleration. This be-
havior was supported by the development of sensitivity
to oriented-edges.

In a third set of experiments, the neural network was
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embedded in a real mobile robot with a pan-tilt camera
that was asked to navigate in a square arena with low
walls located in an office (Figure 61.14). The fitness was
proportional to the amount of straight motion measured
over two minutes. Robots that hit the walls because
they watched people or other irrelevant features of the
office had lower fitness than robots that could perform
long straight paths and avoid walls of the arena. Evolved
robots tended to fixate the edge between the floor and
the walls of the arena, and turned away from the wall
when the size of its retinal projection became larger than
a threshold. This combination of sensitivity to oriented
edges and looming is found also in visual circuits of sev-
eral insects and birds.

In a further set of experiments [33], the visual pathway
of the neural network was augmented by an intermediate
set of neurons whose synaptic weights could be modified
by Hebbian learning [105] while the robot moved in the
environment. All the other synaptic weights were ge-
netically encoded and evolved. The results showed that
lifelong development of the receptive fields improved the
performance of evolved robots and allowed robust trans-
fer of evolved neural controllers from simulated to real
robots, because the receptive fields developed sensitivity
to features encountered in the environment where they
happen to be born (see also the section above on sim-
ulation and reality). Furthermore, the results showed
that development of visual receptive fields was signifi-
cantly and consistently affected by active vision as com-
pared to the development of receptive fields passively ex-
posed to the same set of sample images. In other words,
robots evolved with active vision developed sensitivity
to a smaller subset of features in the environment and
actively tracked those features to maintain a stable be-
havior.

61.6 Computational neuroethol-

ogy

Evolutionary Robotics is also used to investigate open
questions in neuroscience and cognitive science [48] be-
cause it offers the vantage point of a behavioral system
that interacts with its environment [21]. Although the re-
sults should be carefully considered when drawing analo-
gies with biological organisms, Evolutionary Robotics
can generate and test hypotheses that could be further
investigated with mainstream neuroscience methods.

For example, the active vision system with Hebbian
plasticity described in the previous section was used to

Figure 61.15: The original apparatus in [53], where the
gross movements of a kitten moving almost freely were
transmitted to a second kitten that was carried in a gon-
dola. Both kittens were allowed to move their head.
They received essentially the same visual stimulation be-
cause of the unvarying pattern on the walls and the cen-
ter post of the apparatus. Reproduced, with permission,
from [52].

answer a question raised by Held and Hein [53] in the
60’s. The authors devised the apparatus shown in Fig-
ure 61.15 where the free movements of a kitten (ac-
tive kitten) were transmitted to a second kitten that
was carried in a gondola (passive kitten). The sec-
ond kitten could move its head, but its feet did not
touch the ground. Consequently, the two kitten re-
ceived almost identical visual stimulation, but only one
of them received that stimulation as a result of body self-
movement. After a few days in that environment, only
the active kitten displayed normal behavior in several vi-
sually guided tasks. The authors suggested the hypothe-
sis that proprioceptive motor information resulting from
generation of actions was necessary for the development
of normal, visually-guided behavior.

The kitten experiments were replicated by cloning an
evolved robot controller and randomly initializing the
synaptic values of the adaptive visual pathways in both
clones. One cloned robot was then left free to move in
a square environment while the other cloned robot was
forced to move along imposed trajectories, but was free
to control its camera position, just like the passive kit-
ten [112]. The results indicated that the visual receptive
fields and behaviors of passive robots significantly differ
from those of active robots. Furthermore, passive robots
that were later left free to move were no longer capa-
ble of properly avoiding walls. A thorough analysis of
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neural activation correlated with behavior of the robot
and even transplantation of neurons across active and
passive robots revealed that the poor performance was
due to the fact that passive robots could not completely
select the visual features they were exposed to. Conse-
quently, passive robots developed sensitivity to features
that were not functional to their normal behavior and in-
terfered with other dominant features in the visual field.
Whether this explanation hold also for living animals
remains to be further investigated, but at least these ex-
periments indicated that motor feedback is not necessary
to explain the pattern of pathological behavior observed
in animals and robots.

61.6.1 Emergence of place cells

Figure 61.16: Bird’s-eye view of the arena with the light
tower over the recharging station and the Khepera robot.

Let us now consider the case of an animal exploring
an environment and periodically returning to its nest to
feed. It has been speculated that this type of situation
requires the formation of spatial representations of the
environment that allow the animal to find its way home
[51, e.g.]. Different neural models with various degrees
of complexity and biological detail have been proposed
that could provide such functionality [106, 18, e.g.].

Would a robot evolved under similar survival condi-
tions develop a spatial representation of the environment
and, if so, what type of representation would that be?
These questions were explored using the same Khepera
robot and evolutionary methodology described in Sec-

tion 61.2 for reactive navigation in the looping maze.
The environment was a square arena with a small patch
on the floor in a corner where the robot could instanta-
neously recharge its (simulated) battery (Figure 61.16).
The environment was located in a dark room with a small
light tower over the “recharging station.”

The sensory system of the robot was composed of eight
distance sensors, two ambient-light sensors (one on each
side), one floor-color sensor, and a sensor of battery
charge level. The battery lasted only 20 seconds and
had a linear discharge. The evolutionary neural network
included five fully-connected internal neurons between
sensory and motor neurons. The same fitness function
described in Section 61.2 for navigation in the looping
maze was used, except for the middle term which had
been used to encourage straight navigation in the loop-
ing maze. The fitness value was computed every 300
ms and accumulated over the life span of the individual.
Therefore, individuals who discovered where the charger
was could live longer and accumulate more fitness by ex-
ploring the environment (individuals were killed if they
survived longer than 60 seconds to limit the experimen-
tation time).
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Figure 61.17: Top: Average population fitness (continu-
ous line) and fitness of the best individual (dotted line).
Bottom: Life span of best individuals measured as num-
ber of sensorimotor cycles, or actions. Individuals start
with a full battery which lasts 50 actions (20 seconds),
if not recharged. The maximum life span is 150 actions.

