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In this paper we describe how a population of evolving robots 
can autonomously develop forms of spatial representation that 
allow them to discriminate different locations of their 
environment. Developed representation forms consist of patterns 
of activations of internal neurons that are generated by 
integrating sequences of sensory-motor states while the robots 
interact autonomously with their environment. Moreover, these 
representation forms are allocentric, i.e. they allow evolved 
robots to identify a given spatial location independently from the 
robots’ initial position and orientation in the environment. The 
analysis on the robots’ representation system indicate that it can 
be characterized as a limit cycle resulting from the transient 
dynamic between fixed attractor points that alternate while the 
robot move in the environment. We also demonstrate how the 
evolved representation systems display remarkable 
generalization properties. We conclude the paper by discussing 
the characteristics of the representation system developed by the 
robots and its relation with other models described in the 
literature.   

I. INTRODUCTION 

The objective of this research work is to investigate whether 

evolving robots provided with simple recurrent neural 

controllers can solve a problem that requires to self-localize 

and to discriminate different spatial locations of the 

environment.  The environment and the task are constructed in 

a way that require the categorization and the use of abstract 

features of the robot/environment interaction that cannot be 

inferred from any single sensory pattern and that require to 

integrate sensory-motor information through time [2, 10, 11, 

7]. The goal is that to identify the simplest experimental 

setting in which this type of problem can be solved and to 

analyse the characteristics of the solution found.  

The problem of discriminating different spatial locations is 

a key feature of animal navigation abilities. Indeed, although 

the ability to discriminate different spatial locations in the 

environment might not be necessary to exhibit simple 

navigation forms, it is certainly crucial for the ability to 

display more complex forms of navigation [12]. However, this 

research also aims to study, more generally, how robots can 

discover abstract categories, extract these categories online, 

while interacting with the external environment, and use them 

to identify different locations of the environment.  

The reason for using a self-organizing technique such us 

artificial evolution is due to the fact that we are interested in 

studying whether robots can develop and use an effective 

categorization ability autonomously rather than developing 

robots that can solve their task on the basis of hand-crafted 

solutions. We chose to use artificial evolution, rather than 

other learning techniques, since it allows leaving robots free 

to determine the control parameters and the behaviours that 

satisfy their adaptive goal by reducing the constraints on how 

the problem should be solved to the minimum. However, we 

expect that similar results can be obtained by using other 

learning techniques providing that variations occurring during 

learning modify the fine-grained interactions between the 

robot and the environment and variations are retained or 

discarded on the basis of their effects on the overall behaviour 

exhibited by the agent [8].

II. RELATED LITERATURE

In this section, we review the related literature by restricting 

our analysis to research works in which the way in which 

robots encode spatial information is not pre-determined by the 

experimenter and is developed by robots through an adaptive 

process while they interact with the environment.  

In a recent work, Vickerstaff and Di Paolo [13, 14] evolved 

simulated robots (provided with a compass sensor, speed 

sensors, and two light sensors) for exhibiting a homing 

behaviour. The robots, which are initially placed in their home 

location, are selected for the ability to return in the same 

location after having reached a variable number of light 

beacons placed randomly. Beacons are placed one at a time 

(i.e. a new beacon is displaced as soon as the robot reaches the 

previous beacon). Robots were provided with a CTRNN [1]. 

The free parameters, which were encoded in evolving 

genotypes, included the connection weights and the 

architecture of the neural controller. The analysis of the 

obtained behaviour indicates that evolved robots solve their 

problem by using a path integration mechanism, i.e. by 

encoding the homing location in the activation state of a 

vector of neurons (or a vector of modifiable weights, in a 

variation of the experiment). This internal vector is 

continually updated by integrating sensor information through 

time while the robot travels in the environment so to always 

encode an updated estimation of the current position of the 

robot relative to the home location. Evolved robots also 

display a searching behaviour, once they have reached their 

estimate of the nest location, similar to that exhibited by ants. 

As in the case of Vickerstaff and Di Paolo work, we 

develop robots able to display navigation ability by leaving 

them free to determine the way in which they internally 
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encode spatial information. The main difference with the

work described in this paper lays in the nature of the problem.

