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Self-Organising Sync in a Robotic Swarm.
A Dynamical System View

Vito Trianni and Stefano Nolfi

Abstract—Self-organised synchronisation is a common phe-
nomenon observed in many natural and artificial systems: simple
coupling rules at the level of the individual components of
the system result in an overall coherent behaviour. Owing to
these properties, synchronisation appears particularly interesting
for swarm robotics systems, as it allows for robust temporal
coordination of the group while minimising the complexity of
the individual controllers. The goal of the experiments presented
in this paper is the study of self-organising synchronisation for
robots that present an individual periodic behaviour. In order to
design the robot controllers, we make use of artificial evolution,
which proves to be capable of synthesising minimal synchronisa-
tion strategies based on the dynamical coupling between robots
and environment. The obtained results are analysed under a
dynamical system perspective, which allows us to uncover the
evolved mechanisms and to predict the scalability properties of
the self-organising synchronisation with respect to varying group
size.

Index Terms—Self-Organisation, Synchronisation, Swarm
Robotics, Dynamical Systems

I. I NTRODUCTION

SYNCHRONY is a pervasive phenomenon: examples of
synchronous behaviours can be found in the inanimate

world as well as among living organisms [1], [2]. Synchrony
may spontaneously emerge from weak interactions among cou-
pled systems: the synchronisation of pendulums reported by
Huygens is probably one of the first documented examples [3].
In biological systems too, synchrony is often observable. For
instance, the heart pacemaker cells synchronise to achieve
a robust beat, resulting in a system resilient to failures of
individual cells [4], [5]. Synchronisation among neurons leads
to the formation of assemblies of coherent activity that are
considered to be at the basis of cognitive processes such as
binding—i.e., the integration of information from different
sensory perceptions of the same phenomenon—, selective
attention, learning and memory [6]–[12]. Similar mechanisms
are at the base of the synchronous signalling behaviour
observed in various animal species [13]. “Chorusing” is a
term commonly used to refer to the coordinated emission of
acoustic communication signals by large groups of animals.
To cite a few, chorusing has been observed in frogs [14],
crickets [15] and spiders [16]. It has also been argued that
synchronous chorusing in hominids may have played a fun-
damental role in the evolution of language and music [17].
Synchronous displays that do not involve acoustic signals have
been extensively studied in fireflies, which emit coordinated
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light pulses [18], and in crabs, which wave their claws in
synchrony [19]. Other synchronisation phenomena may have a
catastrophic outcome: from epileptic seizures, the Parkinson’s
disease or schizophrenia, which are all caused by excessive
synchrony in some areas of the human brain [20]–[22], to the
side-swaying of the London Millennium Bridge, which was
caused by spontaneous synchronisation of the walking pace
of the many people traversing it on the opening day [23].
Much research has been dedicated also to the discovery of
synchronisation from observable data in noisy or chaotic
conditions, where only the phase locking is relevant while the
amplitudes have no restrictions [24], [25]. For this purpose,
analytical tools have been introduced based on the definition
of the “instant frequency” of the given signals [26], [27].

How can all these systems—so much diverse from each
other—self-organise to achieve synchrony? This question
aroused the research of an answer for many years, until the
appropriate analytical methods were developed [28], [29].All
the above synchronisation phenomena can be modelled as
systems of multiple coupled oscillators. Consider for example
the synchronous flashing of fireflies: thousands of insects
emit light pulses in unison, perfectly synchronising their
individual rhythm. In this case, fireflies can be modelled as
a population of pulse-coupled oscillators with equal or very
similar frequencies. These oscillators can influence each other
by emitting a pulse that shifts or resets their oscillation phase.
The numerous interactions among the individual oscillator-
fireflies are sufficient to explain the synchronisation of the
whole population (for more detail, see [4], [5], [18]). Despite
the clear understanding of the mechanism, the functionality of
synchronisation or, in the particular case of animal behaviour,
its adaptive significance is not always clear. With respect to
chorusing behaviours, the most convincing hypothesis is that
synchrony is an epiphenomenon of the competition between
males to attract females, and results from the attempt of each
individual to anticipate the signal of its neighbours [30].

The synchronisation behaviours observed in Nature can be
a powerful source of inspiration for the design of robotic
systems. From manipulators [31] to hexapod robots [32],
synchronisation is an important mean to achieve coordination.
This holds particularly for swarm robotics systems [33], in
which the emergence of coherent group behaviours from
simple individual rules is emphasised. Chorusing was the
metaphor for the coordination algorithm used in a collective
robotics experiment, in order to regulate the group size andlet
the robots coordinately move towards a target location [34],
[35]. Other works take inspiration from the self-organising be-
haviour of fireflies: a specialised neural module was designed
for the synchronisation of the foraging/homing activitiesin a
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robot group in order to maximise the overall performance [36].
The same mechanism was also applied to a cleaning task to be
performed by a swarm of micro robots [37]. Finally, similar
synchronising behaviours could be synthesised by artificial
evolution as adaptive mechanisms to reduce the interference
among communicating robots [38].

The goal of the experiments presented in this paper is the
study of self-organising synchronisation in a group of robots
based on minimal behavioural and communication strategies.
Similar to the studies presented above, we follow the basic
idea that if an individual displays a periodic behaviour, it
can synchronise with other (nearly) identical individualsby
temporarily modifying its behaviour in order to reduce the
phase difference with the rest of the group. In other studies,
synchronisation is based on the entrainment of the individual
internal dynamics through some form of communication. In
this paper, instead, we do not postulate the need of internal
dynamics. Rather, the period and the phase of the individual
behaviour are defined by the sensory-motor coordination of
the robot [39], that is, by the dynamical interactions with
the environment that result from the robot embodiment. We
show that such dynamical interactions can be exploited for
synchronisation, allowing to keep a minimal complexity of
both the behavioural and the communication level. Now, the
main problem is defining a robot controller able to exploit
the dynamical agent-environment interactions. By relyingon a
simple kinematic simulator of our robots, we use artificial evo-
lution to search the space of the possible behavioural and com-
munication strategies for the synchronisation problem [40],
[41]. In particular, we avoid to explicitly reward the use of
communication, in order to leave evolution free to explore
the space of the possible solutions that lead to synchronous
behaviour and to allow the evolving robots to co-adapt their
behavioural and communication skills. The obtained results
are analysed under a self-organising perspective, evaluating the
scalability to large groups of robots. Moreover, we investigate
the scalability of the synchronisation mechanismper se in
order to evaluate the efficiency of the evolved strategy when
not constrained by the physical interactions among the robots.
Additionally, we test the behaviours evolved in simulationwith
physical robots, therefore providing a proof-of-concept about
the viability of the proposed methodology for robot controller
design.

The main contribution of this paper consists in the analysis
of the evolved behaviours, which employs a dynamical system
approach [42]. Dynamical systems theory is recently acquiring
more and more attention in cognitive sciences [43]–[45] as it
can give explanations of cognitive phenomena while they un-
fold over time. Concepts like “attractor” and “bifurcation” start
to be commonly used, and dynamical models are developed—
just to name a few—to give new answers to classic psychology
debates such as the A-not-B error in infant reaching [46], or
to account for intrinsically dynamical processes such as inter-
limb coordination [47], [48]. In this paper, we introduce a
dynamical system model of the evolved behaviours, in order
to uncover the mechanisms that artificial evolution synthesised
to maximise the user-defined utility function. Moreover, we
show how the developed model can be used to predict the

ability of the evolved behaviour to efficiently scale with the
group size. We believe that such predictions are of fundamental
importance to quickly select or discard obtained solutions
without performing a time-demanding scalability analysis, as
well as to engineer swarm robotics systems that present the
desired properties.

This paper is organised as follows. In Section II, we present
the experimental setup devised to evolve the self-organising
synchronisation behaviours in a simple simulation environ-
ment. Section III briefly summarises the results obtained from
the evolutionary machinery. In Section IV, we provide an anal-
ysis of the evolved behaviours from a dynamical system per-
spective. In particular, Section IV-A introduces a mathematical
model of the behaviours evolved in simulation, which includes
some simplifications (e.g., neglecting noise) necessary for the
dynamical system analysis. As we shall discuss, such simplifi-
cations do not influence the relevant aspects of the individual
behaviour and of the synchronisation dynamics, which are
described in Sections IV-B and IV-C. Section V is dedicated
to the scalability properties of the evolved behaviours andof
the synchronisation mechanism. These analyses are performed
exploiting the simulation environment used for evolutionary
optimisation. Additionally, in Section V-C we show how the
mathematical model can be exploited to predict the scalability
of the evolved controllers on the basis of the characteristics
of the individual behaviour. Section VI discusses the results
obtained by testing the controllers evolved in simulation with
physical robots. Finally, Section VII concludes the paper
with some discussions about the proposed approach and the
obtained results.