The same physical robot evolved for 10 days and nights
as both the fitness and life span of individuals continued
to increase (Figure 61.17). After approximately 200 gen-
erations, the robot was capable of navigating around the
environment, covering long trajectories while avoiding
both walls and the recharging area. When the battery



CHAPTER 61. EVOLUTIONARY ROBOTICS 13

was almost discharged it initiated a straight navigation
towards the recharging area and exited immediately after
battery recharge to resume navigation. Best evolved in-
dividuals always entered the recharging area one or two
seconds before full discharge of the battery. That im-
plies that robots must somehow calibrate the timing and
trajectory of their homing behavior depending on where
they happened to be in the environment.

Facing light Facing opposite corner

low 
battery

full 
battery

Figure 61.18: Activation levels (brightness proportional
to activation) of an internal neuron plotted over the en-
vironment while the robot was positioned at various lo-
cations in each of the four conditions (facing recharging
area or not, discharged battery or not). The recharging
area is located at the top left corner of each map.

In order to understand how that behavior could possi-
bly be generated, a set of neuroethological measures were
performed using a laser positioning device that provided
exact position and orientation of the robot every 300 ms.
By correlating the robot position and behavior with the
activation of the internal neurons in real time while the
evolved individual freely moved in the environment, it
was possible to see that some neurons specialized for re-
active behaviors, such as obstacle avoidance, forward mo-
tion, and battery monitoring. Other neurons instead dis-
played more complex activation patterns. One of them
revealed a pattern of activation levels that depended on
whether the robot was oriented facing the light tower or
facing the opposite direction (Figure 61.18). In the for-

mer case, the activation pattern reflected zones of the
environment and paths typically followed by the robot
during exploration and homing. For example, the robot
trajectory towards the recharging area never crossed the
two “gate walls” visible in the activation maps around
the recharging station. When the robot faced the op-
posite direction, the same neuron displayed a gradient
field orthogonally aligned with the recharging area. This
gradient provides an indication of the distance from the
recharging area. Interestingly, this pattern of activity is
not significantly affected by the charge level of the bat-
tery.

The functioning of this neuron reminds of the clas-
sic findings on the hippocampus of the rat brain where
some neurons (also known as “place cells”) selectively
fire when the rat is in specific areas of the environment
[88]. Also, the orientation-specific pattern of neural ac-
tivation measured on the evolved robot reminds of the
so-called “head-direction neurons” in the rat hippocam-
pus, which are positioned nearby place cells, whose fir-
ing patterns depend on the rat heading direction with
respect to an environmental landmark [113]. Although
the analogy between brains of evolved robots and of bio-
logical organisms should not be taken too literally, these
results indicate that the two organisms converge towards
a functionally similar neural strategy, which may be more
efficient to address this type of situation than a strategy
that does not rely on representations (but only on reac-
tive strategies such as random motion, light following,
dead-reckoning).

61.6.2 Spiking neurons

The great majority of biological neurons communicate
using self-propagating electrical pulses called spikes, but
from an information-theoretic perspective it is not yet
clear how information is encoded in the spike train. Con-
nectionist models [104], by far the most widespread, as-
sume that what matters is the firing rate of a neuron,
that is, the average quantity of spikes emitted by the
neuron within a relatively long time window (for exam-
ple, over 100 ms). Alternatively, what matters is the av-
erage number of spikes of a small population of neurons
at a give point. In these models the real-value output
of an artificial neuron represents the firing rate, possibly
normalized relatively to the maximum attainable value.
Pulsed models [72], instead, are based on assumption
that the firing time, that is, the precise time of emis-
sion of a single spike, may convey important information
[100]. Spiking neuron models have slightly more compli-
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cated dynamics of synaptic and membrane integration.
Depending on one’s theory of what really matters, con-
nectionist or spiking models are used.

However, designing circuits of spiking neurons that
display a desired functionality is still a challenging task.
The most successful results in the field of robotics ob-
tained so far focused on the first stages of sensory pro-
cessing and on relatively simple motor control [59, 67].
Despite these implementations, there are not yet meth-
ods for developing complex spiking circuits that could
display minimally-cognitive functions or learn behavioral
abilities through autonomous interaction with a physical
environment.

Artificial evolution represents a promising methodol-
ogy to generate networks of spiking circuits with desired
functionalities expressed as behavioral criteria (fitness
function). Evolved networks could then be examined to
detect what communication modality is used and how
that correlates with observed behavior of the robot.

Figure 61.19: A network of spiking neurons is evolved
to drive the vision-based robot in the arena. The light
below the rotating contacts allows continuous evolution
also overnight.

Floreano and colleagues [27] evolved a fully connected
network of spiking neurons for driving a vision-based
robot in an arena painted with black stripes of vari-
able size against a white background (Figure 61.19). The
Khepera robot used in these experiments was equipped
with a vision turret composed of one linear array of
grayscale photoreceptors spanning a visual field of 36
degrees. The output values of a bank of local contrast
detection filters were converted in spikes (the strongest

the contrast, the larger the number of spikes per second)
sent to ten fully connected spiking neurons implemented
according to the spike response model [42]. The spike
series of a subset of these neurons was translated into
motor commands (more spikes per seconds corresponded
to faster rotation of the wheel). The fitness function
was the amount of forward translation of the robot mea-
sured over 2 minutes. Consequently robots that turned
in place or hit the walls had comparatively lower fitness
than robots that could move straight and turn only to
avoid walls. The genome of these robots was a bit string
that encoded only the sign of the neurons and the pres-
ence of synaptic connections. Existing connections were
set to 1 and could not change during the lifetime of the
robot.

