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Abstract How does communication originates in a popula-
tion of originally non-communicating individuals? Providing
an answer to this question from a neo-Darwinian epistemo-
logical perspective is not a trivial task. The reason is that,
for non-communicating agents, the capabilities of emitting
signals and responding to them are both adaptively neutral
traits if they are not simultaneously present. Research studies
based on rather general and theoretically oriented evolution-
ary simulation models have, so far, demonstrated that at least
two different processes can account for the origin of com-
munication. On the one hand, communicative behaviour may
first evolve in a non-communicative context and only subse-
quently acquire its adaptive function. On the other hand, com-
munication may originate thanks to cognitive constraints;
that is, communication may originate thanks to the existence
of neural substrates that are common to the signalling and
categorising capabilities. This article provides a proof-of-
concept demonstration of the origin of communication in a
novel-simulated scenario in which groups of two homoge-
neous (i.e. genetically identical) agents exploit reciprocal
communication to develop common perceptual categories
and to perform a collective task. In particular, in circum-
stances in which communication is evolutionarily advanta-
geous, simulated agents evolve from scratch social behaviour
through acoustic interactions. We look into the phylogeny of
successful communication protocol, and we describe the evo-
lutionary phenomena that, in early evolutionary stages, paved
the way for the subsequent development of reciprocal com-
munication, categorisation capabilities and successful coop-
erative strategies.

E. Tuci (B)
ISTC-CNR, Via San Martino della Battaglia, No. 44, 00185 Rome, Italy
e-mail: elio.tuci@istc.cnr.it

Keywords Communication · Artificial evolution ·
Artificial neural networks · Autonomous simulated agents

1 Introduction

Tracing animal communication back to its origins from a neo-
Darwinian epistemological perspective is neither a trivial nor
an obvious task (see Dawkins and Krebs 1978; Maynard-
Smith and Harper 1995; Hauser 1996). A scientific account
of how a population of communicating agents originates from
a population of non-communicating agents has to determine
under which circumstances communicating is evolutionarily
advantageous (Maynard-Smith and Price 1973). However,
there are further issues that need to be investigated to under-
stand the origins of communication other than those related
to its adaptiveness. In particular, a neo-Darwinian account of
the origin of communication has to provide evidence show-
ing how agents that do not emit signals, and are not capable
of appropriately responding to them, can acquire both capa-
bilities through natural selection.

Communicating agents must possess the required mech-
anisms to emit appropriate signals and develop appropriate
reactions to them. Natural evolution mainly works by favour-
ing the emergence of traits that increase the chance of sur-
vival and reproduction. However, both the capability to emit
signals and the capability to respond to them are adaptively
neutral if not considered in a communicative context. That
is, in a population of agents that are not capable of appropri-
ately responding to signals, the reproductive chance of indi-
viduals that are capable of emitting signals does not differ
from that of individuals that are not capable of emitting sig-
nal. Similarly, in a population of agents that are not capable
of emitting appropriate signals, the reproductive chance of
individuals that are capable of responding to signals does not

123



184 Biol Cybern (2009) 101:183–199

differ from that of individuals that cannot respond to signals.
The fact that emitting and responding to signals, when taken
in isolation, are adaptively neutral traits, leaves us with the
problem of explaining how the capability of responding to
signals evolves if no one is signalling, or how the capability
of emitting signals evolves if no one is responding.

Evolutionary Robotics (hereafter, referred to as ER) mod-
els are rather recent methodological tools that have been com-
plementing classic biological/ethological modeling methods
to study the evolutionary origins of individual and social
behaviour (Nolfi and Floreano 2000). ER is based on the
use of artificial evolution to find sets of parameters for arti-
ficial neural networks that guide agents to the accomplish-
ment of their objectives, while avoiding dangers. By using
ER models, scientists can determine the characteristics of
the agents and of their environment that facilitate the evo-
lution of certain behavioural capabilities and their underly-
ing mechanisms (see Pfeifer and Scheier 2001; Cangelosi
and Parisi 2002). Several ER models focus on issues con-
cerning the operational principles of communicative behav-
iour due to the fundamental role, which communication plays
in fostering cooperation and collaboration amongst artificial
and natural organisms. Other ER models, described in Quinn
et al. (2003), Marocco and Nolfi (2007), Mirolli and Parisi
(2008), and Ampatzis et al. (2008), focus on the evolutionary
origins of communication, trying to explain how communi-
cation may originate in a population of non-communicating
agents. Following this line of investigation, this study illus-
trates a theoretically oriented ER model focused on the ori-
gin of acoustic communication. In particular, we provide a
proof-of-concept demonstration of the origin of communi-
cation in a scenario in which genetically related agents must
“talk to each other” to correctly categorise their world, and
to cooperatively act on the basis of the chosen category.

Generally speaking, the term categorisation can be
referred to the ability of mapping continuous signals received
by sensors into discrete categories whose members resemble
each other more than members of other categories. Cate-
gorical perception represents one of the most fundamental
cognitive capacities displayed by natural organisms, and it
is an important pre-requisite for the exhibition of several
other cognitive skills (see Harnad 1987). In our experimen-
tal scenario, categorisation refers to the capability of an agent
to gather individual perceptual experience and to share this
experience with its partner to develop a common perspec-
tive on the current environment. In other words, since in our
scenario individual perception is not sufficient to perform
the categorisation task, the agents must share their expe-
riences by interacting through sound signals. Whether or
not the agents correctly categorise the environment can be
inferred through the effectiveness of the collective strategy
they are required to perform in order to accomplish their
task. It is important to note that, at the beginning of their

evolutionary history, the agents do not possess any built-in
mechanism to explicitly represent the environmental cate-
gories or other mechanisms that explicitly regulate acoustic
interactions. The underlying structures for categorisation and
communication have to evolve from scratch.

We demonstrate that communication originates in pop-
ulations of non-communicating agents in which individu-
als exploit social interactions to develop common perceptual
categories. We look into the phylogeny of a successful com-
munication protocol, and we describe the evolutionary phe-
nomena that, in early evolutionary stages, paved the way
for the subsequent development of reciprocal communica-
tion, categorisation capabilities and successful cooperative
strategies. Although the evolved behavioural and communi-
cation strategies may be limited to the peculiarities of this
case study, we provide insights into the origin of reciprocal
communication without addressing the evolution of any par-
ticular communication system of any given species.

In what follows, we first present a review of previous study
in ER focused on the origin of communication (see Sect. 2).
Then, we describe the cooperative task investigated in this
research study (see Sect. 3). In Sect. 4, we describe the agents’
morphological structure, their control systems and the evolu-
tionary algorithm used to design them. In Sect. 5, we illustrate
the results of a series of post-evaluation analysis. Discussion,
conclusions and directions for future study are presented in
Sect. 6 and 7.

2 Comparison with previous studies

The issue of how artificial agents can develop social behav-
iour and communication skills has already been addressed
in several research studies. In this section, we describe those
works in which, like in ours, the structure of both communi-
cative and non-communicative behaviour are automatically
designed by an evolutionary algorithm and in which evolu-
tionary analyses revealed interesting aspects about the ori-
gins of communication. Consequently, we do not consider
those interesting studies on communication in multi-agent
systems in which the mechanisms for social interactions are
hand-coded (e.g. see Balch and Arkin 1994; Cao et al. 1997;
Fong et al. 2002; Støy 2001; Steels 2003). Moreover, we do
not review those ER models, in which the mechanisms for
social interactions are entirely evolved, but the focus of that is
on the ontogeny than on issues concerning the phylogeny of
communication (e.g. Di Paolo 2000; Baldassarre et al. 2003;
Trianni and Dorigo 2006; Tuci et al. 2008; Williams et al.
2008).

The study described in Quinn (2001) can be considered
the first ER model to look at issues concerning the origin of
communication in autonomous agents. Two years later, that
work was extended in Quinn et al. (2003). In both works,
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teams of two or three homogeneous robots were required
to move in an arbitrarily chosen direction, while remaining
close to each other at a distance smaller than the range of
their infrared sensors. Neural mechanisms designed through
artificial evolution allowed the agents to engage in social
interactions which resulted in the emergence of roles such
as leader/follower. In Quinn (2001) and Quinn et al. (2003),
the authors found that behaviours that have a communica-
tive value resulted from the adaptation of other elementary
behaviours, which did not have a communicative function
(i.e., obstacle avoidance). Thus, they concluded that behav-
iour for social coordination may evolve in a non-commu-
nicative context, and only subsequently acquire its adaptive
function.

