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Abstract. This paper presents a set of techniques that allow generating
a class of testbeds that can be used to test recurrent neural networks’
capabilities of integrating information in time. In particular, the test-
beds allow evaluating the capability of such models, and possibly other
architectures and algorithms, of (a) categorizing different time series,
(b) anticipating future signal levels on the basis of past ones, and (c)
functioning robustly with respect to noise and other systematic random
variations of the temporal and spatial properties of the input time se-
ries. The paper also presents a number of analysis tools that can be
used to understand the functioning and organization of the dynamical
internal representations that recurrent neural networks develop to ac-
quire the aforementioned capabilities, including periodicity, repetitions,
spikes, and levels and rates of change of input signals. The utility of the
proposed testbeds is illustrated by testing and studying the capacity of
Elman neural networks to predict and categorize different signals in two
exemplary tasks.

Keywords: Testbed, Time Series, Waves, Time Information Integra-
tion, Signal Processing, Recurrent Neural Networks, Passive and Active
Perception, Dynamical Systems, Analysis of Internal Representations,
Attractors.

1 Introduction

The capability of integrating information in time is a critical functionality, which
lies at the core of the functioning of several anticipatory learning systems. For
example, consider a rat sampling the profile of an object with its whiskers [14],
an organism scanning the environment with its eyes [15], or a robot moving in
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an office and sampling the walls with proximity sensors [16]. Imagine they have
to categorize the object or the portion of the environment they are experiencing,
or to predict future sensations on the basis of past ones. In all these examples,
the systems need to integrate information in time. That is, they need to capture
signal regularities that manifest in time in the form of periodicity, repetitions,
spikes, numbers, rates of change, levels of signals, etc.

Given the importance of integrating information in time for anticipatory sys-
tems, artificial intelligence has proposed a number of models that possess such
capabilities. This paper focuses in particular on recurrent neural-network models,
but the testbeds, and some of the analysis tools it proposes, are also applicable
to other models. The neural networks relevant for the topic tackled here are
based on recurrent architectures [4], [5], [6], and [20], as these allow systems to
compare signals in time, for example, by counting signals’ duration, by accumu-
lating evidence in favor of different options, by synchronizing internal dynamics
with perception dynamics, etc. Section 3 briefly reviews few important examples
of these neural networks, namely Elman neural networks ([7]: these networks are
based on a hidden unit layer with a memory of the past), echo state networks
([11]: these networks are provided with a layer of fixed recurrent connections
that provides a “reservoir” of various dynamics), leaky integrator networks ([21]:
these networks are based on neurons with an internal memory), and long short-
term memory networks ([10]: these networks are based on special neurons with
a self-recurrent connection and gated input and output channels).

The ways recurrent neural networks integrate information in time is particu-
larly interesting for two reasons. First, these networks exploit internal dynamical
processes such as fixed-point attractors, limit cycles, chaotic attractors, etc., to
“get in resonance” and synchronize with the dynamics of stimuli and so perform
the integration. Second, if one assumes that neural networks of real brains ex-
ploit similar dynamics on the basis of their omnipresent recurrent connections,
one can hope to understand how real organism integrate information in time by
studying artificial recurrent neural networks.

Given the interest of the aforementioned models, the ABiALS community
(Adaptive Behavior in Adaptive Learning Systems) has a great need of iden-
tifying a number of specific testbeds to compare the models and, given their
different features, to understand how they self-organize to solve different tasks.
Indeed, such models should be compared both on the basis of their capabilities
of mimicking real systems and on the basis of more general criteria such as scal-
ability properties, computational power, and robustness against noise. The first
of these two “checks” should be accomplished on the basis of the evaluation of
the general biological plausibility of the models and by comparing the model’s
behavior and functioning with data of real systems, provided by behavior and
brain sciences. The second check should be based on standard testbeds developed
and circulated within the community, such as those proposed here.

The testbed presented in this paper, which is actually a set of techniques that
can be used to produce a class of testbeds with particular features, allows testing
two anticipatory capabilities of anticipatory systems:
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(1) The capacity of categorizing different signals perceived in time.
(2) The capacity of predicting future signal values on the basis of past ones.

In this respect, this paper proposes some techniques to generate different sig-
nals with various time regularities to systematically test the models’ capabilities
of integrating information in time. The paper also proposes some techniques to
test the robustness of such capabilities with respect to:

(1) Noise of the signal level and of the signal speed.
(2) Biased expansions and compressions of the signal in duration.
(3) Biased variations of the phase of periodic signals.
(4) Biased variations of the signal amplitude levels.
(5) Biased expansions and compressions of the signal levels.

The paper also presents a number of techniques that can be used to ana-
lyze the internal representations that the models develop to solve the various
tasks. The understanding of such representations is rather challenging given the
complex dynamical systems nature of the considered models. Notwithstanding
these difficulties, we believe that these studies are necessary to understand the
detailed mechanisms underlying the information integration in time that such
systems exhibit.

The functioning of the testbed and the analysis techniques are illustrated
through some experiments using Elman neural networks. These experiments rep-
resent the preliminary investigations of a research agenda directed to investigate
how recurrent neural networks internally self-organize and form abstract dy-
namical representations in order to integrate information in time (see also the
European Projects “ICEA” and “MindRACES”, which provided funding for this
research).

The rest of the paper is organized as follows. Section 2 presents the testbed, in
particular, the type of time series it generates, the anticipatory capabilities it al-
lows to test, the type of noise and signal variations it allows to create, the measures
of performance it uses, and some techniques that can be used to analyze the emer-
gent internal organization of the tested models. Section 3 presents a brief review
of dynamical neural networks that might be tested and compared with the test-
bed presented. Section 4 gives some examples, based on Elman neural networks,
that illustrate the functioning of the testbed and the analysis techniques. Finally,
Section 5 draws conclusions and indicates future work.