Evolution reliably discovered very robust spiking con-
trollers in approximately 20 generations (approx. 30
hours of evolution on the real robot). Evolved robots
could avoid not only the walls, but any object positioned
in front of them. Detailed analysis of the best evolved
controllers revealed that neurons did not exploit time dif-
ferences between spikes, which one would have expected
if optic flow was used to detect distance from walls. In-
stead, they simply used the number of incoming spikes
(firing rate) as an indication of when to turn. When the
robot perceived a lot of contrast it would go straight,
but when the contrast decreased below a certain thresh-
old (indicating that it approached an object), it started
to turn away. This extremely efficient and simple result
seems to be in contrast with theories of optic flow de-
tection in insects and may be worth considering it as an
alternative hypothesis for vision-based behavior.

Spiking neural networks turned out to be more evolv-
able than connectionist models (at least for this task).
One possible explanation is that spiking neurons have
sub-threshold dynamics that, to some extent, can be af-
fected by mutations without immediately affecting the
output of the network.

The robust results and compact genetic encoding en-
couraged the authors to use an even simpler model of
spiking neuron so that the entire neural network could be
mapped in less than 50 bytes of memory. The evolution-
ary algorithm was also reduced to a few lines of code and
the entire system was implemented within a PIC micro-
controller without need of any external computer for data
storage. The system was used for a sugar-cube robot
(Figure 61.20) that autonomously and reliably developed
the ability to navigate around a maze in less than an hour
[28]. Interestingly, evolved spiking controllers developed
a pattern of connections where spiking neurons received
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Figure 61.20: The Alice sugar-cube robot equipped with
the evolutionary spiking neural network implemented
within its PIC microcontroller.

connections from a small patch of neighboring sensors,
but not from other sensors, and were connected only to
neighboring spiking neurons. This pattern of connectiv-
ity is observed also in biological systems and encourages
specialization of neurons to sensory features.

61.6.3 GasNets

This section describes another style of artificial neural
network strongly inspired by those parts of contemporary
neuroscience that emphasize the complex electrochemi-
cal nature of real nervous systems. In particular, they
make use of an analogue of volume signaling, whereby
neurotransmitters freely diffuse into a relatively large
volume around a nerve cell, potentially affecting many
other neurons [39, 126]. This exotic form of neural sig-
naling does not sit easily with classical pictures of brain
mechanisms and is forcing a radical re-think of exist-
ing theory [22, 41, 93, 55]. The class of artificial neural
networks developed to explore artificial volume signal-
ing are known as GasNets [58]. These are essentially
standard neural networks augmented by a chemical sig-
naling system comprising a diffusing virtual gas which
can modulate the response of other neurons. A number
of GasNet variants, inspired by different aspects of real
nervous systems, have been explored in an evolutionary
robotics context as artificial nervous systems for mobile
autonomous robots. They have been shown to be sig-
nificantly more evolvable, in terms of speed to a good
solution, than other forms of neural networks for a vari-
ety of robot tasks and behaviors [58, 79, 108, 95]. They
are being investigated as potentially useful engineering
tools and as a way of gaining helpful insights into bio-
logical systems [93, 94, 96].

By analogy with biological neuronal networks, Gas-

Nets incorporate two distinct signaling mechanisms, one
‘electrical’ and one ‘chemical’. The underlying ‘electri-
cal’ network is a discrete time step, recurrent neural net-
work with a variable number of nodes. These nodes are
connected by either excitatory or inhibitory links.

Neuron 1
Neuron 2

Neuron 4

Neuron 3

Neuron 5

Neuron 6

A GasNet. Neuron 3 is emitting gas, and modulating
neuron 2 despite there being no synaptic connection.

Figure 61.21: A basic GasNet showing positive (solid)
and negative (dashed) “electrical” connections and a dif-
fusing virtual gas creating a “chemical” gradient.

In addition to this underlying network in which pos-
itive and negative “signals” flow between units, an
abstract process loosely analogous to the diffusion of
gaseous modulators is at play. Some units can emit vir-
tual “gases” which diffuse and are capable of modulat-
ing the behavior of other units by changing the profile of
their output functions. The networks occupy a 2D space;
the diffusion processes mean that the relative position-
ing of nodes is crucial to the functioning of the network.
Spatially, the gas concentration varies as an inverse ex-
ponential of the distance from the emitting node with a
spread governed by a parameter, r, with the concentra-
tion set to zero for all distances greater than r. The total
concentration of gas at a node is determined by summing
the contributions from all other emitting nodes.

For mathematical convenience, in the original GasNet
there are two “gases”, one whose modulatory effect is
to increase the transfer function gain parameter and one
whose effect is to decrease it. Thus the gas does not alter
the electrical activity in the network directly but rather
acts by continuously changing the mapping between in-
put and output for individual nodes, either directly of by
stimulating the production of further virtual gas. The
general form of the diffusion is based on the properties
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of a (real) single source neuron as modeled in detail by
Philippides et al. [93, 94]. The modulation chosen is
motivated by what is known of NO modulatory effects
at synapses [8]. For full details see [58].

Various extensions of the basic GasNet have been pro-
duced. Two in particular are strongly inspired by con-
temporary neuroscience. The plexus model is directly
inspired by a type of signaling seen in the mammalian
cerebral cortex in which the NO signal is generated by
the combined action of many fine NO producing fibers,
giving a targeted ‘cloud’ which is distant from the neu-
rons from which the fiber plexus emanates [96]. In the
plexus GasNet, which models this form of signaling at
an abstract level, the spatial distribution of gas concen-
tration has been modified to be uniform over the area
of affect. The center of this gas diffusion cloud is under
genetic control and can be distant from the controlling
node (which, by analogy, is the source of the ‘plexus’)
[95]. All other details of the models are identical to the
original GasNet model, as described earlier. The receptor
GasNet incorporates an aspect of biological neuronal net-
works that has no analog in the vast majority of ANNs:
the role of receptor molecules. Although neuroscience is
a long way from a full understanding of receptor mecha-
nisms, a number of powerful systems level ideas we can
abstracted.