II. EVOLUTION OF SELF-ORGANISING SYNCHRONISATION

In this section, we present the experimental setup defined for
the evolution of synchronisation behaviours. The scenariowe
propose is simple and idealised. Nevertheless, it containsall
the ingredients necessary to study self-organised synchronisa-
tion in a swarm of robots. The task requires that each robot in
the group displays a simple periodic behaviour, which should
be entrained with the periodic behaviour of the other robots
in the arena. The individual periodic behaviour consists in
oscillations along they direction of the rectangular arena (see
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Fig. 1. Snapshot of a simulation showing three robots in the experimental
arena. The dashed lines indicate the reference frame used inthe experiments.
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Fig. 2. An example of synchronised motion of three robots. The y position
of the robots is plotted against time.

Figure 1). Oscillations are possible through the exploitation of
a symmetric gradient in shades of grey painted on the ground.
On the other hand, synchronisation of the robots’ movements
can be achieved by exploiting communication.

Robot controllers are evolved in a simulated environment.
The simulated arena is a rectangle of6 × 3 m completely
surrounded by walls. We set anxy reference frame as shown in
Figure 1. The ground is painted in white for|y| < 0.2 m, and
linearly changes to black until|y| = 1 m. For larger distances,
the arena is painted in black. Robots should oscillate on the
painted gradient without moving over the black area. As a
consequence, robots can make oscillations with a maximum
amplitude of2 m. Given the symmetry of the painted gradient,
synchronised movements correspond to both in-phase or anti-
phase oscillations. As an example, in Figure 2 we show they
position of three robots that perform synchronous oscillations.
While the first two robots display in-phase oscillations, the
third robot displays anti-phase oscillations with respectto the
others (see Section II-C for more detail). In the following,we
give further details about the experimental setup by describing
the robotic platform used (see Section II-A), the controller and
the evolutionary setup (see Section II-B) and finally the fitness
function used (see Section II-C).

A. The Robots

The robots used in these experiments ares-bots(see Fig-
ure 3), which are small autonomous robots with the ability
to self-assemble [49], [50].1 The evolutionary experiments
presented in this paper are performed in simulation, using
a simple kinematic model of thes-bots, and the results are
afterwards validated on the physical platform.

An s-botweighs 700 g and its main body has a diameter of
about 12 cm. Its design is innovative with respect to both
sensors and actuators. The traction system is composed of

1The assembling capability of thes-botsis not the focus of these experi-
ments. For more detail on self-assemblings-bots, see [51].

both tracks and wheels, each track-wheel pair of the same
side being controlled by a single motor. This combination
of tracks and wheels provides thes-bot with a differential
drive motion, which is labelledDifferential Treelsc© Drive.
The treels are connected to the chassis, which contains the
batteries. The main body is a cylindrical turret mounted on
the chassis by means of a motorised joint that allows the
relative rotation of the two parts (see Figure 3). Ans-bot is
provided with many sensory systems useful for the perception
of the surrounding environment or for proprioception. Infrared
proximity sensors are distributed around the rotating turret
and can be used for detection of obstacles and others-bots.
Four proximity sensors placed under the chassis—referred to
asground sensors—can be used for perceiving the grey level
of the ground, the presence of holes or the terrain’s roughness
(see Figure 3). Additionally, ans-bot is provided with light
sensors, temperature/humidity sensors, a 3-axes accelerometer
and incremental encoders on each degree of freedom. Each
robot is also equipped with sensors and devices to detect and
communicate with others-bots, such as an omni-directional
camera, coloured LEDs around thes-bots’ turret, microphones
and loudspeakers (see Figure 3).

In the experiments described in this paper, we only use
the infrared and ground sensors for perceiving the environ-
mental features, the loudspeaker and the microphones for
sound signalling, and the two motors controlling the treels.
In particular, the loudspeaker and the microphones are used
to implement a global, binary communication system. The

rigid gripper

microphones

ground
sensors

semi−spherical
mirror

speakers

treels

T−shaped
ring

proximity
sensors

camera

Fig. 3. View of thes-bot from different sides. The main components are
indicated (see text for more detail).
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loudspeaker can be used to emit a binary signal with a fixed
frequencyF = 2500 Hz and an intensity high enough to be
perceived from anywhere in the experimental arena. On the
receiver side, at every control cycle the recordings from the
microphones are processed by the on-board CPU to extract
the frequency spectrum. If the intensity perceived in a small
interval aroundF is above a certain threshold, the binary
sound sensor is set to 1. To summarise, eachs-botcan produce
a continuous tone with fixed frequency and intensity. When
a tone is emitted, it is perceived by every robot in the arena,
including the signallings-bot. The tone is perceived in a binary
way, that is, either there is at least ones-botsignalling in the
arena, or there is none.

B. The Controller and the Evolutionary Algorithm

Artificial evolution is used to set the connection weights
and the bias terms of simple neural controllers with fixed
architecture. The controller of eachs-bot is a fully connected,
feed forward neural network—a perceptron network. The
neural network has 11 sensory neurons directly connected to
3 motor neurons. The sensory neurons are simple relay units
and the output neurons are sigmoid units whose activation is
computed as follows:

Oj = σ

(

∑

i

wijIi + βj

)

, σ(z) =
1

1 + e−z
, (1)

whereIi is the activation of theith input unit, βj is the bias
term, Oj is the activation of thejth output unit,wij is the
weight of the connection between the input neuroni and the
output neuronj, andσ(z) is the sigmoid function.

Six sensory neurons—I1 to I6—receive input from a subset
of the infrared proximity sensors evenly distributed around the
s-bot’s turret. Four sensory neurons—I7 to I10—are dedicated
to the readings of the four ground sensors. The state of all
infrared and ground sensors is linearly scaled to the range
[0.0, 1.0]. A simulated uniform noise within5% of the input
range is also added. The last sensory neuronI11 receives a
binary input corresponding to the perception of sound signals.
The activation states of the first two motor neurons—O1 and
O2—is scaled onto the range[−ωM , +ωM ], whereωM is the
maximum angular speed of the wheels (ωM ≈ 4.5 s−1). The
third motor neuron controls the speaker in such a way that
a sound signal is emitted whenever the activation stateO3 is
greater than 0.5.

The evolutionary algorithm is based on a population of 100
genotypes, which are randomly generated. This population
of genotypes encodes the connection weights of 100 neural
controllers. Each connection weight is represented with a
8-bit binary code mapped onto a real number ranging in
[−10, +10]. Subsequent generations are produced by a combi-
nation of selection with elitism and mutation. Recombination
is not used. At each generation, the 4 best individuals—
i.e., theelite—are retained in the subsequent generation. The
remainder of the population is generated by mutation of the
20 best individuals. Each genotype reproduces at most 5
times by applying mutation with 3% probability of flipping
a bit. The evolutionary process runs for 500 generations.

Simple algorithms of this type—i.e., mutation only and binary
encoding of neural network weights—are widely used in the
evolutionary robotics domain (for a review, see [40], [41]).

C. The Fitness Computation

During evolution, a genotype is mapped into a control struc-
ture that is cloned and downloaded onto all thes-botstaking
part in the experiment (i.e., we make use of a homogeneous
group ofs-bots). Each genotype is evaluated 10 times—i.e., for
10 trials. Each trial differs from the others in the initialisation
of the random number generator, which influences the initial
positions and orientations of thes-botswithin the arena. Each
trial lastsT = 900 simulation cycles, which correspond to 90
seconds of real time.

The fitness of a genotype is the average performance
computed over the 10 trials in which the corresponding neural
controller is tested. During a single trial, the behaviour pro-
duced by the evolved controller is evaluated by a 2-component
fitness function:F = 0.5·FM+0.5·FS ∈ [0, 1]. The movement
componentFM rewards robots that move along they direction
within the arena:

FM =
1

TR

R
∑

r=1

T
∑

t=1

|∆y(t, r)|

∆Y
, (2)

where R = 3 is the total number of robots in the group,
∆y(t, r) is the variation of they position ofs-botr at cyclet,
and∆Y is the maximum possible variation, which corresponds
to thes-botmoving at maximum speed in a direction parallel
to they axis. This fitness component rewards fast motion along
they direction. The oscillatory behaviour evolves because the
arena is surrounded by walls and by the black-painted area,
so that oscillations during the whole trial are necessary to
maximiseFM.