2 Testbed Description

As mentioned in the introduction, the testbed presented here is actually a set
of techniques that can be used to generate a class of different testbeds having
certain properties. These testbeds have the following features:

(a) They involve problems where the model to be tested receives a one-variable
input time series (henceforth called signal or input time series).
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Table 1. Summary of the testbed’s features

Possible different types of input signals
Type Properties of signal that can be manipulated

Wall profile Levels, linear changes, sudden changes of levels (steps)
Object Non-linear changes, derivatives, discontinuities, sudden changes of

levels (steps)

Tasks that can be used to test the systems’ capabilities
Task Metrics to measure the capability

Prediction Mean square errors between predicted and actual input pattern, ca-
pacity to reproduce the signal for several steps by using the prediction
as input

Categorization Percent of correct categorizations after the pattern is perceived for a
certain time

(b) They allow testing the models’ capacity of both categorizing different signals
and predicting future signal values based on past ones.

(c) They allow testing the robustness of these capacities with respect to noise
and various systematic random transformations of the signal.

The features of the testbed(s), the possible variations of the input signal that
can be used to test the robustness of the models, and the analysis techniques
are summarized respectively in Table 1, Table 2, and Table 3. Note that, as
the implementation of the testbed is quite straightforward, the software used
to implement it can be easily re-generated by the reader. Moreover, the imple-
mentation of the analysis techniques suggested in the paper can be found in any
standard statistical analysis package, for example MatlabTM , which was used to
carry out the results’ analysis illustrated in the paper. Next, all the features and
techniques are analyzed in detail.

2.1 Input Time Series

The testbed proposes two alternative techniques for generating the input time
series. These two techniques allow manipulating different aspects of the input
time series with different implementation ease (see Table 1). Nevertheless, notice
that there is a precise correspondence between the input time series that can be
generated in two ways, as further illustrated below.

The first technique involves an automaton that travels along a “wall” that has
a certain profile, formed by a sequence of segments. An example of this is given
in the top-left graph of Figure 1 that shows a “punctiform automaton” that
moves at a distance R from a wall having a saw-like profile. The signal samples
(shown in the bottom-left graph of the figure) encode the distance between
the automaton’s central point and the intersection between the sensor ray and
the segments composing the wall. Notice that this technique allows generating
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Table 2. Summary of the variations of the input time series that can be used to test
the robustness of the systems’ capabilities

Types of noise
Source of noise Description

Signal noise White noise added to signal
Step noise White noise added to size of automaton’s translation movement

Systematic random variations of signal
Element varied Description

Phase of signal The phase of the signal is set randomly in different wall/object
presentations

Period of signal The step size of the automaton (and hence its speed) is set ran-
domly in different wall/object presentations so as to have com-
pressions/expansions of the signal

Signal level The distance of the automaton from the wall/object is set ran-
domly in different wall/object presentations

Signal range The distance of the automaton from the wall/object and the size
of the object are multiplied by a random parameter in different
wall/object presentations

Table 3. Summary of the techniques that can be used to analyze the internal dynamics
of systems

Technique Aspects investigated

Cross-correlograms Time correlations between different variables
Phase space analysis Identification of different types of attractors
Ad-hoc input time se-
ries

Systems’ reaction to different signal features

Hinton plot Roles of different connection weights
Targeted lesions Roles of different connection weights

signals that correspond to rather complex “objects”, as shown by the right graph
of Figure 1.

The second technique of generating the input time series involves an automa-
ton that follows a circular path around an object, and perceives its profile with
a proximity sensor. An example of this is given in Figure 2 where the automaton
moves around a cross-shaped object following a circle with radius R while its
sensor detects the distance to the object at each step. Notice that this technique
allows generating signals that correspond to rather complex “walls”, as shown
in Figure 2.

From an implementation point of view, the general idea behind the way of
generating the input signal with the two techniques is that the walls or objects
are composed by a set of segments. In this way, the signals are easily obtained
on the basis of the computation of the distance between the automaton’s central
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Fig. 1. Top left: profile of the wall perceived by the automaton, and positions from
which the automaton senses it (dots along the straight trajectory followed by the
automaton, marked by the light gray line). Right: equivalent setting showing an object,
and the automaton circulating around it, that generates the same sensor reading as
the wall setting. The curve of the object has been obtained with a very dense sampling
of the wall. Bottom left: automaton’s sensor reading, S(t) normalized in [0, 1], equal
for the two settings.

point and the (closest) intersection between the sensor’s ray and the segments
composing the object. The two techniques give the researcher the possibility
of generating a great number of signals having different time regularities, as
shown in the examples reported in Section 4 and indicated in Table 1, with
computationally rather easy effort. Moreover, the analysis of results can be aided
by the fact that the first technique allows plotting the signal produced by walls
in terms of objects, performing a dense sampling of the latter (see Figure 1,
right). Vice versa, the second technique allows plotting object signals in terms
of walls (see Figure 2, top right).

2.2 Metrics for Measuring Prediction and Categorization
Capabilities

The testbed allows testing models’ capabilities of prediction and/or categoriza-
tion. The prediction task consists of producing an output at time t that matches
the value of the signal that will be perceived at time t+1. This capability requires
the integration of past signal values to capture the regularities of the signal in
time.

Regarding the metrics that can be used to measure prediction performance,
an immediate way of measuring the model’s capacity to predict is to compute
the quadratic error E of prediction with respect to the next input, averaged over
the duration of the test:

E =
T−1∑

t=1

(P (t) − S(t + 1))2 (1)

where T is the duration of the test, P (t) is the value of the prediction, and S(t)
is the value of the input unit activated by the automaton’s sensor.
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Fig. 2. Left: time series of the distances d0, d1, d2, . . . (dotted lines) detected by the test-
bed’s automaton (represented by the dots on the circumference) while moving around
a cross-shaped object. Top right: the corresponding wall-setup; the curve of the wall
has been obtained with a very dense sampling of the object. Bottom right: intensity
of the normalized signal S(t) detected by the automaton at each time step, equal for
both setups.