Details of the receptor variant are similar to the basic
GasNet except there is now only one virtual gas and each
node in the network can have one of three discrete quan-
tities (zero, medium, maximum) of a number of possible
receptors. The modulation the diffusing neurotransmit-
ter affects at a neuron depends on which receptors are
present. The strength of a modulation at node is pro-
portional to the product of the gas concentration at the
node and the relevant receptor quantity. In the original
GasNet, any node that was in the path of a diffusing
transmitter would be modulated in a fixed way. The re-
ceptor model allows site specific modulations, including
no modulation (no receptors) and multiple modulations
at a single site (see [95] for further details).

Although most of the GasNet variants described in
this section have been successfully used in a number of
robotic tasks, their evolvability and other properties were
thoroughly compared on a version of the (gantry) robot
visual discrimination task described in Section 61.5. All
aspects of the networks were under genetic control: the
number of nodes, the connectivity and, in the case of
the GasNets, all parameters governing volume signaling
(including the position of the nodes and whether or not
they were ’virtual gas’ emitters). The visual sampling

morphology was also under evolutionary control. The
original basic GasNet was found to be significantly more
evolvable than a variety of other styles of connection-
ist neural networks as well as a GasNet with the volume
signaling disabled. Successful GasNet controllers for this
task tended to be rather minimal, in terms of numbers of
nodes and connections, while possessing complex dynam-
ics [58]. Later experiments comparing the basic GasNet
with the plexus and receptor variants showed the latter
two to be considerably more evolvable than the former,
with the receptor GasNet being particularly successful
[95].

The GasNet experiments mentioned above demon-
strated that the intricate network dynamics made possi-
ble by the artificial volume signaling mechanisms can be
readily harnessed to generate adaptive behaviors in au-
tonomous agents. They also throw up such question as
why GasNets are more evolvable than many other forms
of ANN and why there is a difference in evolvability be-
tween GasNet variants. Investigations of this question
indicate that the interaction between the two GasNet
signaling mechanisms, ‘electrical’ and ‘chemical’, plays
a crucial role [95, 108]. Evolutionary theory led to the
hypothesis that systems involving distinct yet coupled
processes are highly evolvable when the coupling is flex-
ible (i.e., it is relatively easy for evolution to change the
degree of coupling in the system) with a bias towards
a loose coupling; this allows the possibility of “tuning”
one process against the other without destructive inter-
ference [95, 108, 109]. This may also be the case for sub-
threshold dynamics of spiking neural networks, which, al-
though not yet compared to GasNets, were shown to be
more evolvable than connectionist networks. Measure-
ments of the degree of coupling in the GasNets variants
versus speed of evolution supported this view [95]; the
receptor GasNet, for which the evolutionary search pro-
cess has the most direct control over the degree of cou-
pling between the signaling processes, and which has a
bias towards a loose coupling, was by far the most evolv-
able [95]. These and ongoing investigations indicate that
explicitly dealing with the electrochemical nature of ner-
vous systems is likely to be an increasingly fruitful area
of research, both for evolutionary robotics and for neu-
roscience, that will likely force us to broaden our notions
of what behavior generating mechanisms might look like.
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61.7 Evolution and learning

Evolution and learning (or phylogenetic and ontogenetic
adaptation) are two forms of biological adaptation that
differ in space and time. Evolution is a process of selec-
tive reproduction and substitution based on the existence
of a population of individuals displaying variability at the
genetic level. Learning, instead, is a set of modifications
taking place within each single individual during its own
life time. Evolution and learning operate on different
time scales. Evolution is a form of adaptation capable
of capturing relatively slow environmental changes that
might encompass several generations (e.g., the percep-
tual characteristics of food sources for a given species).
Learning, instead, allows an individual to adapt to en-
vironmental modifications that are unpredictable at the
generational level. Learning might include a variety of
mechanisms that produce adaptive changes in an indi-
vidual during its lifetime, such as physical development,
neural maturation, variation of the connectivity between
neurons, and synaptic plasticity. Finally, whereas evolu-
tion operates on the genotype, learning affects only the
phenotype and phenotypic modifications cannot directly
modify the genotype.

Researchers have combined evolutionary techniques
and learning techniques (supervised or unsupervised
learning algorithm such us reinforcement learning or
Hebbian learning, for a review see [85]). These stud-
ies have been conducted with two different purposes: (a)
identifying the potential advantage of combining these
two methods from the point of view and of developing
robust and effective robots; (b) understanding the role of
the interaction between learning and evolution in nature.

Within an evolutionary perspective, learning has sev-
eral different adaptive functions. First, it might allows
individuals to adapt to changes that occur too quickly
to be tracked by evolution [87]. Secondly, learning might
allows robots to use information extracted during their
interaction with environment to develop adaptive charac-
ters ontogenetically without necessarily discovering these
characters through genetic variations and without encod-
ing these characters in their genome. To understand the
importance of this aspect, we should consider that evo-
lutionary adaptation is based on an explicit but concise
indication of how well an individual robot coped with
its environment — the fitness value of a robot. Ontoge-
netic adaptation, on the contrary, is based on extremely
rich information — the state of the sensors while the
robot interacts with its environment. This huge amount
of information encode very indirectly how well an indi-

vidual is doing in different phases of its lifetime or how it
should modify its behavior to increase its fitness. How-
ever, evolving robots that have acquired a predisposition
to exploit this information to produce adaptive changes
during their lifetime might be able to develop adaptive
characteristics on the fly thus leading to the possibil-
ity to produce “complex” phenotypes on the basis of
parsimonious genotype. Finally, learning can help and
guide evolution. Although physical changes of the phe-
notype, such as strengthening of synapses during learn-
ing, cannot be written back into the genotype, Baldwin
[6] and Waddington [124] suggested that learning might
indeed affect the evolutionary course in subtle but ef-
fective ways. Baldwin’s argument was that learning ac-
celerates evolution because sub-optimal individuals can
reproduce by acquiring during life necessary features for
survival. However, variation occurring during successive
generation might lead to the discovery of genetic traits
that lead to the establishment of the same characteristics
that were previously acquired thorough lifetime learning.
This latter aspect of Baldwin’s effect, namely indirect
genetic assimilation of learned traits, has been later sup-
ported by scientific evidence and defined by Waddington
[124] as a canalization effect.

