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Self-Organising Sync in a Robotic Swarm.
A Dynamical System View

Vito Trianni and Stefano Nolfi

Abstract—Self-organised synchronisation is a common phe- light pulses [18], and in crabs, which wave their claws in
nomenon observed in many natural and artificial systems: simple  synchrony [19]. Other synchronisation phenomena may have a
coupling rules at the level of the individual components of catastrophic outcome: from epileptic seizures, the Packils

the system result in an overall coherent behaviour. Owing to di hi hreni hich I db .
these properties, synchronisation appears particularlymteresting ISease or schizophrenia, which are ail caused by excessive

for swarm robotics systems, as it allows for robust temporal Synchrony in some areas of the human brain [20]-[22], to the
coordination of the group while minimising the complexity d side-swaying of the London Millennium Bridge, which was
the individual controllers. The goal of the experiments preented caused by spontaneous synchronisation of the walking pace
in this paper is the study of self-organising synchronisatin for of the many people traversing it on the opening day [23].

robots that present an individual periodic behaviour. In order to ; .
design the robot controllers, we make use of artificial evoltion, Much research has been dedicated also to the discovery of

which proves to be capable of synthesising minimal synchrasa- Synchronisation from observable data in noisy or chaotic
tion strategies based on the dynamical coupling between raits conditions, where only the phase locking is relevant whike t
and environment. The obtained results are analysed under a amplitudes have no restrictions [24], [25]. For this pusos
dynamical system perspective, which allows us to uncover & 5nqvtical tools have been introduced based on the definitio
evolved mechanisms and to predict the scalability propergés of " . .

the self-organising synchronisation with respect to varyig group of the “instant frequency” of the given S|gnal_s [26], [27].
size. How can all these systems—so much diverse from each
other—self-organise to achieve synchrony? This question
aroused the research of an answer for many years, until the
appropriate analytical methods were developed [28], [28].

the above synchronisation phenomena can be modelled as

|. INTRODUCTION systems of multiple coupled oscillators. Consider for eglam

YNCHRONY is a pervasive phenomenon: examples dhie synchronous flashing of fireflies: thousands of insects
synchronous behaviours can be found in the inanimaeenit light pulses in unison, perfectly synchronising their
world as well as among living organisms [1], [2]. Synchronindividual rhythm. In this case, fireflies can be modelled as
may spontaneously emerge from weak interactions among caupopulation of pulse-coupled oscillators with equal oryver
pled systems: the synchronisation of pendulums reported $ignilar frequencies. These oscillators can influence eéwgro
Huygens is probably one of the first documented examples [B} emitting a pulse that shifts or resets their oscillatibiage.
In biological systems too, synchrony is often observabte. FThe numerous interactions among the individual osciltator
instance, the heart pacemaker cells synchronise to achiéiteflies are sufficient to explain the synchronisation of the
a robust beat, resulting in a system resilient to failures wfhole population (for more detail, see [4], [5], [18]). Désp
individual cells [4], [5]. Synchronisation among neuroeads the clear understanding of the mechanism, the functignafit
to the formation of assemblies of coherent activity that agynchronisation or, in the particular case of animal behayi
considered to be at the basis of cognitive processes suchitasadaptive significance is not always clear. With respect t
binding—i.e., the integration of information from differe chorusing behaviours, the most convincing hypothesisas th
sensory perceptions of the same phenomenon—, seleciyachrony is an epiphenomenon of the competition between
attention, learning and memory [6]-[12]. Similar mecharés males to attract females, and results from the attempt df eac
are at the base of the synchronous signalling behavidodividual to anticipate the signal of its neighbours [30].
observed in various animal species [13]. “Chorusing” is a The synchronisation behaviours observed in Nature can be
term commonly used to refer to the coordinated emission af powerful source of inspiration for the design of robotic
acoustic communication signals by large groups of animaBystems. From manipulators [31] to hexapod robots [32],
To cite a few, chorusing has been observed in frogs [14jynchronisation is an important mean to achieve coordinati
crickets [15] and spiders [16]. It has also been argued thEhis holds particularly for swarm robotics systems [33], in
synchronous chorusing in hominids may have played a fuwhich the emergence of coherent group behaviours from
damental role in the evolution of language and music [1@imple individual rules is emphasised. Chorusing was the
Synchronous displays that do not involve acoustic signaéeh metaphor for the coordination algorithm used in a colletiv
been extensively studied in fireflies, which emit coordidateobotics experiment, in order to regulate the group sizeleind
the robots coordinately move towards a target location,[34]
Laboratory of Autonomous Robotics and Artificial Life (LAR4, Institute [35]. Other works take inspiration from the self-organigshre-
of Cognitive Sciences and Technologies (ISTC), NationaseRech Coun- . e L .
haviour of fireflies: a specialised neural module was designe

cil (CNR), Rome, Italy. e-mail{vito.trianni,stefano.nolfi@istc.cnr.it ) ) - ’ ™~
Manuscript received December 31, 2007; revised June 1(.200 for the synchronisation of the foraging/homing activitiasa

Index Terms—Self-Organisation, Synchronisation, Swarm
Robotics, Dynamical Systems



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

robot group in order to maximise the overall performancé.[36ability of the evolved behaviour to efficiently scale witheth
The same mechanism was also applied to a cleaning task tajbeup size. We believe that such predictions are of fundaahen
performed by a swarm of micro robots [37]. Finally, similaimportance to quickly select or discard obtained solutions
synchronising behaviours could be synthesised by arfificiaithout performing a time-demanding scalability analysis
evolution as adaptive mechanisms to reduce the interferemeell as to engineer swarm robotics systems that present the
among communicating robots [38]. desired properties.

The goal of the experiments presented in this paper is theThis paper is organised as follows. In Section Il, we present
study of self-organising synchronisation in a group of tsbothe experimental setup devised to evolve the self-orgagisi
based on minimal behavioural and communication strategisgnchronisation behaviours in a simple simulation enwiron
Similar to the studies presented above, we follow the basitent. Section Il briefly summarises the results obtainechfr
idea that if an individual displays a periodic behaviour, ithe evolutionary machinery. In Section IV, we provide anlana
can synchronise with other (nearly) identical individubls ysis of the evolved behaviours from a dynamical system per-
temporarily modifying its behaviour in order to reduce thepective. In particular, Section IV-A introduces a mathgoad
phase difference with the rest of the group. In other stydienodel of the behaviours evolved in simulation, which ingsd
synchronisation is based on the entrainment of the indalidilsome simplifications (e.g., neglecting noise) necessaryhio
internal dynamics through some form of communication. Idynamical system analysis. As we shall discuss, such dimpli
this paper, instead, we do not postulate the need of intergations do not influence the relevant aspects of the indalidu
dynamics. Rather, the period and the phase of the individdmdhaviour and of the synchronisation dynamics, which are
behaviour are defined by the sensory-motor coordination @éscribed in Sections IV-B and IV-C. Section V is dedicated
the robot [39], that is, by the dynamical interactions witho the scalability properties of the evolved behaviours ahd
the environment that result from the robot embodiment. Whe synchronisation mechanism. These analyses are pedorm
show that such dynamical interactions can be exploited fekploiting the simulation environment used for evolutigna
synchronisation, allowing to keep a minimal complexity obptimisation. Additionally, in Section V-C we show how the
both the behavioural and the communication level. Now, thmathematical model can be exploited to predict the scétabil
main problem is defining a robot controller able to exploibf the evolved controllers on the basis of the charactessti
the dynamical agent-environment interactions. By relyanga  of the individual behaviour. Section VI discusses the rssul
simple kinematic simulator of our robots, we use artificiad-e obtained by testing the controllers evolved in simulatiathw
lution to search the space of the possible behavioural amd cqphysical robots. Finally, Section VII concludes the paper
munication strategies for the synchronisation problem],[40vith some discussions about the proposed approach and the
[41]. In particular, we avoid to explicitly reward the use obbtained results.
communication, in order to leave evolution free to explore
the space of the possible solutions that lead to synchronqus EvoLUTION OF SELF-ORGANISING SYNCHRONISATION
behav!our and to allow thg e\_/olvmg robots to co?adapt their In this section, we present the experimental setup defined fo
behavioural and communlcatlon .Sk'"S' The pbtalned resuH]e evolution of synchronisation behaviours. The scenago
are ang_lysed under a self-organising perspective, e‘_‘m propose is simple and idealised. Nevertheless, it contins
scalability t_o_ large groups of rob_ots_. Moreover, we '“‘@*-":"’9 the ingredients necessary to study self-organised synidao
the scalability of the sy_nghromsanon mechaniger sein tion in a swarm of robots. The task requires that each robot in
order to evaluate the efficiency of the evolved strategy whraqe group displays a simple periodic behaviour, which sthoul

:\(()jtd_cpnst:;euned by thﬁ pt? ys |ca}l mteractllonds_am.ongl the{ﬁ)booe entrained with the periodic behaviour of the other robots
itionally, we test the behaviours evolved in simulatva in the arena. The individual periodic behaviour consists in

phyS|_caI_ _robots, therefore providing a proof-of-concefpbut oscillations along the direction of the rectangular arena (see
the viability of the proposed methodology for robot coneol
design.

