
Auto-teaching:
networks that develop their own teaching input

Stefano Nolfi Domenico Parisi

Institute of Psychology
National Research Council - Rome

E-mail: stiva@irmkant.Bitnet
domenico@irmkant.Bitnet

Abstract

Back-propagation learning (Rumelhart, Hinton and Williams, 1986) is a useful
research tool but it has a number of undesiderable features such as having the
experimenter decide from outside what should be learned. We describe a
number of simulations of neural networks that internally generate their own
teaching input. The networks generate the teaching input by trasforming the
network input through connection weights that are evolved using a form of
genetic algorithm. What results is an innate (evolved) capacity not to behave
efficiently in an environment but to learn to behave efficiently. The analysis of
what these networks evolve to learn shows some interesting results.

Introduction

In many supervised learning models of neural networks a vector of activity values
is provided as an external teaching input to the network. Each activity value in the
vector is compared with the computed value of the corresponding output unit and the
resulting error is used to modify the connection weights.

Notwithstanding its usefulness for training networks, an external teaching input is
not very plausible biologically and has a number of questionable properties.

(1) In nature it is very unlikely that an organism has an external teacher that
decides what is the performance that is expected from the organism and describes this
performance to the organism so that it can learn.

(2) More generally, it is unclear what is the origin of teaching input. In a sense, a
teaching input is a statement of a goal performance that an organism is supposed to
learn to perform. But one would like to have organisms develop their own goals
without being told from outside what these goals should be.

(3) Teaching inputs are static objects that remain always the same for each given
input (unless of course the experimenter changes them), are not generated by the
network itself, and do not adjust themselves as a function of circumstances. On the
other hand, goals emerge, develop, and are learned.

4) From a purely algorithmic point of view, often the experimenter does not know

the correct solution for a task. One would like the network itself to find a solution to
the problem. The experimenter may be able to evaluate the appropriateness of a
solution that the network has found but he or she cannot find good solutions himself
or herself and neither can he or she specify what a network that incorporates such as
solution should do in every situation. More concretely, in some cases the
experimenter may not be able to provide the network with the appropriate set of
input-teaching input pairs. Zipser (1990) considers two cases, one in which the
function that generates these pairs is known and can be used to generate the teaching
input, and the other in which "no function is known but where empirical input-output
data is available" which "can be used to train the network" (Zipser, 1990 p.357).
However, there is a third case in which neither the function nor the empirical data are
available and still we may want the network to learn.

Learning algorithms vary in the amount and nature of the feedback required. Fully
supervised paradigms such as backpropagation (Rumelhart, Hinton, and Williams,
1986) supply immediate and detailed correct answers as feedback. Reinforcement
paradigms (Sutton, 1984) supply only judgments of right or wrong. Simulated
annealing algorithms (Kirkpatrick, Gelatt and Vecchi, 1983) and genetic algorithms
(Holland, 1975), applied to neural networks, supply still less, only a global evaluation
of network's performace. Unsupervised paradigms (Hopfield, 1982; Kohonen, 1982)
do not require supervision at all and therefore avoid these problems. On the other
hand, unsupervised learning models cannot learn arbitrary functions and appear to be
restricted to tasks in which what must be learned is basically the statistical properties
of the inputs (Zipser, 1990, p.358).

Nolfi, Elman, and Parisi (1990) described networks that simulate organisms
moving in an environment and looking for food elements. Using a population of
networks and a genetic algorithm (i.e. selective reproduction and random mutation of
some of the connection weights) we showed that these networks can find good
solutions to the problem of approaching food. Although they were not told what the
appropriate output (movement in the environment) was for each input (sensory
information about food location), there was evolutionary emergence of a capacity to
approach food, i.e. to respond with an appropriate output to each input. The only
supervision here concerned the choice of which organisms were allowed to reproduce
and which were not (organisms that ate more food elements during their life-time
generated offspring) but this is exactly what natural selection provides to real
organisms. In addition to being selected for eating ability, our networks were
individually taught during their life to predict how the food location changed relative
to the organism as the organism moved in space. This learning had a positive
influence on the evolution of the food approaching capacity. We used
backpropagation to teach these networks to predict since it is the environment itself
that provides the teaching input in this type of prediction learning.

However, in other cases organisms appear to generate internally their own
feedback for learning and to evolve autonomously a specification of what to learn.
Ackley and Littman (1991) have simulated the evolution of very simple organisms
similar to those just described using reinforcement learning in addition to evolution.
The organisms are represented by neural networks whose behavior is evaluated
during life just as right or wrong (positive evaluations result in a reinforcement and
negative evaluations in a change of the current weights). What it is important to

notice is that the supervision required for networks' evaluation, in this model, is also
evolved through the evolutionary process so that the life-learning process does not
require any other supervision than the fitness-based selection of the pure evolutionary
model.