Learning however, also has costs such as (1) a delay in
the ability to acquire fitness (due to the need to develop
fit behavior ontogenetically), and (2) an increase unre-
liability due to the fact that the possibility to develop
certain abilities ontogenetically is subjected to partially
unpredictable characteristics of the robot/environment
interaction [76]. In the next two sub-section we describe
two experiments that show some of the potential advan-
tages of combining evolution and learning.

61.7.1 Learning to adapt to fast environ-

mental variations

Consider the case of a Khepera robot that should ex-
plore an arena surrounded by black or white walls to
reach a target placed in a randomly selected location [87].
Evolving robots are provided with eight sensory neurons
that encode the state of the four corresponding infrared
sensors and two motor neurons that control the desired
speed of the two wheels. Since the color of the walls
change every generation and since the color significantly
affects the intensity of the response of the infrared sen-
sors, evolving robots should develop an ability to “infer”
whether they are currently located in an environment
with white or black walls and learn to modify their be-
havior during lifetime. That is, robots should avoid walls
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only when the infrared sensors are almost fully activated
in the case of arenas with white walls, while they should
avoid walls even when the infrared sensors are slightly
activated in the case of arenas with black walls.

Figure 61.22: Self-teaching network. The output of the
two teaching neurons is used as teaching value of two mo-
tor neurons. The weights that connect the sensory neu-
rons to the teaching neurons do not vary during robots’
lifetime while the weights that connect the sensory neu-
rons to the motor neurons are modified with an error-
correction algorithm.

Robots were provided with a neural controller (Fig-
ure 61.22) including four sensory neurons that encoded
the state of four corresponding infrared sensors; two
motors neurons that encoded the desired speed of the
two wheels; and two teaching neurons that encoded the
teaching values used to modify the connection weights
from the sensory neurons to the motor neurons during
robots’ lifetime. This special architecture allows evolv-
ing robots to transform the sensory states experienced
by the robots during their lifetime into teaching signals
that might potentially lead to adaptive variations during
lifetime. Analysis of evolved robots revealed that they
developed two different behaviors that are adapted to the
particular arena where they happen to be “born” (sur-
rounded by white or black walls). Evolving robots did
not inherit an ability to behave effectively, but rather a
predisposition to learn to behave. This predisposition to
learn involves several aspects such as a tendency to expe-
rience useful learning experiences, a tendency to acquire
useful adaptive characters through learning, and a ten-
dency to channel variations toward different directions
in different environmental conditions [87].

Figure 61.23: Two methods for genetically encoding a
synaptic connection. Genetically determined synapses
cannot change during lifetime of the robot. Adaptive
synapses instead are randomly initialized and can change
during lifetime of the robot according to the learning
rules and rates specified in the genome.

61.7.2 Evolution of learning

In the previous example, the evolutionary neural net-
work learned using a standard learning rule that was
applied to all synaptic connections. Floreano and col-
laborators [31] explored the possibility of genetically en-
coding and evolving the learning rules associated to the
different synaptic connections of a neural network em-
bedded in a real robot. The main motivation of that line
of work was to evolve robots capable of adapting to a par-
tially unknown environment, rather than robots adapted
to the environment(s) seen during evolution. In order
to prevent evolutionary tuning of the neural network to
the specificities of the evolutionary environment (which
would limit transfer to different environments or trans-
fer from simulation to reality), the synaptic weight val-
ues were not genetically encoded. Instead, each synaptic
connection in the network was described by three genes
that defined its sign, its learning rule, and its learn-
ing rate (Figure 61.23). Every time a genome was de-
coded into a neural network and downloaded onto the
robot, the synaptic strengths were initialized to small
random values and could change according to the genet-
ically specified rules and rates while the robot interacted
with the environment. Variations of this methodology
included a more compact genetic encoding where the
learning properties were associated to a neuron, instead
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Figure 61.24: Left: A mobile robot Khepera equipped
with a vision module can gain fitness points by staying
on the gray area only when the light is on. The light
is normally off, but it can be switched on if the robot
passes over the black area positioned on the other side of
the arena. The robot can detect ambient light and wall
color, but not the color of the floor. Right: Behavior of
an individual evolved in simulation with genetic encoding
of learning rules.

of a synapse. All synapses afferent to a neuron used its
genetically specified rules and rates. Genes could encode
four types of Hebbian learning that were modeled upon
neurophysiological data and were complementary to each
other [34].

Experimental results in a non-trivial, multi-task en-
vironment (Figure 61.24) indicated that this methodol-
ogy has a number of significant advantages with respect
to the evolution of synaptic strengths without learning
[120]. Robots evolved faster and obtained better fitness
values. Furthermore, evolved behaviors were qualita-
tively different, notably in that they did not exploit min-
imal solutions tuned to the environment (such as turning
only on one side, or turning in circles tuned to the di-
mensions of the evolutionary arena). Most important,
these robots displayed remarkable adaptive properties
after evolution. Best evolved individuals 1) transferred
perfectly from simulated to physical robots, 2) accom-
plished the task when the light and reflection properties
of the environment were modified, 3) accomplished the
task when key landmarks and target areas of the environ-
ment were displaced, and 4) transferred well across mor-
phologically different robotic platforms. In other words,
these robots were selected for their ability to solve a par-
tially unknown problem by adapting on the fly, rather
than for being a solution to the problem seen during
evolution.

In further experiments where the genetic code for each
synapse of the network included one gene whose value
caused its remaining genes to be interpreted as connec-
tion strengths or learning rules and rates, 80% of the
synapses “made the choice” of using learning, reinforcing

the fact that this genetic strategy has a comparatively
stronger adaptive power [34]. This methodology could
also be used to evolve the morphology of neural con-
trollers were synapses are created at runtime and there-
fore their strengths cannot be genetically specified [35].
Recently, the adaptive properties of this type of adap-
tive genetic encoding were confirmed also in the context
of evolutionary spiking neurons for robot control [24].