The second fitness componentFS rewards synchrony among
the robots. Synchrony among twos-bots can be evaluated
as the cross-correlation coefficient between the sequencesof
movements parallel to they axis performed during a trial. In
order to encode thes-botmovements, we define the following
function:

d(t, r) = y(t, r) ·
∆y(t, r)

∆Y
, (3)

which depends on they position ofs-botr at timet and on its
displacement along they direction. We chose to consider not
only the absolute position but also the displacement in order
to take into account the direction of oscillatory movements—
e.g., away from or towards thex axis. The cross-correlation
coefficientφr1r2

of two sequencesd(t, r1) andd(t, r2) can be
defined as:

φr1r2
=

Φr1r2
√

Φr1r1
Φr2r2

, Φr1r2
=

1

T

T
∑

t=1

d(t, r1)d(t, r2). (4)

The coefficientφr1r2
can take values in[−1, 1], where a value

of 1 indicates perfect synchrony and a value of -1 indicates
perfect asynchrony. Notice that, given the symmetry ofd(t, r)
with respect to movements away from or towards thex axis—
see equation (3)—synchrony is rewarded also when robots
perform the same movements at the same distance from the
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Fig. 4. Post-evaluation results of the best evolved controllers ci in each evolutionary experimenti = 1, ..,20. The performance is represented on the horizontal
axis, and the controller number on the vertical axis. The boxplot displays the whole dataset: each box represents the inter-quartile range of the data, while
the black vertical line inside the box marks the median value. The whiskers extend to the most extreme data points within 1.5 times the inter-quartile range
from the box. The empty circles mark the outliers. Data from different controllers are sorted according to the median value. Moreover, statistical similarities
are represented as vertical bars spanning over the controller numbers (see text for detail).

x axis, but on opposite sides of thex axis and in opposite
directions. This is necessary due to the symmetric gradient
in the arena, as shown in Figure 1, which results in identical
perception of the gradient by the robots in the upper and lower
part of the arena. Given equation (4), the synchrony component
FS is computed as the minimum among the cross-correlation
coefficients of all possible pairs〈r1, r2〉 among thes-bots,
bounded in[0, 1]:

FS = max{0, min
r1 6=r2

φr1r2
}. (5)

In addition to the fitness computation described above, two
indirect selective pressures are present. First of all, a trial is
stopped when ans-bot moves over the black-painted area,
and we assign to the trial a performanceF = 0. In this
way, robots are rewarded to exploit the information coming
from the ground sensors to perform the individual oscillatory
movements. Secondly, a trial is stopped when ans-botcollides
with the walls or with another robot, and also in this case we
setF = 0. In this way, robots are evolved to avoid collisions.

III. R ESULTS

We performed 20 evolutionary replications, each starting
with a different population of randomly generated genotypes.
Each replication produced a successful synchronisation be-
haviour, in which robots display oscillatory movements along
the y direction and synchronise with each other according
to the requirements of the fitness function. To assess the
quality of the evolved behaviours, we select a single genotype
per evolutionary replication to be chosen among the best
individuals of the final generation. To do so, we evaluate
the performance of the 20 best individuals of the final gen-
eration in 500 different trials, and we choose the individual
with highest average fitness. In the remainder of the paper,
we refer to the best controllers evolved in replicationi as
ci, i = 1, .., 20. The performance of these controllers over

the 500 post-evaluation trials, sorted according to decreasing
median values, is shown in Figure 4. The obtained results show
that in most replications the performance obtained is in average
within the interval[0.7, 0.9], which indicates that robots are
able to maximise both the movement fitness component,FM,
and the synchronisation component,FS . In order to assess the
difference in performance among the controllers evolved in
different evolutionary replications, we used the performance
data recorded over 500 trials to perform a series of pairwise
Wilcoxon tests among all possible controller couples. The
results are plotted in Figure 4 as vertical lines spanning
over the controller numbers having a performance that is not
statistically different (at 99% confidence). So, for example,
controllersc13 and c15 are not statistically different from the
performance point of view. Similarly, controllerc1 has a per-
formance equivalent toc18 andc19, but it performs worse than
controllersc10 andc14. As can be seen in Figure 4, controller
c8 outperforms all other controllers. In the following, we give
a detailed analysis of the behaviour produced byc8 and by
other controllers, in order to uncover the mechanisms that lie
behind the evolved synchronisation behaviours.

IV. B EHAVIOURAL ANALYSIS

A qualitative analysis of the obtained controllers revealsthat
the behaviours produced are quite similar to one another.2

In general, it is possible to distinguish two phases in the
evolved behaviours: an initial transitory phase during which
robots achieve synchronisation, and a subsequent synchronised
phase. The transitory phase may be characterised by physi-
cal interferences between robots due to collision avoidance,
if robots are initialised close to each other. The collision
avoidance behaviour performed in this condition eventually
leads to a separation of thes-botsin the environment, so that

2Videos of the evolved behaviours can be found at http://laral.istc.cnr.it/
esm/trianni-nolfi-ieeetec09.
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further interferences to the individual oscillations are limited
and synchronisation can be achieved. During the synchronous
phase, collision avoidance is therefore less probable, butstill
possible due to the environmental noise, which may make
robots deviate from their normal movements and approach
other robots. Otherwise, this phase is characterised by stable
synchronous oscillations of alls-bots, and small deviations
from synchrony are immediately compensated.

In all replications,s-botspresent periodic oscillations with
varying amplitude on they direction. Concerning the syn-
chronisation mechanisms, it is possible to classify the evolved
solutions into two main classes. The first class is characterised
by a synchronisation mechanism that we refer to as themod-
ulation mechanism: s-bots synchronise by modulating their
oscillatory behaviour in response to a perceived communica-
tion signal coming from other robots. This class is composed
of 15 controllers, including the best evolved controllerc8.
The second class includes the remaining 5 controllers, and
is characterised by a synchronisation mechanism that we refer
to as thereset mechanism: in response to the perceived com-
munication signal,s-bots“reset” their oscillation by moving to
a particular position over the painted gradient, waiting for the
other robots to reach a similar position. We selected controller
c10 to study the properties of the reset mechanism, since this
controller has the highest performance within its class. In
Section IV-B, we give a quantitative analysis of the individual
behaviour produced by controllersc8 and c10. Subsequently,
Section IV-C is dedicated to the synchronisation behaviour. In
both cases, we make use of concepts borrowed from dynamical
systems theory. To do so, we model our robotic system as a
discrete-time dynamical system, which is the subject of the
following section.

A. Dynamical System Modelling

We want to analyse the behaviour of a group of robots
that synchronise their periodic oscillations. Our main interest
is the understanding of both the individual behaviour—i.e.,
the periodic oscillation—and the synchronisation mechanism.
Such understanding may be useful to predict some features
of the evolved behaviour, e.g., the scalability discussed in
Section V-C. However, some simplifications are necessary for
such a study. First of all, we neglect the collision avoidance
behaviour among robots and between robots and the arena
walls, as if robots were placed in a infinite arena, in which
the chances to encounter another robot are null (assump-
tion I). This seems a strong simplification, above all for
what concerns the group behaviour, which may be deeply
influenced by physical interactions and collision avoidance
(in this respect, see Section V-A). However, notice that to
the extent of describing the individual oscillatory behaviour,
collision avoidance with walls does not play a major role
because robots are evolved to exploit the grey gradient for
their movements. Similarly, the synchronisation mechanism
does not rely on collision avoidance among robots, since
evolution was performed with a rather low density of robots,
so that physical interactions are not frequent enough to be
exploited for synchronisation. Observations of the evolved

behaviours confirm that collision avoidance can be neglected
for our purposes. We will consider physical interactions again
in the scalability analysis and when real world scenarios
are considered (see Section V and Section VI). A second
simplification is to ignore any form of noise, assuming that
it is not exploited by the evolved behaviours (assumption II).
Also in this case, preliminary behavioural analyses suggested
that noise is not relevant for the production of the individual
oscillatory behaviour or for synchronisation. The third sim-
plification concerns the dynamics of the individual robot: we
neglect all second order dynamics such as acceleration and
inertia (assumption III). The reason is twofold. On the one
hand, the simulator used to evolve the robot controllers is
kinematic, and already neglects second order dynamics. On
the other hand, the maximum speed of thes-bots is rather
low (about 0.112m/s) while friction of the treels is rather
high, so that ans-bot can accelerate to the maximum speed
or completely stop in a single control cycle.