The work of Vickerstaff and Di Paolo involves a homing

problem that consists in returning to a recently visited

environmental location and that can be solved through a path

integration method --- a navigation method similar to that

employed by sailors under the name of dead reckoning that

consists in continuously updating the estimation of the relative

location of the reference point (the nest) on the basis of the

estimated direction and speed of the movements performed

after abandoning the reference point. The work described in

this paper instead involve a place recognition problem in

which robots should be able to discriminate their current

location by identifying regularities in their sensory-motor

flow while they move in the environment.

In an earlier related work, Floreano and Mondada [3]

evolved a Khepera robot [5], provided with infrared, light, and

battery level sensors, for the ability to move as straight and as

fast as possible by periodically returning to a recharging area

located close to a light beacon to recharge its battery.

Evolving robots display an ability to integrate spatial and

energy consumption information so to allow the robot to

periodically return to the charging station just before the

energy level goes below a “survival” threshold. Since the light

gradient provided a straightforward indication of the

recharging area and it is visible from any environmental

location, evolving robots does not need to evolve a path

integration mechanisms to identify the relative location of the

target. Moreover, the relative location of the target can be

identified in any single time step on the basis of the current

state of the light sensors. The main difference between

Floreano and Mondada and our experimental scenario is that

in our case robots cannot infer their location in the

environment on the basis of a single sensory pattern only

since robots experience identical sensory patterns in different

environmental locations.

Nolfi [6] evolved a simulated Khepera robot, provided with

infrared sensors only, to navigate into a two room’s

environment by discriminating the room in which it is

currently located. As in the case of the experiment described

in this paper, robots cannot rely on a path integration method

since robots’ initial position in the environment is randomly

initialised. Moreover, as in the case of the work described in 

this paper, robots experience identical sensory states in 

different environmental locations, and therefore should be 

able to discriminate their current environmental location by

integrating sensory-motor patterns through time. The work

described in this paper is related to this previous work but

present new features that allow agents to display a greater

expressive power and remarkable generalization abilities.

III. THE EXPERIMENTAL SETUP

Consider the case of an E-puck robot (Fig. 1, left) placed in a 

double T-maze environment (Fig. 1, right) that should be able

to explore the environment, memorize the location of the

target area, and recognize that location after being placed in a

randomly selected position in the environment. The location

of the target area is marked by a black disk placed on the

ground and can be easily detected by the robot through an

infrared sensor pointing toward the ground (Fig. 2, left). The

black disk, however, is removed after the target area is 

reached by the robot for the first time (Fig. 2, right). To 

recognize the location of the target area after the marker has

been removed, therefore, the robot should keep in memory an

indication of the estimated position of the target area and

recognizes when it reaches the same location again.

Fig. 1. Left: The e-puck robot developed at EPFL, Switzerland (http://www.e-

puck.org/). Right: The double T-maze environment including the light bulb

and the robot.

Fig. 2. The robot and the environment in simulation. The white circles 

indicate the amplitude of the light gradient.  The A, B, C, and D labels 

indicate the position in which the target area is located in different trials of 

the experiment. The black line indicates the trajectory of an evolved robot

navigating in the environment. Left: during the first phase of each trial the

robot explore the environment until it encounter the target area that is marked

with a black circle. Right: during the second phase of each trial the black 

circle is removed, and the robot is asked to return and to stop on the target

area location after having moved to a new randomly selected location.

The T-maze arena covers an area of 52cm by 60cm. The robot

has eight infrared sensors (that provide information about

nearby obstacles up to a distance of about 5cm), eight light

sensors (that provide the light gradient information up to a 

distance of about 40 cm from the light), one ground sensor

(that detects the colour of the ground), and two motors (that

control the desired speed of the two corresponding wheels).