In this paper we will present a similar approach in which fully supervised learning
(and not just reinforcement learning) is obtained through evolution (i.e. without any
external supervision other than networks' selection). Networks are not told from
outside what is the desired performance they should learn to approximate, but they
evolve the capacity to internally generate such "auto-teaching" input.

Teaching units

Consider a typical back-propagation network. The network is made up of a layer
of input units, a layer of outputs units, and one or more layers of hidden units. A
number of patterns are sequentially applied to the input units and for each pattern the
network computes the corresponding pattern on the output units. When learning starts
the connection weights are random so that an arbitrary output pattern is computed for
each input pattern. For each input pattern, however, the network is provided with a
desired pattern of activation values on the output units (teaching input). When an
output pattern is generated each computed activation value is compared with the
corresponding correct value and the resulting difference is called "error". The error is
back propagated through the network leading to error-reducing modifications of the
connections weights. After a number of learning "epochs" (runs of all the input
patterns) each input pattern generates an output pattern which asymptotically
approximates the desired performance. The network has learnt.

Figure. 1. Architecture of a feedforward network with one hidden layer. Teaching units are
represented as little squares; each teaching unit is at the right of the output unit that it teaches.

If we represent the teaching input as a vector of activation values on a set of units
each corresponding to one output unit and we call these units teaching units, it is
correct to say that these units are "external" to the network (Figure 1). In fact, the
teaching units are not linked via connections to the other units of the network. As a
consequence, the activation value of these teaching units is decided from outside, i.e.
by the experimenter.

In order to eliminate these properties of the traditional notion of teaching input we
take two steps. The first step is to make the teaching units part of the network. We
will assume that there are regular connections linking the other units of the network to
the teaching units. This can be done in a number of different ways. The simplest case
is that in which an additional set of hidden units is provided (Figure 2). We will call
these units which are connected to a network and generate teaching input for the

network "auto-teaching" units and the teaching input they generate "auto-teaching"
input.

Figure 2. Auto-teaching network. An additional set of hidden units receive connections from the
standard input units and send connections to the teaching units. This is the teaching sub-network.

Consider now what would happen in a network such as (2) if one applies an
activation pattern to the input units. The network would compute activation values for
the hidden units first (both for the hidden units of the standard sub-network and for
the hidden units of the teaching sub-network), and then the activation values for the
output units and for the teaching units. As soon as these latter activation values have
been computed the network is ready to modify the connections weights of the
standard sub-network on the basis of the discrepancy (error) between the activation
value of each of the teaching units and the activation value of the corresponding
output unit. Back-propagation can be applied as usual and will lead to new connection
weights in the standard sub-network. The connection weights of the teaching network
will remain the same.

However, it is clear that the network would not be learning. All the initial weights
are randomly chosen and therefore the teaching input to the standard network, i.e. the
computed activation values of the teaching units, is arbitrary. As a consequence, any
resulting change to the connection weights of the standard sub-network would be
similarly arbitrary and it wouldn't lead anywhere. We need to find out how to make
our networks develop useful teaching input.

We think that an appropriate mechanism for selecting connection weights that can
generate good teaching inputs in our type of networks could be a process similar to
evolution. Training networks by using evolutionary methods is being actively studied
at present (Hinton and Nowlan, 1987; Goldberg and Holland, 1988; Belew 1989;
Nolfi, Elman and Parisi 1990; Belew, McInerney and Schraudolph, 1990; Miller and
Todd, 1990). With evolutionary methods networks that are able to produce a given
performance are not developed by individual training and weight modification, but by
selective reproduction and random variation (or crossover). We will show that this
method of genetic training can be applied to our networks with internal teaching units
in order to develop networks that generate good auto-teaching.

The problem

Let us immagine that our goal is to create an organism (O) that is able to find and
eat food in its environment. An O's environment is a two-dimensional square divided

up into cells. At any particular moment O occupies one of these cells. A number of
food elements are randomly distributed in the environment with each food element
occupying a single cell. O has a facing direction. We shall imagine it has a
rudimentary sensory system that allows it to receive as input from the environment
the angle (relative to where O is currently facing) and the distance of the nearest food
element. We shall also equip O with a simple motor system that provides it with the
possibility, in a single action, to turn any angle from 90 degrees left to 90 degrees
right and then move from 0 to 5 cells forward. Finally, when O happens to step on a
food cell, it eats the food element which disappears.