Consider a single robot placed in the experimental arena. On
the basis of the simplifying assumptions described above, its
behaviour can be completely characterised by the interaction
with an idealised noise-free environment, mediated by the
control rules encoded in the neural network controller. The
neural controller is reactive and can be described as a function
that associates the sensor inputs to the motor outputs:

O(t) = N (I(t), c), (6)

where I(t) and O(t) represent the vector of inputs and
outputs of the neural network, andc is the vector of evolved
parameters that characterise the neural controller. Notice that
the analytical form of functionN is given in equation (1). The
input vector is defined by the sensor readings of the robot.
Here, we make use of assumptions I and II discussed above.
By assuming that there are no collisions between walls and
other robots and that there is no noise, we can completely
ignore the infrared proximity sensors. As a consequence, the
vectorI(t) is determined only by ground and sound sensors.
Ground sensors are completely characterised by the position
of the robot in the environment. More precisely, the readings
of the ground sensor depend on they position and orientation
θ of the robot over the grey gradient. It is therefore possible
to determine a function that, given the robot positiony, its
orientationθ, and the perceived sounds at timet, returns the
vector of inputsI(t):

I(t) = I(y(t), θ(t), s(t)) = I(y, θ, s)|t. (7)

Hereafter, we use the abbreviated notation|t to indicate that
a certain variable or a set of variables is evaluated at timet.

The output vectorO(t) is used to determine the speed of the
robot treels and the status of the loudspeaker. Assumption III
implies that the variation in position and orientation of the s-
bot depends only on the speed of the two treels. It is therefore
possible to determine a function that associates the output
vector to the new position of the robot:

〈y(t + 1), θ(t + 1), S(t + 1)〉 = O(O(t)), (8)

where S(t) is the signal emitted at timet. The sound per-
ception at timet + 1 is determined by the emitted signal
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S(t+1), together with the emitted signals of the others-bots.
In other words,s-botsare coupled by means of the global
binary communication channel they are provided with, so that
it is possible to determine the following coupling rule:

s(t) = max
r

Sr(t) ∈ {0, 1}, (9)

which specifies that a binary signal is perceived if and only if
at least ones-botr is signalling. Note that the sound perception
s(t) is equal for all robots in the environment because commu-
nication is global and binary. When there is only one robot,
the above coupling rule simplifies tos(t) = S(t). Putting
everything together, we obtain a discrete-time formulation of
the behaviour of the individual robot:

〈y, θ, s〉|t+1 = O(N (I(y, θ, s)|t, c)) = Bc(y, θ, s)|t. (10)

The functionBc is responsible for producing the individual
behaviour of ans-bot as defined by the parametersc of the
evolved controller.

What happens withR robots? Under assumption I, the only
interaction amongs-botsis a communicative one, given by the
coupling introduced in equation (9). It is therefore possible to
define the following discrete-time dynamical system of3R+1
equations:



















〈y1, θ1, S1〉|t+1 = Bc(y1, θ1, s)|t
...

〈yR, θR, SR〉|t+1 = Bc(yR, θR, s)|t
s|t+1 = maxr Sr|t+1

. (11)

In the following, we make use of equation (10) to discuss the
behaviour of a singles-bot. In Section IV-C, we base ourselves
on equation (11) in order to characterise the synchronisation
mechanism.

B. Individual Behaviour

The behaviour of the individuals-botcan be studied looking
at how positiony, orientationθ and perceived sounds vary
over time. To do so, we numerically integrate3 equation (10)
to compute avector field showing the instantaneous direc-
tion and magnitude of change for each point in the phase
space〈y, θ, s〉. This is a 3-dimensional space wherey and θ
are continuous variables that vary respectively in the range4

[−1, 1] and [0, 2π], while s is a binary variable. In particular,
the θ dimension represents an angle and it presentsperiodic
boundary conditions, so that trajectories exceeding one edge
of the [0, 2π] interval continue from the opposite edge.

a) Controller c8: We are now ready to analyse the
behaviour of the best evolved controllerc8, which belongs
to themodulation mechanismclass. Figure 5 presents various
plots of the vector fields. The top-left 3D plot suggests
how the state of ans-bot starting at any point in its phase
space evolves over time. Together with the vector field, the
continuous line indicates a closed orbit, due to the2π-periodic

3The programs developed to numerically integrate the developed model are
available at http://laral.istc.cnr.it/esm/trianni-nolfi-ieeetec09.

4Recall that the black painted area of the experimental arenais forbidden
to thes-bots. This area is characterised by|y| > 1.

boundary conditions ofθ. This closed orbit appears to be
a limit cycle attractor, as indicated by the convergence of
all trajectories computed from starting positions extensively
covering the phase space (data not shown). The existence
of such a limit cycle attractor indicates that the individual
behaviour produces a stable, periodic motion. The plots at
the bottom of Figure 5 reveal the details of such periodic
oscillations. An s-bot positioned at〈y, θ, s〉 ≈ 〈0, 3

2
π, 0〉

follows the directions indicated by the bottom-left vectorfield,
which are parallel to they axis: the robot moves on a straight
line until y ≈ 0.75. At this point, the vector field indicates
that the trajectory jumps to planes = 1, which corresponds
to thes-botsignalling and therefore perceiving its own signal.
The robot now follows the direction indicated by the bottom-
right vector field, which corresponds to a clockwise rotation
at constanty, followed by a circular trajectory. During this
movement, thes-bot keeps on signalling until its trajectory
jumps back to planes = 0. Now, the robot moves straight
again, crosses thex axis and performs an identical sequence
of movements on the opposite side of the arena until it comes
back to the initial position. It is worth noting the symmetryof
the vector fields, which reflects the symmetry in the gradient
painted on the arena floor.

Other important information can be extracted from the
vector field: the signalling behaviour. For any state〈y, θ, s〉,
the vector field indicates the variation of the perceived signal
∆s(y, θ, s). By comparing the variation∆s for s = 0 and
s = 1, it is possible to distinguish four different signalling
behaviours:

1) no signal is emitted for all positions with∆s(y, θ, 0) =
0 and∆s(y, θ, 1) = −1.

2) a continuous signal is always emitted for all positions
with ∆s(y, θ, 0) = 1 and ∆s(y, θ, 1) = 0. We refer to
this behaviour asenvironment-drivensignalling, because
it depends entirely on the position of thes-bot in the
environment.

3) a continuous signal is emitted for all positions with
∆s(y, θ, 0) = 0 and ∆s(y, θ, 1) = 0, but only in
response to a perceived signal. Otherwise, no signal is
produced. We refer to this behaviour assignal-driven
signalling.

4) an alternate signal is emitted for all positions with
∆s(y, θ, 0) = 1 and∆s(y, θ, 1) = −1. In other words,
signalling is driven by thes-bot position, but it is in-
hibited by the perception of a signal. As a consequence,
the s-botcontinuously switches the loudspeaker on and
off. We refer to this behaviour asalternatesignalling.

Figure 5 shows the signalling behaviour ofc8 in the top-
right plot. Different signalling behaviours are indicatedby
filled circles of varying grey-levels. Notice that the limitcycle
attractor traverses areas of the phase space characterisedby
varying signalling behaviour. A signal is produced when thes-
bot enters the “environment-driven” area, and is stopped when
the s-bot exits from the “signal-driven” area. Entering the
signal-driven area havings = 0 does not lead to the emission
of a signal, while entering withs = 1 maintains the previous
signalling status.
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Fig. 5. Individual behaviour produced by controllerc8. Top-Left: 3D vector field showing the direction of variation and its magnitude for each point in
the phase space. Theθ dimension is characterised by2π-periodic boundary conditions. The continuous line represents the limit cycle attractor. Top-Right:
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belongs to planes = 1. Bottom-Left/Right: projection on they θ plane of the vector fields for a perceived signals = 0 and s = 1. The dotted line in the
bottom-right vector field represents the limit cycle for a continuous perceived signal forced to1, despite the individual behaviour.