Here “categorization” is referred to the models’ capacity of distinguishing
between several different signals. To this purpose, the models should have some
output units whose activation can be trained in a supervised fashion and can
be interpreted as the category assigned to the perceived signal. For example, in
the tasks considered in Section 4, the automaton experiences two/three different
objects/signals and has to categorize them with two/three units using a local
code: the unit with the highest activation corresponds to the chosen category.

Performance of categorization can be measured as the percentage of time
steps in which the categorization of the current perceived object produced by
the automaton is correct. As the signals last more than one step, it has to be
decided when to detect the categorization answer of the network. For example,
in the examples shown in Section 4, this detection is done at the end of the
pattern presentation. Nevertheless, dependent to the task, other points in time
may be preferred.

Another way to measure the accuracy of the systems’ prediction capabilities
is to use prediction at time t as a new self-generated input pattern for time
t + 1, to use the latter to produce a new prediction at t + 1 and again use it
as input pattern for t + 2, and so on in a cyclical way. By monitoring how the
patterns so generated diverge from those of the original input time series (i.e.
by measuring the mismatch of the self-generated and real time series at a given
time step in the future), it is possible to evaluate the goodness of the systems’
prediction capabilities (cf. [22], where the quality of the prediction capability
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was measured not in terms of this mismatch, which can be used only when the
input time series does not depend on the system’s actions, but in terms of the
capacity of the self-generated time series to produce accurate behavior).

2.3 Test of Robustness vs. Noise and Systematic Transformations
of the Input Signal

Another important feature of the testbed is the possibility of determining the
robustness of the model’s prediction and categorization capabilities mentioned
in Section 2.2. In particular, the testbed allows the evaluation of performance
changes when the input time series is modified on the basis of step by step noise
or on the basis of systematic random variations applied to the signal.

There are two types of step-by-step noise that can be applied to the simulated
automaton (see examples in Figure 3):

1. Translation noise. This noise affects the size of translation of the automaton
along the circular or linear trajectory it follows. This noise is set as a percent
p of the automaton step size s: the noise is obtained adding a random number
uniformly distributed over [−ps, ps] to each step of the automaton. Notice
that this noise can be cumulative, so that a certain long distance might be
covered by the automaton with a different number of steps: this effect is
particularly important as it can produce an overall random compression or
expansion of the signal duration.

2. Sensor noise. This noise affects the automaton’s sensor readings. The size of
this noise is set as a percent of the original signal, similar to the translation
noise.

The testbed allows setting four possible types of random systematic transfor-
mations to affect the signal in a biased way. We have seen in Section 2.1 that
the input time series can be represented as a wave signal represented in an x− y
plot where the x-axis corresponds to time whereas the y-axis corresponds to the

d

d

Step noise

d

Sensor noise

Fig. 3. Left: first type of noise affecting the step-size of the automaton, and hence
the time regularity of the input time series. Right: second type of noise affecting the
automaton’s sensor reading.
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signal level. The four random systematic transformations correspond to linear
transformations of the wave signal with respect to the two axes. As we show
below, these transformations also have an interpretation in terms of specific ma-
nipulations of the relation existing between the automaton and the object (or
wall) it perceives. Referring to the plot that represents the wave signal, we can
formally define the transformation as follows, which are now illustrated in detail.

x �−→ axx + bx (2)
y �−→ ayy + by (3)

where ax, bx, ay, and by are numerical coefficients. Each of these coefficients,
when different from zero, causes one of the following four transformations:

1. Compression/expansion of the signal time duration. The coefficient ax of
the mapping in (2) sets the duration of the signal that corresponds to the
speed of the automaton. In the testbed this parameter is set in terms of the
number of steps that the automaton takes to sense the whole input time series
(i.e. to complete a whole circle around the object or to complete one wall
profile). The left graph of Figure 4 shows the effects of this transformation
with respect to the original wave signal generated by the cross-shaped object
reported in Figure 3.

2. Phase of the signal. The coefficient bx of the mapping in (2) sets the start
(phase or shift) of the signal and corresponds to initial position of the au-
tomaton with respect to the object or the wall. The right graph of Figure 4
shows the effects of this transformation.

ttt

d(t)d(t)d(t)

0 ttt

d(t)d(t)d(t)

0

Fig. 4. Examples of random systematic transformations affecting the time variable of
the input signal: x �−→ 1

2x (left), and x �−→ x + 3 (right)

3. Compression/expansion of the signal level. The coefficient ay of the mapping
in (3) sets the expansion/compression on the y-axis of the signal level. The
left graph of Figure 5 shows the effects of this transformation with respect
to the original signal generated by the cross-shaped object of Figure 3.

4. Absolute signal level. The coefficient by of the mapping in (3) sets the ab-
solute position on the y-axis of the signal level. The right graph of Figure 5
shows the effects of this transformation, which corresponds to a variation of
the distance of the automaton from the center of the object.
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Fig. 5. Linear transformations in the space variable (distance): y �−→ 1
3y on the left,

and y �−→ y − 0.5 on the right

Notice that the third transformation implies a compression/expansion of both
the object’s size and the distance of the automaton from it, which is a rather
uncommon situation in real experiments (e.g. with real robots). Nevertheless,
notice that if it is combined with the fourth transformation it corresponds to a
variation of the size of the object.

2.4 Analysis Techniques

This section proposes a number of techniques that can be used to analyze the
functioning of the recurrent neural-network models tested on the testbed. The
analysis tools described here are particularly important as the functioning and
internal representations autonomously developed by dynamical neural networks
are particularly difficult to be understood. The analysis tools are now presented
and the reader is referred to Section 4 for some examples of them.

