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Abstract In this paper, we study coordinated motion in a swarm robotic system,
called a swarm-bot. A swarm-bot is a self-assembling and self-organizing artifact,
composed of a swarm of s-bots, mobile robots with the ability to connect to and dis-
connect from each other. The swarm-bot concept is particularly suited for tasks that
require abilities of navigation on rough terrain, such as space exploration or rescue
in collapsed buildings. In fact, a swarm-bot can exploit the cooperation of its simple
components to overcome difficulties or avoid hazardous situations. As a first step to-
ward the development of more complex control strategies, we investigate the case in
which a swarm-bot has to explore an arena while avoiding to fall into holes. In order
to synthesize the controller for the s-bots, we rely on artificial evolution, which proved
to be a powerful tool for the production of simple and effective solutions to the hole
avoidance task.

1 Introduction

The first problem to be faced when trying to control an autonomous robot is to make it move
efficiently in a given environment. Depending on the robot, this task can be rather simple (i.e.,
the motion of a wheeled robot) or particularly complex (i.e., walking for a humanoid robot).
Also the environment in which the robot is placed influences the complexity of the problem:
a flat terrain is clearly less challenging than a rough terrain with holes and obstacles. An
additional source of complexity is found in the coordinated motion task, in which the robotic
system is composed of a number of independent entities that have to coordinate their actions
in order to move coherently.

Coordinated motion is a well studied behavior in biology, being observed in many dif-
ferent animal species. For example, we can think of flocks of birds coordinately flying, or of
schools of fish swimming in perfect unison. These examples are not only fascinating for the
charming patterns they create, but they also represent interesting instances of self-organized
behaviors. Many researchers have provided models for schooling behaviors of fish, and repli-
cated them in artificial life simulations (see [2], chapter 11). Similarly, groups of artificial fish
(called e-boids) have been evolved to display schooling behaviors, obtaining interesting re-
sults [13]. Finally, evolutionary computation has been used also to evolve coordinated motion
behaviors in small groups of physical robots [9].

Coordinated motion is a problem of fundamental importance within the SWARM-BOTS
project,1 wherein this research is conducted. The SWARM-BOTS project aims at the develop-

1A project funded by the Future and Emerging Technologies Programme (IST-FET) of the European Com-
munity, under grant IST-2000-31010.



ment of a new robotic system, called a swarm-bot [12]. A swarm-bot is defined as an artifact
composed of simpler autonomous robots, called s-bots. An s-bot has limited acting, sensing
and computational capabilities, and can create physical connections with other s-bots, thereby
forming a swarm-bot that is able to solve problems the single individual cannot cope with.
Coordinated motion is a basic ability that the swarm-bot should display: a swarm-bot should
move coherently across the environment as a result of the cooperation of the s-bots assembled
in a single structure [1].

Another basic ability for the swarm-bot is coping with rough terrains, holes, gaps or
narrow passages. Navigating on rough terrain is an important feature for an intelligent au-
tonomous system, that can open many possible application scenarios, like space exploration
or rescue in a collapsed building. Research in this direction has focused mainly on the devel-
opment of rovers provided with articulated wheels or tracks, like the pathfinder [7]. A differ-
ent approach to rough terrain navigation is presented by reconfigurable robotics, where robots
can adopt different shapes in order to cope with different environmental conditions [3, 10, 14].

In the swarm-bot case, navigation on rough terrain is achieved by means of the cooper-
ation between s-bots which can self-assemble and build structures that can cope with haz-
ardous situations like avoiding a hole or passing over a trough. In such cases, rigid con-
nections serve as support for those s-bots that are suspended over the gap. This approach
to rough terrain navigation also has a natural counterpart in ants of the species Œcophilla
longinoda [6], which are able to build chains connecting one to the other, creating bridges
that facilitate the passage of other ants.

In this paper, we study an instance of the family of “navigation on rough terrain” tasks,
that is, hole avoidance. A swarm-bot has to perform coordinated motion in an environment
that presents holes too large to be traversed. Thus, holes must be recognized and avoided, so
that the swarm-bot does not fall into them. The difficulty in this task is twofold: first, s-bots
should coordinate their motion. Second, s-bots have to recognize the presence of an hole,
communicate it to the whole group and re-organize to choose a safer direction of motion.

The rest of this paper is organized as follows: Section 2 describes our approach to the
study of the hole avoidance problem. Section 3 and 4 are dedicated to the description of the
obtained results. Finally, Section 5 concludes the paper.