In short, the behaviour of thes-bot is the result of the dy-
namics defined by two different vector fields, one characterised
by no perceived signal (s = 0) and one characterised by a
continuous signal (s = 1). In the latter case, the dynamics are
characterised by a limit cycle attractor corresponding to the
forced perception of a continuous signal (see the dotted line
in the bottom-right plot of Figure 5). It is possible to notice

how an s-bot moving along the normal limit cycle attractor
approaches this “forced” attractor whens = 1. However, in
approaching this attractor, thes-botenters the “no signalling”
area, and therefore it switches to movements dictated by the
vector field fors = 0. Notice that in the latter case, an attractor
does not exist within the range of possible values fory and
θ. Nevertheless, the vector field is oriented such that thes-bot
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encounters the signalling area again, and therefore switches
back to movements towards thes = 1 attractor.

b) Controllerc10: The individual behaviour produced by
controller c10—an example for thereset mechanismclass—
is presented in Figure 6. The 3D plot in the top-left of the
figure shows the vector field and the limit cycle attractor that
corresponds to the individual oscillatory behaviour. Looking
at the vector field, it is possible to notice that ans-botalways
emits a signal, which can be either alternate or environment-

driven. As a consequence, the limit cycle attractor either lies
in thes = 1 plane or it jumps back and forth between the two
planes (i.e., thes-botproduces an alternate signalling pattern).
The signalling behaviour for each position in the environment
is better represented in the top-right plot, in which it is
displayed together with a projection of the limit cycle attractor
on they θ plane. In this case, there exist only two areas with
different signalling behaviour, which are anyway sufficient
to support the synchronisation amongs-botsas discussed in
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Section IV-C. To give an idea of the average direction of
motion of thes-bot while perceiving an alternate signal, we
plotted the average vectors obtained from the two vector fields
given bys = 1 ands = 0 in the bottom-left part of Figure 6.
On the bottom-right, instead, we show the vector field for
s = 1. Looking at these plots, it is easy to describe the periodic
oscillations of ans-botas sequences of straight movements and
anti-clockwise rotations. Also in this case, the behaviourof the
s-bot is characterised by two vector fields corresponding to
the perception of alternate and continuous signalling patterns.
By forcing the perception of these patterns, it is possible to
compute the attractors for alternate and continuous signalling.
Alternate signalling leads to a limit cycle attractor, displayed
as a dotted line in the bottom-left plot of Figure 6. Continuous
signalling leads to two fixed point attractors displayed as
crosses in the bottom-right plot of Figure 6. We can describe
the s-bot’s oscillatory behaviour as the alternate convergence
towards these attractors. By moving towards one attractor,the
s-botexits from the corresponding signalling area and switches
to movements towards the second attractor, which eventually
lead the robot out of the second signalling area. This process
generates a self-sustained oscillation. In particular, whenever
an s-bot perceives a continuous signal, it moves towards a
fixed point in the y θ space. The presence of such fixed
points—which we refer to as thereset configurations—is a
characterising feature of this class of behaviours and has akey
role in the synchronisation mechanism, as we shall discuss in
the following section.

C. Synchronisation Behaviour

In the previous section, we described the individual be-
haviour displayed by ans-bot. In particular, we focused on
the stable oscillatory behaviour, ignoring the transitoryphase
that leads to the periodic motion. This transitory phase is
relevant for the onset of synchronisation in groups of robots
that influence each other until stable synchronous oscillations
emerge. In this section, we exploit the dynamical system
model introduced above to discuss the mechanisms that lead
to synchrony. In particular, we use the formulation given in
equation (11), which accounts for multiple robots coupled by
a global binary communication channel. From equation (11),
we observe that thes-bots’ movements are governed solely
by the individual behaviourBc, which was analysed in the
previous section, and by the coupling rule (9), which states
that a signal is perceived whenever anys-bot emits a signal.
As a consequence, it is possible to describe the behaviour
of synchronisings-bots by looking at how the individual
movements change with respect to incoming signals. In the
following, we give such a description for both controllersc8

andc10, for a system composed of 2s-bots. The generalisation
to R s-bots is the object of the scalability analysis (see
Section V).

a) Controllerc8: In order to describe the synchronisation
for themodulation mechanismclass of controllers, we analyse
the transitory phase of twos-botsgoverned byc8 while they
entrain their oscillations. Figure 7 presents various plots that
represent different stages of the synchronisation. In the upper

part, the positiony for the two robots—as predicted by the
mathematical model—is plotted with respect to time. It is
possible to observe that after an initial transitory phase,the
robots converge towards coordinated movements. In particular,
the positiony is “modulated” through communicative interac-
tions: the robot that signals first influences the behaviour of
the other robot, which anticipates the turnabout in response
to the perceived signal. A better idea on how synchronisation
is achieved is given by plotting the trajectories of the two
robots over the vector fields fors = 0 and s = 1 (see the
central and bottom plots of Figure 7). The twos-botsstart in
the points indicated by ‘O’, none of which is signalling. As a
consequence, thes-botsfollow the top-left vector field, until
they reach the point indicated by an ‘A’. At this stage, one of
the robots emits a signal (solid line), that triggers a behavioural
change: the robots now follow the top-right vector field and
both perform a clockwise turn. However, this rotation is not
performed at the same speed: the robot at largery (solid line)
moves faster than the other (dotted line), as indicated by the
size of the arrows of the vector field. The distance between the
two robots is substantially reduced at this stage, which ends
with the robots reaching the points indicated with ‘B’. In the
interval from points ‘B’ to points ‘C’ no robot is signalling
and no interaction is present. When the first robot enters
the environment-driven signalling area (solid line), it again
modifies the behaviour of the second robot (dotted line) by
triggering an anticipated turnabout: the trajectories getcloser
to one another because of the difference in speed between
a normal and an anticipated turnabout, eventually reaching
point ‘D’ (see the bottom-left vector field), and with the same
modulation mechanism the two trajectories nearly coincideby
passing from points ‘E’ to ‘F’, as shown in the bottom-right
vector field.

A formal analysis of the synchronisation behaviour can
be performed exploiting thePhase Response Curve(PRC)
associated with the individual oscillations. A PRC is obtained
by delivering a precisely timed perturbation to an uncou-
pled oscillator, and measuring the effects on the oscillator
period [52], [53]. More precisely, given the periodT of
the oscillator, a perturbation is applied at a phaseφ =
tp/T , where tp is the beginning of the perturbation. Then,
the perturbed periodTp is measured and a phase response
F (φ) = (T − Tp)/T is calculated: a positive value represents
a phase advance—i.e., the oscillator is pushed forward by
the perturbation; conversely, a negative value representsa
phase delay. In this work, we measure the free-running period
T of the s-bot’s oscillatory behaviour as the time between
two consecutive entries in the no-signalling area. We record
the signalling pattern emitted during a single period, and we
use such recording as perturbation, delayed by a phaseφ as
indicated in Figure 8 (at the top of the figure). Given that
the perturbation lasts a full periodT , we measure its effects
asymptotically looking at the difference in phase between
perturbed and free-running oscillations, once the perturbed
oscillation has settled back on the limit cycle attractor [54].
The normalised PRC for controllerc8 is plotted in Figure 8
(at the bottom). On the one hand, for smallφ < 0 we observe
a phase advance—i.e., whenever ans-bot perceives a signal
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shortly before signalling itself, thes-bot reacts by slightly
anticipating the following signal emission. On the other hand,
for φ > 0 we observe a phase delay—i.e., whenever ans-bot
perceives a signal after signalling itself, it reacts by delaying
the following signal emission. In both cases, we observe a
tendency to reduce the phase difference with the perceived
signal by “modulating” the signal emission time. The onset
of synchronisation is mainly the result of this modulation
mechanism. Exact synchronisation is obtained due to the zero
phase response observable for small positiveφ, which allows
a reciprocal fine-tuning of the phases between the coupled
oscillators.

b) Controller c10: The reset mechanismclass of con-
trollers presents a slightly different synchronisation behaviour
with respect to the modulation class. The main difference
consists in the presence of fixed point attractors towards which
the trajectories converge when an external signal is perceived.
Figure 9 presents the synchronisation phase for two robots
controlled byc10. The upper plot shows that the distances of
the two robots initially approach each other, because of the
fact that one of the robots keeps a constant positiony ≈ 0.7.
After this initial phase, the robots start oscillating and rapidly
achieve synchrony. The details of the reset mechanism can be
assessed looking at the trajectories of the two robots plotted
over the vector fields (see the central and bottom plots in
Figure 9). In the initial phase, the robots move from points ‘O’
to points ‘A’. The robot with smallery (dotted line) is placed
in the environment-driven signalling area and it is therefore
emitting a continuous tone (see the top-left vector field). The
other robot (solid line) rapidly converges onto the fixed point
attractor, i.e., thereset configurationindicated by a cross in
the figure. It remains there as long as a continuous signal

is perceived, i.e., until the second robot enters the alternate
signalling area (see the points indicated by ‘A’). At this stage,
they position of the two robots is very close, but they present
a large discrepancy in the orientationθ, which is reduced due
to the different rotation speed between the robots. When the
robots reach points ‘B’, they are very close to each other.
At this point, continuous signalling starts again, and robots
exchange roles: while approaching the points ‘C’, one robot
(dotted line) moves towards the second fixed point attractor,
slowing down in order to stop there, further reducing the
distance from the other robot (solid line). When points ‘C’ are
reached, alternate signalling starts again and the robots reduce
the difference in their orientation due to slightly different
rotation speed (see the bottom-left vector field). From points
‘D’ to ‘E’ the robots nearly converge to the same trajectory,
eventually achieving synchronous movements at points ‘F’ and
‘G’.