1. Cross-correlograms. One way to understand the functioning of the tested
models is to study the time correlations existing between some variables of
the models, such as the activation of hidden and output units, and between
such variables and the input time series. Cross-correlograms and other sta-
tistical techniques directed to detect and represent correlations between time
series can be used for this purpose (see Figure 11 and Figure 12 for some
examples).

2. Phase space analysis. Given the dynamical nature of the problems tackled,
and of the neural networks tested, the analysis of the system’s activity trajec-
tory within the state space of selected variables might shed light on the mech-
anisms that allow the learner to solve tasks. In particular, the identification
of limit cycles, fixed point attractors, and chaotic attractors might allow un-
derstanding the properties of the solution and the properties emerging from
the coupling between the dynamical process occurring within the neural con-
troller and the dynamical process relative to the automaton/environmental
interactions (see Figure 20 for an example).

3. Special input time series. Particular aspects of the behavior and functioning
of the models might be analyzed by studying how they react to special input
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time series. These special input time series might be directly obtained by
simplifying the ones used during training so as to isolate few features of
interest (see Figure 14 and Figure 15 vs. Figure 10 for some examples).

4. Hinton plot. The study of the models’ connection weights is of crucial impor-
tance because, after training, the models’ performances depend on them (and
the architecture). In this regard, a key tool to understand the role played by
different weights is the Hinton plot, which allows representing the weights’
intensities and signs in a visually comprehensive graph (see Figure 13 for an
example).

5. Targeted lesions. The role of the models’ components, either connection
weights or units, might be understood by lesioning them and by observ-
ing how the performance accuracy of the models is disrupted. This can be
done by setting connection weights to zero or by clumping the activation of
the neurons of interest to zero (see Section 4.2 for some examples).

This list of analysis tools is of course non exhaustive. The use of these analysis
tools, and how they can be used in a complementary fashion, is exemplified in
Section 4.

3 Neural Networks for Integrating Information in Time

As mentioned in the introduction, dynamical neural networks are one of the
most interesting classes of models that are capable of integrating information in
time. Their integration capabilities are also supported by a wide literature that
analyzes their relation with statistical algorithms for time series analysis (see [3],
[4], [5], [8], and [19]). This section illustrates few important examples of these
models. They have been selected for various reasons:

(1) they are widely used within the neural-network community;
(2) the testbed presented here has been originally developed as a tool to test and

compare them within the research thread mentioned in the introduction;
(3) they allow the reader to envisage the models’ properties that might be ana-

lyzed with the tools presented here;
(4) in the future the testbed will be used to systematically compare them.

3.1 Elman Neural Networks

The first neural architecture considered here is the Elman neural network (see
[2], [7] and [16]). This is a feed-forward network with three layers: an input layer,
a hidden layer, and an output layer (Figure 6). The core of this type of network
is the presence of recurrences in the hidden layer that implies that, at each time
step, the activations of hidden units depend on the activations of the same units
at the previous time step.

This architecture allows the network to store information from the past so
that the network is capable of detecting periodicity and regularities of the input
patterns in time. In particular, if we let NI , NH , and NO denote the number
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I1

O1

O2

H1

H2

H3

Fig. 6. Architecture of an Elman network with 1 input unit, 3 hidden units and 2
output units

of units in the input, hidden and output layer, respectively, then the input to
the NH hidden units will be formed not only by the NI units activated by the
current input, but also by further NH units encoding the activation of the hidden
units at the previous time step (these play the role of a memory buffer).

The activation function of the hidden and the output layer units is the logistic
function:

Φσ(x) =
1

1 + eσx
, (4)

where σ is a “temperature” parameter (set to 1 in the experiments herein). The
learning rule used is the error back-propagation algorithm (see [17] or [20]).

3.2 Echo State Neural Networks

The second neural architectures considered, called echo state neural networks
(Figure 7), are only briefly reviewed here (see [11] and [13] for a detailed de-
scription and literature review). The important aspect of these networks is the
presence of a hidden layer, called dynamical reservoir, formed by linear or sig-
moid units which have hard-wired recurrent connections (connections in solid
black in Figure 7). These connections, that form a W matrix, are initially set
randomly, and then are normalized with the highest eigenvalue of the matrix so
that W has a spectral radius slightly smaller than 1. This setting of the weights
implies that the hidden neurons do not produce a chaotic behavior, do not ex-
plode or do not saturate on maximum or minimum values. Moreover, it implies
that the variation in the activation state of the hidden neurons produced by
transient inputs tends to slowly decay after the end of the stimulation.

If the set of hidden units is large enough, the dynamical reservoir is capable of
producing a large number of dynamics. The units of the reservoir are connected
to the output units in a simple linear fashion (the output units also feedback
to the reservoir units with random connections – hence the term “echo” in the
name: the signals vehiculated by these connections contribute to modulate the
reservoir’s dynamics). During training, the weights that connect the reservoir
units with the output units are updated with a supervised algorithm to reproduce
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Fig. 7. Architecture of an Echo State Network with 1 input unit, 3 hidden units, and
2 output units

a target output signal (e.g., a periodic signal). This training leads the hidden-
output weights to “select” few relevant dynamics from the internal reservoir
among the possible ones, and allows the output units to learn to reproduce,
in principle, any desired output signal having some correlation with the input
signal.