In Marocco et al. (2003), the authors described a categor-
isation task in which a simple artificial arm made of three
segments is required to distinguish a sphere from a cube by
remaining close to the first object and moving away from the
second one. Each agent receives tactile sensations as well
as a linguistic input provided by previous generation agents
that have already interacted and named the objects by using
two binary outputs. That work shows that the evolutionary
conditions, which facilitate the emergence of effective com-
munication are those in which each arm receives a linguistic
input from its parent rather than from another individual of
the previous generation, and in which naming begins after the
agents have already evolved basic categorisation capabilities.
The results of that work induced the authors to emphasise two
distinctive aspects: first, they claimed that a kinship relation
between a speaking parent and a listening offspring facili-
tates the origin of a common “language” in a population of
originally non-communicating agents. This issue is further
discussed in Floreano et al. (2007). Second, they took up a
thesis already formulated in Cangelosi and Parisi (1998), by
suggesting that the ability of categorising perceptual states
constitutes the grounding for the evolution of effective com-
munication protocols. The idea that the capability of cat-
egorising perceptual states can facilitate the establishment
of links between linguistic production and comprehension
abilities is the message of the work described in Marocco
and Nolfi (2007) and Mirolli and Parisi (2008). In particular,
Mirolli and Parisi (2008) showed a model in which communi-
cation amongst artificial agents originates because the signals
produced by an organism tend to reflect the way, in which the
organism categorises its experience. In other words, links in
the brain of an organism between the mechanisms for cate-
gorisation and those for communication were proved to rep-
resent a bias (referred to as ‘producer-bias’ in Mirolli and
Parisi (2008)) towards the production of useful and reliable
signals.

In the work of Ampatzis et al. (2008), the authors
described a set of experiments in which artificial evolu-
tion is used as a methodological tool to engineer robot

neuro-controllers capable of guiding groups of robots in a
categorisation task by producing appropriate actions. In par-
ticular, two autonomous mobile robots required to perform
an individual task exploit their signalling system to develop
a simple form of cooperation. Categorisation is the result of
how robots’ sensory inputs unfold in time, and, more specifi-
cally, of the integration over time of sensory input. Although
not explicitly rewarded by the fitness function, and not neces-
sarily required to perform the task, communication originates
as it enhances group performance, revealing a ‘hidden’ ben-
efit for social behaviour. This benefit is related to obtaining
robust and fast decision-making mechanisms. More gener-
ally, the authors showed how processes requiring the categor-
isation of noisy dynamical information might be improved
by social interactions mediated by communication.

With respect to the research works mentioned above, our
model is a general and theoretically oriented study on the
origin of communication by using acoustic signals. We do
not address the evolution of any particular communication
system of any given species. As in Marocco et al. (2003),
Ampatzis et al. (2008) and in Mirolli and Parisi (2008), we
target communication skills that allow the agents to perform
categorisation tasks. However, our simulation differs from
those mentioned above in that we investigate the origin of
communication in a scenario in which the agents need to ‘talk
to each other’ to correctly categorise elements of their world,
and to cooperatively act on the basis of the chosen category.
Communication is reciprocal, since both agents need to rec-
ognise and distinguish environmental features, to influence
each other’s behaviour through the emission of signals and to
properly respond to the perceived signals. Social interactions
are evolutionarily advantageous as long as they allow agents
to properly categorise elements of the environment in which
they are currently located. In this sense, our work is simi-
lar to the work described in Quinn (2001) and Quinn et al.
(2003), in which both agents engaged in mutually influenc-
ing ritualised interactions. However, our work differs from
that of Quinn (2001) and of Quinn et al. (2003), in that agents
need to recognise distinctive perceptual states to bring forth
adaptive social interactions.

By synthesising through artificial evolution collective
strategies tailored to this adaptive problem, we illustrate the
operational principles of successful communication proto-
cols. Moreover, we describe the selective pressures and the
evolutionary dynamics that produced the best evolved com-
munication protocols.

3 The task

Each simulated agent has a cylindrical body of 5.8 cm radius,
with infrared, ambient light and floor sensors, a microphone
and a traction system made of four wheels. The agents’ world
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Fig. 1 The four environments E10, E01, E00 and E11. The small filled
circles labeled L1, L2, R1 and R2 indicate the position of the lights.
The revolving door is indicated by the central bar orthogonal to the long
arena walls. The black parts of the revolving door indicate the wrong
arms (i.e. those that the agents should not touch), the white parts with

diagonal lines are the correct arms (i.e. those that, if simultaneously
pushed, make the door rotate). In each environment, the arrows indi-
cate the direction in which the door revolves. The two empty circles on
the white floor represent the agents and their headings

is a rectangular arena (120 cm×50 cm) divided into two
equal sides by a revolving door. The latter is a bar that rotates
clockwise or anticlockwise if simultaneously pushed by both
agents. The white arena floor is characterised by two painted
zones placed close to the short arena walls (see Fig. 1). The
direction of rotation of the revolving door is determined by
the combination of colours of the painted zones, with each
single colour (black and grey) associated with both clockwise
and anticlockwise rotational movement.

Two agents, initially placed one on the left and one on the
right side of the arena, are required to repeatedly swap sides
by opening the revolving door without touching the current
wrong arms (see Fig. 1). In a single trial, an agent can only
perceive the colour of one painted zone. Therefore, in order
to accomplish their task, the agents should first explore their
sides to find out the colour of the painted zones. Then, they
should ‘talk to each other’ using sound signals to find out the
direction of rotation of the revolving door. Finally, they are
required to employ an effective cooperative pushing strat-
egy to exert forces only on the current correct arms of the
revolving door. We chose to use a communication system as
simple as possible, i.e. sound signals that do not vary in fre-
quency not in amplitude. This minimal model of sound has
already been ported on real robots without having to simu-
late aspects concerning the propagation of sound and sound
interference (see Ampatzis et al. 2008). Moreover, this min-
imal sound model does not provide the agents any built-in
mechanisms for the distinction between self- and non-self-
produced sound. Whether or not the capability to distinguish
self-produced from non-self-produced signals is required by
the agents to solve this task, is an issue entirely left to evo-
lution.

As shown in Fig. 1, there are four lights in the arena: L1,
L2, R1 and R2. L1 and L2 can only be seen by an agent

located in the left side of the arena, while R1 and R2 can
only be seen by an agent located in the right side of the
arena. When L1 is turned on L2 is turned off and vice versa;
the same for R1 and R2. The arena floor is white except in
two semicircular zones of 15 cm radius located in front of L1

and R1, respectively, in which the floor can be either black
or grey. The agents can experience four different combina-
tions of black and grey zones. The type of environment, in
which the agents are located, is determined by the combina-
tion of colours of the painted zones. More specifically, the
environments are labeled E xy with x, y ∈ {0, 1}, where x
corresponds to the colour of the floor in the proximity of L1

and y to the colour of the floor near R1. Grey corresponds
to 0 and black to 1. The four types of environment are E10,
E01, E00 and E11. The revolving door, orthogonal to the
long arena walls, rotates 90◦ clockwise or anticlockwise, if
simultaneously pushed by both agents in the correct manner.
In fact, the correct direction of rotation depends on the type
of environment. The agents have to exert forces to make the
door rotate (a) anticlockwise, if located in E10 or in E01 (b)
clockwise, if they are located in E00 or in E11 (see the arrows
in Fig. 1).

At the beginning of the first trial and in those that follow
an unsuccessful one, the agents are randomly placed in the
proximity of the revolving door one in each arena side. A trial
begins with L1 and R1 turned on, and it can last for up to 100
simulated seconds (1,000 time steps). A trial is terminated
earlier (a) in the case, an agent crashes with the arena walls,
(b) if the agents fail to swap sides within the time limit and (c)
if both agents manage to travel (by rotating the door) into the
opposite side of the arena up to a distance of 24 cm from the
door hub before the time limit. Trials terminated earlier due
to (a) or (b) are considered unsuccessful. In trials following
a successful one, the agents are not repositioned. Each trial
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differs from the others in the initialisation of the random
number generator, which influences the agents’ starting posi-
tion and orientation anytime the agents are positioned, and
the noise added to actuation of motors and sensor readings.