The basic network underlying O's behavior is a shown in Figure 3.

Figure 3. Os' Architecture. The 3-layer network is made up two sub-parts, a standard network and a
teaching network. The two sub-networks share input units but each has a separate set of seven hidden
units and two output units.

The output units of the standard network are interpreted as generating the motor
actions while the output units of the teaching network (i.e. the teaching units) are
interpreted as generating teaching input for the corresponding output units. Sensory
input is encoded by the 2 input units representing the angle and the distance of the
nearest food element (both values are scaled from 0.0 to 1.0). Movement is encoded
in the 2 motor output units that specify amount and direction of turn and length of the
step forward, respectively (these two values are also scaled from 0.0 to 1.0). Each
network is initially assigned random weights, selected between -1.0 and 1.0, on all its
connections .

When O is placed in the environment that has been described above, a sequence of
events will occur. Sensory input is received on the input units. Activation flows from
the input units to both the hidden units of the standard network and to those of the
teaching network and then from these hidden units separately to the output units of
the standard network (coding actual movements) and to the output units of the
teaching network (coding teaching input for the standard network). The values on the
two output units are then used to move O in the manner specified by these values,
thereby changing the sensory input for the next cycle. The backpropagation algorithm
uses the discrepancy between the two sets of output units to change the connection
weights of the standard network.

Genetic adaptation

We begin with 100 Os each having the same architecture and a different random
assignment of connection weights. This is Generation 0 (G0). G0 networks are
allowed to "live" for 20 epochs, where an epoch consists of 250 actions in 5 different
environments (50 actions in each) for a total of 5000 actions. The environment is a
grid of 40x40 cells with 10 pieces of food randomly distributed in it. The Os are
placed in individual copies of these environments, i.e. they live in isolation.

At the end of their life (5000 actions) Os are allowed to reproduce. However only
the 20 Os which have accumulated the most food in the course of their random
movements are allowed to reproduce by generating 5 copies of their weight matrix.
These 20x5=100 new Os constitute the next generation (G1). Mutations are
introduced in the copying process by selecting at random 4 weights of the standard
sub-network and 4 weights of the teaching sub-network. A random value between
+1.0 and -1.0 is added to each selected weight value (this implies that weights can
increase in size evolutionarily). Inheritance is strictly Darwinian. A reproducing
network transmits its inherited weight matrix to its offspring, without any of the
changes in the standard sub-network that result from lifetime learning.

After Os of G1 are created they are allowed to live for 5000 cycles. The behavior
of these Os differs slightly from that of preceding generation (G0) as a result of two
factors. First, the 100 Os of G1 are the offspring (copies) of a subset of the Os of G0.
Second, the offspring themselves differ slightly from they parents because of the
small mutations in their weights. These differences lead to small differences in mean
food eaten by the Os in G1. At the end of their life the 20 best individuals are allowed
to reproduce 5 times, forming G2. This process continues for 200 generations.

Simulation 1

In this first set of simulations we used a population of Os with the architecture
shown in Figure 3. Mutations were applied both to the standard weights and to the
teaching weights (4 standard weights and 4 teaching weights randomly selected are
mutated). Each O had a lifespan of 250 movements in 5 different worlds (50
movements in each world) for a total of 5000 movements. At the end of a generation,
the 20 Os which had gathered the most food were allowed to reproduce by generating
5 offspring. A learning rate of 0.15 was used.

One first question that this simulation was expected to answer was if the
evolutionary process could cause the emergence of teaching weights generating non-
arbitrary auto-teaching input. Can mutation and selective reproduction generate,
generation after generation, teaching input so that learning based on it leads to a
better eating capacity? In other words, can evolution be at the base of an auto-
teaching capacity?

The answer to this question is Yes as is shown in Figure 4. There is no
improvement in eating performance during life for the first 20 generations. However,
later in the evolutionary process eating increases after the very first epochs of life and
this increase is greater with successive generations of Os. This implies that evolution
progressively selects networks that internally generate teaching input which can be

used by the networks themselves to learn during their life how to search for food
efficiently.

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20

F
o
o
d

E
a
t
e
n

Epoch of Life

G180-199

G140-159

G100-119

G80-99

G60-79

G40-59

G20-39

G0-19

Figure 4. Eating performance of the best individuals of successive generations across the epochs of
their life (performance at epoch 0 of life, i.e. at birth, is calculated by letting Os live for one epoch
without having any auto-teaching). For pratical reasons we show the average results of the best Os of
a group of successive generations by a single curve. Each curve represents the average performance
of 10 different simulations with different random assignments of weights.