3.3 Leaky Integrator Neural Networks

The third type of neural network considered here is formed by leaky integrator
neurons. The core property of these neurons is that their activation potential
depends not only on the input from other internal and external neurons, but also
on own previous activation potential (see [1], [18] and [21]). Let ui(t) denote the
i-th unit’s potential at time t, Ii(t) its external input, hi(t) its resting level, Φσ is
the sigmoid activation function in (4), uj(t) the activation potential of another
j-th unit of the network, and wij the weight from the unit j to the unit i; the
dynamics of ui(t) is governed by the following dynamic equation:

τu̇i(t) = −ui(t) + Ii(t) + hi +
∑

j

wij Φσ (uj(t)) . (5)

Equation (5) implies that in absence of external inputs Ii, and with zero
connection weights wij , the neuron exponentially relaxes to the resting state hi

with a rate equal to − 1
τ (hence the name “leaky”). If Δt denotes the integration

time step, then (5) has a discrete version with the following form (that can also
be used to numerically integrate equation (5) in the simulations):
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ui(t + Δt) =
(

1 − Δt

τ

)
ui(t) +

Δt

τ

⎛

⎝Ii(t) + hi +
∑

j

wij Φσ (uj(t))

⎞

⎠ . (6)

This form highlights that the activation potential of leaky neurons approaches
the sum of the resting level, external input, and input from other neurons, on
the basis of a “partial adjustment mechanism”. This implies that leaky neurons
have a ready available “internal” memory of the past that can be exploited by
the whole neural network to integrate information in time.

3.4 Long Short-Term Memory Neural Networks

The last types of neural networks reviewed here are the Long Short-Term Mem-
ory Networks (see [9], [10] and [12]). They have been introduced to extend the
memory capacity of standard recurrent neural networks, in particular, they have
been shown to efficiently solve many tasks involving integration of information
in time that are unlearnable for other neural networks (e.g. the recognition of
temporally very long extended patterns in noisy input sequences, the recognition
of the temporal order of widely separated events in noisy input streams, or the
stable generation of precisely timed rhythms).

The key feature of these neural networks resides in the special type of neurons
that form them, which are characterized by a self-recurrent connection and gates
that exert multiplicative effects on the input and output channels (Figure 8). The
functioning of one neuron of this type can be described as follows:

yi(t) = Φσ

⎛

⎝
∑

j

wgo
ij uj(t)

⎞

⎠ Φσ (ui(t)) , (7)

ui(t) = ui(t − 1) + Φσ

⎛

⎝
∑

j

wgi
ij uj(t)

⎞

⎠ Φσ

⎛

⎝
∑

j

wijuj(t)

⎞

⎠ , (8)

where yi(t) and ui(t) are the i-th unit’s activation and action potential at time
t, respectively, wij is the weight from the unit j to the unit i, wgi

ij and wgo
ij are

the weights from the units j to the input and output gates, respectively, and Φσ

is the sigmoid activation function of Equation (4).
These features allow neural networks formed by several of these special neu-

rons to produce highly complex dynamics. The networks so formed can be trained
on the basis of supervised learning algorithms.

4 Examples of Applications

This section illustrates the potential of the testbed by testing an Elman neural
network with two specific tasks. In the first task, the automaton perceives two
walls with different profiles, while following a linear trajectory, while in the sec-
ond task the automaton senses three different objects while following a circular
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Fig. 8. Structure of a single neuron of a long short-term memory neural network

trajectory. In both cases the automaton’s goal is to categorize the perceived sig-
nal and to predict, at each step, the signal level at the next step on the basis
of the previously experienced signal levels. Note that the experiments reported
here also represent the initial work of a research agenda directed to understand
the internal dynamical mechanisms exploited by recurrent neural networks to
capture regularities in time.

4.1 Wall Task: Experimental Setup

In this task the automaton moves along a straight trajectory along a wall which
can have one of two different profiles, shown in Figure 9. The various settings of
the experimental setup can be summarized as follows:

1. Wall profiles. The two possible wall profiles (Figure 9) had “hollows” with
same depth (this caused the normalized automaton’s sensor reading return
1, so this portion of the two walls was ambiguous for the automaton), and
“humps” with different heights (these caused a normalized sensor reading
equal to 0.36 and 0.68 respectively for the first and second profile).

2. Model. The tested model was an Elman neural network with NI = 1 input
units, NH = 2 hidden units, and NO = 3 output units. The input unit was
activated by the sensor reading normalized in [0, 1]. The first output unit
was devoted to predict the next input pattern while the other two output
units were devoted to encode the categories of the two wall profiles. Such
categories were locally encoded as {1, 0} and {0, 1} respectively for the two
profiles.

3. Training. During training, the walls were repeatedly presented one by one
to the automaton. The wall used in each presentation was randomly chosen,
and at each presentation the automaton performed a whole circle around
it. Training lasted 1, 000, 000 presentations, and used a λ = 0.005 learning
rate. For each time step, the teaching input was formed by the next input
pattern (i.e. the value of the signal at time t + 1) and by the binary value
that encoded the category of the current wall.
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Fig. 9. The two wall profiles used in the wall task (left) and the two equivalent objects
in the corresponding object task (right)

4. Steps (Angular Speed). The automaton covered a single lap around the patter
in a number of steps denoted by #Steps. In the experiment this parameter
was randomly assigned one of the following values in every object presenta-
tions (and kept constant during each presentation):

#Steps ∈ {16, 24, 32, . . . , 128} , (9)

The angle of the trajectory covered by one step of the automaton, that is,
its angular speed, depended on the total number of steps of a lap, and was
equal to 2π/#Steps.

5. Starting Point. This was the angle of the circular trajectory where the au-
tomaton started to perceive the wall. Let α(n) denote the angle at the n-th
step. For any n = 0, . . . , #Steps:

α(n) ∈
{

0,
2π

#Steps
,

4π

#Steps
, . . . , (#Steps − 1)

2π

#Steps

}
. (10)

The starting point α(0) was set randomly at each presentation of the input
time series.

6. Compression/Expansion of the Signal Level (Height of Profiles). The size of
the maximum height of the two walls was kept constant: 1.6 and 0.8 for
profiles 1 and 2, respectively.