The sequence of desired actions that each agent is
demanded to carry out during a trial can be decomposed into
two phases. At the beginning of the first phase, L1 and R1 are
turned on, the revolving door is oriented orthogonally to the
long arena walls and the colour of the floor in the proximity
of L1 and R1 is set according to the type of environment
that characterises the trial. During this phase, the agents are
required to find the painted zone in their arena side. L1 and
R1 facilitate the search of the painted zones, since they can
be used by the agents as beacons. For the agent located on
the left and on the right side, the first phase finishes as soon
as the time spent on the painted zone is bigger than T

′
and

T
′′
, respectively. T

′
and T

′′
are randomly and independently

chosen between 4 and 8 s.
The change from the first to the second phase of the task

is characterised by the fact that L1 and R1 turn off, while
L2 and R2 turn on. The function of L2 and R2 is to show
the agents in which direction they have to move to approach
the revolving door. Each agent, with a phototactic behaviour,
should get close to the revolving door and push it with its
body until it is open enough to let the agent go through. As
mentioned above, the agents have to simultaneously exert
forces to make the door rotate (a) anticlockwise, if they are
located in E10 or in E01; (b) clockwise, if located in E00

or in E11. A trial successfully terminates when both agents
manage to swap sides and to travel into the opposite side of
the arena up to a distance of 24 cm from the door hub. At the
end of a successful trial, L2 and R2 are turned off, L1 and
R1 are turned on, the rotating door automatically returns to
its rest position (i.e. orthogonal to the long arena walls) and
a new trial begins.

Note that the sequence of events experienced by the agent
on the left side is completely independent from the sequence
of events experienced by the agent on the right side. For
example, the change of state of L1 and L2 is exclusively
determined by the behaviour of the agent on the left side.
The change of state of R1 and R2 is exclusively determined
by the behaviour of the agent on the right side. This means
that the agents might start pushing the door at different times.
Nevertheless, the door rotates only if both agents simulta-
neously push it in the correct way. Moreover, genuine coop-
erative successful strategies are those in which, during a trial,
each agent touches only the correct arm of the revolving
door. Agents should find out which is the correct arm to push
by communicating through sound signals. Communication
should allow the agents to complement their knowledge of
their respective arena side by ‘informing’ each other on the
colour of the painted zone in the opposite side. Communica-
tion is effective if by emitting sound signals the agents first

find out whether they are in an environment in which both
painted zones are coloured in the same way or not, and sec-
ond develop the cooperative pushing strategy that open the
revolving door without touching its current wrong arms.

The agents can complete both phases of the task and swap
arena side with simpler strategies in which communication
and categorisation are not required. For example, one or both
agents may push in a single trial both arms (i.e. the correct
and the wrong one) of the revolving door until it rotates.
This behaviour, referred to as trial-and-error, is not consid-
ered the correct way to solve the task and, during evolution,
it is penalised by the fitness function (see Sect. 4.3).

4 Methods

4.1 The robot and its control structure

The agents and their world are simulated using software
based on Open Dynamic Engine (see http://www.ode.org/), a
3D rigid body dynamics library that provides primitives for
the implementation of detailed and realistic physics-based
simulations. Our simulation models some of the hardware
characteristics of the real s-bot, which are small wheeled
cylindrical robots, 5.8 cm of radius, equipped with a variety
of sensors, and whose mobility is ensured by a differential
drive system (see Mondada et al. 2004). Our simulated agent
has a differential drive motion provided by a traction sys-
tem composed of four wheels: two lateral, motorised wheels
and two spherical, passive wheels placed in the front and in
the back. The four wheels are fixed to the cylindrical body
that holds the sensors. In particular, agents make use of five
infrared sensors I Ri, two ambient light sensors AL i, one
floor sensor F S, one loudspeaker SO and one omnidirec-
tional microphone SI (see Fig. 2a). Infrared sensors have a
maximum range of 15 cm; ambient light sensors have a max-
imum range of 60 cm and light levels change as a function of
the agent’s distance from the lamp.1 The floor sensor, placed
underneath the agent, detects the level of grey of the floor.
It outputs the following values: 0—if the agent is positioned
over a white floor; 0.5—if the agent is positioned over a grey
floor; 1—if the agent is positioned over a black floor. The
loudspeaker produces a binary output with SO = 1 corre-
sponding to sound on, and SO = 0 to sound off. The omni-
directional microphone has no directionality and intensity
features and it returns 1 if one or both agents are emitting
sound, otherwise 0. A total of 10% uniform noise is added to
I Ri and AL i readings, and also to motor outputs and agents’
position.

1 The readings of the infrared and light sensors are taken from look-up
tables which contain sampled information from the real s-bot. More
details can be found in Vicentini and Tuci (2006).
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Fig. 2 a Depiction of the agent with motors and sensors. I Ri, with
i = 1, . . . , 5 are the infrared sensors; AL1 and AL2 are the ambient
light sensors; F S is the floor sensor; SI is the omnidirectional micro-
phone; SO is the loudspeaker; M1 and M2 are the left and right motor,
respectively. b The control architecture: module MC and module M M .
For MC only the efferent connections of one neuron are drawn. At each

time step, the categorisation output C O emitted by MC is input into
M M . The correspondences between agent’s sensors and input neurons
are indicated in each module. The labels on the continuous line arrows
refer to the notation used in Eq. 1 to indicate the readings of the corre-
sponding sensors

Each agent controller is composed of two modules
referred to as MC and M M (see Fig. 2b). The modularisa-
tion is hand-coded to facilitate the evolution of successful
behavioural strategies. MC is a six neuron fully connected
Continuous Time Recurrent Neural Network (CTRNN; see
also Beer and Gallagher 1992). This module takes input from
F S and SI and it outputs the state of SO and C O (i.e. the
categorisation output, with 0 < C O < 1 ). MC is devoted
to (i) communication, by controlling the acoustic signalling
system; and to (ii) decision making, by operationally defin-
ing, through the values of the categorisation output C O , the
agent decision concerning the nature of the environment.

M M is a feed-forward artificial neural network made of
eight sensory neurons and two motor neurons. M M takes
input from I Ri, with i = 1, . . . , 5, AL1, AL2 and C O .
It sets the speed of the agent’s wheels. M M is devoted to
(i) phototaxis, by moving the agent towards the light cur-
rently on; and to (ii) the door opening behaviour. This latter
behaviour can be accomplished by a group without touch-
ing the current wrong arm, only if each agent is able to act
differently with respect to the corresponding central light.
In other words, the agents have to keep the central light on
their left when located in E10 and in E01, and on their right
when located in E00 and in E11 (see Fig. 1). The differen-
tiation of actions with respect to the central light can only
be achieved if the values of the categorisation output C O ,
emitted by module MC , while the agent is approaching the
revolving door, varies to allow module M M to discriminate
the two environmental categories. This is because M M is a
reactive module that would systematically bring the robot
either on the left or on the right of the central light, in the
absence of input signals that co-vary with the environmental
category.

The neurons’ state of an agent’s controller is updated using
the following equations:

�yi

�t
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
τi

⎛

⎝−yi +
m

′
∑

j=n′
ωjiφ(yj + βj) + gC Ii

⎞

⎠ ; for i = 1, 2;

1
τi

⎛

⎝−yi +
m

′
∑

j=n′
ωjiφ(yj + βj)

⎞

⎠ ; for i = 3, . . . , 6;
1

�t

(−yi + gM Ii
) ; for i = 7, . . . , 14;

1
�t

⎛

⎝−yi +
m

′′
∑

j=n′′
ωjiφ(yj + β)

⎞

⎠ ; for i = 15, 16;

(1)

with n
′ = 1, m

′ = 6, n
′′ = 7, m

′′ = 14 and φ(x) =
(1+e−x )−1. In these equations, using terms derived from an
analogy with real neurons, yi represents the cell potential, τi

the decay constant, ωji is the strength of the synaptic connec-
tion from neuron j to neuron i , βi the bias term, φ(yi + βi)

the output of neuron i , gC and gM the gain factors, and Ii is
the intensity of the sensory perturbation on sensory neuron
i . The parameters ωji, τ , β and g are genetically encoded.
Cell potentials are set to 0 any time the network is initialised
or reset, and circuits are integrated using the forward Euler
method with an integration step-size of �t = 0.1. The output
of the 5th neuron sets the state of the agent’s sound actuator
SO , according to the following rule:

SO =
{

1 if φ(y5 + β5) ≥ 0.5;
0 otherwise; (2)

The output of the 6th neuron corresponds to the state of
the agent’s categorisation output (i.e. C O = φ(y6 + β6)).
The values of φ(y15) and φ(y16), linearly scaled into
[−6.5s−1, 6.5 s−1], are used to set the agent motors output
M1 and M2, respectively.
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4.2 The evolutionary algorithm

A simple generational genetic algorithm is employed to set
the parameters of the networks (Goldberg 1989). At gener-
ation 0, a random population of 80 vectors is generated by
initialising each component of each vector to a value chosen
uniformly random in the range [0,1]. Each vector comprises
67 real values. Hereafter, using terms derived from an anal-
ogy with biological systems, a vector is referred to as geno-
type and its components as genes. The first 18 genes of each
genotype are used to set the parameters of M M (i.e. 16 con-
nection weights ωji, 1 bias term β and 1 gain factor g both
shared by all the sensory neurons). The other 49 genes are
used to set the parameters of MC (i.e. 36 connection weights
ωji, 6 decay constants τi, 6 bias terms βi, and 1 gain factor
g).