Each robot is controlled by a neural network with a fixed

architecture including 18 sensory neurons (that encode the

state of the eight infrared sensors, of the eight light sensors,

and of the two location sensors), two internal neurons with

recurrent connections, and three motor neurons (that encode

the desired speed of the two wheels and whether or not the

location of the target area has been reached). During the first

part of each trial in which the robot has not yet reached the
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target area, the location sensors are set to the maximum value

(1.0). During the second part of each trial, the state of the two

location sensors is set to the absolute difference between the

current activation state of the internal neurons and the

activation state of the internal neurons observed when the

robot detected the black disk indicating the location of the

target area for the first time.

Fig. 3. The architecture of robot’s neural controller. The grey areas indicate 

the connections between blocks of neurons. The arrow on the left indicates 

that the activation state of the two internal neurons is copied into the location 

sensors when the robot detects the black disk placed on the target area. The

place output neuron should be turned on when the robot returns on the 

location of the target area.

The free parameters of the robots’ neural controllers are 

evolved [9]. The initial population consisted of 100 randomly

generated genotypes that encoded the connection weights, the

biases, and the time constants [6] of sensory and internal

neurons of 100 corresponding neural controllers. Each

parameter is encoded with 8 bits and normalized in the range

[–5.0, +5.0], in the case of connection weights and biases, and

in the range [0.0, 1.0], in the case of time constants. The 20 

best genotypes of each generation were allowed to reproduce

by generating five copies each, with 2% of their bits replaced

with a new randomly selected value. The evolutionary process

lasted 800 generations (i.e. the process of testing, selecting

and reproducing robots is iterated 800 times). The experiment

was replicated 10 times.

Robots are tested for 100 trials. At the beginning of each

trial the robot is placed in location S with a randomly selected

orientation and the target area is randomly set within one of

the four possible locations indicated with letters A, B, C, and

D (Fig. 2). The robot is allowed to interact with the

environment for 3300 cycles (each cycle last 100ms).  After 

950 cycles a black disk is placed in the location of the target 

area and is then removed as soon as the robot reaches it. The

fitness of evolving robots is computed according to a function

with two components that reward respectively: (1) robot’s

ability to navigate in the environment so to visit all its sub-

areas, and (2) robot’s ability to return on the target location

and to stop there by turning its’ place neuron on (i.e. by 

exciding a threshold of 0.75).

IV. RESULTS

By analysing the behaviour displayed by the best individual of

the last generation we observed that, in most of the

replications of the experiments, robots display a navigation

behaviour that allow them to periodically visit all the

locations of the environment by moving forward in corridors,

turning right on T-junctions, and turning back at corridors’

end points (see Fig. 2). Moreover, evolved robots display an

optimal ability to return and to recognize the location of the

target area after having visited the target area once and after

the black disk indicating the location of the target area has

been removed (Fig. 4, white histograms). Evolved robots also

display an ability to recognize the location of the target area 

after being placed in a random selected location of the

environment at the beginning of the trial (Fig. 4, grey

histograms). Finally, by downloading the evolved neural

controller into a real e-puck robot and by testing the robot in

the real environment shown in Fig. 1, we observed that

controllers evolved in simulation display an ability to solve

the task also when embodied in the real robot and situated in a 

real environment (Fig. 4, black histograms).
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Fig. 4.  Percentage of trials in which the robot is able to return and to stop on 

the target area after the robot experienced the black disk indicating the 

location of the area and after the disk was removed. Data for one of the best 

evolved individuals. The four groups of histograms indicate the performance

for the four possible location of the target area. White histograms indicate the

performance obtained in simulation by initially placing the robot close to the

light. The grey histograms indicate the performance obtained in simulation by

initially placing the robot in a randomly selected location and orientation of

the environment. The black histograms indicate the performance observed on 

the real robot in the real environment by placing the robot in a randomly

selected location and orientation in the environment at the beginning of each 

trial.

To solve this problem, evolved robots develop an ability to

integrate over time the state of the sensory neurons

experienced while the robot navigates in the environment into

internal states that are different when the robot is located in

different part of the environment, and that are similar when

the robot visit and re-visit the same environmental location.