61.8 Competition and coopera-

tion

In the previous sections, we have limited our analysis
to individual behaviors, i.e., to the evolution of robots
placed in an environment that does not include other
robots. The evolutionary method, however, can also be
applied to develop collective behaviors in which evolv-
ing robots are placed in environment that also contain
other individual robots and are selected for the ability to
display competitive or cooperative behavior.

In this section we briefly review two examples involv-
ing competitive and cooperative behaviors. As we see,
the evolution of collective behavior is particularly inter-
esting from the point of view of synthesizing progres-
sively more complex behaviors and from the point of view
of developing solutions that are robust with respect to
environmental variations.

61.8.1 Co-evolving predator and prey

robots

Competitive co-evolution, for example the co-evolution
of two populations of predator and prey robots that are
evolved for the ability to catch prey and to escape preda-
tors respectively, has two characteristics that are partic-
ularly interesting from an evolutionary robotics perspec-
tive. The first aspect is that the competition between
populations with different interests might spontaneously
lead to a sort of incremental evolutionary process where
evolving individuals are faced with progressively more
complex challenges (although this is not necessarily the
case). Indeed, in initial generations the task of the two
populations is relatively simple because opponents have
simple and poorly developed abilities on average. After
few generation, however, the abilities of the two popula-
tions increase and, consequently, the challenges for each
population become more difficult. The second aspect
consists in the fact that the environment varies across
generations because it includes other coevolving individ-
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uals. This implies that coevolving individuals should be
able to adapt to ever changing environments and to de-
velop behaviors that are robust with respect to environ-
mental variations.

Figure 61.25: Experimental setup. The predator and
prey robot (from left to right) are placed in an arena
surrounded by walls and are allowed to interact for sev-
eral trials starting at different randomly generated ori-
entations. Predators are selected on the basis of the per-
centage of trials in which they are able to catch (i.e., to
touch) the prey, and prey on the basis of the percentage
of trials in which they were able to escape (i.e., to not
be touched by) predators. Predator has a vision system,
whereas the prey has only short-range distance sensors,
but can go twice as fast as the predator. Collision be-
tween the robots is detected by a conductive belt at the
base of the robots.

The potential advantages of competitive co-evolution
for evolutionary robotics have been demonstrated by a
set of experiments conducted by Floreano and Nolfi [32,
85] where two populations of robots were evolved for the
ability to catch prey and escape predators, respectively
(Figure 61.25).

The results indicated that both predator and prey
robots tended to vary their behavior throughout gener-
ations without converging on a stable strategy. The be-
havior displayed by individuals at each generation tended
to be tightly adapted to the counter-strategy exhibited
by the opponent of the same generation. This evolu-
tionary dynamic however does not really lead to long-
lasting progress because, after an initial evolutionary

phase, the co-evolutionary process led to a limit cycle
dynamic where the same small set of behavioral strate-
gies recycled over and over again along generations (see
[85]). This limit cycle dynamic can be explained by con-
sidering that prey robots tended to vary their behavior so
to disorient predators as soon as predator become effec-
tive against the current behavioral strategies exhibited
by prey robots.

However, in experiments [32] where robots were al-
lowed to change their behavior on the fly on the basis
of unsupervised Hebbian learning rules showed that the
evolutionary phase where coevolving robots were able
to produce real progress was significantly longer, and
evolved predators displayed an ability to effectively cope
with prey exhibiting different behavioral strategies by
adapting their behavior on the fly to the prey’s behavior.
Prey instead tended to display behavior that changed in
unpredictable ways.

Further experiments showed that competitive co-
evolution can solve problem that the evolution of a sin-
gle population cannot. Nolfi and Floreano [85] demon-
strated that the attempt to evolve predators robot for
the ability to catch a fixed pre-evolved prey produced
lower performance with respect to control experiments
where predators and prey were co-evolved at the same
time.

61.8.2 Evolving cooperative behavior

Cooperative behavior refers to the situation where a
group of robots sharing the same environment coordi-
nate and help each other to solve a problem that cannot
be solved by a single robot [19]. Although the synthe-
sis of cooperative robots through evolutionary methods
is a rather recent enterprise, obtained results are very
promising. When it comes to evolving a population of
robots for cooperative behaviors, it is necessary to decide
the genetic relation among members of a team and the
method for selective reproduction. Robots in a team can
be genetically homogeneous (clones) or heterogeneous
(they differ from each other). Furthermore, the fitness
can be computed at the level of the team (in which case,
the entire team of robots is reproduced) or at the level
of the individual (in which case, only individuals of the
team are selected for reproduction). The combination
two variables, genetic relatedness and level of selection,
generate at least four different conditions, with a variety
of mixed conditions in between. It has been experimen-
tally shown that the choice of homogeneous teams with
team-level selection is the most efficient for generating
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robots that display altruistic cooperation where individ-
ual robots are willing to pay a cost for the benefit of the
entire team [90, 125].

Recent research showed that teams of evolved robots
can: (a) develop robust and effective behavior [4, 5, 98],
(b) display an ability to differentiate their behavior so
to better cooperate [4, 98]; (c) develop communication
capabilities and a shared communication system [97, 73].

Here we briefly review one of these experiments where
Swarm-bots [82], i.e., teams of autonomous robots ca-
pable of dynamically assembling by physically connect-
ing together, were evolved for displaying coordinated
motion, navigation on rough terrains, collective nego-
tiation of obstacles and holes, and dynamical shape re-
organization in order to go through narrow passages.

Each s-bot consisted of a main platform (chassis) and
turret that could actively rotate with respect to each
other (see Figure 61.26). The chassis included tracks
with teethed wheels for navigation on both rough and
flat terrain, and four infrared sensors pointing to the
ground. The turret included a gripper, a loudspeaker,
16 infrared sensors, three microphones and a traction
sensor placed between the turret and the chassis to de-
tect the direction and the intensity of the traction force
that the turret exerts on the chassis. Each s-bot was pro-
vided with a simple neural controller where sensory neu-
rons were directly connected to the motors neurons that
controlled the desired speed of the tracks and whether
or not a sound signal was produced. The team of s-bots
forming a swarm-bot was homogeneous and evolved with
team-level selection.