The main contribution of this paper consists in the analysis Ay
of the evolved behaviours, which employs a dynamical system 1
approach [42]. Dynamical systems theory is recently agugir
more and more attention in cognitive sciences [43]-[45]tas i
can give explanations of cognitive phenomena while they un-
fold over time. Concepts like “attractor” and “bifurcatitstart
to be commonly used, and dynamical models are developed—________________ ,
just to name a few—to give new answers to classic psychology
debates such as the A-not-B error in infant reaching [46], or
to account for intrinsically dynamical processes such #4n
limb coordination [47], [48]. In this paper, we introduce a
dynamical system model of the evolved behaviours, in order
to uncover the mechanisms that artificial evolution syritiess
to maximise the user-defined utility function. Moreover, Weig. 1. Snapshot of a simulation showing three robots in tesmental
show how the developed model can be used to predict tifena. The dashed lines indicate the reference frame udhd &xperiments.
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both tracks and wheels, each track-wheel pair of the same
side being controlled by a single motor. This combination
of tracks and wheels provides thebot with a differential
drive motion, which is labelledifferential Treel€ Drive.
The treels are connected to the chassis, which contains the
batteries. The main body is a cylindrical turret mounted on
the chassis by means of a motorised joint that allows the
relative rotation of the two parts (see Figure 3). sdbotis
provided with many sensory systems useful for the perceptio
of the surrounding environment or for proprioception. éméd
proximity sensors are distributed around the rotatingeturr
and can be used for detection of obstacles and atHmots
Four proximity sensors placed under the chassis—refeoed t
asground sensors-can be used for perceiving the grey level
of the ground, the presence of holes or the terrain’s rouggne
0005500600 650 700 750 800 (see Figure 3). Additionally, as-botis provided with light
cycle (t) sensors, temperature/humidity sensors, a 3-axes acecern
Fig. 2. An example of synchronised motion of three robotse Ytposition and 'r?cremental .enCOde.rS on each degree _Of freedom. Each
of the robots is plotted against time. robot is also equipped with sensors and devices to detect and
communicate with othes-bots such as an omni-directional
camera, coloured LEDs around teéots turret, microphones
Figure 1). Oscillations are possible through the explmitedbf and loudspeakers (see Figure 3).
a symmetric gradient in shadt_as Qfgrey painted on the ground|y he experiments described in this paper, we only use
On the other hand, synchronisation of the robots’ movemenfs, infrared and ground sensors for perceiving the environ-
can be achieved by exploiting communication. _ mental features, the loudspeaker and the microphones for
Robot controllers are evolved in a simulated environmenfyng signalling, and the two motors controlling the treels
The simulated arena is a rectangle b 3 m completely |y particular, the loudspeaker and the microphones are used

surrounded by walls. We set afy reference frame as shown iny implement a global, binary communication system. The
Figure 1. The ground is painted in white far < 0.2 m, and

linearly changes to black untiy| = 1 m. For larger distances,
the arena is painted in black. Robots should oscillate on th~
painted gradient without moving over the black area. As &
consequence, robots can make oscillations with a maximur
amplitude of2 m. Given the symmetry of the painted gradient,
synchronised movements correspond to both in-phase or an
phase oscillations. As an example, in Figure 2 we showythe
position of three robots that perform synchronous osaihtes.
While the first two robots display in-phase oscillationsg th
third robot displays anti-phase oscillations with resgecte
others (see Section II-C for more detail). In the followimgg
give further details about the experimental setup by desxayi
the robotic platform used (see Section 1I-A), the contiradled
the evolutionary setup (see Section |I-B) and finally thecfith
function used (see Section II-C).

Y1

Y2

500 550 600 650 700 750 800

Y3

rigid gripper

A. The Robots semrll;i?%i:erlca\ camera T—?illj]aglped

The robots used in these experiments sdigots(see Fig- IR
ure 3), which are small autonomous robots with the ability &
to self-assemble [49], [50].The evolutionary experiments
presented in this paper are performed in simulation, usini
a simple kinematic model of the-bots and the results are
afterwards validated on the physical platform.

An s-botweighs 700 g and its main body has a diameter of
about 12 cm. Its design is innovative with respect to both
sensors and actuators. The traction system is composed

roximit
psenson’g

. treels

: AN
v v

1The assembling capability of thebotsis not the focus of these experi- Fig. 3. View of thes-bot from different sides. The main components are
ments. For more detail on self-assemblispots see [51]. indicated (see text for more detail).
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loudspeaker can be used to emit a binary signal with a fix&imple algorithms of this type—i.e., mutation only and lsina
frequencyF = 2500 Hz and an intensity high enough to beencoding of neural network weights—are widely used in the
perceived from anywhere in the experimental arena. On theolutionary robotics domain (for a review, see [40], [41])
receiver side, at every control cycle the recordings from th

microphones are processed by the on-board CPU to extraCtThe Fitness Computation

the frequency spectrum. If the intensity perceived in a kmal
interval aroundF is above a certain threshold, the binar¥
sound sensor is set to 1. To summarise, eabbtcan produce u
a continuous tone with fixed frequency and intensity. Wh
a tone is emitted, it is perceived by every robot in the are
including the signalling-bot The tone is perceived in a binary
way, that is, either there is at least osddotsignalling in the
arena, or there is none.

During evolution, a genotype is mapped into a control struc-
re that is cloned and downloaded onto all tibotstaking
erJnart in the experiment (i.e., we make use of a homogeneous
roup ofs-bot3. Each genotype is evaluated 10 times—i.e., for
trials. Each trial differs from the others in the initgtion
of the random number generator, which influences the initial
positions and orientations of tleebotswithin the arena. Each
trial lastsT" = 900 simulation cycles, which correspond to 90
. . seconds of real time.
B. The Controller and the Evolutionary Algorithm The fitness of a genotype is the average performance
Artificial evolution is used to set the connection weightsomputed over the 10 trials in which the corresponding reura
and the bias terms of simple neural controllers with fixecontroller is tested. During a single trial, the behaviouw-p
architecture. The controller of eashbotis a fully connected, duced by the evolved controller is evaluated by a 2-compionen
feed forward neural network—a perceptron network. THhéness function? = 0.5-Fa+0.5-Fs € [0, 1]. The movement
neural network has 11 sensory neurons directly connectedctimponent,, rewards robots that move along thélirection
3 motor neurons. The sensory neurons are simple relay umii¢hin the arena:

and the output neurons are sigmoid units whose activation is | BT \Ay(t, )|
computed as follows: Fo = — oA AL 2
P M= T 2; N 2
1 —1 =
Oj=o (Z wij I +ﬁj> ; o(z) = Tr e (1) where R = 3 is the total number of robots in the group,
i Ay(t,r) is the variation of the position ofs-botr at cyclet,

where1; is the activation of the’” input unit, 3, is the bias andAY is the maximum possible variation, which corresponds
term, O, is the activation of thej®" output unit,w;; is the 0 thes-botmoving at maximum speed in a direction parallel
weight of the connection between the input neuicand the 10 they axis. This fithess component rewards fast motion along
output neurony, ando(z) is the sigmoid function. they direction. The oscillatory behaviour evolves because the

Six sensory neurons£r to Is—receive input from a subsetarena is surrounded by walls and by the black-painted area,
of the infrared proximity sensors evenly distributed ambtime SO that oscillations during the whole trial are necessary to
s-bots turret. Four sensory neuronst—to I;p—are dedicated maximise Fa.
to the readings of the four ground sensors. The state of allThe second fitness componéfy rewards synchrony among
infrared and ground sensors is linearly scaled to the rangi® robots. Synchrony among tw&botscan be evaluated
[0.0,1.0]. A simulated uniform noise withis% of the input as the cross-correlation coefficient between the sequesfces
range is also added. The last sensory neukanreceives a Movements parallel to thg axis performed during a trial. In
binary input corresponding to the perception of sound g,jgnaorder_ to encode ths-botmovements, we define the following
The activation states of the first two motor neuror@r—and function: A

; . y(t,r)

O,—is scaled onto the rande-wys, +was], Wherew,, is the d(t,r) =y(t,r) - NG (3)
maximum angular speed of the wheels\( ~ 4.5 s~ !). The _ . _ _
third motor neuron controls the speaker in such a way th4fich depends on the position ofs-botr at timet and on its

a sound signal is emitted whenever the activation statés displacement along th@_ direction. We cho_se to considgr not
greater than 0.5. only thg absolute position but_ also the @splacement inrorde
The evolutionary algorithm is based on a population of 108 take into account the direction qf oscillatory movements
genotypes, which are randomly generated. This populati6r- away from or towards the axis. The cross-correlation
of genotypes encodes the connection weights of 100 nedf8gfficientsr., -, of two sequenced(t, r1) andd(t, ) can be

controllers. Each connection weight is represented with defined as:

8-bit binary code mapped onto a real number ranging in Dyor, 1<

[~10,+10]. Subsequent generations are produced by a combitrir, = —m=—r==> Prir, = 7 > d(t,r)d(t, ). (4)
nation of selection with elitism and mutation. Recombioati rarLrars t=1

is not used. At each generation, the 4 best individualsFhe coefficient,,,, can take values ifi-1, 1], where a value
i.e., theelite—are retained in the subsequent generation. Tleé 1 indicates perfect synchrony and a value of -1 indicates
remainder of the population is generated by mutation of thperfect asynchrony. Notice that, given the symmetryi@f )

