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Abstract. In this paper we describe a new approach in Evolutionary
Robotics according to which human breeders are involved in the evo-
lutionary process. While traditionally robots are selected to reproduce
automatically according to a fitness formula, a quantitative and strictly
defined measure, human breeders can operate a selection based on qual-
itative criteria, rewarding behaviors that can slip between the meshes
woven by the fitness formula. In the authors’ opinion this may bring
advantages to the Evolutionary Robotics methodology, allowing for the
production of robots that display more and more multiform behavior.
In order to illustrate this approach, a piece of software, BreedBot, was
developed in which human breeders can intervene in evolving robots,
complementing the automatic evaluation. After describing the software,
some results on sample evolutionary processes are reported showing that
the joint use of human and artificial selection on an exploration task
generates robots with higher performance and in shorter time, compared
with the exclusive action of each breeding method. Future work will ex-
plore further this hypothesis.

1 Introduction

In classical Evolutionary Robotics (ER), robots are evaluated in terms of their
ability to perform a task defined by the researcher. Measurements are based on
a so-called ”fitness function”. The robot’s probability of producing offspring is
proportional to the fitness measured by this function. Consequently the design of
the function plays a crucial role in the success of ER experiments (Nolfi and Flo-
reano, 2000). The problem facing ER designers is similar to a classical problem
in behaviorist psychology: how to measure the efficiency of training procedures
for experimental animals. The supporters of the so-called (Hill, 1997) molecular
approach sought to stabilize micro-behaviors which contributed to the animal’s
overall performance (Guthrie, 1935, and to some extent Pavlov, 1927). By con-
trast, the molar approach (Tolman, 1922) preferred to reinforce macro-behaviors
leading to a satisfactory end result (e.g. finding a particular target zone, find-
ing a way out of a maze). Experience shows that pragmatically speaking, the
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two approaches are complementary. Trainers have to consider the peculiarities
of particular tasks and particular species of experimental animal and choose the
right mix of molecular and molar techniques on this basis. This is exactly the
task facing researchers in ER trying to define a fitness function. When Nolfi and
Floreano (2000) want to teach a robot obstacle avoidance they use a ’molecu-
lar’ fitness function. This fitness function rewards, at each step, the robot with
a score that is directly proportional to the speed of the wheels and inversely
proportional to the differential of the wheels and to the activation value of the
most activated infrared sensors. But when they want their robot to find a target
zone they are no longer interested in its individual actions. In this case they use
a ’molar’ function (Miglino and Lund, 2001). With harder tasks they have to
integrate the two approaches (Nolfi, 1997).
Outside the lab, trainers, breeders and teachers do not usually follow rigid pro-
cedures. When they reward their charges, or when they select them for breeding,
they use many different criteria. Sometimes they use measurements, but often
they base their judgments on qualitative, context-dependent features which are
hard to capture in a mathematical formula. Typically they consider several in-
dicators - speed, error rates, exam marks - and then decide heuristically which
they are going to reward. Could we adopt a similar approach in ER? More
specifically, is there some way we could integrate algorithmically-defined fitness
functions with the heuristically-based decisions of a human trainer? To inves-
tigate this possibility we developed Breedbot (Miglino and Gigliotta, 2004), an
integrated hardware/software system which allows human ’breeders’ to breed a
small population of robots
(Breedbot can be downloaded from http://gral.istc.cnr.it/gigliotta/breedbot.zip).
We then put Breedbot in the hands of a small group of users, and studied the
way they used the system. In the following pages we describe Breedbot in detail,
providing a number of preliminary results.

2 BreedBot: an environment for breeding robots

BreedBot is an integrated hardware/software system that allows users with no
technical or computer experience to breed a small population of robots. To
achieve this goal, it uses a software environment to simulate a process of artifi-
cial evolution. At the beginning of each simulation, the computer screen shows a
first generation of robots in action. After a certain time, some of the robots are
selected to produce offspring. Users can let the system select the ’best robots’
or make the decision themselves. If the system makes the decision, it rates the
robots by their ability to explore the environment, and selects those with the
highest scores. Human users, on the other hand, simply choose the robots they
think have performed best. Once the selection procedure is over, the system
creates clones of the selected robots. During this process it introduces random
mutations into their control systems. The robots created in this way constitute a
new generation. This selection/cloning/mutation cycle can be iterated until the
’breeder’ finds a particularly capable robot. At this point the brain of the simu-
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lated robot can be uploaded to a real robot and the user can see how it performs
in the real world. Figure 1a shows a robot which has just received a ’brain’ de-
veloped with BreedBot. The robot is built using motors, infra-red sensors, bricks
and an on-board computer from the Lego Mindstorms kit. It is rectangular in
shape. Its base measures 16*15 cm and it is 10 cm high. To move, it uses two
large drive wheels, each controlled by its own small electric motor. Two wheels
provide stability. All the wheels are fixed so there is no steering mechanism. The
on-board computer (a Lego Mindstorms RCX) and the electric power supply
are located on top of the motors. The sensor system - three Mindsensor infrared
sensors - is placed above the on-board computer. The first sensor is mounted half
way along the robot’s short side and points in its direction of motion. The other
two are fixed half way along the long sides. Each sensor produces a signal with
a strength inversely proportional to its distance from an obstacle. The sensors
can detect obstacles up to a maximum range of 15 cm. The on-board computer
implements an Artificial Neural Network (the system that controls the robot).
The network receives sensory stimuli from the infra-red sensors, processes the
data and activates the robot’s motors. The system’s neural architecture consists
of a layer of input neurons and a layer of output neurons (see Figure 1b). The in-
put neurons receive stimuli from the sensors and transmit these signals, through
one-directional links (’connections’) to the output neurons. Each connection is
associated with a transfer value (its ’weight’). In this way, the signal arriving
at the output neurons is filtered by the weights of the connections from neu-
rons in the input layer. The input layer is made up of three sensor neurons, two
proprioceptor neurons and two bias neurons. Each infrared sensor is associated
with a single sensor neuron which receives its signal and activates the rest of
the network. The two proprioceptor neurons have rientrant connections from
the motor neurons (see Figure 1b). Thus the state of these neurons at time t+1
reflects the state of the motor neurons at time t. Finally, the bias neurons are
always ’on’ (they always have an activation of 1). These neurons, which do not
receive any kind of signal from the external environment, play an essential role,
ensuring that the robot is always able to move, even when receives no input from
the sensors. The output layer consists of two motor neurons. It is these neurons
that determine the robot’s behavior at any given moment.