Figure 4 also implies that the evolutionary process, in addition to producing good
auto-teaching capacity, can also cause an increase in the eating capacity with
successive generations of Os. However, it is an open question how this increase
would compare with the increase we would obtain without auto-teaching or, more
generally, without any kind of learning during life. We then run a new set of
simulations with a network architecture that only include the standard network.
While the simulation without auto-teaching produces a better evolutionary curve in
the first 60 generations (see Figure 5), after that there is a clear advantage of the Os
with the more complex architecture and learning during life. It appears then that the
simpler evolutionary process that operates on the standard weights only, i.e. directly
on the eating capacity itself, is quicker in producing results but afterwards it reaches a
lower local maximum. On the other hand, the more complex selection process that
operates on both the standard weights and the teaching weights is slower but finally
produces a higher maximum. (For an explanation of how learning can help evolution
see Hinton and Nowlan (1987) and Nolfi, Elman and Parisi (1990)).

0

100

200

300

400

500

0 25 50 75 100 125 150 175

F

o

o

d

E

a

t

e

n

Generations

with learning

without learning

Figure 5. Increase in eating capacity of the best individuals across 200 generations for the simulations
with auto-teaching versus a simulations without it. Each curve represents the average performance of
10 different simulations.

The evolutionary process operating on Os that learn during their life can produce
more fit Os in two different ways: (a) it can develop Os with better and better
standard weights, i.e. Os that eat more at birth with respect to the individuals of the
preceding generations, and/or (b) it can develop Os with better and better teaching
weights, i.e. Os that generate increasingly better auto-teaching input. This traslates in
better learning and therefore in better eating performance.

To test which of these two possibilities is the correct one, i.e. what is the
respective role or importance of the two sub-networks in the evolutionary process, we
took the best individuals of each generation and we let them move in their
environment without any learning. In other words, we tested the networks'
performance at birth. If we rule out learning (see Figure 6), performance abruptly
decrease. This means that the Os in this simulation are not selected for their ability to
approach food. They are selected for their ability to learn to approach food, as also
Figure 4 shows.

0

100

200

300

400

500

0 50 100 150

F

o

o

d

E

a

t

e

n

Generations

learning

no-learning

Figure 6. Performance with and without life-learning as a function of generations. The "learning"
curve represents the performance of individuals with life learning and the "no learning" curve
represents their performance at birth, i.e. without any learning. Each curve represents the average
performance of 10 different simulations.

We have attributed so far the evolutionary increase in how much is learned during
life across generations (see Figure 4) to the evolutionary emergence of better and
better auto-teaching input. In other words, what is being selected are the weights of
the teaching sub-network. At this point we might ask if the standard network plays
any role at all in the evolution of the eating capacity which is shown in Figures 5. In
fact, it could be the case that the standard weights are not selected in any way and
therefore they have no role in such evolution. To test this further hypothesis we tested
the same 5 best Os of each generation with life learning, but we first randomized their
standard weights at birth. If these weights play no role at all, then the only thing that
evolves in our Os would be the teaching weights generating better and better teaching
input. In such a case we would have an equally good development of eating capacity
with initially randomized standard weights. Figure 7 shows that this is not the case.
The curve that is obtained demonstrates that by randomizing the standard weights at
birth we destroy the O's capacity to learn to approach food. This result tells us that the
standard weights also are selected by evolution and they play a crucial role from the
point of view of Os' behavior. What appears to be happening is that the standard
weights are not selected for directly incorporating good eating behaviors but they are
accurately selected for their ability to let such a behavior emerge through life
learning. In other words, the increased learning across generations that we observe in

Figure 4 is due to both an increased capacity to generate good auto-teaching input
(selection of teaching weights) and to an increased capacity to learn from this auto-
teaching input (selection of standard weights).

0

100

200

300

400

500

0 50 100 150

F

o

o

d

E

a

t

e

n

Generations

inherited standard weights

randomized standard weights

Figure 7. Performance with inherited and with randomized standard weights as a function of
generations. Each curve represents the average performance of 10 different simulations.

Teaching internal units

In networks of type (2) auto-teaching units are provided for the output units, that
is, for the units that interact with the external environment. Hence, these Os can
evolve (and actually evolve) a capacity to learn to perform appropriate actions. On the
other hand, we can suppose that Os could learn some other task which is not directly
related to their external behavior but can indirectly help to develop such external
behavior.