20 best individuals. Each genotype reproduces at mostwih respect to movements away from or towards:theexis—
times by applying mutation with 3% probability of flippingsee equation (3)—synchrony is rewarded also when robots
a bit. The evolutionary process runs for 500 generationzerform the same movements at the same distance from the
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Fig. 4. Post-evaluation results of the best evolved cdetot; in each evolutionary experimeit= 1, .., 20. The performance is represented on the horizontal
axis, and the controller number on the vertical axis. Thephmixdisplays the whole dataset: each box represents teeqofrtile range of the data, while
the black vertical line inside the box marks the median valtlee whiskers extend to the most extreme data points wittsrtitnes the inter-quartile range
from the box. The empty circles mark the outliers. Data fraffedent controllers are sorted according to the mediame/aMoreover, statistical similarities
are represented as vertical bars spanning over the cemtralimbers (see text for detail).

x axis, but on opposite sides of theaxis and in opposite the 500 post-evaluation trials, sorted according to desinga
directions. This is necessary due to the symmetric gradienedian values, is shown in Figure 4. The obtained resulta sho
in the arena, as shown in Figure 1, which results in identictlat in most replications the performance obtained is imaye
perception of the gradient by the robots in the upper andiowsithin the interval[0.7,0.9], which indicates that robots are
part of the arena. Given equation (4), the synchrony compionable to maximise both the movement fitness compornént,
Fs is computed as the minimum among the cross-correlatiand the synchronisation componehg,. In order to assess the
coefficients of all possible pairé-,r3) among thes-bots difference in performance among the controllers evolved in
bounded in[0, 1]: different evolutionary replications, we used the perfonce
. data recorded over 500 trials to perform a series of pairwise
Es :max{o’,ﬂ% Orira}- () Wilcoxon tests among all possible controller couples. The

In addition to the fithess computation described above, tV\r/%SUItS are plotted in Figure 4 as vertical lines spanning

indirect selective pressures are present. First of alljah is over the controller numbers having a performance that is not

. statistically different (at 99% confidence). So, for exampl
stopped when ars-bot moves over the black-painted area o .

; . . controllerscy3 and 5 are not statistically different from the
and we assign to the trial a performanée = 0. In this

. . . .nperformance point of view. Similarly, controllef has a per-
way, robots are rewarded to exploit the information comi 0 hance equivalent tor. andea. but it performs worse than
from the ground sensors to perform the individual oscilato q Oig 1o P

movements. Secondly, a trial is stopped whers4mtcollides controllerscyy andcyi4. As can be seen in Figure 4, controller

with the walls or with another robot, and also in this case wé outperforms all other controllers. In the following, we giv

setF' = 0. In this way, robots are evolved to avoid collisions? detailed analys!s of the behaviour producedcb_yand by
other controllers, in order to uncover the mechanisms fhat |

behind the evolved synchronisation behaviours.
I1l. RESULTS
We performed 20 evolutionary replications, each starting IV. BEHAVIOURAL ANALYSIS
with a different population of randomly generated genosype N : :
Each replication produced a successful synchronisation ?ﬁA qualitative analysis of the obtained controllers revéiads

haviour, in which robots display oscillatory movementsnglo Ine Zﬁz‘:‘;/lloﬁjtr?spr%dsiictig ?(;e dg;l:il:\e US;;T"?VDJO ﬁQSegnif\tr}[ﬁré
the y direction and synchronise with each other accordin ogI]ved be,haviouFr)S' an initial trans?tor hasepdurin ahihi
to the requirements of the fithess function. To assess f| % i . S y P 9

. . . robots achieve synchronisation, and a subsequent syrisacbn
quality of the evolved behaviours, we select a single ggrety

per evolutionary replication to be chosen among the beqsqa.se‘ The transitory phase may be characFe.nsed by physi-
individuals of the final generation. To do so, we evaluat%al interferences between robots due to collision avoidanc
L ! . If robots are initialised close to each other. The collision
the performance of the 20 best individuals of the final gen: idance behaviour performed in this condition evenyuall
eration in 500 different trials, and we choose the indivldu?

with highest average fitness. In the remainder of the papeerf,idS to a separation of thebotsin the environment, so that

we refer to the best controllers evolved in repllcatrolas 2\ideos of the evolved behaviours can be found at http:lllata.cnr.it/
¢i,i = 1,..,20. The performance of these controllers ovegsm/trianni-nolfi-ieeetec09.
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further interferences to the individual oscillations armaifed behaviours confirm that collision avoidance can be neglecte
and synchronisation can be achieved. During the synchondor our purposes. We will consider physical interactionaiag
phase, collision avoidance is therefore less probablestilit in the scalability analysis and when real world scenarios
possible due to the environmental noise, which may makee considered (see Section V and Section VI). A second
robots deviate from their normal movements and approasimplification is to ignore any form of noise, assuming that
other robots. Otherwise, this phase is characterised ljestait is not exploited by the evolved behavioues§umption ).
synchronous oscillations of a#i-bots and small deviations Also in this case, preliminary behavioural analyses sutgges
from synchrony are immediately compensated. that noise is not relevant for the production of the indiadu

In all replications,s-botspresent periodic oscillations with oscillatory behaviour or for synchronisation. The thirdnsi
varying amplitude on the, direction. Concerning the syn-plification concerns the dynamics of the individual roboe w
chronisation mechanisms, it is possible to classify thdvexb neglect all second order dynamics such as acceleration and
solutions into two main classes. The first class is charise@r inertia @ssumption Il). The reason is twofold. On the one
by a synchronisation mechanism that we refer to asntbd- hand, the simulator used to evolve the robot controllers is
ulation mechanisms-bots synchronise by modulating theirkinematic, and already neglects second order dynamics. On
oscillatory behaviour in response to a perceived communidhe other hand, the maximum speed of #héotsis rather
tion signal coming from other robots. This class is composéalv (about0.112m/s) while friction of the treels is rather
of 15 controllers, including the best evolved controltgr  high, so that ars-bot can accelerate to the maximum speed
The second class includes the remaining 5 controllers, amdcompletely stop in a single control cycle.
is characterised by a synchronisation mechanism that vee ref Consider a single robot placed in the experimental arena. On
to as thereset mechanisnin response to the perceived comthe basis of the simplifying assumptions described abdse, i
munication signals-bots‘reset” their oscillation by moving to behaviour can be completely characterised by the intenmacti
a particular position over the painted gradient, waitingtfee with an idealised noise-free environment, mediated by the
other robots to reach a similar position. We selected cdlatro control rules encoded in the neural network controller. The
c1o to study the properties of the reset mechanism, since thigural controller is reactive and can be described as aifumct
controller has the highest performance within its class. that associates the sensor inputs to the motor outputs:
Section IV-B, we give a quantitative analysis of the indivadi _
behaviour produced by controllecg and c;9. Subsequently, O(t) = N(I(t), c), ()
Section IV-C is dedicated to the synchronisation behaviour where I(¢) and O(t) represent the vector of inputs and
both cases, we make use of concepts borrowed from dynamigatputs of the neural network, ardis the vector of evolved
systems theory. To do so, we model our robotic system agparameters that characterise the neural controller. Bldkiat
discrete-time dynamical system, which is the subject of thise analytical form of functioV is given in equation (1). The
following section. input vector is defined by the sensor readings of the robot.
Here, we make use of assumptions | and Il discussed above.
By assuming that there are no collisions between walls and
other robots and that there is no noise, we can completely

We want to analyse the behaviour of a group of robotgnore the infrared proximity sensors. As a consequenee, th
that synchronise their periodic oscillations. Our maireiest vectorI(¢) is determined only by ground and sound sensors.
is the understanding of both the individual behaviour—i.eGround sensors are completely characterised by the positio
the periodic oscillation—and the synchronisation mectani of the robot in the environment. More precisely, the reasling
Such understanding may be useful to predict some featuodghe ground sensor depend on theosition and orientation
of the evolved behaviour, e.g., the scalability discussed @ of the robot over the grey gradient. It is therefore possible
Section V-C. However, some simplifications are necessary fo determine a function that, given the robot positignits
such a study. First of all, we neglect the collision avoidanmrientationd, and the perceived soundat timet, returns the
behaviour among robots and between robots and the areeator of inputsl(t):
walls, as if robots were placed in a infinite arena, in which
the chances to encounter another robot are ragisymp- I(t) = Z(y(®), 0(1), s(1)) = Z(y, 0, s)t- (7)
tion 1). This seems a strong simplification, above all foHereafter, we use the abbreviated notatipio indicate that
what concerns the group behaviour, which may be deegycertain variable or a set of variables is evaluated at time
influenced by physical interactions and collision avoidanc The output vecto©(t) is used to determine the speed of the
(in this respect, see Section V-A). However, notice that tmbot treels and the status of the loudspeaker. Assumption |
the extent of describing the individual oscillatory belwawi implies that the variation in position and orientation o 8
collision avoidance with walls does not play a major rolbot depends only on the speed of the two treels. It is therefore
because robots are evolved to exploit the grey gradient foossible to determine a function that associates the output
their movements. Similarly, the synchronisation mechanisvector to the new position of the robot:
does not rely on collision avoidance among robots, since
evolution was performed with a rather low density of robots, ((t+1),00t+1),5(t +1)) = 0(0()), (8)
so that physical interactions are not frequent enough to taere S(¢) is the signal emitted at timé. The sound per-
exploited for synchronisation. Observations of the ewlveception at timet + 1 is determined by the emitted signal

A. Dynamical System Modelling
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S(t+1), together with the emitted signals of the otlsebots boundary conditions of). This closed orbit appears to be