Each motor neuron controls an electric motor. Its output is regulated by a
threshold activation function. If the sum of the inputs to the neuron is equal to
or higher than the threshold the neuron produces an output of ’1’. For values
below the threshold, the output is 0. When a motor receives a ’1’ it turns in a
clockwise direction for 2 seconds. When it receives a ’0’ it does nothing. In this
way, the robot has three possible behaviors: it can move forward for 3 cm. (when
both motors are on); it can turn 10 degrees to the left (when the right motor is
on and the left motor is off); it can turn 10 degrees to the right (when the right
motor is off and the left motor is on). A software simulator replicates the physical
characteristics of the robot and the training arena. Using the simulator we can
conduct artificial evolution experiments with a population of 9 simulated robots.
In terms of size, sensors, motors, and neural architecture, each individual in the
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Fig. 1. 1a. A picture of the robot built with the Lego MindStorms kit. 1b. A schematic
representation of the robot and of its control system.

population is identical to all the others. The only thing which distinguishes them
are the weights of the connections in their control systems. These are stored in
their ’genotypes’. When breeding begins (in the first generation of robots), the
weights of the connections are extracted randomly from a uniform distribution
in the range -1 - 1. For a certain time, the robots are allowed to move freely.
Then the ’breeder’ (either the system or a human being) selects three robots
for reproduction. Each robot’s genotype (the values of its connections) is cloned
three times, producing three offspring. But the clones are not perfect. During
the copying process three per cent of the weights ’mutate’. The choice of which
weights to modify and the new value of the modified weight are random. Figure
2 show’s BreedBot’s graphical interface.

The left hand side of the screen displays the behavior of the nine simulated
robots in the arena, which is surrounded by walls. The right hand side provides
information about the state of the system (the number of the current generation,
a graph showing changes in the mean fitness of the population) along with a
number of commands allowing the user to stop the system and to choose between
human and artificial selection. The pull-down menu in the top left corner contains
system utilities (to change the geometry of the environment, save configurations
etc.).
Breedbot is designed to be easy to use for breeders of small robots. Breeders
can use the system’s graphical interface, to organize their own experiments in
artificial evolution and if they want, they can select the individuals which will
be allowed to reproduce. They can stop the program at any time, choose what
they consider to be a well-adapted robot, and use the infrared port to upload its
control system (its Artificial Neural Network) to a real Lego MindStorms robot
(see Figure 3).
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Fig. 2. A snapshot representing the Graphical Interface of BreedBot software. On the
left side there are the 9 robots while they explore a rectangular arena with walls. On
the right side there is a display that indicates the current generation, radio buttons to
choose between human and machine selection, STOP and RESET buttons and a graph,
updated after each generation, that shows the mean fitness obtained in the exploration
task along generations.

3 Preliminary Results

To compare the impact of human and artificial selection, we conducted three
series of experiments. In the first we left selection to the system, which applied
a ’fitness function’, in which robot fitness was proportional to the area the robot
could explore in a pre-determined period of time. In the second, we asked our
human subjects to do the selection judging the robots’ exploratory capabilities on
purely qualitative criteria. Finally, we conducted a third series of experiments
in which we used human selection in some generations and artificial selection
in others. Figure 4 shows mean fitness, generation by generation, in the three
experimental conditions. The measure of fitness, in both cases, is calculated on
the area explored by the robot in a certain lapse of time.

As we can see from the graph, the robots evolved with Human and Artifi-
cial Breeder procedure obtain higher fitness values, corresponding to the area
explored by the robot.
These results, even if preliminary, suggest that the joint use of Human and Ar-
tificial Breeder may improve overall performance.
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Fig. 3. The transfer of the control system (an Artificial Neural Network) from the
Digital Environment to the real Lego MindStorms robot, through the infrared port.

4 Discussion and future work

Although we are still in the preliminary stages of our work, the results of our
experiments suggest that the combination of a pre-defined fitness function and
a human selector - applying purely qualitative selection criteria - produces ro-
bots with more efficient exploratory capabilities than can be achieved with a
purely algorithmic or a purely manual approach. The combined approach is also
faster. We now intend to test this new methodology with larger populations, to
study if it works with other fitness functions, and to see if it can be applied
to more complex tasks. It will be particularly interesting to try the methodol-
ogy with robots of different shapes (e.g. square robots, round robots) or with
richer sensory-motor than the robots described in this paper (e.g. robots with
video cameras to detect distant objects or with arms to grasp objects). As far as
concerns the technique itself, we intend to investigate the selection behavior of
human breeders, identifying the strategies they use. The next version of Breed-
Bot will be designed to address these issues, creating a system that ’beginners’
can use as a black box but which more expert users can customize to meet their
needs, perhaps through the addition of new modules.
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Fig. 4. Mean fitness along generations for Only Artificial Breeder, Only Human Breeder
and Human and Artificial Breeder.
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