| nstitute of Psychology
C.N.R. - Rome

HOW TO EVOLVE AUTONOMOUSROBOTS: DIFFERENT APPROACHESIN
EVOLUTIONARY ROBOTICS

*Stefano Nolfi **Dario Floreano ***Orazio Miglino ™***Francesco Mondada

* Institute of Psychology, National Research Council
15, Vide Marx - 00187 - Rome - Italy
e-mail: stefano@kant.irmkant.rm.cnr.it
**Laboratory of Cogpnitive Technology,
AREA Science Park - Trieste, Italy
e-mail: dario@psicosun.univ.trieste.it
*** Department of Psychology, University of Palermo
Vide delle Scienze, Palermo, Italy
e-mail: orazio@caio.irmkant.rm.cnr.it
**** L aboratory of Microcomputing
Swiss Federal Institute of Technology, Lausanne, Switzerland
e-mail: mondada@di.epfl.ch

May 1994

Technical Report PCIA-94-03

Department of Cognitive Processes and Artificia Intelligence
15, Viale Marx
00137 - Rome - Italy
voice: 0039-6-86894596
fax: 0039-6-824737

To appear I1n: Proceedings on the Artificial Life IV Conference, July 6-8, Cambridge, MA, U.SA.

HOW TO EVOLVE AUTONOMOUSROBOTS: DIFFERENT APPROACHESIN
EVOLUTIONARY ROBOTICS

*Stefano Nolfi **Dario Floreano

***Orazio Miglino

**** Erancesco Mondada

* Institute of Psychology, National Research Council
15, Viade Marx - 00187 - Rome - Italy
e-mail: stefano@kant.irmkant.rm.cnr.it
**Laboratory of Cogpnitive Technology,
AREA Science Park - Trieste, Italy
e-mail: dario@psicosun.univ.trieste.it
*** Department of Psychology, University of Palermo
Vide delle Scienze, Palermo, Italy
e-mail: orazio@caio.irmkant.rm.cnr.it

*k*k*%k

Laboratory of Microcomputing

Swiss Federa Ingtitute of Technology, Lausanne, Switzerland
e-mail: mondada@di.epfl.ch

Abstract

A methodology for evolving the control systems of
autonomous robots has not yet been well established.
In this paper we will show different examples of
applications of evolutionary robotics to real robots
by describing three different approaches to develop
neural controllers for mobile robots. In all the
experiments described real robots are involved and
are indeed the ultimate means of evaluating the
success and the results of the procedures employed.
Each approach will be compared with the others and
the relative advantages and drawbacks will be
discussed. Last, but not least, we will try to tackle a
few important issues related to the design of the
hardware and of the evolutionary conditions in
which the control system of the autonomous agent
should evolve.

1. Introduction

In the last few years new approaches that involve a form of
simulated evolution have been proposed in order to build
autonomous robots that can perform useful tasks in
unstructured environments (Brooks, 1992; Cliff, Husband
and Harvey, 1993). The great amount of interest in this new
approach is due to dissatisfactions with traditional robotics
and Artificial Intelligence and to the belief that interesting
robots may be too difficult to design. There are two main
reasons why strong difficulties arise in designing a control
system for autonomous robots:

(a) it is extremely difficult to co-ordinate the parts of a
robot, both at the level of mechanics and of the control
system; it is also hard to predict the interaction between
these two levels. As Cliff, Harvey, and Husband noted
(1993) the complexity of the design scales faster than the

number of parts or modules within the system; rather, it
scales with the number of possible interactions between
parts and modules.

(b) autonomous robots interact with an external
environment and, therefore, the way in which they behave
in the environment determines the stimuli they will receive
in input (Parisi, Cecconi, and Nolfi, 1990). Each motor
action has two different effects: (1) it determines how well
the system performs with respect to the given task; (2) it
determines the next input stimuli which will be perceived
by the system (this last point strongly affects the success or
the failure of a sequence of actions). Determining the
correct motor action that the system should perform in
order to experience good input stimuli, is thus extremely
difficult because any motor action may have long term
consequences. Also, the choice of a given motor action is
often the result of the previous sequence of actions. A fina
source of uncertainty in the design of the system is the fact
that often the interaction between the system and the
environment is not perfectly known in advance.