In other words,s-botsare coupled by means of the globah limit cycle attractor, as indicated by the convergence of
binary communication channel they are provided with, st thall trajectories computed from starting positions exteelyi

it is possible to determine the following coupling rule: covering the phase space (data not shown). The existence

s(t) = max S, (1) € {01}, ©)

which specifies that a binary signal is perceived if and ohly
at least ons-botr is signalling. Note that the sound perceptio
s(t) is equal for all robots in the environment because comm
o)

nication is global and binary. When there is only one rob
the above coupling rule simplifies te(t) = S(¢). Putting
everything together, we obtain a discrete-time formutatd
the behaviour of the individual robot:

<ya g, S)lt-‘rl = O(N(I(y7 0, 5)|t7 C)) = BC(ya 0, S)lt- (10)

The function B, is responsible for producing the individual

behaviour of ars-botas defined by the parametersof the
evolved controller.

of such a limit cycle attractor indicates that the indivitua
behaviour produces a stable, periodic motion. The plots at
the bottom of Figure 5 reveal the details of such periodic
scillations. An s-bot positioned at(y,6,s) ~ (0,2n,0)
llows the directions indicated by the bottom-left vediieid,
\tvhich are parallel to thg axis: the robot moves on a straight
line until y ~ 0.75. At this point, the vector field indicates
that the trajectory jumps to plane= 1, which corresponds
to the s-botsignalling and therefore perceiving its own signal.
The robot now follows the direction indicated by the bottom-
right vector field, which corresponds to a clockwise rotatio
at constanty, followed by a circular trajectory. During this
movement, thes-bot keeps on signalling until its trajectory
jumps back to plane = 0. Now, the robot moves straight
again, crosses the axis and performs an identical sequence

_ What happens witt robots? Under assumption |, the onlyq¢ oy ements on the opposite side of the arena until it comes
interaction among-botsis a communicative one, given by the, ¢y (6 the initial position. It is worth noting the symmet

coupling introduced in equation (9). It is therefore polesiio
define the following discrete-time dynamical systenB&f+ 1
equations:

(1,01, 51)|t+1 = Be(y1, 01, 8)¢

: (11)
<yR, OR, SR>|t+1 = Bc(yR, OR, 8)|t
5|t+1 = max, Sr|t+1

the vector fields, which reflects the symmetry in the gradient
painted on the arena floor.

Other important information can be extracted from the
vector field: the signalling behaviour. For any stéte?, s),
the vector field indicates the variation of the perceivechaig
As(y, 0, s). By comparing the variatiod\s for s = 0 and
s = 1, it is possible to distinguish four different signalling
behaviours:

In the following, we make use of equation (10) to discuss the 1) no signal is emitted for all positions withs(y, 8, 0) =

behaviour of a singls-bot In Section IV-C, we base ourselves
on equation (11) in order to characterise the synchrooisati

mechanism.

B. Individual Behaviour

The behaviour of the individuatbotcan be studied looking
at how positiony, orientationd and perceived sound vary
over time. To do so, we numerically integritequation (10)

0 andAs(y,0,1) = —1.

a continuous signal is always emitted for all positions

with As(y,6,0) = 1 and As(y,0,1) = 0. We refer to

this behaviour asnvironment-drivesignalling, because

it depends entirely on the position of tisebotin the

environment.

3) a continuous signal is emitted for all positions with
As(y,0,0) 0 and As(y,6,1) = 0, but only in
response to a perceived signal. Otherwise, no signal is

2)

to compute avector field showing the instantaneous direc-
tion and magnitude of change for each point in the phase
space(y, 4, s). This is a 3-dimensional space wheyeand ¢
are continuous variables that vary respectively in the eang 4)
[—1,1] and [0, 27, while s is a binary variable. In particular,
the § dimension represents an angle and it prespatiodic
boundary conditionsso that trajectories exceeding one edge
of the [0, 27] interval continue from the opposite edge.

a) Controller cs: We are now ready to analyse the

produced. We refer to this behaviour siginal-driven
signalling.

an alternate signal is emitted for all positions with
As(y,0,0) =1 and As(y,6,1) = —1. In other words,
signalling is driven by thes-bot position, but it is in-
hibited by the perception of a signal. As a consequence,
the s-botcontinuously switches the loudspeaker on and
off. We refer to this behaviour aaternatesignalling.

behaviour of the best evolved controlleg, which belongs Figure 5 shows the signalling behaviour af in the top-

to themodulation mechanismlass. Figure 5 presents variousight plot. Different signalling behaviours are indicateg
plots of the vector fields. The top-left 3D plot suggestfiled circles of varying grey-levels. Notice that the linaigcle
how the state of ars-bot starting at any point in its phaseattractor traverses areas of the phase space charactbyised
space evolves over time. Together with the vector field, tharying signalling behaviour. A signal is produced whenghe

continuous line indicates a closed orbit, due to2heperiodic

3The programs developed to numerically integrate the dpeelonodel are
available at http://laral.istc.cnr.it/esm/trianni-fiakeetec09.

4Recall that the black painted area of the experimental aiefiarbidden
to thes-bots This area is characterised hy| > 1.

bot enters the “environment-driven” area, and is stopped when
the s-bot exits from the “signal-driven” area. Entering the
signal-driven area having = 0 does not lead to the emission
of a signal, while entering witlh = 1 maintains the previous
signalling status.
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Fig. 5. Individual behaviour produced by controlleg. Top-Left: 3D vector field showing the direction of variati@and its magnitude for each point in
the phase space. Tltedimension is characterised @r-periodic boundary conditions. The continuous line repnés the limit cycle attractor. Top-Right:
signalling behaviour of the controller for each positiordaientation (see text for detail). The continuous linerespnts a projection of the limit cycle on
the y 6 plane: a black line colour indicates that the trajectoryobgé to planes = 0, while the grey colour corresponds to the portion of trajactthat
belongs to planes = 1. Bottom-Left/Right: projection on thg 6 plane of the vector fields for a perceived sigra: 0 and s = 1. The dotted line in the
bottom-right vector field represents the limit cycle for anttouous perceived signal forced to despite the individual behaviour.

In short, the behaviour of the-botis the result of the dy- how ans-bot moving along the normal limit cycle attractor
namics defined by two different vector fields, one charasteri approaches this “forced” attractor when= 1. However, in
by no perceived signals(= 0) and one characterised by aapproaching this attractor, tieebotenters the “no signalling”
continuous signals(= 1). In the latter case, the dynamics ararea, and therefore it switches to movements dictated by the
characterised by a limit cycle attractor correspondingh® tvector field fors = 0. Notice that in the latter case, an attractor
forced perception of a continuous signal (see the dottesl lidoes not exist within the range of possible valuesfaand
in the bottom-right plot of Figure 5). It is possible to natic 6. Nevertheless, the vector field is oriented such thasthet



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

®  env.-driven signal alternate signal
om e o o o o o ]
e 0o 0 0 o
e 0o 0 0 o
e 0o 0 0 o
! 32 e e e e @
e o 0o 0o o
. _ e o 0 o o\\\‘\
sound ) % e 0o 0 0 0 o
g T
g e 0o 0 0 0 o
B e o0 0 o
O»
e 0o 0 0 o
om o e 0o 0 0 o
“ 3m2 e 0o 0 o a/
1 _0.75_0'5_0‘25 . "TV2 rotation (6) e 0o 0 0 o
position (y) 02505 075 170 e o 0 0 o
0 ‘ o 0 0.0 0 @ .
-1 075 05 025 0 025 05 075 1
position (y)
an F oo o0 o o 2n ] oo o0 0 -0 ] =
3 1 1 | 8 e o 0 0 x &V b & ¢ f V'V b 2] @0 @ @ @ = ¥ J \
[ ‘&g.‘no\\\\1f NN Xy ooooor//
o A | !
‘}‘{‘*l‘:éjnno\\\\w‘f Nos oY ‘0000//'/4}\‘
o - f 1‘ # \;“ L e B ST NN e e e e E s \
b * A AN ‘ h J \
b4 \s‘ﬂ\hn'n‘v"o s ¢ o ¢ NN 2V Ne e e e e /z }&
‘l‘r ?k‘...%“?\\*?? \\x\\ooooo\:\\\)\/i &
< T‘f ff&ooooéf?T?T 2 LL ! oooooorjill
S T i 2 T
§ TTTfféoooo‘tI b o g } L»oooooo~xlll
ft?f//oood__g‘tf *‘* z &\‘O..O./ll//
§Y ///000‘53““‘1*.{%‘ / &\‘00001 /x~//
‘ ! Ly
" b Py //gg..:_‘ﬁ’é“ I* 4 M\ 1‘ - '/ ! \‘ Nt e e e e b & 2 »
'Q’,///.._v__,-"’ijo//‘f f+\\ / *&\\000.///\//
i o4 [ Y
} b b o 9 /.. N ] ‘ “‘} | \ s J X -~ e o e & & 7 7z o
thffz'oooo\‘fff?? ] fjs = o0 000 = « | | ¢
0k i | S e e ; 0 94 0.0 -0, 0 -0 -0 - =
-1 075 -05 025 0 025 05 075 1 -1 075 -05 025 0 025 05 075 1

position (y) position (y)

Fig. 6. Individual behaviour produced by controllery. See the caption of Figure 5 for detail. Notice that the botteft plot is a vector field given by the
average between the vector fields foe= 0 ands = 1, as it represents the average direction of movement dutiaghate signalling. In the bottom-left plot,
the dotted line indicates the limit cycle attractor for age@red signal forced alternate. In the bottom-right plbg trosses indicate the fixed point attractors
for a continuous perceived signal forcedltpdespite the individual behaviour.