7. Absolute Signal Level (Radius/Distance from Walls). The parameter of the
distance from the walls hollows, denoted by R, was set to 2.5.

8. Noise. The two sources of noise illustrated in Section 2.3 were both set to 5%.

4.2 Wall Task: Results

The training of the system was rather successful. At the end of training, the
neural network shows a rather good categorization ability. More precisely, the
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Fig. 10. Activations of the output units (first and third graph from top) and hidden
units (second and fourth graph from top) when the automaton perceives the signal
from the wall profile 1 and 2 (respectively first/second and /third/foruth graphs from
top). Stars in the first and third graph indicate the actual sensor’s readings (noise has
been switched off to ease the analysis of results), whereas the continuous black lines
show the wall’s profiles obtained with a very dense sensor reading.

network produces the right categorization output after few steps, and after that,
keeps producing the same categorization output even during the phase in which
the signal is ambiguous, that is, when scanning a hollow with a value equal to 1
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(a) Cross-correlogram of H1 and P.
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(c) Cross-correlogram of H1 and OC1.

−20 −10 0 10 20
0

0.5

1

Lags

C
ro

ss
−

co
rr

el
at

io
ns

(d) Cross-correlogram of H1 and OC2.
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(e) Cross-correlogram of H2 and OC1.
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(f) Cross-correlogram of H2 and OC2.

Fig. 11. Cross-correlograms between different variables of the models (see text) when
the model perceives a repeated sequence of 1000 P1/P2 wall profiles, in an alternate
fashion, with α(0) = 0

(as shown by the thin black curves in Figure 10). With respect to the prediction
capability, however, the network simply predicts that the signal at time t + 1
will be identical to the signal at time t. Although this simple strategy allows
the network to produce the right answer in most of the cases, it fails to predict
correctly in the cases in which the value of the signal suddenly varies from time
t to t + 1 (Figure 10). Indeed, exactly predicting this sudden change is not
possible due to the noise affecting the automaton’s step-size.
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The capabilities of the model are robust with respect to signal’s random sys-
tematic transformations of the first type indicated in (2) (recall that these trans-
formations are related to variations of the initial position of the automaton with
respect to the object and to the step size): none of them prevents the system’s
capabilities to emerge.

In order to understand in detail how the system performs prediction and
categorization, a test was run where the system was presented for 1000 times,
in an alternate way, the two wall profiles, each time with α(0) = 0 (that is, the
automaton is placed at the beginning of the input time series). The data collected
in this test were used to build cross-correlograms capturing correlations within
couples of time series related to various variables of the network, namely, the
input value, the hidden units’ activations, and the output units’ activations. Let
us denote with I the input unit’s activation (i.e. the perceived signal), with H1
and H2 the two hidden units’ activation, with OP the activation of the output
unit devoted to prediction, with OC1 and OC2 the activation of the two output
units devoted to categorization, with OD1 and OD2 the desired output for the
two categorization units, and with P1 and P2 the two wall profiles.

The cross-correlograms between the hidden and the output units’ activation,
reported in Figure 11, give important indications on the role played by the hidden
units in the model’s responses:

1. The comparison of cross-correlograms of Figure 11(a) and 11(b), related to
the correlation between H1/H2 and OP , indicate that H1 has a strong
correlation with OP whereas H2 has an almost null correlation with it.

2. The cross-correlograms of Figure 11(c) and 11(d) indicate that H1 has a
very low anti-correlation with OC1 and a very low correlation with OC2.

3. The cross-correlograms of Figure 11(e) and 11(f) indicate that H2 has a
strong anti-correlation with OC1 and a strong correlation with OC2.

Altogether, these data corroborate the suggestion that H1 mainly underlies
the model’s prediction capability, whereas H2 mainly underlies its categorization
capability, and that a high and low activation of the latter tends to cause the
model to categorize the input pattern respectively as P2 and P1.

These interpretations are further corroborated by the cross-correlograms re-
lated to the hidden units, the input unit, and the second wall category (OD2; the
cross-correlograms with OD1 give similar information), reported in Figure 12,
which show that:

1. The comparison of cross-correlograms of Figure 12(a) and 12(b), related
to the correlation between H1/H2 and I, indicates that H1 has a strong
correlation with I whereas H2 has an almost null correlation with it.

2. The comparison of cross-correlograms of Figure 12(c) and 12(d), related to
the correlation between H1/H2 and OD2, indicate that H1 has no correla-
tion with OD2 whereas H2 has a strong correlation with it.

Figure 13 reports the values of the model’s weights that emerged with training.
The analysis of the weights between the hidden and output units confirms the
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(c) Cross-correlogram of H1 and OD2.
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(d) Cross-correlogram of H2 and OD2.

Fig. 12. Cross-correlograms between hidden units’ activation and the input signal or
desired output of the second categorization output unit, when the model perceives a
repeated sequence of 1000 P1/P2 wall profiles, in an alternate fashion, with α(0) = 0

indications given by the cross-correlograms, and also allows formulating a more
detailed explanation of the functioning of the system:

1. The weights from H1 and H2 to OP show that P depends only on H1, as the
weight of the connection from H1 is positive (positive correlation) whereas
the weight from H2 is close to zero (no correlation). Indeed, lesioning this
weight, that is setting it to zero, has no effect on prediction performance
(data not reported).

2. The high weights from H2 to OC1 and OC2 confirm that this hidden unit
greatly contributes to determine the category of the wall profile, namely P1
when it is low and P2 when it is high. H1 also partially contributes to the
categorization as its weights to OC1 and OC2 are different from zero (its
high activation tends to cause a categorization of the input signal as P2).

3. The analysis of the weights between the input and the memory units on one
side, and the output units on the other side, give other important indications
on how the system solves the task.