2 Evolution of Hole Avoidance Behaviors

In this paper, the s-bots controllers are obtained using artificial evolution. There are multiple
motivations that lay behind this choice for synthesizing controllers for a robot [8]. In par-
ticular, in a distributed multi-robot context as the one considered within the SWARM-BOTS
project, handcrafting the controllers may be too complex. Here, artificial evolution can by-
pass this difficulty, as it directly tests the behavior displayed by the robots embedded in their
environment. Furthermore, artificial evolution can exploit the richness of solutions offered by
the complex dynamics resulting from robot-robot and robot-environment interactions [12].

Figure 1a shows the current s-bot.2 In this paper, however, experiments are performed
in simulation, using a software based on VortexTM, a 3D rigid body dynamics simulator. We
have defined a simple s-bot model that at the same time allows fast simulations and preserves
those features of the real s-bot that we considered most important (see Figure 1b).

2Details regarding the hardware and simulation of the swarm-bot can also be found in the project web-site
(www.swarm-bots.org).
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Figure 1: (a) The s-bot prototype, provided of the tracks system, the body holding the rigid and the flexible
grippers, and many sensors. (b) The simulated s-bot model. The body is transparent to show the chassis (center
sphere), the motorized wheels (lighter spherical wheels) and the passive wheels (darker spherical wheels). The
position of the virtual gripper is shown with an arrow painted on the s-bot’s body. Ground sensors are displayed
as lines exiting from the s-bot.

The simulated s-bot is composed of a cylindrical turret (radius: 6 cm, height 6 cm), con-
nected to a chassis by a motorized hinge joint. The chassis is a sphere (radius: 1.4 cm) to
which 4 spherical wheels are connected (radius: 1.5 cm). The lateral wheels are connected
to the chassis by a motorized joint and a suspension system and they are responsible for the
motion of the s-bot. The front and back wheels are passive. Connections between s-bots are
simulated creating a joint between the two bodies.

Each s-bot is provided with a traction sensor placed at the turret-chassis junction. It de-
tects the direction and the intensity of the traction force that the turret exerts on the chassis.
The traction sensor, integrating all the pulling/pushing forces created by the movement of the
connected s-bots, provides an indication of the average direction toward which the swarm-bot
is trying to move as a whole.3 Besides traction sensors, we also make use of 4 ground sensors,
which are infrared proximity sensors evenly distributed around the chassis of the s-bot and
pointed toward the ground.

Concerning the actuators, each s-bot can control its wheels independently. The maximum
angular speed has been set to 10 rad/s, which corresponds to a maximum speed of the s-bot
of 0.15 m/s. In addition, the movements of the s-bot are also influenced by the turret/chassis
motor. This motor is controlled setting its desired angular speed as half of the difference
between the desired angular speed of the left and right wheels. This setting helps the rotation
of the chassis with respect to the turret also when one or both wheels of the s-bot do not touch
the ground [1].

In order to study the hole avoidance task, we designed a square arena (side 3 m) that con-
tains 4 evenly distributed square holes (side 60 cm, see Figure 2b). The swarm-bot consists
of a linear structure made of 4 s-bots, which are rigidly connected by means of their virtual
grippers. Each s-bot is controlled by a simple perceptron, a neural network connecting its
sensory inputs to the motor outputs. The network has 8 sensory inputs: 4 are dedicated to
the readings coming from the ground sensors, and the other 4 encode the intensity and di-
rection of traction (for more details, see [1, 11]). Moreover, the neural network is provided
with one bias unit and 2 outputs that control the two wheels and the turret/chassis motor. This
perceptron has in the whole 18 connections, whose weights are evolved.

3This particular kind of sensor proved to be of fundamental importance for the evolution of coordinated
motion in a swarm-bot [1, 11].



We use a generational evolutionary algorithm. The initial population is composed of
µ = 100 randomly generated genotypes. Each genotype is binary encoded, and is mapped
into a neural network controller for a single s-bot. Each weight, ranging in the interval
[−10, 10], was represented in the genotype by 8 bits, corresponding to a genotype length
L = 18 × 8 = 144 bits. This controller is cloned in each of the n = 4 s-bots involved in the
experiment. The fitness F of each genotype is estimated allowing the group of s-bots to “live”
for M = 5 “epochs” and then averaging the obtained value. The best λ = 20 genotypes of
each generation are allowed to reproduce, each generating µ/λ = 5 offspring. Each of their
bits has a probability 2/L of being flipped. Parents are not copied to the offspring population
(no elitism). An evolutionary experiment lasts 100 generations. This algorithm is very simple
and straightforward, and we found that it is sufficient to evolve simple but efficient controllers
for groups of robots [12, 1].