Biological organisms receive a huge amount of information that they can use to
learn useful things. Perception of the world changes in time as a consequence of the
Os' actions themselves and of intrinsic changes of the world. From those changes very
complex things such as world maps and object classification can be learned using as
teaching input the input pattern itself (auto-associative learning; see Willshaw, 1981)
or the input pattern at time t+1 (prediction learning; see Elman, 1990; Weigend,
Huberman and Rumelhart, 1990). Learning this kind of tasks require a full supervised
learning, and not a reinforcement learning like that used by Ackley and Littman
(1991), because in this case the environment provides a very detailed feed-back.

How can we obtain this type of detailed learning without external feedback? We
would also like to find a way for not deciding in advance which is the correct task to
learn. Consider the standard back-propagation model in which the teaching input is
decided by the experimenter. In such a model it is impossible to teach internal units.
The function of an internal unit (i.e. what it represents) is completely unknown before
the network finds a useful set of weights, and even after that, such a function usually
is not easily interpretable. Hence, we cannot know what kind of teaching input we
should use for teaching these internal units. On the other hand, in networks that
develop their own teaching input like our auto-teaching networks it makes sense to
have internal units that have teaching inputs (i.e. internal units that have their own
corresponding teaching units). What these internal units will eventually represent and
what teaching input they must receive is not known but, since the kind of teaching
input that these units receive changes as a consequence of mutation and selection, we
might expect that a useful teaching input (and so a useful function) for these units can
be found.

Let us consider the network shown in Figure 8. The network has 2 output units that
codify the actions that the organism performs in the environment. In addition, there
are three other units that are identical to the output units from the point of view of the
connectivity pattern but that do not codify any action of the organism or, more
generally, any desired or interpretable output. We call these units pseudo-output units.
The activation values that these three units should have for each input pattern is
simply the activation values of the three corresponding auto-teaching units. Because
the networks start with random weights, these auto-teaching units, at the beginning,
have completely random values for each input pattern. However, selection and
mutation should produce more and more useful values for them. And after a certain
number of generation the three teaching units might begin to teach some useful task,
i.e. a task that helps Os to develop more appropriate external behavior.

Figure 8. Auto-teaching network. Three internal units receive teaching input while the two output
units do not.

Why should auto-teaching of internal units be useful? Why should learning to
perform a task that does not have any direct effect on the network actions make the
network more fit? The input stimuli from the environment are elaborated by the
weights that go from the input units to the teaching network's hidden units and from
these hidden units to the auto-teaching units. The teaching input which is generated
produces a change in the weights of the standard sub-network and, what is critical, in
the weights that go from the input units to the standard network's hidden units. As a
consequence, the internal representation of the input stimuli changes during life and,
because of the evolutionary process, these changes may have a tendence to improve
Os' behavior. (For a more detailed analysis of how learning a task that does not have a
direct effect on the network's output could increase performance see: Nolfi, Elman,
and Parisi (1990), Parisi, Cecconi, and Nolfi (1990)).

Simulation 2

In a second set of simulation we used a population of Os with the architecture
shown in Figure 9. These Os have a standard network with two additional output
units which don't have any effect on the world. These two pseudo-output units have
associated two auto-teaching units that generate teaching input for them. The teaching
sub-network shares, as usual, the input units with the standard sub-network and has

its own set of seven hidden units.

Figure 9. Architecture of Os of Simulation 2. Auto-teaching is provided for two pseudo-output units
instead that for the two motor output units as in Simulation 1.

Because of this architecture, the weights that connect the input to the standard
hidden units but not the weights that connect these hidden units with the two (real)
output units are changed during life. In other words, the auto-teaching changes the
internal representation of the input stimuli within the standard network.

All other parameters remained the same as those of the previous simulation.
Mutations were applied both to the standard weights and to the teaching weights (4
standard weights and 4 teaching weights randomly selected are mutated).
Reproduction was based on the parent's weight matrix at the time of the parent's own
creation. Each O had a lifespan of 250 movements in 5 different worlds (50
movements in each world) for a total of 5000 movements. At the end of a generation,
those Os which had gathered the most food were allowed to reproduce by generating
5 offspring. A learning rate of 0.15 was used.

 If we look at Os' performance during their life (see Figure 10) we see that in this
case, in contrast with Simulation 1, there is only a very small increase in the eating
performance during Os' life (such an increase concerns the very first epochs of life
and reaches the largest amount from the 40th to the 59th generation). This fact seems
to suggest that, in this simulation, learning has a very indirect effect on evolution (see
paragraph 8 for a more detailed interpretation of this result).