Generations following the first one are produced by a
combination of selection with elitism, recombination and
mutation. For each new generation, the three highest scor-
ing genotypes (‘the elite’) from the previous generation are
retained unchanged. The remainder of the new population is
generated by fitness-proportional selection from the 64 best
genotypes of the old population. New genotypes, except ‘the
elite’, are produced by applying recombination and mutation.
Each new genotype has a 0.3 probability of being created
by combining the genetic material of two parents. During
recombination, one crossover point is selected. Genes from
the beginning of the genotype to the crossover point is cop-
ied from one parent, the other genes are copied from the
second parent. Mutation entails that a random Gaussian off-
set is applied to each gene, with a probability of 0.15. The
mean of the Gaussian is 0, and its standard deviation is 0.1.
During evolution, all genes are constrained to remain within
the range [0,1]. That is, if due to mutations a gene falls below
zero, its value is fixed to 0; if it rises above 1, its value is fixed
to 1.

Genotype parameters are linearly mapped to produce net-
work parameters with the following ranges: (i) for MC ,
biases βi ∈ [−4,−4], weights ωij ∈ [−8, 8], gain fac-
tor g ∈ [1, 13]; (ii) for M M , bias β ∈ [−4,−2], weights
ωij ∈ [−8, 8], gain factor g ∈ [1, 13]; (iii) for MC , decay
constants are first linearly mapped into the range [−1.0, 1.5]
and then exponentially mapped into τi ∈ [10−1.0, 101.5]. The
lower bound of τi corresponds to the integration step-size
used to update the controller; the upper bound, arbitrarily
chosen, corresponds to about 1/3 of the maximum length of
a trial.

4.3 The fitness function

During evolution, a generation corresponds to the evaluation
of a set of 80 different genotypes. At the beginning of its
evaluation, each genotype is translated into a controller, and

cloned in each agent of a group. Each group is made of two
agents. The group is evaluated three times in each environ-
ment to yield a total of 12 trials. The sequence order of the
environment experienced by the agents—randomly chosen at
the beginning of each generation—has a bearing on the over-
all performance of the group since the agents’ controllers are
reset only at the beginning of the first trial.

The final fitness F F attributed to a group is computed as
follows:

F F = F1 + F2 + F3; (3)

F1 rewards the agents for performing phototaxis by facilitat-
ing the evolution of mechanisms that allow the agents to move
towards the painted zones during the first phase of the task
(i.e. when L1/R1 are on), and towards the revolving door dur-
ing the second phase of the task (i.e. when L2/R2 are on). F2

rewards the agents for opening the revolving door by facilitat-
ing the evolution of collective pushing strategy. F3 rewards
the agents for generating categorisation outputs which vary
as little as possible within environments that require to push
the revolving door in the same direction, and as much as pos-
sible between environments that require to push the revolving
door in different directions. The aim of F3 is to facilitate the
emergence of mechanisms which allow modules MC to gen-
erate categorisation outputs that, by discriminating the two
environmental categories, induce the modules M M to tune
the agents pushing strategies to the current direction of rota-
tion of the revolving door.

F1 is updated only during the first phase of the task, and
is computed as follows:

F1 = 1
E R

E∑

e=1

R∑

r=1
P

′
er

(
1 − der

D

)
; (4)

where E = 12, R = 2 and der corresponds to the shortest
distance, at the end of the first phase of trial e, between agent
r and the perimeter of the painted zone on the agent arena
side. der = 0 if the agent r is on the painted zone. D = 60 cm
is used to normalise der to run between 0 and 1. P

′
er is set to

0.2 if the agent r collides with the arena walls, otherwise it
is set to 1.

F2 corresponds to the aperture of the revolving door, at the
end of trial e, normalised to run between 0 and 1. Formally
speaking, F2 is computed as follows:

F2 = 1
E

E∑

e=1
P

′′
e

(
2θe
π

)
; (5)

where θe refers to the rotation of the revolving door at the end
of the second phase of trial e. For θe = 0, the revolving door
is in its rest position, orthogonal to the long arena walls. For
θe = π

2 , the revolving door is fully open, orthogonal to the

short arena walls. The penalty factor P
′′
e is set to 0 if, during
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trial e, either agent touches the door on the current wrong
arm, otherwise it is set to 1.

F3 concerns the categorisation outputs of both agents,
and it is computed only if both agents manage to success-
fully complete the first phase of the task in each of the 12
evaluation trials. Otherwise, F3 = 0. The fitness component
F3 is computed as follows:

F3 =
∣
∣
∣C Eclock − C Eanti

∣
∣
∣

(
k − σ Eclock − σ Eanti

k

)

; (6)

C E H = 1

∑

e∈E H

R∑

r=1
(ver − uer)

∑

e∈EH

R∑

r=1

ver∑

t=uer

C Oert

σ E H =
√
√
√
√
√
√

1

∑

e∈E H

R∑

r=1
(ver − uer)

∑

e∈E H

R∑

r=1

ver∑

t=uer

(
C Oert−C E H )2

E H =
{

Eclock if robots located in E00or E11

Eanti if robots located in E10orE01

where Eanti refers to environments in which the door rotate
anticlockwise (i.e. Eanti = E xy with x, y ∈ {0, 1}:x �= y)
and Eclock refers to environments in which the door rotate
clockwise (i.e. Eclock = E xy with x, y ∈ {0, 1}:x = y).
C E H

and σ E H
correspond to the average group categorisa-

tion outputs and to the standard deviation in environments
E00 and E11 for E H = Eclock , and in environments E10 and
E01 for E H = Eanti . C Oert refers to the value of the categor-
isation output in trial e, of robot r , at time step t . For robot r ,
the categorisation outputs are considered during an interval
that goes from the beginning of the second phase of the task
(i.e. t = uer) to the first collision with the revolving door (i.e.
t = ver). Hereafter, this interval is referred to as approaching

phase. k = 2 is used to normalise

(
k−σ Eclock −σ Eanti

k

)

to run

between 0 and 1. The first part of Eq. 6 (i.e. |x |, the absolute
value of x) rewards the agents for emitting categorisation out-
puts that differ as much as possible between environments of
different categories (i.e. Eanti vs. Eclock). The other part of
Eq. 6 rewards the agents for emitting categorisation outputs
that differ as little as possible when the agents are located in
environments of the same category (i.e. Eanti or Eclock).

The fitness function illustrated in Eq. 3 has been designed
so that, during evolution, phototaxis and wall avoidance are
the first behavioural capabilities to appear. Note also that in
Eq. 3, there is nothing that directly refers to signalling behav-
iour. We intentionally omit to include selective forces that
reward signalling behaviour to clean our model from precon-
ceptions concerning what (i.e. semantics) and how (i.e. form)
successful groups communicate. In this way, we explicitly
leave to evolution the task to find the mechanisms underlying

successful communication protocols. However, the fitness
function indirectly rewards those groups that possess adap-
tive communication systems, through the selective pressure
produced by the fitness component F3. This is because the
agents are rewarded for employing the categorisation output
in a way that can only be achieved with the contribution of
an adaptive sound signalling system. F3 does not impose
any specific associations between the categorisation output
and the type of environment. Nevertheless, F3 favours those
groups that use solutions, which make possible for reactive
modules M M to bring the agents either left or right of the cen-
tral lights L2/R2. For example, highly rewarded strategies are
those in which C O values are close to the upper bound when
the agents are located in Eclock , and to the lower bound when
the agents are located in Eanti , or vice versa.

Summarising, each fitness component is in the range
between 0 and 1, and the maximum fitness score a group can
obtain is F F = 3. However, the final fitness of a successful
group (i.e. a group in which the agents repeatedly swap arena
side without touching the wrong arm of the revolving door)
does not need to be exactly 3, but rather within the following
interval: 1.8 < F F < 3. This is because groups can be suc-
cessful without necessarily obtaining the highest reward by
the components F2 and F3. For example, the revolving door
does not need to be fully open for the agent to swap side.
The two parts of Eq. 6 do not need to return exactly 1 for the
agents to be able to adjust their pushing strategy according
to the direction of rotation of the revolving door.