Thus, it would appear reasonable to use an automatic
procedure, such as a genetic algorithm, that gradually
builds up the control system of an autonomous agent by
exploiting the variations in the interactions between the
environment and the agent itself. It remains to be
determined if it is feasible. In particular we should answer
the questions: What to evolve? And, how to evolve it?

The choice of what to evolve is controversial. Some
authors have proposed to evolve controllers in the form of
explicit programs in some high-level language. Brooks
(1992) proposes to use an extension of Kozas genetic
programming technique (Koza, 1990). Dorigo and Schnepf
(1993) propose to use a form of classifier system. Others
propose to evolve neural networks controllers (Cliff,
Husband and Harvey, 1993; Floreano and Mondada, in
press, Miglino, Nafasi, Taylor, 1994; Nolfi, Miglino and

Parisi, 1994). We think that evolving neural networksis the
most promising way for a number of reasons:

(8 Neural networks can easily exploit various form of
learning during life-time and this learning process may
help and speed up the evolutionary process (Ackley and
Litmann, 1991; Parisi and Nolfi; in press).

(b) Neura networks are resistant to noise that is
massively present in robot/environment interactions. This
fact aso implies that the fitness landscape of neurad
networks is not very rugged because sharp changes of the
network parameters do not normally imply big changes in
the fitness level. On the contrary it has been shown that
introducing noise in neural networks can have a beneficial
effect on the course of the evolutionary process (Miglino,
Pedone, and Parisi; 1993).

(c) We agree with Cliff, Harvey, and Husband (1993)
that the primitives components manipulated by the
evolutionary process should be at the lowest level possible
in order to avoid undesiderable choices made by the human
designer. Synaptic weights and nodes are low level
primitive components.

The methodology used to evolve control systems for
autonomous robots is not well established. The large
population size and the number of generations required for
the emerging of interesting form of behaviors with the
evolutionary techniques implies that a large number of
robots must be evaluated. This fact has often restricted most
of the experiments to computer simulations and declaration
of the intentions to move to physical robots. However,
traditional wisdom tells us that computer simulations are of
limited usefulness for predicting the behavior of real robots.

In this paper we want to show different examples of
applications of evolutionary robotics to real robots by
describing three different approaches to develop neurad
controllers for mobile robots. In all the experiments
described below real robots are involved and are indeed the
ultimate means of evaluating the success and the results of
the procedures employed. Each approach will be compared
with the others and the relative advantages and drawbacks
will be discussed. Last, but not least, we will try to tackle a
few important issues related to the hardware design of
autonomous agents and to the new methodological issuesin
the analysis of the system.

2. The evolution of an ability to navigate by
using the physical robot

Floreano and Mondada (in press) developed neura
controllers for autonomus agents that should perform a
navigation task by using an evolutionary approach. The
robot used was Khepera, a miniature mobile robot
(Mondada, Franzi and lenne, 1993). Khepera has a circular
shape with a diameter of 55 mm, a height of 30 mm and a
weight of 70g; it is supported by two wheels and two small
teflon balls. The wheels are controlled by two DC motors
with an incremental encoder (10 pulses per mm of
advancement of the robot), and can move in both

directions. The robot is provided with eight infra-red
proximity sensors. Six sensors are positioned on the front of
the robot, the remaining two on the back. A motorola
68331 controller with 256 Kbytes of RAM and 512 Kbytes
ROM manages all the input-output routines and can
communicate via a serial port with a host computer.
Kheperawas attached to the host by means of a lightweight
aerial cable and specially designed rotating contacts. This
configuration allowed a full track and record of al
important variables by exploiting the storage capabilities of
the host computer; at the same time it provides electrica
power without using time-consuming homing algorithms or
large heavy-duty batteries.