Indeed, by plotting the state of the robots’ internal neurons
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recorded when the robot is located in the four possible

locations of the target area (Fig. 5) we can see how the states

corresponding to the same location are clustered together and

the states corresponding to different locations are separated in

the two dimensional space that includes all possible values of

the internal neurons. Data have been obtained in the condition

in which robots start from a randomly selected position and

orientation in the environment.
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Fig. 5. The black dots indicate the activation state of the internal neurons 

recorded while the best evolved robot is located in the four possible locations 

of the target area in different trials in which the robot start from randomly

selected locations and orientations in the environment. Data recorded during 

100 trials in which the robot start from different randomly assigned location 

and orientation in the environment after the robot moved in the environment

for 3300 cycles corresponding to 330 s. I1 and I2 indicate the activation state 

of the two internal neurons. The letter A, B, C, and D, and the circles indicate

how activation states corresponding to similar locations in space are clustered 

in different areas of the state space corresponding to the two internal neurons. 

V. ON ROBOTS’ ABILITY TO REPRESENT ENVIRONMENTAL

LOCATIONS

In this section, we analyse how robots represent different

locations of the environment and how are able to generalize

their skills when they start from different randomly assigned

locations.

By analysing the dynamics of the two internal neurons

while the robot moves in the environment we can see how 

after 95 s (i.e. after the robot makes about 2 laps of the

environment) the state of the internal neurons converges

toward a limit cycle attractor (Fig. 6). By analysing the

dynamics of the internal neurons when the robot is situated in

the environment in this and in other replications of the

experiment (results not shown), we observed the following

characteristics: (1) periodicity: the dynamic of the internal

neurons tends to converge toward a periodic limit cycle that 

repeats itself for every lap of the environment, and (2)

expressiveness: different points along the trajectory of the

limit cycle correspond to different locations of the robot in the

environment (beside few points in which the trajectory of the

limit cycle crosses points visited previously while the robot

was located in a different part  of the environment).

Periodicity and expressiveness can be demonstrated by

ascertaining that the variation of the state of the internal

neurons in a given environmental location for different laps of 

the environment is lower than the variation of the state of the

internal neurons for different locations of the environment

(result not shown).

It should be noted that the shape of the limit cycle

significantly vary in different replications of the experiments.

Indeed, several different shapes might preserve the periodicity

and expressiveness characteristics that are necessary to solve

the problem.
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Fig. 6. Top: the activation state of the internal neurons recorded while the

robot moves in the environment for 330 s. Bottom: limit cycle attractor

obtained by averaging the activation state of the internal neurons in different

laps of the environment after the robot performed the first lap.

The periodicity of the limit cycle explains how an evolved

robot generalizes its skill with respect to its initial position. In

fact, after a certain amount of time in which the robot moves
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in the environment, the state of its internal neurons correlates

only with the current position of the robot in the environment

and it is not affected anymore by the initial sensory

experiences of the robot that in turn were affected by the

initial location and orientation of the robot in the environment.

The expressiveness of the limit cycle ensures that different

locations of the environment correspond to different internal

states. The combination of these two properties ensures that

the robot can reliably represent its position in the environment

so to distinguish, for example, between location A, B, C, and

D and can self-localize after being placed in a randomly

selected location and orientation.

The periodic limit cycle described above results from a 

transient dynamics in which the state of the internal neurons

moves toward fixed attractor points corresponding to the

sensory states that alternate while the robot navigates in the

environment (see also [2]). The existence of fixed attractor

points is demonstrated by the fact that by fixating the state of

sensory neurons on any given state experienced by the robot

while it moves in the environment and by keep updating the

internal neurons for a sufficient time, the state of the internal

neurons converge toward a fixed attractor point independently

from the initial neuron state (Fig. 7).

For example, as shown in Fig. 8, when the robot ends one

laps of the environment, the state of the internal neurons

occupies the central position of the limit cycle. Then, while 

the robot travels toward the light, the state of the internal

neurons moves toward the TL average attractor situated in the

top-right corner of the state space (see Fig.8 “s”). Then, when

the robot turns back and moves away from the light, its

internal state tends to move toward the AL average attractor

located in the top-left corner of the state space. Later on, when 

the robot turns right and then moves along the corridor, its

internal state moves toward the average attractors TR and CO 

located in the left and right side of the state space

respectively. These latter movements bring the state of the

internal neurons in the area indicated with the letter A that is

experienced when the robot reaches the corresponding area of 

the double T-maze environment (see Fig. 2). The movements

toward the attractor points corresponding to the sensory states 

experienced later on produce the following path of the limit

cycle until a new lap of the environment and a new path in the

limit cycle starts. 