encounters the signalling area again, and therefore segtcldriven. As a consequence, the limit cycle attractor eities |
back to movements towards tke= 1 attractor. in thes = 1 plane or it jumps back and forth between the two
planes (i.e., tha-botproduces an alternate signalling pattern).

b) Controllerc;o: The individual behaviour produced byTh inaling behaviour f h ition in th _
controller ¢c;p—an example for theeset mechanismslass— . € signafling behaviour for €ac p(_)smon n t_e enwronmg
better represented in the top-right plot, in which it is

is presented in Figure 6. The 3D plot in the top-left of thg_ ! o S
figure shows the vector field and the limit cycle attractott th isplayed together W't_h a projection of f[he limit cycle attor .

corresponds to the individual oscillatory behaviour. Liogk on they 0 plane._ In this case, therg exist only two areas W'th
at the vector field, it is possible to notice that ssbotalways difierent signalling behaviour, which are anyway suifidien

emits a signal, which can be either alternate or environmelfl SUPPOTt the synchronisation amosgotsas discussed in
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Section IV-C. To give an idea of the average direction gfart, the positiony for the two robots—as predicted by the
motion of thes-botwhile perceiving an alternate signal, wemathematical model—is plotted with respect to time. It is
plotted the average vectors obtained from the two vectatdielpossible to observe that after an initial transitory phdbke,
given by s = 1 ands = 0 in the bottom-left part of Figure 6. robots converge towards coordinated movements. In péaticu
On the bottom-right, instead, we show the vector field fahe positiony is “modulated” through communicative interac-
s = 1. Looking at these plots, it is easy to describe the periodions: the robot that signals first influences the behavidur o
oscillations of ars-botas sequences of straight movements artdle other robot, which anticipates the turnabout in respons
anti-clockwise rotations. Also in this case, the behavimfithe to the perceived signal. A better idea on how synchronisatio
s-bot is characterised by two vector fields corresponding e achieved is given by plotting the trajectories of the two
the perception of alternate and continuous signallingepast robots over the vector fields for = 0 ands = 1 (see the
By forcing the perception of these patterns, it is possible tentral and bottom plots of Figure 7). The twebotsstart in
compute the attractors for alternate and continuous diggal the points indicated by ‘O’, none of which is signalling. As a
Alternate signalling leads to a limit cycle attractor, disged consequence, thg-botsfollow the top-left vector field, until
as a dotted line in the bottom-left plot of Figure 6. Continso they reach the point indicated by an ‘A’. At this stage, one of
signalling leads to two fixed point attractors displayed ake robots emits a signal (solid line), that triggers a behaal
crosses in the bottom-right plot of Figure 6. We can descrilohange: the robots now follow the top-right vector field and
the s-bots oscillatory behaviour as the alternate convergenbeth perform a clockwise turn. However, this rotation is not
towards these attractors. By moving towards one attrattter, performed at the same speed: the robot at lagg@olid line)
s-botexits from the corresponding signalling area and switchesoves faster than the other (dotted line), as indicated by th
to movements towards the second attractor, which evegtuadlze of the arrows of the vector field. The distance between th
lead the robot out of the second signalling area. This pscd®/o robots is substantially reduced at this stage, whichsend
generates a self-sustained oscillation. In particulagwever with the robots reaching the points indicated with ‘B’. Ireth
an s-bot perceives a continuous signal, it moves towards iaterval from points ‘B’ to points ‘C’ no robot is signalling
fixed point in they# space. The presence of such fixednd no interaction is present. When the first robot enters
points—which we refer to as theeset configurations-is a the environment-driven signalling area (solid line), itaag
characterising feature of this class of behaviours and tkay a modifies the behaviour of the second robot (dotted line) by
role in the synchronisation mechanism, as we shall diseusstiiggering an anticipated turnabout: the trajectories deser
the following section. to one another because of the difference in speed between
a normal and an anticipated turnabout, eventually reaching
point ‘D’ (see the bottom-left vector field), and with the sam
modulation mechanism the two trajectories nearly coinbigle

In the previous section, we described the individual b@assing from points ‘E’ to ‘F’, as shown in the bottom-right
haviour displayed by as-bot In particular, we focused on vector field.
the stable oscillatory behaviour, ignoring the transitphase A formal analysis of the synchronisation behaviour can
that leads to the periodic motion. This transitory phase ki performed exploiting thé®hase Response Cur(®RC)
relevant for the onset of synchronisation in groups of reboassociated with the individual oscillations. A PRC is obéal
that influence each other until stable synchronous osoifiat by delivering a precisely timed perturbation to an uncou-
emerge. In this section, we exploit the dynamical systepled oscillator, and measuring the effects on the oscillato
model introduced above to discuss the mechanisms that lgmdliod [52], [53]. More precisely, given the peridfl of
to synchrony. In particular, we use the formulation given ithe oscillator, a perturbation is applied at a phase=
equation (11), which accounts for multiple robots couplgd kr,,/T", wheret, is the beginning of the perturbation. Then,
a global binary communication channel. From equation (1ihe perturbed period), is measured and a phase response
we observe that the-bots movements are governed solelyF(¢) = (T —T,)/T is calculated: a positive value represents
by the individual behaviouB., which was analysed in thea phase advance—i.e., the oscillator is pushed forward by
previous section, and by the coupling rule (9), which statéise perturbation; conversely, a negative value represants
that a signal is perceived whenever sspotemits a signal. phase delay. In this work, we measure the free-running gerio
As a consequence, it is possible to describe the behavidurof the s-bots oscillatory behaviour as the time between
of synchronisings-bots by looking at how the individual two consecutive entries in the no-signalling area. We m&cor
movements change with respect to incoming signals. In thiee signalling pattern emitted during a single period, ared w
following, we give such a description for both controllegs use such recording as perturbation, delayed by a phase
andc, for a system composed ofs2bots The generalisation indicated in Figure 8 (at the top of the figure). Given that
to R s-botsis the object of the scalability analysis (seehe perturbation lasts a full perid, we measure its effects
Section V). asymptotically looking at the difference in phase between

a) Controllercg: In order to describe the synchronisatiomperturbed and free-running oscillations, once the peetirb

for the modulation mechanismiass of controllers, we analyseoscillation has settled back on the limit cycle attracto#][5
the transitory phase of twe-botsgoverned bycs while they The normalised PRC for controlleg is plotted in Figure 8
entrain their oscillations. Figure 7 presents variousgptoat (at the bottom). On the one hand, for smalk 0 we observe
represent different stages of the synchronisation. In fipeu a phase advance—i.e., whenever shot perceives a signal

C. Synchronisation Behaviour
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Fig. 7. Synchronisation behaviour of controlleg. Top: the positiony of two s-botsthat synchronise is plotted through time. The grey bandshé t
background indicate that a signal is being perceived. @eamtd bottom: vector fields for the conditioas= 0 (left) and s = 1 (right). For each point, the
individual signalling behaviour is displayed as a dot witirying grey level (see also Figure 5). The trajectories efttho synchronising robots are shown,
and relevant events are marked with capital letters. Theedatters indicate the time of the corresponding events éntop graph.
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free-running
perturbation

is perceived, i.e., until the second robot enters the atern
signalling area (see the points indicated by ‘A). At thiags,
they position of the two robots is very close, but they present
a large discrepancy in the orientati@nwhich is reduced due
to the different rotation speed between the robots. When the
robots reach points ‘B’, they are very close to each other.
T | At this point, continuous signalling starts again, and tsbo
t exchange roles: while approaching the points ‘C’, one robot
(dotted line) moves towards the second fixed point attractor
0.4 ) ) ) slowing down in order to stop there, further reducing the
| | | distance from the other robot (solid line). When points ‘@& a
reached, alternate signalling starts again and the robdtsce
the difference in their orientation due to slightly diffate
rotation speed (see the bottom-left vector field). From {zoin
‘D’ to ‘E’ the robots nearly converge to the same trajectory,
eventually achieving synchronous movements at pointsrifl’ a
‘G
0.5 -0.25 0 0.25 0.5 Simplifying, we observed that synchronisation of thposi-
perturbation phase @ tion is achieved mainly through convergence toward rdset
Fig. 8. Top: Definition of the perturbation phagefrom the time delay c_onflgu_ratlon W_hICh IS m_amtamed a_s long as a Contl_nuous
between the signal of the free-running oscillator and theugeation signal. Signal is perceived. Refinements still take place during the
Positive values correspond to a delayed signal, while hegatlues cor- oscillatory motion due to a reduced velocity of the robotdevh
[ﬁspepé’)']?o?c?ﬁuﬁﬂgfigéted signal. Bottom: Normalised phiasponse curve approaching or leaving theeset configurationThis is also
evident looking at the PRC corresponding to this behaviour
(see Figure 10), which was computed in the same way as for
. . ) ) controller cg, taking as reference point for the identification
shortly before signalling itself, the-bot reacts by slightly ¢ o free-running period the entry in the alternate sitmg
anticipating the following signal emissi(_)n. On the othentha area. In this case, for both > 0 and ¢ < 0 a phase delay
for ¢ > 0 we observe a phase delay—i.e., whenevesdiot g opqeryed, which is a result of the slow convergence of the
perceives a signal after signalling itself, it reacts byal#lg ¢ ot toward the fixed point attractor described above. This
the following signal emission. In both cases, we observe|@naiour can be interpreted as thbot consistently trying
tendency to reduce the phase difference with the perceigdye|ay jts signal emission. Synchrony arises from the aiutu
signal by “modulating” the signal emission time. The 0nSefie 4 tions of two coupled oscillators that always tryignal