Figure 1. Khepera, the miniature mobile robot.

The robot was put in an environment consisting of an
arena with internal walls of irregular shape. The external
size of the arena was approx. 80x50 cm. The walls were
made of light-blue polystyrene and the floor of a gray thick
paper. Such environment was illuminated from above by a
60 watt light bulb.

The authors goal was to develop a robot that could
avoid obstacles while keeping the straightest possible
trajectory at the fastest speed. The evolutionary training
was a standard genetic algorithm as described by Goldberg
(1989) with fitness scaling and roulette wheel selection,
biased mutations (Montana and Davis, 1989), and one-
point crossover. The population size was set to 80 and each
individual performed 80 actions. The neural network
architecture was fixed and consisted of a single layer of
synaptic weights from eight input units (clamped to the
sensors) to two output units (directly connected to the
motors) with mobile thresholds, logistic activation
functions, and recurrent connections. Synaptic connections
and thresholds were coded as floating point numbers on the
chromosomes. Each motor action lasted 300 ms. The
fitness criterion (F) was a function of the average rotation
speed of the two wheds (V), the algebraic difference
between signed speed values of the wheels (DV), and the
activation values of the proximity sensor with the highest
activity (1):

F=V * (1- sqrt(DV) * (1- 1)

F has three components: the first one is maximized by
speed, the second by movement in a straight direction, and
the third by the avoidance of obstacles. What is important
to notice is that the whole evolutionary process was carried
out entirely on the robot. This means that each individual
network of each generation was evaluated by letting the
robot move in the real environment for 80 time steps (the
"brain" of each individual being sequentially injected in the
same physical robot).

0,3 -
0,2 - i
12
1%
(]
c
S
= -
0,1 - R
0
o o o o o o o o o o o
— N o™ < 0 © M~ [e3) (o) 8
generations

Figure 2. Best individual fitness throughout generations.
Values are averaged over three runs (S.E. displayed).

Kepera genetically learned to navigate and avoid
obstacles in less than 100 generations (figure 2). However,
around the 50th generation the best individuals already
exhibited a nearly optimum behavior. Their navigation was
extremely smooth; they never bumped into walls and
corners, and tried to keep a straight trajectory. This allowed
them to perform complete laps of the corridor without
turning back. The whole experiment lasted about 60 hours.

3. The evolution of an exploration ability by
using a simulated appr oach.

Miglino, Nafasi, Taylor (1994) evolved recurrent neura
networks to control a mobile Lego robot that should explore
an open arena by using a rough simulator of the
robot/environment interaction. The on-board computer
used was a Miniboard 2.0 developed at the MIT Media
Laboratory, Cambridge Massachusetts. It was a single
board computer, optimized for controlling small DC
motors and receiving data from various electronic sensors.
The CPU was a Motorola 6811 micro-chip, an 8-bit
microprocessor with 256 bytes of internal RAM and 12K
bytes of electronically erasable programmable ROM. The
robot relied on two wheels for its locomotion and had two
optosensors located on the main frame. For each bout of
sensory stimulus, the robot performed one of four fixed
actions; a) go forward 10 cm; b) go backward 10 cm; ¢)
turn left 45 degrees; or d) turn right 45 degrees. Because of

wear and other unpredictable causes the effective action
could dlightly vary.

The robot was expected to explore the greatest
percentage of an open arena within an allotted number of
steps. The arena was 2.6 x 2.6 meters. At its center was a
white-colored square, 2.0 x 2.0 meters, marked into a
20x20 grid, 10 cm per side. Surrounding this was a black
border area, so that the optosensors on the robot could
detect whether it was on the white or on the black surface.
The lighting was provided by ordinary fluorescent room
lights. The number of steps allowed was 400 and lasted
about 6 minutes depending on the condition of the battery,
the sequence of steps, etc.