The fact that the fixed point attractors are never fully

reached by the state of the two internal neurons while the

robot navigates in the environment, since the corresponding

sensory states are experienced only for a limited amount of

time and since internal neurons have time constants that cause 

that they change their state relatively slowly, ensures that the

internal states tend to preserve information about previously

experienced sensory states. 
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Fig. 7.  Fixed point attractors in the internal neurons state space corresponding to all sensory states experienced by the robot during one lap of the environment.

The fixed point attractors have been generated by fixing the state of the sensory neurons and by updating the state of the internal neurons for 150s. Fixed point 

attractors for different classes of sensory patterns are visualized with different symbols. Classes include the sensory status experienced by the robot while it: (TL) 

move toward the light, (AL) moves away from the light, (TR) turns right, (TB) turns backward, (CO) moves along a corridor that is not illuminated.
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Fig. 8. Internal neurons state space including the averaged limit cycle (some

data of Fig. 6), the indication of the state experienced by the robot in location 

A, B, C, D, and S (Fig. 2), and the average fixed point attractors

corresponding to the five categories of sensory states (based on the same data

shown on Fig. 7).

VI. ON ROBOTS’ ABILITY TO REPRESENT DIFFERENT SPATIAL

STRUCTURES

In this section we analyse how robots generalize their abilities

when tested in environments that have different spatial

organizations from the environment in which they have been

evolved. As we will see, the dynamics of the internal neurons

lead to different limit cycles in different environments.

However, the fact that the limit cycles preserve the

characteristics of periodicity and expressiveness described

above ensures that the robots are able to generalize their skills 

in different environmental conditions.

To verify robots generalization abilities and to analyse the

dynamics of the internal neurons in different environmental

conditions we tested the same individual shown in Fig. 5, 6, 7,

and 8, that has been evolved in the double T-Maze

environment, in a simple T-maze environment and in a 

single/double T-Maze environment (Fig. 9). As shown in Fig.

10, robots evolved in the double T-Maze environment show 

rather good performance also when tested in the two new

environments.

As shown in Fig. 11, the shape of the limit cycles changes

in different environments. However, the fact that the limit 

cycles obtained in the new environments also display

periodicity and expressiveness allows the robots to generalize

their ability to self-localize and to recognize previously visited

target areas also in environments never experienced before.

The shape of the limit cycle observed in a particular

environment is the result of two factors: (1) the fixed point

attractors that determine the way in which the state of the

internal neurons changes for any given sensory state, and (2)

the sequence of sensory state experienced by the robot while it 

moves in the environment. The first factor is a function of the

characteristics of the neural controller and therefore does not

change when the robot is situated in a new environment. The 

second factor, however, obviously depends on the

characteristics of the environment in which the robot is

placed.

This implies that robots can generalize their abilities in a 

wide range of environments with different spatial

organizations providing that the local characteristics of the

new environment are similar to that of the environment in

which they have been evolved (i.e. in this particular case,

providing that the new environment has light gradients,

corridors, and dead-ends that produce a variation in robots

internal states) and providing that the size of the environment

is comparable to that of the environment in which they have

been evolved. This latter point can be explained by

considering that the time constants that determine the rate at 

which the state of the internal neurons vary toward the

corresponding fixed point attractors should be sufficiently

small to avoid reaching the attractor points and sufficiently

high to produce enough variation in the state of the internal

neurons while the robot moves in different locations of the

environment.

Interestingly, while the state of the internal neurons can be

described as a representation of robot’s relative position in the

environment, the limit cycles consisting of the sequences of

internal states experienced by the robot while it navigates in 

the environment, can be described as a representation of the

spatial organization of the environment. In fact, different

environments correspond to different limit cycles. Moreover,

the level of similarity between two environments or between

two sub-parts of two environments are reflected in the level of 

similarities of the corresponding limit cycles or of the

corresponding sub-sections of the limit cycles (see Fig. 6 and

11).