Figure 61.26: An s-bot and a simulated swarm-bot con-
sisting of four s-bots assembled in chain formation.

Swarm-bots of four s-bots assembled in chain forma-
tion (Figure 61.26) were evolved for the ability to move
coordinately on a flat terrain. Evolved neural controllers
were also capable of producing coordinated movements
when the swarm-bot was augmented by additional s-bots

and re-organized in different shapes. Swarm-bots also
dynamically rearranged their shape so to effectively ne-
gotiate narrow passages and were capable of moving on
rough terrains by negotiating situations that could not be
handled by a single robot. Such robots also collectively
avoided obstacles and coordinated to transport heavy
objects [4, 5, 117].

61.9 Evolutionary Hardware

The work described so far was mainly conducted on
robots that did not change shape during evolution, with
the exception of self-assembling robots where several in-
dividuals can connect to become a super-organism of
variable shape. In recent years, technology advance-
ments allowed researchers to explore evolution of elec-
tronic circuits and morphologies. In this section, we
briefly summarize some foundational work in this direc-
tion.

61.9.1 Evolvable hardware robot con-

trollers

In most of the work discussed so far some form of genet-
ically specified neural network, implemented in software,
has been at the center of the robot control system. Work
on a related approach of evolving control systems directly
onto hardware dates back to Thompson’s work in the mid
1990s [114]. In contrast to hardware controllers that are
designed or programmed to follow a well defined sequence
of instructions, evolved hardware controllers are directly
configured by evolution and then allowed to behave in
real time according to semiconductor physics. By remov-
ing standard electronics design constraints, the physics
can be exploited to produce highly non-standard and of-
ten very efficient and minimal systems [116].

Thompson [114] used artificial evolution to design
an on-board hardware controller for a two-wheeled au-
tonomous mobile robot engaged in simple wall-avoidance
behavior in an empty arena. Starting from a random
orientation, and position near the wall, the robot had
to move to the center of the arena and stay there using
limited sensory input (Figure 61.27). The D.C. motors
driving the wheels were not allowed to run in reverse
and the robot’s only sensors were a pair of time-of-flight
sonars rigidly mounted on the robot, pointing left and
right.

Thompson’s approach made use of a so-called DSM
(Dynamic State Machine) – a kind of generalized ROM
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Figure 61.27: Wall avoidance behavior of a robot with an
evolved hardware controller in virtual reality and (bot-
tom right) the real world.

implementation of a finite-state machine where the usual
constraint of strict synchronisation of input signals and
state transitions are relaxed (in fact put under evolution-
ary control). The system had access to a global clock
whose frequency was also under genetic control. Thus
evolution determined whether each signal was synchro-
nised to the clock or allowed to flow asynchronously. This
allowed the evolving DSM to be tightly coupled to the
dynamics of interaction between the robot and environ-
ment and for evolution to explore a wide range of systems
dynamics. The process took place within the robot in a
kind of “virtual reality” in the sense that the real evolv-
ing hardware controlled the real motors, but the wheels
were just spinning in the air. The movements that the
robot would have actually performed if the wheels had
been actually supporting it were then simulated and the
sonar echo signals that the robot was expected to re-
ceive were supplied in real time to the hardware DSM.
Excellent performances were attained after 35 genera-
tions, with good transfer from the virtual environment
to the real world (Figure 61.27).

Shortly after this research was performed, particu-
lar types of Field Programmable Gate Arrays (FPGAs)
which were appropriate for evolutionary applications
became available. FPGAs are reconfigurable systems
allowing the construction of circuits built from basic
logic elements. Thompson exploited their properties to
demonstrate evolution directly in the chip. By again
relaxing standard constraints, such as synchronising all
elements with a central clock, he was able to develop very

novel forms of functional circuits, including a controller
for a Khepera robot using infrared sensors to avoid ob-
stacle [115, 116].

Following Thompson’s pioneering work, Keymeulen
evolved a robot control system using a Boolean function
approach implemented on gate-level evolvable hardware
[64]. This system acted as a navigation system for a mo-
bile robot capable of locating and reaching a coloured
ball while avoiding obstacles. The robot was equipped
with infrared sensors and an vision system giving the di-
rection and distance to the target. A programmable logic
device (PLD) was used to implement a Boolean function
in its disjunctive form. This work demonstrated that
such gate level evolvable hardware was able to take ad-
vantage of the correlations in the input states and to
exhibit useful generalization abilities, thus allowing the
evolution of robust behavior in simulation followed by a
good transfer into the real world.

In a rather different approach, Ritter et al. used an
FPGA implementation of an on-board evolutionary algo-
rithm to develop a controller for a hexapod robot [101].
Floreano and collaborators devised a multi-cellular re-
configurable circuit capable of evolution, self-repair, and
adaptation [102] and used it as a substrate for evolving
spiking controllers of a wheeled robot [103]. Although
evolved hardware controllers are not widely used in evo-
lutionary robotics, they still hold out the promise of some
very useful properties, such as robustness to faults, which
make them interesting for extreme condition applications
such as space robotics.

61.9.2 Evolving bodies

In the work described so far there has been an over-
whelming tendency to evolve control system for pre-
existing robots: the brain is constrained to fit a par-
ticular body and set of sensors. Of course in nature the
nervous system evolved simultaneously with the rest of
the organism. As a result, the nervous system is highly
integrated with the sensory apparatus and the rest of
the body: the whole operates in a harmonious and bal-
anced way - there are no distinct boundaries between
control system, sensors and body. From the start, work
at Sussex University incorporated the evolution of sensor
properties, including positions, but other aspects of the
physical robot were fixed [20]. Although the limitations
of not being able to genetically control body morphology
were acknowledged at this stage, there were severe tech-
nical difficulties in overcoming them, so this issue was
somewhat sidelined.