5 Results

Ten evolutionary simulations, each using a different random
initialisation, were run for 6,000 generations. The evolution-
ary trend of the fitness of the best group at each generation
is the first element that can be used to estimate whether a
run produced successful groups or not. As shown in Fig. 3,
four evolutionary runs produced best groups that are poten-
tially successful.2 In particular, two evolutionary runs pro-
duced best groups with the highest final fitness (i.e. run1 and
run2 in Fig. 3a, b, respectively). Two evolutionary runs pro-
duced best groups whose final fitness is within the interval
that may denote a successful strategy (i.e., run3 and run4 in
Fig. 3c, d, respectively). Although all these best groups are
potentially capable of accomplishing the task, the effective-
ness and the robustness of their collective strategies have to
be further estimated with more severe post-evaluation tests.
In Sect. 5.1, we illustrate the results of post-evaluation tests

2 Data concerning unsuccessful evolutionary runs, other data not shown
in the paper, movies of successful post-evaluated groups, and other
methodological details can be found at http://laral.istc.cnr.it/elio.tuci/
suppPagn/J13/suppMatJ13.html.
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Fig. 3 Graphs showing the fitness of the best groups at each generation of the best four evolutionary runs: a run1, b run2, c run3 and d run4.
Vertical dashed lines delimit the evolutionary phases

that tell us whether the best evolved groups are successful
or not and what are the behavioural strategies they employ
to accomplish the task. In Sect. 5.2, we talk about the evolu-
tionary transitions which characterised the emergence of the
best evolved strategies.

5.1 A first series of post-evaluation tests

From each runi, we picked one of the best groups, hereaf-
ter referred to as gi, chosen amongst those with the highest
fitness. These best groups have been post-evaluated on all
the possible four-trials sequences that differ in the ordering
of the environments, without repetitions, and in which each
environment appears at least once. Each sequence is repeated
100 times, with each repetition differently seeded to guaran-
tee random variations in the initial position and orientation
of the agents and in the noise added to sensors readings and
motor outputs. Agents’ controllers are reset at the end of
each four-trials sequence. This test, made of 2,400 four-tri-
als sequences (i.e. 100 ∗ N !, with N = 4), and a total of
9,600 trials, is referred to as test P. A post-evaluation trial is
considered successful if the agents: (i) complete the first part
of the task, (ii) move towards the revolving door, (iii) rotate
the door without touching the current wrong arms and (iv)
travel into the opposite side of the arena up to a distance of
24 cm from the door hub, without colliding with the arena
walls. If one or both agents collide with the current wrong
arms of the revolving door, which trial is considered a failure
of type W 1. Trials, in which one or both agents collide with
the arena walls, are considered failure of type W 2. Failure

of type W 3 refers to those trials in which the agents are not
successful for other reasons than those considered in W 1 and
W 2. For example, a failure of type W 3 might concern a trial
in which the agents do not manage to turn L1 and R1 off, or in
which they do not manage to sufficiently rotate the revolving
door within the time-limit.

Table 1 shows for each group and for each environment the
percentage of success S, and the percentage of unsuccessful
trials due to W 1, W 2 or W 3 error. Data confirm that the groups
with a success rate higher than 80% in all environments are
those selected from run1 and run2 (i.e. g1 and g2, see Table 1,
columns S). g3 and g4 are very good in carrying out the task
in three out of four environments. For both groups, the per-
formances in one type of environment are severely compro-
mised by W 1 error. That is, at least one agent systematically
touches the current wrong arm of the revolving door when
located in E00 for g3, and in E11 for g4 (see Table 1, col-
umns W 1). Post-evaluation tests carried out on best groups
of other unsuccessful runs (i.e. run5 to run10 ), showed that
these groups also fail primarily in E00 and in E11. This can be
explained by the fact that while the two instances of the envi-
ronment Eclock are two distinctive cases for the agents (i.e.
either both agents experience grey or both black ground), the
two instances of the environment Eanti are indeed a single
case (i.e. one agent experiences grey ground while the other
black ground). Thus, during evaluation, groups encounter
the environmental circumstances referred to as Eanti twice
as much as each of those referred to as Eclock . In term of fit-
ness, in particular, with respect to component F2, this means
that a group that can successfully handle the combination
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Table 1 Results of post-evaluation tests P showing for groups g1, g2,
g3 and g4, and for each environment the percentage of trials: (i) termi-
nated successfully, see column S, (ii) in which the agents failed since
one or both of them touched the current wrong arms of the revolving
door, see column W 1, (iii) in which the agents failed since one or both
of them collided with the arena walls, see column W 2 and (iv) in which
the agents failed for reasons other than those mentioned at (ii) and (iii),
see column W 3

S W 1 W 2 W 3

E10 (%)

g1 82.21 4.08 1.12 12.58

g2 97.87 0.46 0.00 1.67

g3 100.00 0.00 0.00 0.00

g4 98.42 0.00 1.58 0.00

E01 (%)

g1 81.87 4.62 0.67 12.83

g2 97.62 0.46 0.00 1.92

g3 100.00 0.00 0.00 0.00

g4 98.33 0.04 1.62 0.00

E00 (%)

g1 97.00 0.08 1.25 1.67

g2 99.75 0.00 0.00 0.25

g3 0.00 100.00 0.00 0.00

g4 96.00 0.08 1.33 2.58

E11 (%)

g1 89.79 3.42 1.08 5.71

g2 99.42 0.08 0.00 0.50

g3 99.92 0.08 0.00 0.00

g4 0.00 99.29 0.71 0.00

grey/black zones immediately gets approximately twice the
score of a group that can only accomplish the task in a single
instance of Eclock . This represents a strong selective pressure
that favours the emergence of groups that are successful in
Eanti . This can also explain why, in every evolutionary runs,
the capabilities required to solve the task in Eanti appear
earlier in evolution than the capabilities required to solve the
task in Eclock . The extent to which this ‘bias’ favours/hinders
the evolution of fully successful groups has to be established
with further tests.

In order to understand more about the nature of collective
strategies of groups g1, g2, g3 and g4, we run simple tests
in which we let the groups undergo the four-trials sequence
E10, E01, E00 and E11, without resetting the agents control-
lers. At each time step, we recorded, for each agent, the sound
output SO , and the categorisation output C O . This analysis
revealed that both successful groups share the same strategy.
That is, during the four-trials sequence, these groups move
back and forth between two states: a NS-state in which there
is no sound in the arena because none of the agents is emit-
ting, and a S-state in which there is sound as either one or

both agents are emitting. When the group is in NS-state both
agents set their C O to the lower bound. When the group is in
S-state both agents set their C O to the upper bound. If during
the approaching phase, the group is in NS-state, both agents
tend to keep L2 and R2 on their respective right sides, and
push the revolving door in a clockwise direction. If during
the approaching phase, the group is in S-state, both agents
tend to keep L2 and R2 on their respective left sides, and
push the revolving door in an anticlockwise direction.

In what remains of this section, we look at how agents of
g1 and g2 set the sound output and the categorisation output
in each environment, and we illustrate the principles that reg-
ulate the transitions between NS-state and S-state.

At the beginning of each trial in any environment, the
agents do not emit sound signals and the value of their C O
is close to the lower bound. When the groups are located
in E00, the perception of grey ground does not produce any
change. The group remains in NS-state throughout the entire
trial and the agents end up correctly pushing the revolving
door in a clockwise direction. When the groups are located in
E10 or in E01, the agent that perceives black ground emits, for
few seconds, intermittent bursts of sound. The other agent is
induced to signal as soon as it perceives sound while on grey
ground.3 This agent keeps the group in S-state by emitting for
the entire approaching phase. The presence of sound in the
arena makes both agents set their C O to the upper bound.
Thus, while approaching the revolving door, they tend to
keep L2 or R2 on their respective left sides, and they end up
correctly pushing the revolving door in a anticlockwise direc-
tion. When the groups are located in E11, the presence of two
black zones does not produce any long lasting change. Both
agents emit sound due to the perception of black floor, and
both of them temporarily set their C O to the upper bound.
However, both agents stop emitting very quickly, and their
C O return to values close to the lower bound. Thus, dur-
ing the approaching phase, the group remains in NS-state.
The agents keep L2 and R2 on their respective right sides
as they do when located in E00, and they end up pushing
the revolving door in a clockwise direction. Note that long
lasting signalling behaviour tends to last less than the time
required to complete the second phase of the task. Thus, a
group is in S-state only during part of the second phase of
the task, while the agents are approaching the revolving door.
Since S-state never lasts longer than the end of the current
trial, the agents possess the required plasticity to successfully
cope with any differently ordered four-trials sequence.

