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Abstract. In the last few years several researchers within the Artificial Life and
Mobile Robotics community used Artificial Neural Networks. Explicitly viewing
Neural Networks in an Artificial Life perspective has a number of consequences
that make research on what we will call Artificial Life Neural Networks (ALNNs)
rather different from traditional connectionist research. The aim of the paper is to
make the differences between ALNNs and "classical" neural networks explicit.

1. Introduction

Although the biological inspiration of neural network models is explicit [1, 2]
connectionist research on neural networks is mainly conducted outside the field
currently called Artificial Life. This is due to the fact that neural networks tend to be
isolated from everything else except the input and teaching input that a researcher
may provide to a learning network. Much work on neural networks views them as
abstract computational devices or information processing machines which, by
adopting a brain style of computation, are capable of input/output mappings
(behaviors) that sometimes miraculously resemble the mappings (behaviors)
exhibited by humans. But if neural networks are viewed not simply as computational
devices or information processing machines but as models of nervous systems one
cannot ignore that nervous systems and behaviors are part of organisms which have
a body with a size, a shape, physically situated sensory and motor organs, and
internal organs and systems beyond the nervous system. The organism lives in a
physical environment with which it constantly interacts and which can contain other
organisms (including conspecifics), abiotic elements, and various types of artifacts.
Moreover individual organisms are member of a biological population of non-
identical individuals which are born, live for some time, reproduce, and die, and in
the case of human organisms, it is also a member of a cultural population of
individuals sharing culturally inherited behaviors and artifacts (for a detailed
analysis see [3]).

In this paper we will limit ourselves to the analysis of three important factors:
(a) the importance of living in an external environment, (b) the importance of having
a body, (c) the importance to adapt to the environment through an evolutionary
process.

2. ALNNs Live in an Environment

Artificial Life Neural Networks (ALNNs) live in a physical environment. They are
ecological networks [4]. This implies that in ALNNs, as in real organisms, it is the
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physical environment that assigns a "semantics" to the output of the nervous system.
The output of an ALNN primarily encodes movements of the organism's body (or
body parts) that cause changes in the environment or in the relationship between the
organism's body and the environment. The behavior of ALNNs if the result of the
output of the network itself, the environment, and of their interactions.

The physical environment not only transforms the output of a neural network
into behavior but it is the source of the input arriving to the neural network. In
classical connectionism it is the researcher who arbitrarily decides which input
patterns are "seen" by the network, in what order they are "seen", what is the
frequency of each pattern, etc. On the contrary, it is the independent physical
environment that is responsible for the input patterns encoded in an ALNN's input
units. In fact, the input of an ALNN primarily encodes the state of the local physical
environment around the organism. Therefore, for ALNNs it is the environment with
its independent structure and dynamics, not the researcher, that determines which
input patterns are "seen" at any given time by the network.

The physical environment is critical for giving a "semantics" to the activation
pattern of the input and output units of a neural network. The input patterns that are
received by classical neural networks in their input units have no grounding (in the
same sense that symbols in symbol manipulation models are ungrounded [5]). An
input pattern can be said to be grounded when it refers to something else beyond
itself. The input patterns of classical neural networks do not refer to anything beyond
themselves. On the contrary the patterns received by ALNNs are physically caused
by the independent environment in which they live and behave. Hence, the input
patterns of ALNNs refer to this independent physical environment and therefore they
are grounded.

An important consequence of this is that since with their motor output ALNNs
can change the environment or their relation to the environment, in both cases the
input arriving from the environment to the network tends to be influenced by the
network's motor output. The network's output in one cycle can partly determine the
network's input in the next cycle. Therefore, ALNNs can at least in part control their
own input. If organisms are said to adapt to their environment by constructing
internal models of the environment [6], these models are likely to be constructed by
learning how the environment responds to the organism's own actions, that is, by
observing which changes in the environment or in the relation of the organism to the
environment result from which actions. If there is no environment which responds to
the network's actions - as in classical neural networks - no such model can be
constructed. In fact, classical neural networks are restricted to learning by extracting
the regularities inherent in their passively received input. ALNNs learn both in this
way and by noticing the regularities in the relationship between their actions and the
consequences of these actions. (This active view of knowledge and of knowledge
acquisition makes ALNNs closer to Piaget than classical neural networks.)

If ALNNs can control their input they can use this opportunity to be exposed to
preferred input. Preferred input can be input to which a network already knows how
to respond [7] or it can be input that allows the network to disambiguate or correctly
recognize the objects encountered in the environment [8].
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Another consequence of living in a physical environment is that learning itself
may be different in ALNNs and in classical neural networks. What classical
networks learn is simply to associate each input with the correct output. In contrast,
since ALNNs partly control their own input with their output they can learn to
generate output that allows them to experience the appropriate input during learning
[9, 10]. In fact, ALNNs may be learning two different things. They can learn to
associate each input with the correct output, like classical networks, but they can also
learn to have the appropriate learning experiences, i.e., they can modify their
behavior so that they are exposed to inputs from which they can learn more than
from other inputs.