As we already noted, if we compare this simulation with the first one we note an
important difference. In the first simulation we know what the auto-teaching units are
teaching to the standard network: they are teaching the correct movements in the
environment since it is the movement-coding output units of the standard network
that are taught by the auto-teaching units. By contrast, it is not clear at all what the
auto-teaching units are teaching to the standard network in this simulation. We cannot
directly interpret what is taught by the auto-teaching units since the standard
network's pseudo-output units that are taught by the auto-teaching units in this
simulation do not have any clear interpretation.

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20

F
o
o
d

E
a
t
e
n

Epoch of

G120-199

G60-119

G40-59

G20-39

G0-19

Figure 10. Eating performance of the best individuals of successive generations as a function of
epochs of life. For pratical reasons we show the average results of the best Os of a group of
successive generations by a single curve. Each curve represents the average performance of 10
different simulations.

However, we can make an attempt at determining in a more indirect way what
teaching function is gradually developed by the auto-teaching units in the course of
evolution. One first thing that we can do is to ascertain how much the activation
values of the two auto-teaching units vary as a function of the different input patterns,
generation after generation. At the beginning, since the random weights simply blur
the input, we should expect the two auto-teaching units to have always approximately
the same values for every input pattern. After a certain number of generations, if the
teaching units have evolved some useful teaching function, we should expect an
increase in the variability of the activation values of these units.

0

0.05

0.1

0.15

0.2

0 25 50 75 100 125 150 175

a

c

t

i

v

a

t

i

o

n

v

a

r

i

a

b

i

l

i

t

y

Generations

Figure 11. Variability (range of variation) in the activation values of the auto-teaching units of
Simulation 2 across 200 successive generations. Average result of 10 different simulations.

Figure 11 shows that our expectations were correct. The variability in the
activation values of the teaching units is rather low in the first generations and then it
increases and reaches a peak after 75 generations. What was not expected is that such
variability shows a decrease after that. If we look at the activation values of the two
auto-teaching units in this later part of the evolutionary process, we find that often
they have an activation value very close to 0.0 or 1.0 for every input pattern. At the
same time also the activation values of the two pseudo-output units of the standard
network which are taught by these auto-teaching units go to 0.0 or 1.0 since birth. We

can conclude that in the later part of the evolutionary process the auto-teaching units
of most simulations have ceased to teach anything new to the standard network. The
overall picture is one in which our networks take some time to evolve an auto-
teaching capacity but then, after the auto-teaching units have helped in the
evolutionary emergence of good movement strategies, these same units do not have
any additional role to play and evolution cuts them off.

Figure 12. Cluster analysis (based on euclidean distance) of auto-teaching patterns of the best O of
the 90th generation. Similar teaching patterns are represented by closer branches of the hierarchical
tree. The first 50 patterns, corresponding to the first 50 spreadings of activation (cycles of life), were
used. Notice that each teaching pattern is identified by the corresponding input pattern that has
generated it. The first number refers to the activation value of the first input unit (coding the angle of
the nearest food element) and the second number to the activation value of the second input unit
(coding the distance of the food element).

These results concerning the variability of the activation values of the auto-
teaching units are interesting but they do not say anything about the actual content of

what is taught by these units. One possibility is that the function of the auto-teaching
in this simulation could be to help the standard network to develop good internal
representations. In order to test this hypothesis we made a hierarchical cluster analysis
of the teaching patterns generated by the teaching network of the best organism of
several generations. One of the most interesting results is the one we obtained
analyzing the best O of the 90th generation.

As Figure 12 shows, it is not always the case that similar input patterns generate
similar teaching patterns. More particularly, the clusters indicated by circles contain
dissimilar input patterns that generate similar teaching patterns. At this point we can
ask if there is some relation between the manner in which different input patterns are
classified together by the teaching network (in terms of the similarity of the teaching
output they generate) and the type of correct movement output that these input
patterns require. The response is yes.

Figure 13. Cluster analysis of auto-teaching patterns of the best O of the 90th generation. The same
first 50 patterns of Figure 12 were used. Each teaching pattern is identified by the corresponding

movement output pattern generated by the network. The first number designates the angle of the
movement and the second number the length of the step forward.