The fitness function is designed to favor coordinated motion, exploration of the arena and
a fast reaction to the detection of an hole. The fitness estimation F

e
in each epoch is given

by the average of two components, F
e1

and F
e2

(see below). In order to compute the fitness
components, we divide each epoch e into two sub-epochs, e1 and e2. In the former, we test
the genotype for its ability to perform coordinated motion in a flat environment. Here the
s-bots start connected in a linear formation, having the orientation of their chassis randomly
initialized. They are selected for the ability to move as far as possible from their initial po-
sition, which indirectly implies an ability to display coordinated movements. Therefore, the
fitness estimation F

e1
is computed as the distance covered by the group. The sub-epoch e1

lasts T
e1

= 150 simulation cycles, each cycle corresponding to 100 ms of real time.
In sub-epoch e2, s-bots are positioned at the center of the arena with holes, and start in the

usual chain configuration. Their chassis are all initialized with the same random orientation.
Also the chain is randomly oriented at the beginning of each sub-epoch. In this way, there
is no need for a coordination phase at the beginning of the sub-epoch, the focus being on
hole avoidance. The sub-epoch lasts T

e2
= 200 cycles. The fitness estimation F

e2
is given

by the product of two sub-components: the survival sub-component F
s

and the exploration
sub-component F

x
. The former rewards only those genotypes that reach the end of the epoch

without falling into a hole. This sub-component penalizes every fall, even if it happens at
the end of the sub-epoch, thus favoring more robust behaviors. The second sub-component
is designed to favor those genotypes that are able to better explore the arena. In this case,
the arena is virtually divided in 25 square zones of 60 cm side. The genotype is rewarded
proportionally to the percentage of visited zones during the sub-epoch (for more details,
see [11]).

3 Obtained Results

In this section, we present the results obtained evolving hole avoidance behaviors using the
controller described above. We replicated the evolutionary experiment 10 times. The average
fitness values, computed over all the replications, are shown in Figure 2. The average perfor-
mance of the best individual and of the population are plotted against the generation number.
The plot indicates that the evolutionary experiments were successful: the average fitness value
of the best individuals reaches the 80% of the theoretical maximum value, which cannot be



0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

av
er

ag
e 

fi
tn

es
s

generation number

best
average

(a) (b)

Figure 2: Hole avoidance results: (a) Average fitness over 10 replications of the experiment. (b) Trajectories
displayed by a swarm-bot performing a hole avoidance task.

achieved due to the particular experimental setup.4

In order to test the performance of the evolved controllers, we evaluated the best individ-
uals of the last generation of each replication of the experiment. The corresponding results
are shown in Table 1. All individuals perform reasonably well, even if it can be noted that the
average performance of every controller is lower than the average value achieved at the last
generation of the evolutionary runs, showed in Figure 2a. This is due to the small sampling
size used for the estimation of the fitness during the evolution (5 epochs). In fact, a small
sampling size usually leads to an over-estimation of the fitness of the best individual. Thus,
the post-evaluation analysis with a larger sampling size (100 epochs, in this case) gives a
better approximation of the real performance of the evolved controller.

Table 1: Mean performance of the best individuals for each replication of the experiment, averaged over 100
epochs. The best evolved individual is highlighted in bold.

Replication 1 2 3 4 5
Performance 0.6640 0.6541 0.6502 0.6079 0.5835

Replication 6 7 8 9 10
Performance 0.6376 0.6866 0.6397 0.6640 0.6458

Direct observation of the behaviors evolved showed that all solutions rely on similar
strategies. We observed the evolved behaviors placing the swarm-bot in the arena with holes,
and starting with different orientation of the chassis of the s-bots.5 At the beginning, the s-bots
start to move in the direction they were positioned, resulting in a rather disordered overall mo-
tion. Within few simulation cycles, the physical connections transform this disordered motion
into traction forces, that are exploited to coordinate the group. When an s-bot feels a traction
force, it rotates its chassis in order to cancel this force. Once the chassis of all the s-bots are
oriented in the same direction, the traction forces disappear and the coordinated motion of the
swarm-bot starts (see Figure 2b). Then, when one s-bot detects an edge, it rotates the chassis
and changes the direction of motion in order to avoid falling. This change in direction creates

4The theoretical maximum value could be reached only if in the first sub-epoch s-bots started with their chas-
sis perfectly aligned, so that no coordination phase is required, allowing the swarm-bot to cover the maximum
distance.

5See http://www.swarm-bots.org/hole-avoidance.html for some movies of these behav-
iors.



a traction force for the other s-bots, which they perceive by means of their traction sensors. At
this point, a new coordination phase is triggered, which ends up in a new direction of motion
that leads the swarm-bot away from the edge. A key role in the functioning of this strategy
is played by the motor controlling the rotation of the chassis with respect to the turret of an
s-bot. In fact, this motor has a stabilizing effect on the rotation of the chassis even if one
of the wheels is suspended out of the edge. This gives to the s-bot the chance of changing
its direction of motion, even when partially suspended. Consequently, the s-bot can exert a
traction force that can be felt by the other s-bots.