The robot was controlled by a recurrent neural network
(Elman, 1990), with 2 sensory units, 2 output units, 2
hidden units, and 1 memory unit. A simulated robot was
trained in a simulated environment that was represented in
a simplified way with respect to the real environment. It
contained 26 X 26 cells, each representing 10 cm square,
with a central white grid of 20 X 20 cells. The robot was
considered as always located above the center of a single 10
cm. square. The simulated optosensors always sensed one
cell ahead and behind with respect to the robot's current
location. Actions in the simulated environment were
represented as jumps from cell to cell.

A simple genetic algorithm (Holland, 1975; Goldberg,
1989) was used to evolve the weights for the neural
network connections. The genotype of each individual in
the population was represented by a vector of 17 integer
numbers. Each individual was randomly positioned in the
simulated environment 10 times, and, at each new starting
point, was let free to move for 400 steps. Networks were
scored for the number of cells touched by the simulated
robot and visited for the first time. Those networks with
higher scores were selected for reproduction. A population
size of 100 individuals per generation was used. The top 20
individuals were alowed to reproduce by generating 5
offspring each. Mutations were introduced by randomly
modifying 10% of the offspring genes. The simulation
lasted 600 generations (about 3 hours using a SUN
SparkStation).

The simulations showed that an efficient explorative
behavior emerged throughout generations. Three different
individuals representative of different phases of a particular
simulation were transferred into the physical robot and
tested in the real environment. Despite the fact that the
trajectories of the robots in the real environment
significantly differed from the trajectories observed in the
simulated environment, the authors showed that the
correlation between the fitness values observed in the two
conditions were fairly high (0.73).

4. The evolution of a navigation ability using a
hybrid (smulated/physical) approach

Nolfi, Miglino and Parisi (1994) developed neura
controllers for autonomus agents that should perform a

navigation task by using a hybrid approach. The robot used
was Khepera (see section 2). A simulator of the interaction
between such a robot and an environment similar to that
described in section 2 was built. The environment was a
rectangular box 60x35 cm with an obstacle of 30x5 cm
placed in the center. The walls and the obstacle were made
of wood and had natural wood color.

In order to build the simulator the authors sampled the
enviroment by letting Khepera turn 360° and by recording
the sensory activations at different distances with respect to
a wall (an automatic procedure that can be used to also
sample other types of objects was developed). The
activation level of each of the eight infra-red sensors was
recorded for 180 different orientations and for 20 different
distances. In addition, the authors sampled how and how
much their own Khepera moved and turned for some of the
20x20 possible states of the two motors (the result of the
other symmetrical states was computed without actually
sampling them). These information was used by the
simulator to set the activation level of the neural network
inputs and to compute the displacements of the robot in the
simulated environment during the first phase of the
evolutionary process. The physical shape of Khepera, the
environment structure, and the actual position of the robot
were accurately reproduced in the simulator with floating
point precision.

The neural network architecture was fixed and consisted
of a feed-forward neural network with eight input units
(coding the 8 infra-red sensors), 2 hidden units, and two
output units (coding the state of the motors). Maobile
thresholds and logistic activation functions were used.
Synaptic connection and thresholds were coded as floating
point numbers on the chromosomes. Each motor action
lasted 100 ms. A simple genetic algorithm was used to
evolve the weights for the neural networks. The genotype of
each individual in the population was represented by a
vector of 24 real numbers. Each individual was evaluated
by randomly positioning it in the simulated environment 2
times and then leaving it free to move for 500 steps each
time. The same fitness function described in section 2 was
used. A population 100 in size was used and the top 20
individuals were allowed to reproduce by generating 5
offspring each. Mutations were introduced by randomly
modifying 20% of the offspring genes. Noise was added to
the sensory activation values.

We ran 3 experiments starting with different randomly
assigned weights. The first part of the simulation,
performed in the simulated environment, lasted 300
generations (about 1 hour using an IBM RISK/6000). Then
the evolutionary process continued in the real environment
for 30 generations.