3 Note that, both in trials following a successful one, and after reposi-
tioning, both agents arrive on the painted zone almost at the same time.
This is the reason why, when successful groups are located in E10 or in
E01, the emission of intermittent bursts of sound by the agent on black
takes place when the other agent is on grey ground.
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In order to summarise, our analysis revealed that signal-
ling behaviour varies with respect to the combination of col-
ours of the painted zones, and that each agent regulates its
categorisation output in response to the perception of sound.
In particular, during the first phase of the task before reaching
the painted zone, none of the agents is emitting. The percep-
tion of grey ground does not trigger any signalling response.
The perception of black ground triggers the emission of inter-
mittent bursts of sound that lasts no more than 2 or 3 s. The
perception of sound, while on grey ground triggers the emis-
sion of a continuous tone that lasts for about 40 s. An agent
sets its categorisation output to its upper bound if it perceives
sound, and to its lower bound if it perceives no sound. Thus,
in E10 and E01, successful groups perform a large part of the
second phase of the task in S-state. In E00, successful groups
perform the entire trial in NS-state. In E11, successful groups
are in S-state only during the last part of the first phase of
the task, and perform the entire second part of the task in
NS-state, like in E00.

Groups g3 and g4 exploit similar mechanisms as g1 and
g2. They vary the sound output in response to the perception
of painted zones, and the categorisation output in response
to sound. In contrast to what observed in successful groups,
group g3 is by default in S-state, with both agents emitting
sound at the beginning of each trial. Signalling is tempo-
rarily interrupted by the perception of black ground. When
located in E11, both agents stop emitting during the entire
approaching phase. The group switches from the S-state to
the NS-state, and both agents end up pushing the revolving
door on the correct arms. When located in E01 and in E10,
the agent that experiences grey never stops emitting sound.
The group remains in S-state, and both agents end up pushing
the revolving door on the correct arms. When located in E00,
the group fails since it lacks the conditions to switch from the
S-state to the NS-state. The group remains in S-state for the
entire length of the trial, and both agents end up pushing
the revolving door on the wrong arms. Group g4 behaves in
a very similar way to what observed in successful groups.
However, in contrast to them, in group g4, the perception
of black ground triggers long lasting signalling behaviour.
When located in E11, the group remains in S-state, and both
agents end up pushing the revolving door on the wrong arms.

5.2 An evolutionary analysis

As shown in the previous section, to successfully discrim-
inate Eanti from Eclock , the agents of successful groups
g1 and g2 (i) complement each other’s perceptual experi-
ence using communicative strategies based on their simple
acoustic system, (ii) develop cooperative pushing strategies
through mechanisms that set and ‘parse’ the categorisation
outputs and (iii) exploit a certain amount of neural plasticity
to continuously track environmental changes without being

perturbed by previous experience. Unsuccessful groups g3

and g4 fail in one environment because in that circumstance
they are not capable of choosing, through acoustic interac-
tions, the required pushing strategy.

The aim of this section is to provide empirical evidence
that illustrates how and why the fitness function illustrated
in Sect. 4.3 facilitates the emergence of the neural apparatus
required by the agents to solve this cooperative task. In order
to do so, we post-evaluated, using test P illustrated at the
beginning of Sect. 5, each best group from generation 1 to
generation 6,000 of all the 10 evolutionary runs. This analy-
sis produced a huge amount of data, with which we managed
to observe what happened during each evolutionary run. In
particular, by comparing all the evolutionary runs on a series
of performance measures obtained from tests P, we managed
to isolate a distinctive pattern that can be considered the evo-
lutionary milestone in the emergence of successful collective
strategies. In the remainder of the section, we illustrate this
pattern as observed between generation 100 and generation
200 of run2.

As shown in Fig. 4a, during evolution, the best group at
generation 200 shows higher final fitness than the best group
at generation 100. However, if post-evaluated with test P, all
the best groups between generation 100 and 200 do not dif-
fer in terms of percentage of success per environment. All
of them are extremely successful in rotating the revolving
door without touching the wrong arms in E10 and E01, and
very unsuccessful in performing the same task in the other
two environments (see Fig. 4b). Post-evaluation tests showed
also that failure in E00 and E11 of these groups are due to a
high percentage of W 1 error (data not shown). These results
tell us that all the groups between generation 100 and 200 are
equally good, as far as, it concerns the behaviours rewarded
by the fitness components F1 and F2. That is, they are equally
good in navigating the arena, in avoiding penalties such as
those due to collisions with the arena walls, and in rotat-
ing the revolving door. Thus, the fitness increase observed in
Fig. 4a can only be due to the emergence of behavioural traits
rewarded by the fitness component F3. Indeed, our analysis
revealed that this fitness increase is determined by the fit-
ness component F3 through its effects on the emergence of
the mechanisms that regulate the emission of sound and the
setting of the categorisation output.

In order to capture these effects, we plotted the proportion
of time with sound in the arena and the average categorisa-
tion output of the group during the approaching phase (see
Fig. 4c, dashed lines and continuous lines, respectively). The
graphs indicate that less fit groups continuously emit sound
and set their categorisation output to the lower bound in all
environments. Fitter groups vary their signalling behaviour
and categorisation output. That is, they always signal and
have the categorisation output set to the upper bound in E10,
E01 and in E11, and they never signal and have the categor-
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Fig. 4 Graphs showing various performance measures, of the best
groups from generation 100 to 200, of run2. a Final fitness (F F)
of the best groups at each generation, as observed during evolution.
b and c show data gathered by post-evaluating the above-mentioned
best groups with test P illustrated at the beginning of Sect. 5. In particu-

lar, the graphs refer to: b the percentage of success in each environment,
c the proportion of time with sound in the arena during the approaching
phase (dashed lines) and the average categorisation output during the
approaching phase (continuous lines), in each environment

isation output set to the lower bound in E00. This distinc-
tive differentiation, observed only in fitter groups, between
what the agents do when located in E10, E01 and in E11 and
what they do when located in E00, can be explained by the
emergence of mechanisms that regulate the sound and cat-
egorisation output in response to environmental stimuli. In
particular, at generation 200, the perception of black ground
triggers the emission of sound, and the perception of grey
ground interrupts signalling behaviour. The categorisation
output varies in response to the perception of sound. With no
sound in the arena, the agents set their categorisation output
to the lower bound; with sound in the arena, the agents set
their categorisation output to the upper bound.4 Due to these
causal links, during the second phase of the task, one of the
agents emit sound when the group is located in E10, E01

and both of them signal when the group is located in E11.
None of the agents signals when the group is located in E00.
Note that, at this evolutionary stage, variations of the cate-
gorisation output do not induce any change in the pushing
strategy. Regardless of their state, the groups always push the
revolving door in an anticlockwise direction.

It is worth mentioning that the simultaneous appearance of
the causal relationships between the perception of the painted

4 Note that, graphs in Fig. 4c exclude the existence of alternative causal
relationships between the colour of the painted zone and the categor-
isation output. For example, if the agents set the categorisation output
to the upper bound in response to the perception of black ground and
to the lower bound in response to the perception of grey ground, than
the average C O values recorded in tests P in E10, and in E01 would
be close to 0.5 rather than close to 1, due to the fact that the agents
experience different colours.

zones and signalling, and between signalling and the values
of the categorisation output, is the phenomenon that enables
the emergence of successful groups. This is because the
emergence of single causal links, frequently observed in
unsuccessful evolutionary runs, proved not capable of boot-
strapping a virtuous evolutionary process. For example, in
some unsuccessful evolutionary runs, evolution produced
groups in which the categorisation output varies randomly
and signalling behaviour varies in an unstructured way due
to the emergence of mechanisms that causally link the emis-
sion of sound to the perception of black or grey ground. Since
signalling is not directly rewarded by the fitness function,
these groups are as fit as groups in which sound signalling
behaviour varies randomly. Thus, the phenotypic traits of
the former groups have the same chance of being transmit-
ted to the following generations than the phenotypic traits
of the latter groups. We noticed that, in these circumstances,
the mechanisms that causally link the emission of sound to
the colour of the painted zone tend to disappear from the pop-
ulation before further evolutionary transitions causally link
the perception of sound to the setting of the categorisation
output.

Similarly, some evolutionary runs produced groups in
which signalling behaviour varies randomly and the categor-
isation output varies in a structured way due to the emergence
of mechanisms that causally link the setting of the categori-
sation output to the perception of black or grey ground. Due
to the fitness component F3, these groups tend to be compar-
atively fitter than groups in which the categorisation output
varies randomly. Therefore, they invade the population. How-
ever, a population made only of these groups turns out to be an
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evolutionary deadlock. In order to make any further progress,
evolution needs to favour groups whose neural mechanisms
underpin completely different behaviours. Moreover, these
mechanisms should appear all at once to avoid to pass through
less fit or equally fit behavioural alternatives. For example, it
would be hard for evolution to favour the appearance of fur-
ther behavioural traits (e.g. any causal links between sound
output and the perception of painted zones) that, although
necessary to built successful strategies, may not be immedi-
ately adaptive (i.e. associated to a fitness increase).