4 Generalization

The evolved strategy for hole avoidance is very robust, being able to work in a number of
different situations. This is a result of the physical connections among s-bots and, above all,
of the use of the traction sensors.

As a first experiment, we tested the scalability of the evolved controllers varying the size
and the shape of the swarm-bot. We observed that the evolved controllers perform well in
many different conditions. For example, Figure 3a shows the case of a swarm-bot comprising
8 s-bots connected in a “star” shape. The swarm-bot is placed in a square arena without
holes, but with open borders. The swarm-bot is still able to avoid to fall out of the arena,
notwithstanding the higher inertia of the star formation.

Another interesting feature of the evolved controllers is that they are able to perform
collective obstacle avoidance. In fact, when an s-bot hits an obstacle, its turret exerts a force
on the chassis in a direction opposite to the obstacle. This force is felt as a traction pulling
the s-bot away from the obstacle. In response to this traction, the s-bot rotates its chassis to
cancel it, as explained before. Moreover, the rigid connections between s-bots transmit the
force resulting from the collision to the whole group, triggering a fast change in the direction
of movement of the swarm-bot. As shown in Figure 3b, the swarm-bot is able to avoid both
holes and obstacles, represented here by walls surrounding the arena. It is worth noting that
the traction sensor works as an omni-directional bumper distributed on the whole body of the
swarm-bot, allowing collective obstacle avoidance.

Finally, we tested the evolved controllers when the s-bots are linked using flexible, rather
than rigid, connections. Flexible connections allow the relative motion of connected s-bots,
and, therefore, the use of this type of connections allows the shape of the swarm-bot to change
during motion. Because of the flexibility of the connections, traction can be only partially
transmitted. Nevertheless, the evolved strategies still work. We performed tests with both a
star and a chain formation composed of 8 s-bots each. The flexible star formation case is
shown in Figure 3c, where the swarm-bot was placed in a square arena with four big cylindri-
cal obstacles and no walls on the perimeter. Figure 3c shows that the flexible formation was
able to perform coordinated motion, obstacle and hole avoidance, changing shape when it
had to go through a narrow passage having an obstacle on the left and the arena border on the
right. The flexible formation adapts more easily to the environment, and in some situations
can avoid holes more efficiently than a rigid structure. In fact, the s-bots do not completely
feel the inertia of the swarm-bot, because they can move deforming the structure and adapting
to the edge of the hole. This fact is even more evident in Figure 3d, where a chain formation
was placed in the arena with holes. Here, when the chain reached the edge, it completely
deformed without having a single s-bot being completely pushed out of the arena.
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Figure 3: Generalization properties: (a) Size and shape change. (b) Obstacle avoidance. (c) Obstacle and hole
avoidance of a big star formation with flexible connections. (d) Hole avoidance of a big linear formation with
flexible connections.

5 Conclusions

We presented a set of experiments for the evolution of hole avoidance behaviors in a group of
simulated s-bots that are physically connected to form a swarm-bot. The solutions found by
evolution are simple and in many cases they generalize to different environmental situations.
This demonstrates that evolution is able to produce a self-organizing system that relies on
simple and general rules, a system that is consequently robust to environmental changes and
to the number of s-bots involved in the experiment. The evolved strategies strongly rely on
the traction forces produced by those s-bots that feel the presence of an hazard. Using the
information given by the traction sensors, the whole group can change the direction of motion
when heading toward a hole.

The traction sensor was found to be a very powerful mean of achieving coordination in
the swarm-bot. In fact, it allows the exploitation of the complex dynamics arising from the
interactions among s-bots and between the s-bots and the environment. It provides robustness
and adaptivity features with respect to environmental or structural changes of the swarm-bot.
Besides, traction forces are used as a sort of communication of the presence of an hazard.
This communication among s-bots is neither direct nor explicit, but can be considered as an
implicit stigmergic communication, as it takes place through the environment, that is, through
the bodies and the physical connections among s-bots [4, 5]. Finally, the traction sensor can
work also as a distributed bumper for the swarm-bot, allowing collective obstacle avoidance.

The hole avoidance task represents the first step toward the solution of more difficult
problems. We plan to continue studying problems that belong to the “navigation on rough
terrain” family, like passing over a trough or coping with an uneven terrain. Finally, we will
face the challenge given by functional self-assembling for all-terrain navigation, that is, we
will study the problem of forming or disbanding swarm-bots with a shape functional to the
environmental conditions and to the task to be performed, in order to maximize the efficiency
in the navigation.
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