Fig. 9. Left: The T-Maze environment. Right: The single/double T-maze

environment.

176

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



0

10

20

30

40

50

60

70

80

90

100

A B

%
 C

o
rr

e
c
t

tr
ia

ls

0

10

20

30

40

50

60

70

80

90

100

A B C

%
 C

o
rr

e
c
t 

tr
ia

ls

Fig. 10.  Percentage of trials in which the robot is able to return and to stop on 

the target area after the black disk indicating the location of the area was

removed. The groups of histograms indicate the performance for the 

corresponding location of the target area (see Fig. 8). White histograms

indicate the performance obtained in simulation by initially placing the robot

close to the light. Grey histograms indicate the performance obtained in 

simulation by placing the robot in a randomly selected location and 

orientation in the environment. Black histograms indicate the performance

observed on the real robot in the real environment by placing the robot in a 

randomly selected location and orientation in the environment. Top: data for

the T-Maze environment. Bottom: data for the single/double T-Maze

environment.

VII. DISCUSSION

In this paper, we described how evolved robots provided with

a form of continuous time recurrent neural controller [1, 6]

solve a problem that requires to identify their own relative

location in the environment and the location of a target area so 

to be able to recognize the target location later on.

The analysis of the obtained results indicates that the

coupling between the robot’s internal dynamics and the

robot/environmental dynamics leads to limit cycles in the state

space of the internal neurons. These limit cycles are

characterized by expressiveness (i.e. by the fact that different

states correspond to different relative location of the robot in

the environment) and periodicity (i.e. by the fact the sequence

of states of the internal neurons corresponding to a limit cycle

correspond to a complete lap of the robot in the environment).

More precisely the observed limit cycle dynamics is the 

result of a transient dynamical process based on the

alternation of fixed point attractors, with different time

durations, that alternate in time while the robot moves in the

environment. The characteristics of the transient dynamics

and the characteristics of the observed limit cycles allow 

evolved robots to generalize their capacity in a wide range of

environmental conditions.
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Fig. 11.  The activation state of the two internal neurons recorded while the

robot moves in the is environment for  330 s. Top: data for the T-Maze

environment. Bottom: data for the single/double T-Maze environment.

More generally, the analysis of the obtained results

indicates how evolved robots display an ability to represent

different locations in the environment and to represent

different environments (i.e. environment with different spatial

organizations). The characteristics and the mechanisms that 

lead to these representation capabilities, however, have a 

177

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



specificity with respect to other models described in the 

literature that is worth noting. We are using the term 

representation to indicate a robot’s internal state which co-

varies with the robot’s location in the environment or with the 

characteristics of the environment in which the robot is 

situated. Such specificity consists in the fact that the way in 

which a location of the environment and the overall structure 

of the environment are represented in our robot is implicit 

rather than explicit as in other models like metric or 

topological maps approaches in which the geometrical 

features of the environment or the spatial relations between 

relevant locations of the environment are represented in 2D 

maps or in topological graphs [4]. In our case, instead, both 

the representation of spatial locations and the representation 

of the relations between different spatial locations are implicit 

in the sense that are generated while the robot navigates in the 

environment and do not exist before that. 

One important implication of the difference between 

implicit and explicit representation forms is that, as we have 

shown in this paper, implicit representation forms can allow 

robots to generalize their ability in new environments 

immediately without the need to acquire an explicit 

representation of the new environment. In the case of implicit 

representation forms, in fact, the new representation 

corresponding to the new environment is generated 

immediately as soon as the robot moves in the new 

environment without the need to change the free parameters 

of the system.  

In future work we plan to investigate: (1) the mechanisms 

with which robots converge toward the limit cycle while they 

move in the environment after being placed in a randomly 

selected position and orientation, (2) the possibility to evolve 

robots able to return toward the target location by selecting 

the shortest path, (3) the relation between the topology of the 

limit cycles, the spatial structure of the environment, and the 

robots’ motor behaviour.  
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