The simultaneous appearance of the causal relationships
between the perception of the painted zones and signalling,
and between signalling and the values of the categorisation
output observed in both successful runs has also been found
in run3 and run4. In run3 and run4, these transitions appear
much later than in run1 and run2, around generation 5,000
for run3, and around generation 2,000 for run4. We wondered
whether continuing these simulations longer than 6,000 gen-
erations would have produced a successful group. However,
further tests in which we let these simulations run for up
to 8,000 generations did not produce any successful group.
Clearly, the evolutionary transitions illustrated in Fig. 4, it
represent a significant step further towards the emergence of
successful collective strategies. However, at the first appear-
ance of the causal relationships between the perception of
the painted zones and signalling, and between signalling and
the categorisation output, groups are still far away from suc-
cessfully accomplishing their task in all the environments. In
order to get to this final point, best groups go through var-
ious behavioural changes, in which the causal relationships
between the perception of the painted zones and signalling
behaviour change rather frequently, and in different ways in
the two successful evolutionary runs.

By looking at the fitness curves shown in Fig. 3, we notice
that, in all the four runs, there is a very short evolutionary
time, referred to as phase I, in which the agents develop the
mechanisms to perform phototaxis without colliding with the
arena walls. In run2, phase I is characterised by the emergence
of the mechanisms illustrated in Fig. 4. Very soon, all the runs
reach phase II, characterised by a plateau with F F � 2 (see
Fig. 3). At this stage, the groups are capable of accomplish-
ing the task only in Eanti , and they systematically commit
W 1 error when located in Eclock . The fitness components
approximately contribute to the groups’ final fitness in the
following: F1 = 1, F2 � 0.5 and F3 oscillates between 0
and 0.8. The oscillations of the final fitness recorded almost
for the entire phase in run1, run3, and run4, are due to F3.
This is because, for the agents of these best groups, the value
of CO does not seem to be causally determined by any of their
perceptual experiences, such as the perception of sound, or
of the painted zone. In the last part of the phase in run1 and
run82, there are only small oscillations as the agents set the
categorisation output, according to the dynamics illustrated

in Fig. 4. In phase II, we observe the emergence of impor-
tant mechanisms for simple social behaviour. For example,
in all the four runs, there are groups for which the percep-
tion of sound triggers signalling behaviour in agents that are
not signalling yet. This type of social interaction allows the
agents to engage themselves in simple turn-taking. Most of
these turn-taking appear and disappear throughout phase II,
since they are adaptively neutral. Those that remain into the
populations are the one responsible for the transition from
phase II to phase III.

In phase III, characterised by a plateau with F F � 2.5, the
groups are capable of accomplishing the task in three environ-
ments out of four. The main difference between phase II and
phase III groups is that in phase III, the agents possess neural
mechanisms that causally link the setting of the categorisa-
tion output to the state of the group, and they vary signalling
behaviour in response to the perception of the painted zones.
Moreover, these groups possess neural mechanisms by which
different values of the categorisation output trigger differ-
ent behavioural responses. Thus, agents begin approaching
the revolving door by keeping the central light on their left
or on their right side according to the values of the cate-
gorisation output generated by the module MC . However,
run1’s agents in E11, run3’s agents in E00 and run4’s agents
in E11, systematically commit W 1 error, since in these envi-
ronments, they are not capable of appropriately defining the
state of the group to trigger the correct pushing strategy. For
groups in run1, run3 and run4, the fitness components approx-
imately contribute to the groups’ final fitness in the follow-
ing: F1 = 1, F2 � 0.75 and F3 � 0.75, with very small
variability amongst groups of different generations. In run2,
the rather large variability amongst groups of different gen-
erations is due to the fact that, for specific sequencing of
environments, the groups are capable of accomplishing the
task in all environments. In particular, to be successful in E00,
the agents need to approach the revolving door in NS-state.
However, this happens only if the agents encounter this envi-
ronment before anyone else or after having experienced E11.
This is because, only the perception of a black zone by both
agents inhibits signalling behaviour previously triggered by
an experience in a Eanti type of environment.

Phase IV, characterised by a plateau with F F � 3, is
reached only by run1 and run2 and it refers to groups that are
almost 100% successful in all the environments (see Fig. 3a,
b). The transition from phase III to phase IV is due to muta-
tions that ‘tunes’ the causal relationships between the percep-
tion of the painted zone, signalling behaviour and the setting
of the categorisation output in a way that, the agents, whether
located either in Eanti or in Eclock , by interacting through
sound signals, generate different values of the categorisation
output. Consequently, the agents perform different pushing
strategies, which bring them to push the correct arms of the
revolving door.
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Fig. 5 Non-modular a three layers control architectures with a fully
recurrent hidden layer (neurons 10–13), and b fully recurrent control
architectures. c Graph showing the fitness of the best groups at each
generation of an unsuccessful evolutionary run. In this simulation, the
agents are controlled by a non-modular three layers control architec-

tures with categorisation output. In a and b, dotted lines refers to those
structures added to the network to take into account the categorisation
output. In both architectures, the categorisation output produced at time
t is sensed by the network at time t + 1. In b, only the efferent connec-
tions for one neuron are drawn

6 Discussion

The analysis, detailed in Sect. 5.2, is an important contri-
bution of this study which shows the most significant evo-
lutionary transitions that paved the way for the emergence
of the mechanisms underpinning reciprocal communication,
of categorisation capabilities and of successful cooperative
strategies. In this section, we further comment the outcome
of this analysis with observations concerning the architecture
of the agents’ controller, and the significance of the fitness
component F3.

The modular structure described in Sect. 4.1 and the fitness
component F3 described in Sect. 4.3 have been included into
the model after having explored a variety of different alter-
natives, with no modules and no categorisation output, and
in which the agents were uniquely scored for their capabil-
ity to perform phototaxis and to rotate the revolving door.
In particular, we tested two different architectures: a three
layers network shown in Fig. 5a, in which the state of the
sensory and motor neurons were updated in the same way
as the corresponding neurons in module M M , and the state
of internal neurons were updated in the same way as neuron
3–6 in module MC ; and a fully recurrent network shown in
Fig. 5b, in which the state of sensory and non-sensory neu-
rons were updated in the same way as the corresponding
neurons in module MC (see Sect. 4.1 for details). With both
networks, we carried out several simulations varying in the
three layers network, the number of internal neurons, and in
the fully recurrent network, the number of neurons that did
not receive external input and were not used to set the agents’
actuators.

Repeated failure brought us first to the introduction of the
categorisation output. Dotted lines in Fig. 5a and 5b refer to
the structural changes added to networks to take into account

the categorisation output. This output was introduced to
directly score the agents, through the fitness component F3,
for their ability to categorise the environments with respect
to the combination of colour of the painted zones. Note that
without F3, both communication and the capability to carry
out cooperative strategies, if taken in isolation, are adaptively
neutral, since they do not, per se, increase the reproductive
chance of the groups that possess them. In other words, with-
out F3, a good communication system without the capability
to perform different cooperative strategies is useless because
there is no fitness gain in having good communication if
it does not contribute to carry out the cooperative task. The
capability to perform different cooperative strategies without
an effective communication system is also useless as there
is no fitness gain in being potentially capable of perform-
ing actions without being capable of knowing under which
circumstances to perform them.

F3 guides evolution towards the emergence of the mecha-
nisms for communication and categorisation without directly
rewarding specific types of communication. In early evolu-
tionary stages, communication systems are generally too sim-
ple and primitive to trigger the required collective responses.
Thus, if performances are evaluated only with fitness com-
ponent F1 and F2, variability in signalling behaviour does
not correspond to a concrete fitness difference amongst the
groups. With F3, early generations groups in which any form
of signalling interactions favour the discrimination between
Eanti from Eclock through the generation of the categorisa-
tion output, have a selective advantage over groups in which
signalling interactions do not produce the same effect. Thus,
the former groups take over the population. In this way, we
open an alternative evolutionary path to the origin of sig-
nalling. However, for all the simulations with no modular
architecture, with or without categorisation output, the fitness
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curve was always following the same trend, with evolution
reaching very quickly and permanently a plateau around a
fitness score corresponding to the performance of a group
capable of accomplishing the task either in Eanti or in Eclock .
In other words, these runs did not progress further than phase
II described in Sect. 5.2. Figure 5c shows the fitness curve of
an unsuccessful evolutionary run, in which the agents were
controlled by a three layers network with the categorisation
output. Only with the use of the modularised controller, cat-
egorisation output and fitness component F3 produced the
desired results. What did modularisation add to the previous
unsuccessful models?