of synchronisation is mainly the result of this modulatioge |4test. In fact, as observed above, sHeotsswitch role at
mechanism. Exact synchronisation is obtained due t0 the z@g, o, jteration until synchronisation is achieved. It igfesting

phase response observable for small positivevhich allows 1 \\qtice that a similar mechanism is considered at the basis

a reciprocal fine-tuning of the phases between the couplgd.porysing in many animal species, where synchrony result
oscillators. from the attempt of each individual to anticipate the sigofal

b) Controller c1o: The reset mechanisnelass of con- its neighbours [30].
trollers presents a slightly different synchronisatiohdegour
with respect to the modulation class. The main difference
consists in the presence of fixed point attractors towardshwh V. SCALABILITY ANALYSIS
the trajectories converge when an external signal is pexdei
Figure 9 presents the synchronisation phase for two robotsSo far, we have given a detailed description of the synchro-
controlled byecyp. The upper plot shows that the distances afisation mechanism employed by the two classes of evolved
the two robots initially approach each other, because of thentrollers, i.e., themodulation mechanisnand the reset
fact that one of the robots keeps a constant posigien0.7. mechanismWe have described the onset of synchronisation
After this initial phase, the robots start oscillating amaghidly giving examples with twas-botsonly, but no prove is given
achieve synchrony. The details of the reset mechanism canthat the described mechanisms scale to a larger number of
assessed looking at the trajectories of the two robotsqulottrobots. In this section, we provide a scalability analybiatt
over the vector fields (see the central and bottom plots &ms at testing all evolved behaviours with a varying number
Figure 9). In the initial phase, the robots move from poi@s ‘ of robots. We first test the evolved behaviours in the origina
to points ‘A’. The robot with smalleg (dotted line) is placed simulation environment, which includes all the featureatth
in the environment-driven signalling area and it is therefowere neglected in the dynamical system model (e.g., physica
emitting a continuous tone (see the top-left vector field)e T interactions and environmental noise, see Section V-AgnTh
other robot (solid line) rapidly converges onto the fixednpoi the scalability of the synchronisation mechanisen seis pre-
attractor, i.e., theeset configuratiorindicated by a cross in sented in Section V-B, and predictions from the mathemiatica
the figure. It remains there as long as a continuous sigmabdel are discussed in Section V-C.

phase resetting F(¢)
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Fig. 9. Synchronisation behaviour of controllery. Top: the positiony of two s-botsthat synchronise is plotted through time. The solid greydsain the
background indicate that a continuous signal is being perde The striped grey bands indicate an alternate sigremtr€ and bottom: vector fields for the
continuous signalling (left) and alternate signallingykiti, see also Figure 6). For each point, the individual siiigabehaviour is displayed as a filled circle
with varying grey level. The trajectories of the two synafising robots are shown, and relevant events are marked cajtital letters. The same letters
indicate the time of the corresponding events in the toptgrap
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A. Scalability of the Evolved Behaviours

14

scale to large groups.

Using the above setup, we evaluated all best evolved con-
trollers 100 times for each group size. The obtained resunés
presented in Figure 11. It is possible to notice that moshef t
best evolved controllers have a good performance for groups
composed of &-bots Performance degrades for larger group
sizes and only a few controllers produce scalable behaviour
up to groups formed by 96-bots The main problem that
reduces the scalability of the evolved controllers is giten
the higher probability per time step of physical interagtio
among robots: in fact, the larger the group size, the more
probable the encounters among robots per time step, despite
the constant initial density we introduced. This is confidbg
the higher number of collisions detected with larger groups
Recall that a null performance is assigned to each trial that
terminates becausebotsdid not manage to avoid each other
(see Section 1I-C). For some controllers, suclaandc,, the
number of trials terminated due to collisions increaseh ttie
group size, as is evident in Figure 11. Nevertheless, whanev
s-botssuccessfully avoid collisions, their dodging movements
provoke a temporary de-synchronisation of at least two t5bo
which have to re-gain synchronisation. Considering tHig, t
reduction in performance observed for large groups can be
explained by the following reasons:

« the higher the group size, the longer the transitory phase

In order to establish to what extent the evolved behaviours
function with increasing group size, we performed a series
of tests evaluating the performance of the evolved behaviou
with groups of 3, 6, 12, 24, 48 and 96bots Tests are
performed with the same simulation environment used for thee
evolutionary optimisation, and the performance is meakure
according to the description given in Section II-C, without
any modification. In order to ensure a fair comparison in
different trials, we decided to keep a constant, uniformsitgn
of robots in the arena. In fact, in a crowded situation, the e
ability to synchronise would be disrupted by frequent pbatsi
interferences—i.e., evolved collision avoidance beharo
among robots and between robots and walls. By ensuring
a constant initial density we limit the negative effects of

that leads to synchronous oscillations. During the transi-
tory phase, physical interactions amosipotsare more
probable because the robots have not yet settled into
stable oscillations;

the computation of the synchronisation componéjt
conservatively chooses the minimum cross correlation
among all s-bot pairs (see equation (5)). As a conse-
quence, even a few physical interactions may lead to a
strong decrease in performance;

global and binary communication implies that the whole
group is influenced by the attempt of a few robots to re-
gain synchronisation. In other words, the movements of
all s-botsmay be influenced by the attempt of a single
s-botto synchronise.

overcrowding and are able to compare the performance Qf the above reasons contribute to reduce the scalability
the system with varying group size. In order to keep @ the evolved controllers. In addition, another interfere
constant robot density equal to the one used in the evolmong robots limits the scalability. This is a communicativ
tionary experiments, that is, 0.25 robots per square Metgkerference that does not allow the robots to interactugho
we lengthened the arena in thedirection. So, for instance, sound signals, and therefore to synchronise. We discuss thi
a group size of 96 robots corresponds to an arena withpaplem in the following section, which is dedicated to the
length of 192 . Despite the increased arena length, Wecajapility of the evolved synchronisation mechanisms.

keep the same communication protocol, i.e., communication
continues to be binary and global, with all robots affecting

each othef. This choice allows us to evaluate the scalabilit. Scalability of the Synchronisation Mechanism

of an evolved behaviour without modifying the features @& th
communication channel. In this way, we hope to understand
under which conditions behaviours evolved with three rebo&o

In this section, we analyse the evolved controllers in order
uncover the effect of an increasing group size over the

Swith respect to real word scenarios, this choice may seergalistic.
However, other communication modalities than sound siigigalmay be
employed to provide physical robots with a global, binarynoaunication

protocol. For instances-botsare provided with a WiFi interface, which could

be employed to send and receive messages, independentdi$tdrece among
the robots.

synchronisation mechanisms described in Section 1V. To do
so, we modify the simulation environment in order to neglect
the physical interactions among robots and between robots
and walls, whose influence has been discussed in the previous
section. Noise is simulated as described in Section Il. ¢Jsin
the same experimental setup described above, we perform
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Fig. 11. Scalability analysis. The boxplot shows, for eagbhved controller, the performance obtained in tests witt6,312, 24, 48, and 96-bots Each
box represents the inter-quartile range of the data, whisellack horizontal line inside the box marks the medianezalthe whiskers extend to the most
extreme data points within 1.5 times the inter-quartilegefrom the box. Outliers are not shown.

an analysis for different group sizes focusing on the syof the analysed controllers. For the remaining controllers
chronisation aspect only. The obtained results are plottdee evolved communication strategies present a very good
in Figure 12. Differently from what was observed abovescalability that is only weakly influenced by the group si&e.

in this case many controllers present very good scalapilityiscussion about the causal relationship between theichdiv
with only a slight decrease in performance due to the longeehaviour and scalability is given in the following section
time required by larger groups to exactly synchronise (see

controllerses, cs, 10, €12, €14, c18 @Ndeig). Controllerses and C
ce present good scalability, but are characterised by a patent
loss in performance due to slow convergence to synchronyGiven the individual behaviour, is it possible to predict
Of |arge groups_ Th|S result Confirms the ana'ysis given mhethel‘ the SynChronisation mechanism is scalable? What
the previous section about the negative impact of physidél the minimum group size that presents the interference

interferences among-bots In fact, removing the necessityProblem? In this section, we try to answer these questions
to avoid collisions leads to scalable behaviours. exploiting the mathematical model introduced in SectiotAlV

We start from the observation that, if a synchronisation

Nevertheless, many other controllers present poor sdi@abi mechanism does not scale with the group dizehere should
properties. In these cases, the performance presents a lgigist anincoherent attractorin which the system converges,
variance up to a certain group size. Then, the performaraéernative to the synchronous one. In other words, the miyna
stabilises at a low, constant value, independent from titialin cal system (11) undergoes a bifurcation with varying patame
conditions and the number of robots used. This value, whidh so that two attractors are observable: the synchronous and
is characteristic of each non-scaling controller, represéhe the incoherent one. In order to predict from the individual
performance of arincoherentbehaviour of the robots. In behaviour whether such a bifurcation exists or not, it is
other words, for every initial condition we tested, all rébo necessary to understand the conditions for the existence of
converged to a stable behaviour without being capable @f incoherent attractor.
synchronising with any other robot. By observing the actual In the previous section, we empirically observed that, when
behaviour produced by these controllers, we realised tieat €ver an evolved synchronisation mechanism does not scale,
incoherent state is caused by a communicative interferenfobots perceive a fixed signalling pattern, either contirsuo
problem: the signals emitted by differestbotsoverlap in or alternate. In such a situation, tlsebotsdo not receive
time and are perceived asfixed signalling patterneither information about the position and orientation of otheraisb
continuous or alternate (recall that the sound signals arachs-botbroadcasts such information, which however gets
global and that they are perceived in a binary way, prevgntitost due to the communicative interference we discussed
an s-bot from recognising different signal sources). If theabove. It is easy to prove that, given a fixed signalling patte
perceived signal does not vary in time, it does not bring ghous(t + 1) = f(s(¢)), no synchronisation is possible. If an
information to be exploited for synchronisation. This desh bot, r, perceives a fixed signalling pattern, its behaviour is not
is the result of the fact that we used a “global” communiaatidnfluenced by othes-bots and can be predicted as follows:
form in which the signal emitted by astbotis perceived by {