4. Considering the connections to H1, the positive connection weight between I
and H1 implies that H1 implements the prediction capabilities by “relaying”
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Fig. 13. Hinton plot of model’s connection weights after training. The black and gray
squares respectively correspond to negative and positive values of the weights, whereas
their size is proportional to the weights’ absolute value.

the input signal: the model tends to return a high or low prediction value
respectively for high or low input signal levels. Note that this implies that
the model is not capable of returning an accurate prediction when the signal
suddenly changes level one step in advance, as shown in Figure 10. The
weights from H1 to itself do not play an important role. Indeed, lesioning
them does not impair performance (data not shown).

5. Considering the connections to H2, the positive self-connection of H2 indi-
cates that it has a strong inertia. The positive connection from H1 (that, as
we have seen, positively correlates with the input pattern and generates P )
indicates that H2’s categorization capacity strongly depends on H1’s acti-
vation. Lesioning the connection between the input and H2 indicates that it
is also important for categorization (data not reported).

A further refinement of these interpretations is furnished by two other exper-
iments where the input signal to the system is handcrafted in order to highlight
particular aspects of its internal dynamics. In particular, Figure 14 shows the
dynamics of the model’s hidden and output units’ activation when it first per-
ceives a signal of 1 and then of 0.68 (recall that the level of the signal has been
normalized in the range [0, 1]), whereas Figure 15 shows the dynamics of the
same variables when the system first perceives a signal of 0.36 and then of 0.68.

With respect to the prediction capability, these figures confirm that predic-
tion capability (H1) relies in part on categorization (H2). In fact, if H2 gives
the category P1, then H1 gives P = 1 with both I = 1 (Figure 14) and I = 0.68
(Figure 15: note how after the signal abruptly changes, the prediction makes a
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Fig. 14. Activations of the hidden and output units when the automaton first perceives
a signal of 1 and then of 0.68

mistake for about six cycles because the activation of H2 is incorrectly categoriz-
ing the input as P1). On the other hand, if H2 gives the category P2, H1 gives
P = 1 with I = 1 (Figure 14), but it gives P = 0.68 with I = 0.68 (Figure 14
and 15).

With respect to the categorization capability, it is interesting to see how the
system can solve the I = 1 ambiguity. H2 moves slowly toward 1 (that implies
P2) both when I = 1 (Figure 14) and when I = 0.68 (Figure 15), whereas it
stays at 0 when I = 0.36 (Figure 15). This implies that H2 has the value of
1, (corresponding to P2) as a fixed-point attractor value when I > 0.36 or so,
and 0 (corresponding to P1) when I = 0.36. For this reason, when the signal
level I = 1 has been preceded by a signal I = 0.36 (corresponding to P1), H2
approaches 1 (P2) only slowly and so continues to give P1 for some time until
the system perceives I = 0.36 again.

4.3 Three Objects Task: Experimental Setup

In this task, the automaton moves along a circular trajectory around three dif-
ferent “objects” and at each step detects the distance from them (see Fig. 16
and compare with [2]).

The various settings of the experimental setup can be summarized as follows:

1. Objects. The three objects are illustrated in Figure 17: a “square”, a “thick
cross” and a “thin cross”. The number of objects is denoted with NP . No-
tice that, given the shape of the objects, during one lap around an object
the automaton experienced a signal formed by four succeeding equal waves,
similarly to the wall task.
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Fig. 15. Activations of the hidden and output units when the automaton first perceives
a signal of 0.36 and then of 0.68

2. Model. The tested model was an Elman neural network with NI = 1 input
unit, NH = 3 hidden units, and NO = 4 output units. The input unit was
activated by the sensor reading normalized in [0, 1]. The first output unit was
devoted to predict the next input pattern while the remaining three output
units were devoted to encode the categories of the three signal patterns. Such
categories were locally encoded as {1, 0, 0}, {0, 1, 0}, and {0, 0, 1}) respec-
tively for the three objects.

3. Training. Training was performed as in the wall task.
4. Steps (Speed). The number of steps #Steps the automaton took to scan an

object’s profile during a presentation was randomly varied from presentation
to presentation as in the wall task.

5. Starting Point. The starting point α(0) was randomly varied from presenta-
tion to presentation as in the wall task.

6. Compression/Expansion of the Signal Level (Object Size). The size of the
object is denoted by S (this represents half of the longest arm of the cross
objects and half the size of the square’s side) and half of the length of the
shortest arm of the crosses is denoted with T . In the majority of experiments
reported below, the size of the objects was set at fixed values, whereas in
few other experiments it was randomly varied at each presentation (but kept
fixed within it) within the range [0.5, 1.8] (recall that S is related with the
parameter ay of equation 3).

7. Absolute Signal Level (Radius). In the majority of experiments reported be-
low the radius R of the circular trajectory followed by the automaton around
the objects was set at fixed values, whereas in some variants of the experi-
ment it was randomly varied at each presentation (but kept fixed within it)
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Fig. 16. Important parameters of the three object recognition task: the dots represent
different positions in space occupied by the automaton from which it detects a certain
distance d from the object. R is the automaton’s distance from the object’s center, S
is half of the size of the object’s longest axis, and T is half of the object’s shortest axis.

in the range [2, 3] (recall that R is linearly related to the parameter by of
equation 3).

8. Noise. The two sources of noise illustrated in Section 2.3 were both set to
5%.

Note that, since the setting implies that 0 ≤ T ≤ S ≤ R, the ratio ρ = T
S

has the following restriction: ρ ∈ [0, 1]. Also note that parameter ρ uniquely
identifies the three objects (see Figure 16).

4.4 Three Objects Task: Results

With the two sources of noise on and the four random systematic transformations
off, the Elman network achieves a satisfying performance both for the prediction
and for the categorization tasks. As far as the prediction capability is concerned,
as in the wall task, the system adopts a strategy of input repetition. Nevertheless,
the network had low quadratic errors when tested with various step sizes (see
Figure 18): the graph shows that the error decreases as the steps grow.