Simplifying, we observed that synchronisation of they posi-
tion is achieved mainly through convergence toward thereset
configuration, which is maintained as long as a continuous
signal is perceived. Refinements still take place during the
oscillatory motion due to a reduced velocity of the robots while
approaching or leaving thereset configuration. This is also
evident looking at the PRC corresponding to this behaviour
(see Figure 10), which was computed in the same way as for
controller c8, taking as reference point for the identification
of the free-running period the entry in the alternate signalling
area. In this case, for bothφ > 0 and φ < 0 a phase delay
is observed, which is a result of the slow convergence of the
s-bot toward the fixed point attractor described above. This
behaviour can be interpreted as thes-bot consistently trying
to delay its signal emission. Synchrony arises from the mutual
interactions of two coupled oscillators that always try to signal
the latest. In fact, as observed above, thes-botsswitch role at
each iteration until synchronisation is achieved. It is interesting
to notice that a similar mechanism is considered at the basis
of chorusing in many animal species, where synchrony results
from the attempt of each individual to anticipate the signalof
its neighbours [30].

V. SCALABILITY ANALYSIS

So far, we have given a detailed description of the synchro-
nisation mechanism employed by the two classes of evolved
controllers, i.e., themodulation mechanismand the reset
mechanism. We have described the onset of synchronisation
giving examples with twos-botsonly, but no prove is given
that the described mechanisms scale to a larger number of
robots. In this section, we provide a scalability analysis that
aims at testing all evolved behaviours with a varying number
of robots. We first test the evolved behaviours in the original
simulation environment, which includes all the features that
were neglected in the dynamical system model (e.g., physical
interactions and environmental noise, see Section V-A). Then,
the scalability of the synchronisation mechanismper seis pre-
sented in Section V-B, and predictions from the mathematical
model are discussed in Section V-C.
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A. Scalability of the Evolved Behaviours

In order to establish to what extent the evolved behaviours
function with increasing group size, we performed a series
of tests evaluating the performance of the evolved behaviour
with groups of 3, 6, 12, 24, 48 and 96s-bots. Tests are
performed with the same simulation environment used for the
evolutionary optimisation, and the performance is measured
according to the description given in Section II-C, without
any modification. In order to ensure a fair comparison in
different trials, we decided to keep a constant, uniform density
of robots in the arena. In fact, in a crowded situation, the
ability to synchronise would be disrupted by frequent physical
interferences—i.e., evolved collision avoidance behaviour—
among robots and between robots and walls. By ensuring
a constant initial density we limit the negative effects of
overcrowding and are able to compare the performance of
the system with varying group size. In order to keep a
constant robot density equal to the one used in the evolu-
tionary experiments, that is, 0.25 robots per square meter,
we lengthened the arena in thex direction. So, for instance,
a group size of 96 robots corresponds to an arena with a
length of 192 m. Despite the increased arena length, we
keep the same communication protocol, i.e., communication
continues to be binary and global, with all robots affecting
each other.5 This choice allows us to evaluate the scalability
of an evolved behaviour without modifying the features of the
communication channel. In this way, we hope to understand
under which conditions behaviours evolved with three robots

5With respect to real word scenarios, this choice may seem unrealistic.
However, other communication modalities than sound signalling may be
employed to provide physical robots with a global, binary communication
protocol. For instance,s-botsare provided with a WiFi interface, which could
be employed to send and receive messages, independent of thedistance among
the robots.

scale to large groups.
Using the above setup, we evaluated all best evolved con-

trollers 100 times for each group size. The obtained resultsare
presented in Figure 11. It is possible to notice that most of the
best evolved controllers have a good performance for groups
composed of 6s-bots. Performance degrades for larger group
sizes and only a few controllers produce scalable behaviours
up to groups formed by 96s-bots. The main problem that
reduces the scalability of the evolved controllers is givenby
the higher probability per time step of physical interactions
among robots: in fact, the larger the group size, the more
probable the encounters among robots per time step, despite
the constant initial density we introduced. This is confirmed by
the higher number of collisions detected with larger groups.
Recall that a null performance is assigned to each trial that
terminates becauses-botsdid not manage to avoid each other
(see Section II-C). For some controllers, such asc3 andc4, the
number of trials terminated due to collisions increases with the
group size, as is evident in Figure 11. Nevertheless, whenever
s-botssuccessfully avoid collisions, their dodging movements
provoke a temporary de-synchronisation of at least two robots,
which have to re-gain synchronisation. Considering this, the
reduction in performance observed for large groups can be
explained by the following reasons:

• the higher the group size, the longer the transitory phase
that leads to synchronous oscillations. During the transi-
tory phase, physical interactions amongs-botsare more
probable because the robots have not yet settled into
stable oscillations;

• the computation of the synchronisation componentFS

conservatively chooses the minimum cross correlation
among all s-bot pairs (see equation (5)). As a conse-
quence, even a few physical interactions may lead to a
strong decrease in performance;

• global and binary communication implies that the whole
group is influenced by the attempt of a few robots to re-
gain synchronisation. In other words, the movements of
all s-botsmay be influenced by the attempt of a single
s-bot to synchronise.

All the above reasons contribute to reduce the scalability
of the evolved controllers. In addition, another interference
among robots limits the scalability. This is a communicative
interference that does not allow the robots to interact through
sound signals, and therefore to synchronise. We discuss this
problem in the following section, which is dedicated to the
scalability of the evolved synchronisation mechanisms.

B. Scalability of the Synchronisation Mechanism

In this section, we analyse the evolved controllers in order
to uncover the effect of an increasing group size over the
synchronisation mechanisms described in Section IV. To do
so, we modify the simulation environment in order to neglect
the physical interactions among robots and between robots
and walls, whose influence has been discussed in the previous
section. Noise is simulated as described in Section II. Using
the same experimental setup described above, we perform



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

replication number

fit
ne

ss

3 robots 6 robots 12 robots 24 robots 48 robots 96 robots

Fig. 11. Scalability analysis. The boxplot shows, for each evolved controller, the performance obtained in tests with 3, 6, 12, 24, 48, and 96s-bots. Each
box represents the inter-quartile range of the data, while the black horizontal line inside the box marks the median value. The whiskers extend to the most
extreme data points within 1.5 times the inter-quartile range from the box. Outliers are not shown.

an analysis for different group sizes focusing on the syn-
chronisation aspect only. The obtained results are plotted
in Figure 12. Differently from what was observed above,
in this case many controllers present very good scalability,
with only a slight decrease in performance due to the longer
time required by larger groups to exactly synchronise (see
controllersc2, c8, c10, c12, c14, c18 andc19). Controllersc5 and
c6 present good scalability, but are characterised by a potential
loss in performance due to slow convergence to synchrony
of large groups. This result confirms the analysis given in
the previous section about the negative impact of physical
interferences amongs-bots. In fact, removing the necessity
to avoid collisions leads to scalable behaviours.

Nevertheless, many other controllers present poor scalability
properties. In these cases, the performance presents a high
variance up to a certain group size. Then, the performance
stabilises at a low, constant value, independent from the initial
conditions and the number of robots used. This value, which
is characteristic of each non-scaling controller, represents the
performance of anincoherent behaviour of the robots. In
other words, for every initial condition we tested, all robots
converged to a stable behaviour without being capable of
synchronising with any other robot. By observing the actual
behaviour produced by these controllers, we realised that the
incoherent state is caused by a communicative interference
problem: the signals emitted by differents-bots overlap in
time and are perceived as afixed signalling pattern, either
continuous or alternate (recall that the sound signals are
global and that they are perceived in a binary way, preventing
an s-bot from recognising different signal sources). If the
perceived signal does not vary in time, it does not bring enough
information to be exploited for synchronisation. This problem
is the result of the fact that we used a “global” communication
form in which the signal emitted by ans-bot is perceived by
any others-bot anywhere in the arena. Moreover, from the
perception point of view, there is no difference between a
single s-bot and a thousand signalling at the same time. The
lack of locality and of additivity is the main cause of failure
for the scalability of the evolved synchronisation mechanisms.
However, as we have seen, this problem affects only some

of the analysed controllers. For the remaining controllers,
the evolved communication strategies present a very good
scalability that is only weakly influenced by the group size.A
discussion about the causal relationship between the individual
behaviour and scalability is given in the following section.

C. Predictions of the Mathematical Model

Given the individual behaviour, is it possible to predict
whether the synchronisation mechanism is scalable? What
is the minimum group size that presents the interference
problem? In this section, we try to answer these questions
exploiting the mathematical model introduced in Section IV-A.