Figure 3 shows the performances of the best network
throughout generations in the simulated environment.
Figure 4 shows the performances of the same networks
tested in the real environment (performances of the 30
additional generations evolved in the real environment are
aso shown). Peformance of the evolved networks

significantly decreased if tested in the real environment. On
the other hand, performances similar to that obtained in the
simulated condition were obtained by continuing the
evolutionary process in the real environment for only few
generations. This means that the performance decrement in
the transfer to the real robot is not due to a failure of the
evolved behavioural strategies, but rather to a mismatch
between the simulated and the real sensory-motor
apparatus. The fast recovery rate documents that only few
adjustments were needed in order to achieve a successful
behaviour in the real environment.

0,7 -
06 -
05 -

04 -

fitness

03 -
02 -

01--"

100
200
300

generations

Figure 3. Performances of the best individuals throughout
generations tested in the simulated environment. (S.E.

displayed).

0,7 -
0,6 -
05 -

04 -

fitness

03 -
0,2 -

01 - _

100
300 | W

o
o
N

generations

Figure 4. Performances of the best individuals throughout
generations tested in the real environment. The first 300
generations have been evolved in simulated environment, the
last 30 generations in the real environment (S.E. displayed).

5. Simulation ver sus physical approaches

The experiments described in sections 2 and 4 show that, at
least in the case of simple (but not trivial) tasks, the
evolutionary process can be carried out on real robots.
Evolving a control systemin areal environment is certainly
time-consuming, but it appears to be feasible.

Nevertheless, as emerged from sections 3 and 4,
computer simulations can also be useful. As severa
researchers pointed out (Brooks, 1992; Floreano and

Mondada, in press), there are several reasons why those
who want to use simulative models to develop control
systems for real robots may enconter problems:

(a) Sensor reading should not be confused, as happens
in some simulative models, with the description of the
world. Real sensors do not separate objects from the
background, they do not operate in a stable coordinate
system, and they do not give information regarding the
absolute position of objects.

(b) Numerical simulations do not usualy consider all
the physical laws of the interaction of a real agent with its
own environment, such as mass, weight, friction, inertia,
etc.

(c) Physical sensors deliver uncertain values and
commands to actuators have very uncertain effects, whereas
often simulative models use grid-worlds and sensors which
return perfect information.

(d) Different physical sensors and actuators perform
differently because of slight differences in the electronics
and mechanics or because of their different positions in the
robot. Thisfact isusually ignored in simulative models.

Some of these problems may be easily eliminated by
designing the simulative models carefully. For example,
one should avoid using sensors or fitness functions that
cannot be implemented on a real robot or that use
information which is not available to the robot in the real
environment (see also next section). Designing simulators
based on samples of the real environment, as shown in
section 4, can also avoid very difficult problems like the
fact that identical sensors may respond differently. Finally,
noise can be added to the simulated sensors (as shown in
section 4) and introduced in the simulated actuators in
order to take into account the fact that physical sensors and
actuators do not perform accurately. The right amount of
noise that should be introduced in order to emulate the
inaccuracy of the physical sensors and actuators can even
be measured by confronting the behavior of the robot in
both the real and simulated environments by using different
levels of noise (see Miglino, Nafasi, and Taylor, 1994). We
believe that, as for the experiments described in sections 3
and 4, simulative models can be useful in developing
control systems for real robots when these special solutions
are taken into account.

However, one should not expect control systems which
have evolved in a smulated environment to behave exactly
the same asin the real environment. This is not necessary.
We can be satisfied by an above-zero performance after the
transfer to the real world. Once we have obtained this, the
evolutionary process can be continued in the rea
environment for a few generations and produce perfectly
adapted individuals (see section 4). From this point of view
the evolution in the simulated environment can be
interpreted as a selection for correlated characters and the
change from the simulated environment to the real
environment as a change in the environment (Prof. Charles
Taylor, personal communication but see also Falconer,
1981). Different kinds of hybrid approaches may be also

pursued: for example, the most promising individuals of a
population evolving in a simulated environment may be
tested in the real environment, or tests in the real
environment can be made at given intervals during the
evolutionary process.