A further analysis of the system’s prediction capabilities was obtained by
presenting the patterns to the model for some time, and then by forcing the
network to use its prediction as the next self-generated input. In this experiment,
the quality of the prediction signal rapidly deteriorates (constant output), hence
confirming that the system directly repeats the input as prediction.

The model also shows to be robust with respect to signal’s random system-
atic transformations of the first type indicated in (2). In particular, the model
is robust with respect to variations of the initial position of the automaton with
respect to the object (corresponding to α(0)), which does not deteriorate per-
formance (data not shown). Moreover, and surprisingly, the model has an even
higher performance when trained with step sizes that vary randomly between
the objects’ presentations. This can be seen by comparing the model trained in
two different conditions:
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Fig. 17. Left graphs: the three crosses used in the object task, characterized by
(ρ1, S1) = (1, 0.95), (ρ2, S2) = (0.70, 1.13), and (ρ3, S3) = (0.41, 1.35): these values
were set to similar maximum and minimum values of the sensor’s reading (in few ex-
periments was randomly varied). The radius R was set to 2.5. Right graphs: the sensor
readings caused by the three objects.

1. In each presentation #Steps is randomly set within the values indicated
in (9), and the object approach angle α(0) is randomly set in the range
indicated in (10).

2. The #Steps is set at the same value used in the test of performance, whereas
the object approach angle α(0) is randomly set as in the previous condition.

The white and black bars of the histogram reported in Figure 19, which refer
to the two training conditions, respectively, indicate that the performance of
the model is generally higher when it is trained with varying step sizes. Further
experiments with one square and three different crosses corroborate this result
(data not reported).

Other tests showed that the signal’s random systematic transformations of
the second type, indicated in (3), completely disrupt the performance of the
algorithm (data not reported). This result suggests that the capacity of the
model both to categorize the object and to predict the next input heavily relies
on the absolute and relative levels of the signals in time.
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Fig. 18. Mean square error of the prediction unit with respect to #Steps
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Fig. 19. Categorization performance of the model (y-axis) when it is tested with various
step sizes (x-axis). The black bars refer to a model trained, with varying step size, to
categorize the objects and to predict the next input. The gray bars refer to a model
trained, with varying step size, only to categorize. The white bars refer to different
models trained to categorize and to predict with a step size equal to the one used in
the performance tests, reported on the x-axis.

Another interesting result is that training the prediction capability of the
model improves the model’s capacity to categorize the objects. With this respect
the gray histogram bars reported in Figure 19 show that the performance of the
model deteriorates if the system is not trained to predict the next input. This
result indicates that training the model prediction capability likely leads the
system to develop internal representations that aid the categorization capability.
Further analyses of the model’s internal representations should be carried out
to understand this outcome in further depth. These analyzes might be aided
by some of the investigation methods suggested in Section 2.4. For example,
Figure 20 shows the dynamics of the model’s three hidden units when the system
perceives the three objects. The graphs of the figure show that the model’s object
categorization and prediction capability is based on three different limit-cycle
attractors: the model’s internal state converges to a different limit-cycle attractor
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Fig. 20. Dynamics and attractors of the model’s hidden units activations. Each of the
three graphs represents the “history” of the three hidden units’ activation when the
model categorizes and predicts one of the three objects (respectively the square, the
thick cross and the thin cross). Each graph reports the outcome of the experiment run
in three different conditions: (a) the model categorizes the object after it has perceived
the square (black line); (b) the model categorizes the object after it has perceived the
thick cross (gray line); (c) the model categorizes the object after it has perceived the
thin cross (light gray line).

in order to categorize the different objects. Notice that when the system starts
to perceive an object after it has perceived a different object, its internal state
takes some time to settle to the limit-cycle attractor of the current object as its
internal memory needs to synchronize with the dynamics of the new input time
series. After the state has settled to the attractor corresponding to the object,
then it follows a cyclic trajectory within it in order to predict the next input
pattern.

5 Conclusions and Future Work

This paper presented a testbed that can be used to evaluate the capabilities
of recurrent neural networks (and similar models) of integrating information in
time, in particular the capabilities of categorizing different signals, of predicting
future signals on the basis of past ones, and of doing so in the face of noise and
systematic variations of the input signal. The paper also illustrated the poten-
tialities of the testbed by exemplifying its functioning with two tests involving
simple recurrent Elman networks engaged in solving two different prediction and
categorization tasks.

The added value of the paper is manyfold. First, it highlights the need of
building standard testbeds, metrics, and analysis tools to compare, and build
taxonomies of, the increasing number of models proposed within the literature
of the ABiALS community. Second, it presents a specific testbed that allows
testing models’ capabilities of categorization and anticipation. Third, it shows
the potential utility of developing and using testbeds by showing some results
obtained by applying the testbed proposed here to the study of the functioning
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of Elman neural networks. These applications showed that, even if a detailed
understanding of the functioning of recurrent neural networks is very difficult,
the dynamical principles that might underlie their capacity of integrating in-
formation in time are particularly interesting and make it worth designing and
implementing testbeds and analysis tools, as those proposed here.

Future developments of this research will follow two main directions. On the
one hand, it will continue to carry out systematic studies, in line with the prelim-
inary experiments presented in Section 4, to understand the exact mechanisms
that are developed by recurrent networks to integrate information in time, such
as the formation of cyclic or fixed point attractors, units with progressive in-
creases or decreases of activation, hierarchical abstract representations, etc. On
the other hand, it will use the testbed to compare the capacities of the four
neural networks described in Section 3 to capture different time regularities.
This comparison could be important to highlight which particular features of
temporal signals can be best integrated in time by the different models, and
hence which types of tasks are more suitable for them.
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