As Figure 13 shows, input patterns that generate similar movement responses in an
efficient organism such as the best individual of generation 90 also generate similar
teaching patterns. More specifically, the circles show that sensory states that must
generate steps forward of the organism of approximately the same length are
classified together in the cluster analysis of the corresponding teaching patterns. We
can conclude that the function of the auto-teaching mechanism in this simulation is to
teach an individual organism to develop good internal representations of the sensory
information so that appropriate movement responses to this information can be more
easily selected by the organism.

Discussion

The general result of the simulations described in this paper is that we have been
able to evolve networks with auto-teaching units. The selection and mutation process
of evolution can produce networks that can internally generate their own teaching
input. The individual learning that results from this teaching input during life has a
facilitatory effect on the evolution at the population level of the capacity - food
approaching - that constitutes the criterion for selection.

Furthermore, some more specific results appear in our data:

(1) What is inherited at birth is often interpreted as a capacity to behave, that is, to
respond in effective ways to incoming stimuli. Networks of simulation 1 possess no
such capacity at birth although the evolution of such a capacity is possible as is shown
in simulations without life-learning. The connection weights they inherit from their
parents do not allow them to respond to sensory information from the nearest food
element in such a way that they approach the food. However, the evolution process
has left an important trace in their inherited weights: a capacity to learn during life.

That the learning capacity is an evolved one is shown by the fact that there is no
improvement in performance (no learning) during life in the first generations.
However, as soon as the selection process has had an opportunity to demonstrate its
power, the connection weights of both the standard and the teaching sub-networks are
so selected that individual networks are born with an innate capacity to learn (their
ability to approach food improves during their life). This increased learning capacity
appears to be due to two complementary factors. One is the evolving capacity of the
teaching network to generate useful teaching input for the standard network; the other
is the evolving capacity of the standard network to take advantage of this teaching
from the teaching network. No one factor without the other can explain the results
that are obtained.

(2) Simulation 2 shows that the notion of auto-teaching can have a very abstract
interpretation. In Simulations 1 what is taught by the auto-teaching units and what
evolves across generations is the same thing: the capacity to approach food. This
results from the fact that the movement output units of the standard network are
directly taught by the teaching units. On the other hand, in Simulation 2 the notion of
pseudo-output units that are taught by the teaching units allows us to detach whatever

capacity is taught by the teaching units from the actual output of the standard
network, and therefore from the actual capacity in terms of which selection occurs.
This makes the auto-teaching mechanism a very general and powerful one. In fact, we
don't have to specify what is taught by the auto-teaching units. Any unit receiving
activation from within a network can be taught by a corresponding auto-teaching unit
in such a way that the learned changes in the connection weights leading to that unit
can make the contribution of the unit to the network's final output a more appropriate
one. In fact, the auto-teaching units of Simulation 2 could directly teach the hidden
units of the standard network, without the indermediation of the pseudo-output units.

Our analysis of what the auto-teaching units of Simulation 2 actually teach points
to a general interpretation of the function of auto-teaching units in this type of
architecture. Auto-teaching units may be an evolved mechanism for helping a
network to develop during life more appropriate internal representations for input
data, that is, internal representations (activation values on the hidden units) that are
more easily mapped onto the final output than the original input representations.
Developing good internal representations when the input-output mapping is a
complex one, i.e. when "the similarity structure of the input and output patterns is
very different", is the fundamental function of hidden units (Zipser and Rumelhart,
1990, pag. 193). Auto-teaching units might be an evolved mechanism to accelerate
the learning of good internal representations.

(3) Another interesting result of Simulation 2 is that the auto-teaching mechanism
almost extinguishes itself in the last generations. In other words, there appear to be
two phases in the evolution of the auto-teaching units. In the first phase, after a
number of initial generations connection weights at birth appear to be so selected that
an innate capacity to learn results. This is testified by the rapid increase in
performance in the very first epochs of life of individuals belonging to these middle
generations. However, this innate learning capacity does not last for the entire course
of evolution that we have studied. There is a second phase of the evolutionary process
in which the innate learning capacity seems to disappear.

This result is in contrast with what was obtained in Simulation 1, where learning
during life continues throughout the evolutionary process. The reason appears to
reside in the different network architectures in the two simulations. In Simulation 1
all the weights of the standard network are subject to learning through the auto-
teaching mechanism. Hence, it is possible to gradually select teaching weights that
can increase the standard weights' performance from null to a more fit value. In
Simulation 2, on the contrary, only the lower connection weights of the standard
network, those from the input to the hidden units, learn on the basis of the auto-
teaching input. The higher weights, those from the hidden units to the output units,
are not influenced by this learning since error is not backpropagated through them.
Therefore, the higher weights must be selected to directly incorporate an appropriate
mapping from the internal representations in the hidden units to the final motor
output. One result of this different architecture and manner of functioning might be
that, in Simulation 2, after a certain number of generations the standard network
inherits "higher" weights that are appropriate and sufficient for executing the task
(approaching food) and the learning mechanism associated with the auto-teaching
units becomes superfluous or perhaps even conterproductive. As a result, the auto-
teaching mechanism is estinguished by evolution. This might be an interesting feature

of an auto-teaching mechanism compared with the more usual learning based on an
external teaching input. Auto-teaching can emerge evolutionarily when it is useful
and it can annihilate itself when it becomes dysfunctional.