We start from the observation that, if a synchronisation
mechanism does not scale with the group sizeR, there should
exist anincoherent attractorin which the system converges,
alternative to the synchronous one. In other words, the dynami-
cal system (11) undergoes a bifurcation with varying parameter
R, so that two attractors are observable: the synchronous and
the incoherent one. In order to predict from the individual
behaviour whether such a bifurcation exists or not, it is
necessary to understand the conditions for the existence of
an incoherent attractor.

In the previous section, we empirically observed that, when-
ever an evolved synchronisation mechanism does not scale,
robots perceive a fixed signalling pattern, either continuous
or alternate. In such a situation, thes-bots do not receive
information about the position and orientation of other robots:
eachs-bot broadcasts such information, which however gets
lost due to the communicative interference we discussed
above. It is easy to prove that, given a fixed signalling pattern
s(t + 1) = f(s(t)), no synchronisation is possible. If ans-
bot, r, perceives a fixed signalling pattern, its behaviour is not
influenced by others-bots, and can be predicted as follows:

{

〈yr, θr, Sr〉|t+1 = Bc(yr, θr, s)|t
s|t+1 = f(s)|t

. (12)

It is therefore possible to study the above behaviour, and
analyse possible attractors—be they fixed points or limit
cycles. If no attractor exists,s-botsmovements diverge and
no synchronisation can be observed. If the attractors existand
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Fig. 12. Scalability of the synchronisation mechanism. Seethe caption of Figure 11 for detail.

are fixed points, robots do not move in a synchronous manner
because they do not move at all. If the attractor is a limit cycle,
the position on the cycle only depends on the initial position of
the robot, so thats-botsstarting from different initial positions
will not synchronise.

In summary, if a fixed signalling pattern is perceived,s-
bots cannot achieve synchronisation. In other words, a fixed
signalling pattern is a sufficient condition for the existence
of an incoherent attractor. As a consequence, artificial evo-
lution shaped the individual behaviours in order to avoid
fixed signalling patterns, and each evolved controller produces
at least two different signalling behaviours. However, the
communicative interference highlighted before can lead to
the perception of a fixed signalling pattern which is self-
sustained by the group, even if each individuals-bot varies
its own signalling behaviour. By analysing the individual
behaviour in equation (12) for the signalling patterns produced
by the same evolved controller,6 it is possible to define the
conditions for the existence of communicative interference,
which corresponds to the existence of an incoherent attractor.
In particular, we claim that if equation (12) presents attractors
that are contained within the region of phase space in which
Sr|t+1 = f(s)|t—which we refer to as thenon-interaction
area—then for a sufficiently largeR the group can produce
a fixed signalling pattern. As a consequence, an incoherent
attractor exists and the evolved synchronisation mechanism is
not scalable.

To prove the above claim, suppose that ans-botperceives a
fixed signalling patternf(s), which belongs to its repertoire of
signalling behaviours. Its movements are therefore described
by equation (12). By hypothesis, the attractors of this system
are contained at least partially within thenon-interaction area,
so that:

∃t : Sr|t+1 = BS
c
(yr, θr, f(s))|t = f(s)|t, (13)

where BS
c

indicates the component ofBc related to the
production of the signalS. In other words,s-bot r produces
the same signalling patternf(s) while traversing thenon-

6For a given controller, it is sufficient to consider the signalling pattern
that subsumes all other possible patterns. For instance, inc10, the continuous
signalling patternf(s) = 1 subsumes the alternate signallingf(s) = 1 − s,
so that the communicative interference can be created only by the former.

interaction area. For a sufficiently largeR, the self-production
of a fixed signalling pattern becomes possible:

∀t ∃r : Sr|t+1 = BS
c
(yr, θr, f(s))|t = f(s)|t, (14)

that is, at every instantt there is ans-botr that contributes in
producing the signalling pattern.

To summarise, the analysis of the attractors of the individual
behaviour under the forced perception of a fixed signalling
pattern reveals whether such signalling patterns can be self-
sustained by a sufficiently large group. If this is the case, an
incoherent attractor exists for the system in equation (11)and
the evolved behaviour does not scale. Otherwise, scalability
is possible. The controllers analysed in Section IV-B produce
both a scalable synchronisation mechanism, as observed in
Figure 12. In fact, both present attractors for a fixed signalling
pattern that lie outside of the correspondingnon-interaction
area. Controllerc8 is characterised by a limit cycle attractor
shown as a dotted line in the bottom-right vector field of
Figure 5, which is completely contained in the no-signalling
area. Controllerc10 presents two fixed point attractors, shown
as crosses in the bottom-right vector field of Figure 6, which
lie outside of the environment-driven signalling area.

To further prove our claims, we analysed the individual be-
haviour of the best performing controller that does not present
scalability, namelyc13. The evolved behaviour can be analysed
with the 3D vector field of Figure 13 that shows the individual
behaviour under normal conditions. The right vector field in
Figure 13 corresponds to the behaviour of thes-botin presence
of fixed continuous signallingf(s) = 1. It is possible to notice
that the limit cycle attractor for this condition traversesthe
environment-driven signalling area. As a consequence, with a
sufficiently large number ofs-botsthe evolved synchronisation
mechanism does not scale, as can be seen in Figure 12. The
bifurcation of the corresponding dynamical system with the
number of robotsR is well represented in Figure 14. Here, we
measured the average standard deviation of the absolute value
|y| in 100 trials for varying group size. The points in Figure 14
represent the average value, and the black line represents
the least square error fitting function. It is possible to notice
that for smallR, only the synchronous attractor exists, and
the robots always achieve a zero standard deviation in the
|y| position. For larger group sizes, the incoherent attractor
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appears, and forR > 40 the system always converges to
the incoherent attractor. We can describe this situation from a
dynamical system perspective. With increasing group size,the
system undergoes a bifurcation, so that, on the one hand, the
larger the group sizeR, the larger the basin of the incoherent
attractor, which becomes more and more probable. On the
other hand, the synchronous attractor does not disappear: if
robots start synchronised, they will keep synchrony for ever.
However, the basin of the synchronous attractor shrinks with
increasingR, making it less probable to observe the onset of
synchronisation for large groups.

A further prediction from the mathematical model consists
in the minimum group size,Rm, for which the incoherent
attractor exists. This group size depends on the time each robot
spends in thenon-interaction areawhile moving over the limit
cycle for the corresponding fixed signalling pattern. In fact, in
order to satisfy condition (14), it is necessary that while arobot
moves within thenon-interaction area, another robot prepares
to enter thenon-interaction area. In other words,Rm robots
should be evenly spaced over the limit cycle so that, when
one s-bot exits thenon-interaction area, another one enters
it, therefore sustaining the production of the fixed signalling
pattern. As a consequence, the minimum group sizeRm is
given by:

Rm =

⌈

T

Tn

⌉

, (15)

where T is the period of a single oscillation, andTn is
the fraction of this period spent within thenon-interaction
area while moving on the limit cycle. For controllerc13, we
experimentally obtainedRm = 6, which can be considered
a theoretical lower bound for the minimum group size. We

actually observed the existence of the incoherent attractor for
a minimum group size of9, as shown in Figure 14.

A final remark about scalability concerns noisy conditions:
in the presence of environmental noise, the trajectories of
the robots given by equation (12) may oscillate around the
attractors. In such conditions, the noisy trajectories may
fall into the non-interaction areaeven if the attractors do
not lie within it, but are sufficiently close. With a certain
probability—depending on the group size, the noise level and
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Fig. 14. Average standard deviation of the absolute value ofthe yr position
for eachs-bot r, plotted varying the group sizeR from 1 to 100. The black
line represents a curve that fits the experimental data.
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the vicinity of the attractors to thenon-interaction area—the
system may converge towards an incoherent attractor caused
by environmental noise.

VI. T ESTS WITHPHYSICAL ROBOTS

So far, we have shown how artificial evolution can synthe-
sise efficient and scalable synchronisation mechanisms which
are based on minimal communication strategies. In this sec-
tion, we test the evolved behaviour with physical robots. Such
tests should be considered aproof-of-conceptabout the usage
of evolutionary techniques for the synthesis of swarm robotics
controllers. Our main interest is therefore testing to whatextent
the behaviours evolved in simulations transfer to physical
robots, and identifying the possible causes of failure.