CHAPTER 61. EVOLUTIONARY ROBOTICS 23

Karl Sims started to unlock the possibilities in his
highly imaginative work on evolving simulated 3D “crea-
tures” in an environment with realistic physics [107]. In
this work, the creatures co-evolved under a competitive
scenario in which they were required to try and gain
control of a resource (a cube) placed in the center of
an arena. Both the morphology of the creatures and
the neural system controlling their actuators were under
evolutionary control. Their bodies were built from rigid
3D primitives with the overall morphology being deter-
mined by a developmental process encoded as a directed
graph. Various kinds of genetically determined joints
were allowed between body parts. A variety of sensors
could be specified for a specific body part. The simu-
lated world included realistic modeling of gravity, fric-
tions, collisions and other dynamics such that behaviors
were restricted to be physically plausible. Many differ-
ent styles of locomotion evolved along with a variety of
interesting, and often entertaining, strategies to capture
the resource. These included pushing the opponent away
and covering up the cube.

With the later developments of sophisticated physics
engines for modeling a variety of physical bodies, Sims’
work inspired a rash of evolved virtual creatures, includ-
ing realistic humanoid figures capable of a variety of be-
haviors [99].

In what might be regarded as a step towards evolving
robot bodies, Funes and Pollack explored the use of evo-
lutionary algorithms in the design of physical structures
taking account of stresses and torques [37]. They ex-
perimented with evolving structures assembled from ele-
mentary components (Lego bricks). Evolution took place
in simulation and the designs were verified in the real
world. Stable 3D brick structures such as tables, cranes,
bridges and scaffolds were evolved within the restrictions
of maximum stress torques at each joint between brick
pairs. Each brick is modeled as exerting an external load
with a lever arm from its center of mass to the support-
ing joint, resulting in a network of masses and forces
representing the structure. A genetic programming ap-
proach was taken using tree structures to represent the
3D LEGO structures. A mutation operator acted on
individual brick parameters while sub-tree cross-over al-
lowed more radical changes to the structure. As well as
fitness functions designed to encourage particular types
of structures, an additional low-level fitness factor favor-
ing the fewest bricks successfully weeded out many of
the redundant bricks that inevitably arose. Lego proved
to be a predictable building tool with modes of break-
age and linkage that could be relatively easily modeled.

While this work was successful, producing very strong
designs, it focused on static structures, so was limited in
terms of its relevance to functional robotic body parts.
However, it did demonstrate a viable approach to evolv-
ing physical structures.

While various researchers advocated the use of fully
evolvable hardware to develop not only a robot’s con-
trol circuits, but also its body plan, which might in-
clude the types, numbers and positions of the sensors,
the body size, the wheel radius, actuator properties and
so on (e.g., [71]), this was still largely confined to theo-
retical discussion until Lipson and Pollack’s work on the
Golem project [70], which was a significant step on from
the earlier Lego work [37].

Figure 61.28: A locomoting “creature” evolved by Lipson
and Pollack in research which achieved an autonomous
design and fabrication process.

Lipson and Pollack, working at Brandeis University,
pushed the idea of fully evolvable robot hardware about
as far as is reasonably technologically feasible at present.
In an important piece of research, directly inspired
by Sims’ earlier simulation work, autonomous “crea-
tures” were evolved in simulation out of basic building
blocks (neurons, plastic bars, actuators) [70]. The bars
could connect together to form arbitrary truss structures
with the possibility of both rigid and articulated sub-
structures. Neurons could be connected to each other
and to bars whose length they would then control via a
linear actuator. Machines defined in this way were re-
quired to move as far as possible in a limited time. The
fittest individuals were then fabricated robotically using
rapid manufacturing technology (plastic extrusion 3-D
printing) to produce results such as that shown in Fig-
ure 61.28). They thus achieved autonomy of design and
construction using evolution in a ’limited universe’ phys-
ical simulation coupled to automatic fabrication. The
fitness function employed was simply the euclidean dis-
tance moved by the center of mass of a machine over
a fixed small number of cycles of its neural controller.
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A number of different mutation operator acted in con-
cert: small changes to bar or neuron properties, addi-
tions and deletions of bars or neurons, changes to con-
nections between neurons and bars, and creation of new
vertices. The highly unconventional designs thus realised
performed as well in reality as in simulation. The suc-
cess of this work points the way to new possibilities in
developing energy efficient fault tolerant machines.

Pfeifer and colleagues at Zurich University have ex-
plored issues central to the key motivation for fully evolv-
able robot hardware: the balanced interplay between
body morphology, neural processing and generation of
adaptive behavior [91, 92]. Work from this group has
involved a number of approaches, including evolutionary
robotics. One focus is on studying how to exploit the
dynamic interaction between the embodied agent and
the environment. Pfeifer uses the term ’morphological
computation’ to draw attention to the fact that some
of the control of behavior can be performed by the dy-
namic interaction derived from morphological properties
(e.g., the passive forward swing of the leg in walking, the
spring-like properties of muscles). By taking morpholog-
ical computation into account, it is very likely that more
robust, energy efficient robots can be developed. Pfeifer
has developed a set of design principles for intelligent
systems that take into account this balance between en-
vironment, morphology and behavior [91].

61.10 Closing remarks

Evolutionary Robotics is a young and integrated ap-
proach to robot development without human interven-
tion where machines change and adapt by capitalizing on
the interactions with their environment. Despite initial
skepticism by mainstream and applied robotics practi-
tioners and even by pioneers of this approach [74], over
the years the field has been constantly growing with new
methods and approaches for evolving more complex, effi-
cient, and sometimes surprising robotic systems. In some
areas, such as morphology and self-assembly, Evolution-
ary Robotics is still the most widely used and powerful
approach.

Evolutionary Robotics is not only a method for auto-
matic robot development inspired by biology, but also
a tool for investigating open questions in biology con-
cerning evolutionary, developmental, and brain dynam-
ics. Its richness and fecundity make us believe that
this approach will further grow and progress towards the
creation of a new species of machines capable of self-

evolution.
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