An important advantage of an innate learning capacity in natural organisms might
emerge when organisms must adapt during life to varying and changing
environments. We completely ignored this aspect of learning in our simulations since
we used simulated environments that do not change either at the evolutionary scale or
at the life-time scale. In fact, one possible extension of the present work on auto-
teaching could be to demonstrate the importance of this type of mechanism in
simulated organisms that live in changing environments or that themselves change
their environment.

References

Ackley, D.E. and Littman, M.L. 1991. Proceedings of the Second Conference on
Artificial Life. Addison-Wesley: Reading, MA.

Belew, R.K. 1989. Evolution, learning and culture: computational metaphors for
adaptive algorithms. CSE Technical Report CS89-156. University of California, San
Diego.

Belew, R.K., McInerney, J., Schraudolph, N. 1990. Evolving networks: using the
genetic algorithm with connectionist learning. CSE Technical Report CS89-174.
University of California, San Diego.

Elman, J.L. 1990. Finding Structure in Time. Cognitive Science, 14, 179-211.

Goldberg, D.E., Holland, J.H. 1988. Genetic Algorithms. Machine Learning, 3, 95-
245.

Hinton, G.E., Nowlan S.J. 1987. How Learning Guides Evolution. Complex System,
1, 495-502.

Holland, J.J. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor,
Michigan: University of Michigan Press.

Hopfield, J.J. 1982. Neural Networks and Physical Systems with Emergent Collective
Computational Abilities. Proceedings of the National Academy of Sciences, U.S.A.,
79, 2554-2558.

Kirkpatrick, C.D., Gelatt, M.P., Vecchi, M.P. 1983. Optimization by Simulated
Annealing. Science. 220.

Kohonen, T. 1982. Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43, 59-69.

Miller, G.F. and Todd, P.M. 1990. Exploring adaptive agency I: theory and methods
for simulating the evolution of learning. In D.S. Touretzky, J.L. Elman, T.J.
Sejnowski and G.E. Hinton (eds.), Proceedings of the 1990 Connectionist Models

Summer School. San Matteo, CA: Morgan Kaufmann.

Nolfi, S., Elman, J, and Parisi, D. 1990. Learning and evolution in neural networks.
CRL Technical Report 9019. University of California, San Diego.

Parisi, D., Cecconi, F., Nolfi, S. 1990. Econets: Neural Networks that Learn in an
Environment. Network, 1, 149-168.

Parisi, D., Nolfi, S. and Cecconi, F. 1991. Learning, behavior, and evolution. In:
Varela, F, Bourgine, P. Toward a pratice of autonomous systems. MIT Press.

Rumelhart, D.E., Hinton G.E., and Williams, R.J. 1986. Learning internal
representations by error propagation. In D.E. Rumelhart, and J.L. McClelland, (eds.),
Parallel Distributed Processing. Vol.1: Foundations. Cambridge, Mass.: MIT Press.

Sutton, R.S. 1984. Temporal credit assignment in reinforcement learning. University
of Massachusetts. Departement of Computer and Information Science. Technical
Report 84-2. Amherst, MA.

Weigend, A.S., Huberman, B.A., Rumelhart, D.E. 1990. Predicting the Future: a
Connectionist Approach. International Journal of Neural Systems, 1, 193-209.

Willshaw, D. 1981. Holografy, associative memory and inductive generalization. In
Hinton, G. and J. Anderson (Eds.) Parallel Model of Associative Memory. Hillsdale:
Lawrence Erlbaum Associates.

Zipser, D. 1990. Modeling cortical computation with backpropagation. In M.A.
Gluck and D.E. Rumelhart (eds.) Neuroscience and Connectionist Theory. Hillsdale,
N.J., Erlbaum.

Zipser, D. and Rumelhart, D.E. 1990. The neurobiological significance of the new
learning models. In Schwartz, E.L. (Ed.) Computational Neuroscience. Cambridge,
Mass.: MIT Press.