. Predictions of the Mathematical Model

<y7~797'757‘>|t+1: BC(y'r797‘aS)|t ) (12)

any others-bot anywhere in the arena. Moreover, from the
slevr = f(s)le

perception point of view, there is no difference between a
single s-botand a thousand signalling at the same time. THe is therefore possible to study the above behaviour, and
lack of locality and of additivity is the main cause of fagur analyse possible attractors—be they fixed points or limit
for the scalability of the evolved synchronisation meckard. cycles. If no attractor exists-botsmovements diverge and
However, as we have seen, this problem affects only some synchronisation can be observed. If the attractors axidt
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Fig. 12. Scalability of the synchronisation mechanism. Beecaption of Figure 11 for detail.

are fixed points, robots do not move in a synchronous manmeteraction area For a sufficiently largeR, the self-production
because they do not move at all. If the attractor is a limiteyc of a fixed signalling pattern becomes possible:
the position on the cycle only depends on the initial positid s
the robot, so thas-botsstarting from different initial positions Ve 3r: Selerr = B (Yr, O, f($))]e = f(s)le, (14
will not synchronise. . _ . _ that is, at every instantthere is ars-botr that contributes in
In summary, if a fixed signalling pattern is perceived, producing the signalling pattern.
bots cannot achieve synchronisation. In other words, a fixéd o symmarise, the analysis of the attractors of the indafidu
signalling pattern is a sufficient condition for the existen popayiour under the forced perception of a fixed signalling
of an incoherent attractor. As a consequence, artificiat €0 e reveals whether such signalling patterns can bie sel
lution shaped the individual behaviours in order to avoigctzined by a sufficiently large group. If this is the case, a
fixed signalling patterns, and each evolved controller poes jncoherent attractor exists for the system in equation &ht)
at least two different signalling behaviours. However, thge eyolved behaviour does not scale. Otherwise, scajabili
communicative interference highlighted before can lead FonssibIe. The controllers analysed in Section IV-B prlu
the perception of a fixed signalling pattern which is selioi 5 scalable synchronisation mechanism, as observed in
;ustalned .by th_e group, even if each |nd.|V|dBéﬂ)Ot_V"J‘_”?S Figure 12. In fact, both present attractors for a fixed sigmal
its own signalling behaviour. By analysing the individua)aterm that lie outside of the correspondingn-interaction
behaviour in equation (12) for the signalling patterns pell 505 Controllercs is characterised by a limit cycle attractor
by the same evolved controllerit is possible to define the shown as a dotted line in the bottom-right vector field of
cor)ditions for the existence_ of communi(_:ative interfeaenc,;igure 5, which is completely contained in the no-signallin
which corresponds to the existence of an incoherent aitach,e4 Controller:,, presents two fixed point attractors, shown
In particular, we claim that if equation (12) presents &lies 55 crosses in the bottom-right vector field of Figure 6, which
that are contained within the region of phase space in whigh qtside of the environment-driven signalling area.
Srle+1 = f(s)li—which we refer to as th@on-interaction 14 fyrther prove our claims, we analysed the individual be-
area—then for a sufficiently largei? the group can produce o iqyr of the best performing controller that does not gnés
a fixed signalling pattern. As a consequence, an inconergpl | pijity namely:s. The evolved behaviour can be analysed
attractor exists and the evolved synchronisation mechaisis ity the 3D vector field of Figure 13 that shows the individual
not scalable. _ _ behaviour under normal conditions. The right vector field in
_ To prove the above claim, suppose thatsabotperceives a g re 13 corresponds to the behaviour of¢Heotin presence
fixed signalling patterrf (s), which belongs to its repertoire of o fjyeq continuous signallingi(s) = 1. It is possible to notice
signalling behaviours. Its movements are therefore desri ot the |imit cycle attractor for this condition traversée
by equation (12). By hypothesis, the attractors of this&yst onironment-driven signalling area. As a consequencé avit
are contained at least partially within then-interaction area sufficiently large number cg-botsthe evolved synchronisation
so that: mechanism does not scale, as can be seen in Figure 12. The
3t Sylert = BE (Y, 0y £(3)]e = £(5)]:, (13) bifurcation of the gorresponding dyne}mic_al system with the
number of robotgk is well represented in Figure 14. Here, we
where B2 indicates the component oB. related to the measured the average standard deviation of the absolute val
production of the signab. In other wordss-botr produces |y|in 100 trials for varying group size. The points in Figure 14
the same signalling patterifi(s) while traversing thenon- represent the average value, and the black line represents
the least square error fitting function. It is possible toicet
8For a given controller, it is sufficient to consider the sifing pattern  that for small R, only the synchronous attractor exists, and
that subsumes all other possible patterns. For instanegpirthe continuous the robots always achieve a zero standard deviation in the

signalling patternf(s) = 1 subsumes the alternate signallifigs) = 1 — s, it ) ¢
so that the communicative interference can be created gnté former. ly| position. For larger group sizes, the incoherent attractor
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Fig. 13. Individual behaviour of controller 3. Left: the 3D vector field shows for each point in the phasesphe direction of variation and its magnitude.
Right: projection on they 6 plane of the vector field for a constant perceived signat 1. The black line represent the limit cycle for this conditiofhe
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appears, and foR > 40 the system always converges tactually observed the existence of the incoherent attrdoto
the incoherent attractor. We can describe this situatiomfa a minimum group size of, as shown in Figure 14.

dynamical system perspective. With increasing group $fee, A final remark about scalability concerns noisy conditions:
system undergoes a bifurcation, so that, on the one hand, {iehe presence of environmental noise, the trajectories of
larger the group sizé, the larger the basin of the incoherenthe robots given by equation (12) may oscillate around the
attractor, which becomes more and more probable. On thgractors. In such conditions, the noisy trajectories may
other hand, the synchronous attractor does not disapdeafaj| into the non-interaction areaeven if the attractors do
robots start synchronised, they will keep synchrony fomeve,ot lie within it, but are sufficiently close. With a certain

However, the basin of the synchronous attractor shrinkk wigrobability—depending on the group size, the noise level an
increasingR, making it less probable to observe the onset of

synchronisation for large groups.

A further prediction from the mathematical model consists
in the minimum group sizeR,,, for which the incoherent 0.2 ! ! ! !
attractor exists. This group size depends on the time edut ro ‘ ‘ i ‘
spends in th@on-interaction areavhile moving over the limit 1 1 1 1
cycle for the corresponding fixed signalling pattern. Int féc 0.15 gl
order to satisfy condition (14), it is necessary that whitelaot
moves within thenon-interaction areaanother robot prepares
to enter thenon-interaction arealn other words,R,,, robots
should be evenly spaced over the limit cycle so that, whe
one s-bot exits thenon-interaction areaanother one enters
it, therefore sustaining the production of the fixed signgll
pattern. As a consequence, the minimum group $tze is 0.05 [

given by:
T
Rm = ’VTR-‘ ; (15)

stdely,l )

i i i i
where T' is the period of a single oscillation, anfl, is 0 20 40 60 80 100
the fraction of this period spent within theon-interaction
area while moving on the limit CyC|e' For controllen;, we Fig. 14. Average standard deviation of the absolute valubef;, position

experimentally obtained?,, = 6, which can be consideredfor eachs-botr, plotted varying the group siz& from 1 to 100. The black
a theoretical lower bound for the minimum group size. \Wine represents a curve that fits the experimental data.

number of robots
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the vicinity of the attractors to theon-interaction area-the reality as well as in simulation, collision avoidance is mor
system may converge towards an incoherent attractor caufedjuent due to the reduced size of the experimental areda, a

by environmental noise. therefore synchrony is often disrupted by dodging manasivr
Additionally, we observed that in reality it takes longeaith
VI. TESTS WITHPHYSICAL ROBOTS in simulation to manoeuvre out of the collision condition.

i . Finally, real-world experiments have been conducted under
So far, we have shown how artificial evolution can synthe- o : L
Severe conditions regarding ground sensors’ noise. In fact

sise efficient and scalable synchronisation mechanismcshNh{he reels of thes-bots continuously produce small bumps

are based on minimal communication strategies. In this seg- . . )

: ) . ] at result in very noisy readings. We tested the effects of

tion, we test the evolved behaviour with physical robotsisu. o : . i
increased noise in the simulations, and we found behavioura

tests should be considerecpeoof-of-concepabout the usage patterns similar to the real-world scenario (data not shown

of evolutionary tech_m_ques for_the synthesis qf swarm rasot We consider this as an indication that, besides the inctease
controllers. Our main interest is therefore testing to vehaent . . . . e iy
d\fhculty in manoeuvring out of a collision condition, the

the behaviours evolved in simulations transfer to physic . . )
. o . . ow performance observed in reality should be ascribed to
robots, and identifying the possible causes of failure. . .
increased noise in the ground sensors.