Another important reason for using simulative models
is that they can alow preliminary studies of the
evolutionary process. It is well known that genetic
algorithms are sensitive to the initial conditions. Different
runs of the same simulation may produce solutions with
different performances. Evolution in simulated
environments, being usually less time-consuming than
evolution in real worlds, may allow us to ascertain to what
extent a specific evolutionary process is sensitive to the
initial conditions and therefore what the probability would
be that a limited number of simulations in real
environments could produce desired performances.
Similarly, simulative models can be used to set a number of
important initial parameters such as selecting a good
architecture for the neural network or finding the best
organization of the environment to be used during the
training process.

Even if it is certainly true that as the studied problems
will become more and more complex it will be more and
more difficult to build useful simulators, we think that at
the moment, the use of simulation can still be helpful.

6. The automatic evaluation of the individuals

The development of a control system for an autonomous
robot implies the evaluation of a very high number of
different individuals. This fact forces to adopt an automatic
way of evaluating individuals. This implies that the fitness
function should compute only information that is available
to the robot through its internal or external sensors. The
fitness function used in the experiments described in
sections 2 and 4 is a good example of that. It uses
information that is available to the robot through its Infra-
red sensors and through its internal sensors of the state of
the motors. On the contrary, the fitness function used in the
simulations described in section 3 may make the automatic
evaluation of the system in the real environment difficult
(unless one has some sort of device to detect the robot's
exact position). In simulations all information is available
and therefore the fitness function can be freely designed.
On the other hand one should consider that even if the
entire evolutionary process is to be performed in the
simulated environment, the fact that the fitness function
cannot be implemented in the physical condition can create
serious limitations in evaluating the real robot performance.

Additional sensors may be dedicated exclusively to the
fitness evaluation. In some experiments that we are
conducting we try to evolve arobot that should stop close to
objects of small sizes and ignore objects of larger sizes. In
order to automatically evaluate individuals we painted the
floor black around small objects and used this information
for rewarding individuals that went close to small-size

objects. The fitness was computed by reading the value of
an infra-red sensor positioned under the robot; this value is
not provided to the robot neural network. Therefore once
the evolutionary process ended, we could remove the black
spots on the floor without affecting the robot behavior (i.e.
the black spots and the sensor under the robot are used only
in order to evaluate the individuals fitness).

7. Hardwar e requirements

The evolutionary approach substantially affects also the
physical characteristics of the robots employed. Within the
classic approach, where the control system implementation
is necessarily preceded by a modelization phase, the
hardware designer is faced with many important
constraints. During the modelling of the interaction
between the robot and the environment, the model of the
robot itself plays a crucial role. Thus, the engineer must
design the robot in order to make its modeling process
feasible and simple enough. This leads to the choice of
sensors with very linear response, actuators with a limited
number of degrees of freedom (but geometrically optimal),
low-noise electronic devices that can take highly precise
measures, etc. Unfortunately, these systems may result as
being sub-optimal and not very efficient in the real world
where intrinsic noise at all levels, non-linearities, and
complex shapes are the basic characteristics.

The evolutionary approach does not require the choice
of a specific control system. Thus, all it is needed is some
general requirement concerning the proper functioning of
the sensors and of the actuators provided. Obvioudly, this
requirement is to be taken into consideration by the
designer, but it can be greatly simplified by the adoption of
agreater number of devices. Such an approach would hence
result in robots which are provided with more (and possibly
redundant) sensors than traditional robots. However, these
sensors would be basically simpler, without corrections for
intrinsic non-linearities, special protections from noise, and
highly precise measuring devices. It is up to the
evolutionary mechanism to exploit these non-linearities or
somehow amend them, and properly combine various
measures to extract the information necessary for a proper
functioning of the system itself. The working tools would
drastically change as well. As we have already pointed out,
within the classic approach the modelling phase plays an
important role, whereas the analysis of the robot behavior is
reduced to a confirmation of the model. On the contrary,
within the evolutionary approach the modeling process can
be reduced or completely avoided in order to leave more
space to behavior analysis which is indeed a key point of
the procedure. It is thus necessary to devise a set of new
tools and methodologies that could allow a better
observation, measurement, and analysis of the robot
behavior. This may also facilitate the automatic evaluation
and final performance monitoring.