For tests with physical robots, we chose controllerc8, as it
presents both a high performance and good scalability prop-
erties. The neural network controller is used on the physical
s-bots exactly in the same way as in the simulations. The
sensor readings are taken every100 ms, are scaled to the range
[0,1] and finally fed to the neural network. The outputs of the
network are used to control the wheels and the loudspeaker.
Due to limited room, we reduced thex size of the experimental
arena to3 m. Within the arena, we defined the initial positions
of the robots by tracing a grid of11×7 evenly spaced points,
25 cm distant from each other. We initialised the robots by
randomly choosing, without replacement, the position within
the grid and by choosing the orientation randomly from 8
possible angles. In order to compute the performance of the
evolved solutions, we could not use the fitness function defined
in Section II-C, because technical reasons prevented the use
of an overhead camera to obtain a reliable measure of the
s-bots’ position within the arena, necessary to compute both
FM andFS . Instead, we focused on synchronisation only and
we used the perception of the ground sensors to estimate the
positiony over the gradient. Using this estimate, we computed
the average cross-correlation among the time series recorded
on thes-botsfor each trial.

Using the above setup, we performed 20 trials with 2s-
bots, and 20 trials with 3s-bots.7 In order to make a fair
comparison between the performance of the physical robots
and the one obtained in simulation, we performed an equal
number of trials in simulation, starting from identical initial
positions in an identical arena, and we computed the same
performance measure that was used for the tests with physical
robots. The obtained results are plotted in Figure 15. Tests
with 2 robots present a fairly good performance in some trials,
with s-bots displaying the ability to achieve synchronised
movements, to avoid collisions and to recover synchrony.
Other trials present lower performance: in these cases,s-bots
display a tendency to synchronise, which is however disrupted
by collision avoidance manoeuvres and by noise. Concerning
tests with 3s-bots, a generalised reduction in performance
with respect to simulation was observed. Notice however that
the simulated experiments also present a lower performance
if compared with tests performed with 2 robots. In fact, in

7Videos of the experiments with physical robots can be found at http://laral.
istc.cnr.it/esm/trianni-nolfi-ieeetec09.

reality as well as in simulation, collision avoidance is more
frequent due to the reduced size of the experimental arena, and
therefore synchrony is often disrupted by dodging manoeuvres.
Additionally, we observed that in reality it takes longer than
in simulation to manoeuvre out of the collision condition.
Finally, real-world experiments have been conducted under
severe conditions regarding ground sensors’ noise. In fact,
the treels of thes-bots continuously produce small bumps
that result in very noisy readings. We tested the effects of
increased noise in the simulations, and we found behavioural
patterns similar to the real-world scenario (data not shown).
We consider this as an indication that, besides the increased
difficulty in manoeuvring out of a collision condition, the
low performance observed in reality should be ascribed to
increased noise in the ground sensors.

VII. C ONCLUSION

Much like natural evolution produced swarms of fireflies
able to self-organise to achieve coherent group behaviour,
artificial evolution can synthesise self-organising swarms of
robots that accomplish complex tasks. In this respect, swarm
intelligence can benefit from the study and analysis of natural
as well as artificial systems: in both cases, a deep understand-
ing of the dynamics that govern the individual behaviour and
the social interactions can underpin novel developments inthe
engineering of swarm intelligent systems. In this paper, we
have presented an artificial evolutionary process designedto
shape the behaviour of a robot system to display self-organised
synchronisation. We have also shown how the dynamical
system analysis can explain the evolved mechanisms and
predict the behaviour of the robot system for varying group
size. We believe that this analysis can bring useful insights on
how to build—through automatic techniques or hand-design—
swarm robotics systems that are capable of self-organised
synchronisation and that scale to a large number of robots.
In fact, we have given a clear description of the building
blocks necessary to produce synchronised behaviours, and
most importantly we have decoded the individual behaviour
to find the conditions that allow the system as a whole to
synchronise, independent of the group size.

Concerning the generality of the proposed approach, it
is important to notice that the dynamical system analysis
performed in this work depends neither on the type of con-
troller nor on the methodology used to design it. In fact,
the mathematical model introduced in Section IV-A treats the
controller as a black box, while the design methodology is not
even considered. The only knowledge about the controller we
exploited refers to the absence of internal states. Otherwise, we
simply identified the state variables of the system and made all
the simplifications necessary to perform the numerical analy-
sis. Therefore, similar dynamical models could be developed
for different experimental settings and different swarm robotics
contexts, for simulated or physical robots, in order to uncover
the mechanisms that lead to certain group behaviour, and
possibly to predict emergent features of the system, much like
we did with the scalability analysis presented in Section V-C.

The synthesis of collective, coordinated behaviours in phys-
ical robots is not a trivial enterprise. In fact, due to the indirect
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Fig. 15. Comparison between the performance obtained in simulation and with physical robots.

relationship between simple local rules and the system’s
global properties, the definition of the individual behaviours
is particularly challenging [55]. The results presented inthis
paper support the use of evolutionary robotics techniques for
the development of self-organising behaviours. The evolved
behaviours feature high efficiency and scalability properties,
and have been positively tested with physical robots. To obtain
these results, we adopted a minimal approach that does not
postulate the need of internal dynamics for the robots to be
able to synchronise. Instead, we stress the importance of the
dynamical coupling between robots and environment. Robots
can be described asembodied oscillators, their behaviour be-
ing characterised by a period and a phase. In this perspective,
the movements of ans-bot correspond to advancements of
the oscillation phase. Robots can modulate their oscillations
simply by moving in the environment and by modifying their
dynamical relationship with it. Such modulations are brought
forth in response to the perceived communication signals,
which also depend on the dynamical relationship between the
s-bot and the environment. In this way, simple and reactive
behavioural and communication strategies are sufficient toim-
plement effective synchronisation mechanisms. We have also
analysed the scalability of the evolved controllers, showing
that synchronisation can be obtained in large groups, even
though large groups were never tested during the evolutionary
optimisation (controllers were evolved always using threes-
bots). We observed that physical or communicative interfer-
ences may prevent the system from synchronising. This is a
consequence of the global and binary communication channel
we used, which results in an excessive influence of the signal
emitted by any single individual on the dynamics of the whole
group. Better results may be achieved exploiting alocal and
additive communication, which ensures that only the signals
emitted by neighbours would be taken into account and that
the number of contemporary signalling robots is relevant.
We will account for this possibility in future work. Another
interesting issue to study in future developments is to provide
evolving robots with the possibility to discriminate between
self-produced and external signals. Such an ability may be
based either on an additional sensory channel that detects

only the self-produced signal, or on the internal dynamics
of the neural controller, which could evolve some neural
mechanism similar to the corollary discharge observed in some
insects [56].

By looking at the evolved behaviours, we recognised two
different strategies. The analysis of their dynamics indicates
that the two strategies are based on the same general mecha-
nism: the tendency of the robots to move towards the attractor
that corresponds to a certain signalling pattern—continuous
or alternate. The difference between the two strategies can
be recognised in the type of attractors: the one based on
the so-calledmodulation mechanismfeatures a limit cycle
attractor, while the one based on thereset mechanismis
characterised by fixed point attractors. Similar mechanisms are
also observed in biological oscillators. For instance, different
species of fireflies present different synchronisation mecha-
nisms, based on delayed or advanced phase responses [4],
[5], [18]. Moreover, our results seem to be in accordance
with the precedence effect explanation of chorusing, for which
synchronous signalling evolved as a result of the attempt of
each individual to anticipate the signal of its neighbours [30].
In future work, we plan to extract further results from the
analytical model, in order to uncover the details about the
evolved synchronisation mechanisms and further study our
artificial system in comparison with biological examples.

In conclusion, we believe that studies about synchronisation
such as the one presented in this paper, notwithstanding the
explicitly simplified experimental setup, can have a strong
impact on future studies in swarm robotics. In our work, robots
oscillate by exploiting environmental cues, and synchronise
on the basis of communication only. We can imagine a
swarm robotics system in which each individual robot behaves
according to the environmental contingencies it experiences,
and in parallel synchronises with other robots creating assem-
blies of coherent activity that lead to the achievement of a
collective goal. We used the termassembly, commonly found
in cognitive neurosciences [6], [9], not accidentally: much
like neurons in the brain synchronise to bring forth complex
cognitive functions, robots that synchronise are dynamically
coupled and can form groups performing coordinated, cooper-
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ative activities. The synchronised robots collectively identify
themselves as a cooperative unit and potentially differentiate
from other units—either behaviourally or physically through
a self-assembling process [51]. Such differentiation is brought
forth on the basis of the environmental contingencies expe-
rienced by the robots, and on the basis of communicative
interactions. In this way, we can imagine that, in a swarm
robotics system, allocation of roles and tasks arises as a result
of the dynamical coupling among robots and between robots
and the environment.
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