The results of our study suggest that structural proper-
ties of the agent’s controller facilitate the emergence of the
behavioural variability that is necessary for selecting those
variants that several generations later give birth to success-
ful groups. While in evolutionary runs with non-modular-
ised controllers all the groups, since the earlier generations,
were either signalling all the time or never; in evolutionary
runs with modularised controllers, we observed the coexis-
tence in the same population of some variability in signal-
ling behaviour. As shown in Sect. 5.2, the fitness function F3

favoured the emergence of successful groups by rewarding
those signalling behaviours that induced systematic varia-
tion in the generation of the categorisation output. We wish
to remark that, in spite of the hand-coded modularisation of
the neuro-controller, communicative behaviour stays firmly
and intentionally outside the bag of assumptions made by the
experimenter, and entirely left to evolution.

In order to conclude, we would like to draw the attention of
the reader to an important issue not mentioned before, which
concerns the memory structures required by the agents to
solve this cooperative task. Memory is needed by the agents
because the action of pushing the revolving door happens sev-
eral time steps later with respect to the perception of the envi-
ronmental cues that represent the sources of ‘information’
for deciding the pushing strategy. Results of post-evaluation
tests indicate that, quite unexpectedly, in both best evolved
strategies, memory structures and means for communication
are rather intertwined.5 In particular, we saw that, during the
approaching phase, the agents proved to be extremely sen-
sitive to small disruptions on their acoustic system. That is,
their capability to successfully accomplish the task is largely
reduced if, even for short intervals (i.e., 1 s), sound is pres-
ent while no agent is emitting or if the agents are made deaf
to their own signals. Thus, it seems that sound is employed
by the agents not only as a means to acoustically interact, as
illustrated above, but also as a kind of external digital memory
which, together with the categorisation output, reminds them,
during the approaching phase, what is the pushing strategy

5 A detailed description of these post-evaluation tests can be found at
http://laral.istc.cnr.it/elio.tuci/suppPagn/J13/suppMatJ13.html.

they are currently employing. Sound as an external memory
seems to be an efficient solution, in particular, if compared
to the alternative of having individual neural structures ded-
icated to memory. This is because, on the one hand, sound
as an external memory reduces the cognitive load imposed
by the task. The agent do not need to remember what push-
ing strategy to employ during the approaching phase. They
simply act in response to the perception of sound. On the
other hand, the external memory is shared by both agents,
reducing the risks of failure due to forgetting, and improving
the robustness of the collective strategies.

7 Conclusions and future work

Recent technological innovations provided scientists with the
means to develop computational models of evolving embod-
ied agents. Amongst the various applications, these tech-
nologies are used to investigate biological/ethological issues
concerning the evolution of individual and social behaviours
and their underlying causal mechanisms (see Harvey et al.
2004). Following a theoretical line of investigation focused
on the evolutionary origin of communication, the model illus-
trated in this paper provides further evidence of the evo-
lutionary circumstances which facilitate the emergence of
reciprocal communication in a population of evolving agents.
This model is characterised by the fact that communication is
needed by a group of two homogeneous agents to choose, on
the basis of perceptual cues that are only partially available to
each single agent, the required cooperative strategy between
two possible alternatives. Communication allows the agents
to reciprocally complement their partial perceptual experi-
ence, to correctly and repeatedly categorise the environment
in which they behave, and to develop common and effec-
tive cooperative strategies. The scientific contribution of this
research work is in showing how reciprocal communication
can originate from scratch in a context in which it contributes
to perform a categorisation task. We demonstrated that arti-
ficial evolution managed to successfully assemble the neural
mechanisms required by the agents for (i) developing a sim-
ple form of reciprocal communication, (ii) distinguishing two
different types of environment and (iii) performing a simple
cooperative task. Acoustic communication fulfils its func-
tion thanks to its effect on the categorisation output, which,
in turn, determines the agents’ pushing strategy.

Two elements were responsible for the evolution of
successful strategy: the modular structure of the agents’ con-
troller, and the selective pressure which made signalling
behaviour an adaptive trait even if not yet directly helpful
to allow the agents to open the revolving door. The modu-
lar architecture helped in generating the phenotypic variabil-
ity in signalling behaviour required by artificial selection to
reward traits that proved to be more adaptive. In early stages
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of successful evolutionary runs, the fitness component F3

contributed to keep into the evolving populations those sig-
nalling behaviours that, although extremely simple and not
particularly helpful to correctly categorise the environments,
were relevant to the categorisation task.

Concerning future work, we will first look at the opera-
tional principles of the neural mechanisms underlying suc-
cessful as well as unsuccessful cooperative strategies. The
work described in this paper will be complemented by fur-
ther analysis on the structural properties of the evolved
neuro-controllers. There are several aspects of this model
that, being arbitrarily chosen amongst a variety of alter-
natives, should be further questioned. For example, alter-
native solutions concerning the structural properties of the
agents’ controller as well as the parameters of the evolu-
tionary algorithms should be further investigated. The mod-
ular approach described in Sect. 4.1 and the evolutionary
regime described in Sect. 4.2, although more effective than
other choices, generated adequate variability in signalling
behaviour only in 2 out of 10 randomly seeded evolution-
ary runs. The other eight evolutionary runs quickly con-
verged on populations, in which the groups conformed to
single strategies. That is, both agents were either signal-
ling all the time or never. Further investigations will focus
on the suitability of functional (e.g. the activation func-
tion of the neurons) and structural (e.g. the sound signal-
ling system of the agent and the neural network connec-
tivity) alternatives that facilitate the emergence of pheno-
typic variability with respect to sound signalling behav-
iour. More effective models will allow us to look at
the origins of communication in more complex simulated
scenarios.

There are other implementation details that bear upon the
nature of the evolved cooperative strategies and of the com-
munication protocols. The genetic relatedness of the individ-
uals of a group is one of these details. We employed groups
in which the agents share the same genetic material. The
genetic homogeneity of the agents helps to avoid the effects
of combinatorial affinity. Combinatorial affinity refers to a
cooperative scenario in which genetically non-related indi-
viduals are effective only in combination with a subset of
all possible partners. Combinatorial affinity may emerge in
an evolutionary scenario, in which individuals are evaluated
only with a subset of all possible partners. Due to biases in
the evaluation procedure, the agents’ fitness may result over
or under-estimated, leading to the emergence of fragile strat-
egies strongly dependent on the affinity amongst the partners.
However, in spite of this problem, whose effects can be min-
imised by carefully adjusting the evaluation procedure, the
study of our scenario in heterogeneous groups may gener-
ate different evolutionary dynamics and alternative solutions
for what concerns collective strategies and provide further

interesting insight about the origins of reciprocal communi-
cation. The sound signalling system is another implementa-
tion detail on which to concentrate future work. As shown
in Sect. 4.1, we employed a signalling system as simple as
possible. The agents emit the same single tone signal, and
they do not have any built-in mechanism to distinguish self-
and non-self-signal. There are various ways in which the
signalling system can be modified and made more complex.
The consequences produced by any possible modification of
the signalling system on the evolution of collective strategies
cannot be easily predicted. Thus, they have to be systemati-
cally investigated with further simulations.

We believe that the main contribution of ER models is
to provide proof-of-concept demonstrations of facts that
cannot be directly observed and/or scientifically inves-
tigated, such as those concerning the evolutionary his-
tory of the behaviour of living organisms. In this spirit,
ER models should keep on generating simple ecologi-
cal scenarios which, by working on the characteristics
of the agents sensory and motor capabilities as well as
on the properties of the environment, generate the neural
mechanisms underlying incrementally complex individual
and social skills. Concerning communication, our inten-
tion is to invest more energy into the study of the ori-
gin of social interactions that can be used to communi-
cate about states of affairs that are distant both in space
and in time (i.e. referential communication). As far as,
we know, these types of interaction are not very common
in biological organisms, with the waggle dance of honey-
bees being the most studied example (Von Frisch 1967).
Nevertheless, they are absolutely ordinary in human lan-
guage. Thus, ER models focused on the evolutionary ori-
gin of referential communication may shed light on the
origin of language and provide further evidence concern-
ing its biological roots. Moreover, the interest on refer-
ential communication is also due to the fact that these
types of social interaction supposedly require cognitive func-
tions (e.g. the capability to form mental representations
of perceptual experience and to store them in memory)
whose structural and functional identities are highly debated
in cognitive science. ER models on the evolution of ref-
erential communication may be effective tools to gener-
ate helpful insights that can be further tested in a more
neuro-scientific experimental setup. The work described
in Williams et al. (2008), although in a very simple sce-
nario, has already begun to look at these issues. The model
described in this paper requires only minimal changes to
contemplate referential communication. In particular, it suf-
fices to limit the agents’ acoustic perceptual field, so that
sound is heard only if agents are at a distance significantly
shorter than the arena length. This would be an interesting
direction for future work along a line of research which
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is meant to strengthen the significance of ER models to
the above aforementioned biological and cognitive science
debates.
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