A further consequence of the fact that ALNNs have some control on their own
input is that the succession of inputs experienced by an ALNN tends to have an
intrinsic temporal character which is normally absent in the sequence of inputs
experienced by a classical network. The intrinsic temporal character of ALNNs also
emerges clearly if we consider not the succession of inputs they experience but the
succession of outputs they generate. The behavior of an ALNN tends to be evaluated
not in terms of single outputs but in terms of entire sequences of outputs. If an
ALNN is approaching food, it is only the terminal action of reaching the food that
rewards the network but the succession of motor outputs that brings the network to
the food is given some sort of temporal unity by this final action.

3. ALNNs Have a Body

Classical neural networks do not have a body. They are abstract "systems" for
computing an output given an input. Although connectionism does not subscribe to
the functionalism of cognitivism, and of psychology more generally, according to
which cognition can and should be studied apart from the details of the physical
system underlying it, its physicalism is restricted to the brain and it does not extend
to the organism's body. In contrast, Artificial Life can be viewed as an attempt to
give a body back to the machine. Neural networks that live in a physical
environment cannot be abstract "systems". They must necessarily possess a body that
has a physical location in the environment, occupies a given portion of the
environment, has physical relations (e.g., distance) with other objects in the
environment, etc.

As physical objects ALNNs can only interact physically with their environment.
All is encoded in an ALNN's input units is the current pattern of various types of
energy (light energy, sound energy, mechanical energy, thermal energy, etc.) in the
vicinity of the organism's body or inside the organism's body, and all is encoded in
an ALNN's output units are changes in the physical position of the organism's body
or body parts (movements) or inside the organism's body.

If we consider an ALNN in an extended sense as not just a neural network but
as an entire organism with its physical body, the interactions between an ALNN and
its environment can be mediated by the neural network but the environment can also
affect an ALNN without directly affecting the neural network. For example, an
ALNN can bump on an obstacle present in the environment so that it cannot proceed
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further. Or, other parts of the body of the ALNN, not its neural network, may be
affected by the environment. For example, the ALNN can eat some food and its
motivational state (hunger) changes. Conversely, the ALNN's body can cause
changes in the environment "unintended" by the ALNN's nervous system. For
example when an ALNN is moving in the environment it can inadvertently displace
an object encountered on its path. Even the "intended" effects that an ALNN's output
has on the environment are filtered by the physical properties of the ALNN's body.
For example, if an ALNN must reach a particular position in the environment with
the endpoint of its two-segment arm, the length of the arm's two segments is a
critical factor.

The implications of having a body and of interacting with an external
environment are even more significant when they are real physical objects (as in the
case of ALNNs used to control mobile robots). In this case in fact several additional
factors (e.g. friction, inertia, ambient light, noise, etc.) arising from the physical
properties of the robot and of the environment should be necessarily taken into
account [11]. Moreover only realistic types of sensors and actuators (instead of
idealized ones that may not respect all physical constraints or can have an infinite
precision) can be used. In the case of a physical body and environment, the input and
the output of the network should necessarily correspond to physical measures or
forces and cannot include any abstract information provided by the experimenter
even unconsciously. Finally, only information really available in the environment
can be used for training.

4. ALNNs evolve

Classical neural networks are generally trained starting from scratch (i.e. randomly
assigned connection weights). Sometime the experimenter designs the rough
architecture of the network by using her/his insights or biological data. However,
even in this case, most of the initial conditions are randomly initialized. ALNNs,
when subjected to a simulated evolutionary process [12], are born by inheriting their
initial state from other network(s) (i.e. their parents) and therefore do not start from
scratch. The inherited information is represented in a “genotype” that contains the
information necessary to produce a corresponding phenotypical neural network and
therefore is a distinct entity from the network itself.

The distinction between genotype and the corresponding phenotypical neural
network has several implications.

Firstable, not only the weights of the neural networks but also the body of the
agent, the features of the sensory-motor system, and the architecture of the network
can adaptively be selected by being encoded in the genotype and subjected to the
evolutionary process [13, 14].

Secondly, networks can change both phylogenetically (due to the evolutionary
process) and ontogenetically (due to a learning process). In this case positive
interaction between the two processes may arise: evolution may select good starting
conditions that enhance the learning process or canalize it in the right directions
[10]; learning may help evolution to find good solutions [15, 16] and to adapt to fast
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changing environments that cannot be tracked by evolution alone [10].
Finally, ALNNs may acquire through evolution an ability to extract from the

environment reinforcement learning signals [17] or auto-generated teaching inputs
[18] and use them to adapt to the environment during their lifetime.
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