For tests with physical robots, we chose controfigras it
presents both a high performance and good scalability prop- VIl. CONCLUSION

erties. The neural network controller is used on the physica . . o
) . . : Much like natural evolution produced swarms of fireflies
s-botsexactly in the same way as in the simulations. The

sensor readings are taken evédy ms, are scaled to the rangeabl_e. _to self organise o achleye coherent group behaviour,
. artificial evolution can synthesise self-organising swarofi

[0,1] and finally fed to the neural network. The outputs of the : :

robots that accomplish complex tasks. In this respect, rawar

network are used to control the wheels and the loudspeak

er, . : .
Due to limited room, we reduced thesize of the experimental |n{eII|gence can benefit from the study and analysis of mtur

arena ta3 m. Within the arena, we defined the initial positionsaS well as artificial systems: in both cases, a deep undekstan

of the robots by tracing a grid dfl x 7 evenly spaced points, Itﬂg of t?el IC:] 3t/n;':1m;icsnthatr?0\r/fc:jrnrtri1ne r']n(\j/wl'ﬂu?ll ::)eh:]lec‘)ﬁL;;r?nd
25 em distant from each other. We initialised the robots by © Soca Nteractions can underpin novel deveiopme

) . L Xngineering of swarm intelligent systems. In this paper, we
randomly choosing, without replacement, the position inith ave presented an artificial evolutionary process desigmed
the grid and by choosing the orientation randomly from E P yp do

possible angles. In order to compute the performance of tﬁ%ape the behaviour of a robot system to display self-osgaini

. ' : ._synchronisation. We have al hown how th namical
evolved solutions, we could not use the fitness function ddﬂnzystcemo aiztl Osis caen ;(elaﬁs?h; eovolve do m(tecf]a?i/srﬁs ;ﬁ q
in Section 1I-C, because technical reasons prevented the Geo'e ysIs b )
) . tr?]redmt the behaviour of the robot system for varying group
of an overhead camera to obtain a reliable measure of the . . . . L
. o 1IZe. We believe that this analysis can bring useful insigimt
s-bots position within the arena, necessary to compute bo

. w to build—through automatic techniques or hand-design—
Fy andFs. Instead, we focused on synchronisation only an . .
. . warm robotics systems that are capable of self-organised
we used the perception of the ground sensors to estimate 1h

e
positiony over the gradient. Using this estimate, we computq

s(ynchronisation and that scale to a large number of robots.
the average cross-correlation among the time series redorg] fact, we have given a clear description of the building
on thes-botsfor each trial.

locks necessary to produce synchronised behaviours, and
Using the above setup, we performed 20 trials witls-2 most importantly we have decoded the individual behaviour
bots and 20 trials with 3s-bots’ In order to make a fair

to find the conditions that allow the system as a whole to
comparison between the performance of the physical robd

sysgchronise, independent of the group size.
and the one obtained in simulation, we performed an equal.Oncemlng the generallty of the pr_oposed approach, _'t
L . : : R IS important to notice that the dynamical system analysis
number of trials in simulation, starting from identicaltial

positions in an identical arena, and we computed the Sar%erformed In this work depends neither on the type of con-

. YGiler nor on the methodology used to design it. In fact,
performance measure that was used for the tests with phys ca , : ; .

. o e mathematical model introduced in Section IV-A treats th
robots. The obtained results are plotted in Figure 15. Tests

: : 4 ._controller as a black box, while the design methodology s no
with 2 robots present a fairly good performance in somedial .
. . . " : . _even considered. The only knowledge about the controller we
with s-bots displaying the ability to achieve synchronise . : :
. s exploited refers to the absence of internal states. Otlserwie
movements, to avoid collisions and to recover synchro

ny. ; o :
Other trials present lower performance: in these castmts §1mply identified the state variables of the system and mlde a

display a tendency to synchronise, which is however diemhptthe simplifications necessary to perform the numericalyanal

- . . sis. Therefore, similar dynamical models could be develope
by collision avoidance manoeuvres and by noise. Concern

ing’ .. : : i .
tests with 3s-bots a generalised reduction in performancgog1 different experimental settings and different swariatics

. : 4 : contexts, for simulated or physical robots, in order to weco
with respect to simulation was observed. Notice however t : . :
. : e mechanisms that lead to certain group behaviour, and
the simulated experiments also present a lower performancé

. ) . . possibly to predict emergent features of the system, mieh li
it compared with tests performed with 2 robots. In fact, II\ﬁ)ve did with the scalability analysis presented in Sectio€.V-

"Videos of the experiments with physical robots can be fouridtp:/laral. The Synt_heSiS of C_O!IeCtive’ cqordinated behaViourS_ _inSphy
istc.cnr.ittesm/trianni-nolfi-ieeetec09. ical robots is not a trivial enterprise. In fact, due to thdiiact
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Fig. 15. Comparison between the performance obtained inlation and with physical robots.

relationship between simple local rules and the systenusly the self-produced signal, or on the internal dynamics
global properties, the definition of the individual behawi® of the neural controller, which could evolve some neural
is particularly challenging [55]. The results presentedhis mechanism similar to the corollary discharge observedineso
paper support the use of evolutionary robotics technigaes insects [56].

the development of self-organising behaviours. The ewblve
behaviours feature high efficiency and scalability prapert
and have been positively tested with physical robots. Taiabt
these results, we adopted a minimal approach that does
ggféutlgt:ytnh;rgi?geOfnlgtts;galvvdgr;?rrgfsst;%r itzgorggr?ie}gf at corresponds to a certain signalling pattem—con_tinsuo

q ical i .between’robots and environment. Rob&: alternate. The difference between the two strategies can
cg:atzzliiaesicr)illja%d g&mbodied oscillatorstheir behaviou.r be g recognised in the type of attractors: the one based on
) . ) ' . the so-calledmodulation mechanisnfeatures a limit cycle

ing characterised by a period and a phase. In this perspectiy,

the movements of ais-bot correspond to advancements O?ttractor, while the one based on theset mechanisnis
S P ) ., .. characterised by fixed point attractors. Similar mechagiare
the oscillation phase. Robots can modulate their osahati

simply by moving in the environment and by modifying theiPlso observed in biological oscillators. For instancefedint

: . S . species of fireflies present different synchronisation raech
dynamwal relationship with it. SL.JCh modulatlops are bH@Jg isms, based on delayed or advanced phase responses [4]
fort_h in response to the percen{ed com_mumc_:a’uon slgnarg, [18]. Moreover, our results seem to be in accordance
which also depenq on the dynam_lcal relatl_onsh|p between_ h the precedence effect explanation of chorusing, foictvh
s-bot a_md the enV|ronmer_1t. I_n this way, simple ar_nd_ r.eaCt'VS%Inchronous signalling evolved as a result of the attempt of
behavioural and communication strategies are sufficiemhto

. o . ach individual to anticipate the signal of its neighbo3®
plement effective synchronisation mechanisms. We hawe a P g g 1

. AR future work, we plan to extract further results from the
analysed the _sca_lablllty of the ev_oIved_ controllers, stmgyi analytical model, in order to uncover the details about the
that synchronisation can be obtained in large groups, e

thouah larae aro ore never tested during the evolut nvg\polved synchronisation mechanisms and further study our
ugh farge groups w v N uring the evoluyong, ;x| system in comparison with biological examples.
optimisation (controllers were evolved always using thsee

boty. We observed that physical or communicative interfer- In conclusion, we believe that studies about synchromisati
ences may prevent the system from synchronising. This issach as the one presented in this paper, notwithstanding the
consequence of the global and binary communication changplicitly simplified experimental setup, can have a strong
we used, which results in an excessive influence of the sigirapact on future studies in swarm robotics. In our work, rtsbo
emitted by any single individual on the dynamics of the wholescillate by exploiting environmental cues, and synctseni
group. Better results may be achieved exploitinipeal and on the basis of communication only. We can imagine a
additive communication, which ensures that only the signafvarm robotics system in which each individual robot bebave
emitted by neighbours would be taken into account and thggcording to the environmental contingencies it expegsnc
the number of contemporary signalling robots is relevarnd in parallel synchronises with other robots creatingrass
We will account for this possibility in future work. Anotherblies of coherent activity that lead to the achievement of a
interesting issue to study in future developments is to igiv collective goal. We used the terassemblycommonly found
evolving robots with the possibility to discriminate beame in cognitive neurosciences [6], [9], not accidentally: uc
self-produced and external signals. Such an ability may bike neurons in the brain synchronise to bring forth complex
based either on an additional sensory channel that detegggnitive functions, robots that synchronise are dynalyica
coupled and can form groups performing coordinated, ceoper

By looking at the evolved behaviours, we recognised two
different strategies. The analysis of their dynamics iatie

that the two strategies are based on the same general mecha-
Zin: the tendency of the robots to move towards the attracto
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ative activities. The synchronised robots collectivelgritfy

themselves as a cooperative unit and potentially difféaent
from other units—either behaviourally or physically thgbu
a self-assembling process [51]. Such differentiation @ught

forth on the basis of the environmental contingencies expé®l
rienced by the robots, and on the basis of communicative
interactions. In this way, we can imagine that, in a swarm

robotics system, allocation of roles and tasks arises asudt rel17]
of the dynamical coupling among robots and between robots
and the environment. [18]

(18]

[29]
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