Khepera is an attempt in this direction. Its sensory
devices are very simple, but still allow a wide range of

interesting experiments. In the basic version, Khepera is
provided with eight proximity sensors which are based on
emission and reception of infrared light. These sensors
afford both the measurement of ambient infrared light, and
of obstacle proximity by detection of the reflected infrared
light emitted by the robot itself. These measures are not
very precise, do not have linear characteristics, and strongly
depend upon external factors, such as the object materials,
color, illumination conditions, etc. Additional sensors can
be easily added thanks to a good hardware and software
modularity of the system. The miniaturization of the system
itself and the environment tools developed for this
experimental platform are clearly designed in the direction
of the analysis, rather than toward the classic design
approach. Khepera has been conceived and designed in
order to be easily used on the top of a desk, close to a
workstation and connected to it via a seria line that also
supplies the electricity to the robot. This configuration
affords optimal experiment conditions by allowing easy
monitoring of the robot, the real environment, and the
computer. Such a configuration is particularly well-suited
for experiments in evolutionary robotics where the robot
may display "pathological” form of behaviors for long
periods of time (initial generations), e.g. crashing into
walls or simply pushing against obstacles. With some
simple precautions (e.g., wallsin polistyrene) and thanks to
physical laws according to which homotetically reduced
objects offer greater mechanical robustness, these
experiments can be carried out without problems.

8. Conclusions

A methodology has not yet been well established in order to
evolve control systems for autonomous robots. In this paper
we showed three different examples of the application of
evolutionary techniques to real robots. The results of our
experiments showed that evolving control system in real
environment is feasible even if it is certainly time-
consuming (see section 2). We showed that also simulations
can be useful in evolving control systems for real robots. In
some cases even a rough model of the real robot and
environment can be enough to evolve control systems that
can then be transferred to the physical robot (see section 3).
There are ways of designing simulative models that
significantly reduce the discrepancies between the
simulated and real conditions. In particular we showed how
to design the simulative model by sampling the red
environment through the real sensors and actuators of the
physical robot may result in software models that
approximate much better the real environment condition
(see section 4). We believe that one should not expect the
control system which evolved in the simulated environment
to behave exactly the same in the real environment. We
rather believe that a hybrid approach in which part of the
evolution process is peformed in the simulated
environment and part in the real one would be more fruitful
(see section 4).

Another important issues is whether or not these
approaches can be applied to more complicated tasks and
which tasks are particolarly suited to them. We are
exploring different directions. In a current experiment
Floreano and Mondada (1994) provide the environment
with a zone where the robot battery gets automatically
charged (a simulated charge based on a hardware prototype
under test) and an oriented light source. The robot is also
provided with a few more sensors (light sensors), but the
fitness function is exactly the same as the one employed for
obstacle avoidance. The difference with respect to the
experiment described in section 2 is that the robot can
recharge its battery and thus prolong its own life if it passes
over the charging zone. By employing the same
evolutionary procedure, the robot learns to keep itself
"aive" by periodically returning to the charging zone. This
emergent homing behavior is based on the autonomous
development of an internal topographical map that allows
the robot to choose the appropriate trajectory as function of
its location and of its remaining energy. In another current
experiment the authors try to address the issue of object
recognition for grasping using the miniature robot Khepera
with an added gripper module. The environment is a
surface with a number of objects and obstacles. The abjects,
as in natural situations, feature different shapes and sizes.
The robot is expected to autonomously learn to approach
only those objects that can be physically grasped by its own
gripper module.

Acknowledgments

We would like to thank Domenico Parisi and Charles
Taylor who provided important comments. Dario Floreano
has been partially supported by C.N.R grant n.
93.01065.PF67 (co-ordinator: Walter Gerbino), Francesco
Mondada by the Swiss National Research Foundation
(project n. PNR23), and Stefano Nolfi and Orazio Miglino
by P.F. "ROBOTICA", C.N.R,, Italy.

References

Ackley, D. H., M. L. Littman, 1991. Interactions between
learning and evolution. In Artificial Life Il, edited by C. G.
Langton, J. D. Farmer, S. Rasmussen, C. E. Taylor.
Addison-Wesley. Reading, Mass.

Brooks, R. A. 1991. New approaches to robotics. Science
253:1227-1232.

Brooks, R. A. 1992. Artificia life and real robots. In
Toward a Practice of Autonomous Systems: Proceedings of
the First European Conference on Artificial Life edited by
F. J Vaea P. Bourgine. Cambridge, MA: MIT
Press/Bradford Books.

Cliff D. T., I. Harvey, P. Husbands. 1993. Explorations in
Evolutionary Robotics. Adaptive Behavior 2: 73-110.

CollinsR., D. Jefferson. 1991. Representations for artificial
organisms. In Proceedings of the Smulation of Adaptive
Behavior, edited by J. A. Meyer, S. Wilson. Cambridge,
MA: MIT Press/Bradford Books.

Dorigo M., U. Schnepf. 1993. Genetis-based machine
learning and behavior based robotics: a new syntesys. IEEE
Transaction on Systems, Man and Cybernetics, 23:141,153.

Elman J. L. 1990. Finding structure in time. Cognitive
Science, 2: 179-211.

Falconer D. S. 1981. Introduction to Quantitative Genetics,
Longman, London.

Floreano D., F. Mondada. 1994. Emergent homing
behaviour in a mobile robot. Technical Report LAMI n.
DF94.14l, Swiss Federal Ingtitute of Technology,
Lausanne.

Floreano D., F. Mondada. In press. Automatic Creation of
an Autonomous Agent: Genetic Evolution of a Neural-
Network Driven Robot. In From Animals to Animats 3:
Proceedings of Third Conference on Smulation of
Adaptive Behavior, edited by D. Cliff, P. Husbands, J.
Meyer, S. W. Wilson. MIT Press, Bradford Books.

Goldberg D. E. 1989. Genetic Algorithms in Search,
Optimization and Machine Learning. Reading, Mass.:
Addison Wesley.

Holland J. H. 1975. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor.

Koza J. R. 1990. Genetic Programming. A Paradigm for
Genetically Breeding Populations of Computer Programs to
Solve Problems. Technical Report STAN-CS-90-1314.
Stanford University Computer Science Dept.

Miglino O., R. Pedone, D. Parisi. 1993. A noise Gene for
Econets. In Proceedings of Genetic Algorithms and Neural
Networks, edited by M. Dorigo, Reading, Mass.: Addison
Wedley.

Miglino O., K. Nafasi, C. Taylor. 1994. Selection for
Wandering Behavior in a Small Robot. Technical Report.
UCLA-CRSP-94-01. Department of Cognitive Science,
University of California, Los Angeles.

Mondada F., E. Franzi, P. lenne. 1993. Mobile Robot
miniaturisation: A tool for investigation in control
algorithms. In: Proceedings of the third International
Symposium on Experimental Robotics, Kyoto, Japan.

Montana D., L. Davis. 1989. Training feed forward neural
networks using genetic algorithms. In Proceedings of the

Eleventh International Joint Conference an Artificial
Intelligence edited by N.S. Sridharan. San Mateo: Morgan
Kaufmann.

Nolfi, S., O. Miglino, D. Parisi. 1994. Phenotypic plasticity
in evolving neural networks: Evolving the control system
for an autonomous agent. Technical Report n. PCIA-94-04,
Ingtitute of Psychology, C.N.R., Rome.

Parisi, D., F. Cecconi, S. Nolfi. 1990. Econets. Neural
networks that learn in an environment. Network 1:149-168.

Parisi, D., S. Nolfi. In press. How learning can influence
evolution within a non-Lamarckian framework. In Plastic
Individualsin Evolving Populations, edited by R. K. Belew,
M. Mitchell. SFI Series, Addison-Wesley

