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Active categorical perception of object shapes in &
simulated anthropomorphic robotic arm

Elio Tuci, Gianluca Massera, and Stefano Nolfi

Abstract—Active perception refers to a theoretical approach
to the study of perception grounded on the idea that perceivig
is a way of acting, rather than a process whereby the brain
constructs an internal representation of the world. The opea-
tional principles of active perception can be effectively ¢sted by
building robot-based models in which the relationship betveen
perceptual categories and the body-environment interactins can
be experimentally manipulated. In this paper, we study the
mechanisms of tactile perception in a task in which a neuro-
controlled anthropomorphic robotic arm, equipped with coarse-
grained tactile sensors, is required to perceptually categrise
spherical and ellipsoid objects. We show that best individals,
synthesised by artificial evolution techniques, develop al@se to
optimal ability to discriminate the shape of the objects as wll
as an ability to generalise their skill in new circumstances The
results show that the agents solve the categorisation task ian
effective and robust way by self-selecting the required irdrma-
tion through action and by integrating experienced sensorymotor
states over time.

Index Terms—Categorical perception, evolutionary robotics,
artificial neural networks.

I. INTRODUCTION

being situated in an environment consists in the fact that th
sensory stimuli experienced by an agent are co-determiped b
the action performed by the agent itself. That is, the astion
and the behaviour exhibited by the agent later influence the
stimuli it senses, their duration in time, and the sequerite w
which they are experienced. This implies that: (i) catecgri
perception is strongly influenced by an agent’s action [see
also 5, 6, on this issue]; and (ii) sensory-motor coordorati
(i.e., the ability to act in order to sense stimuli or seq@enc
of stimuli that allow an agent to perform its task) is a
crucial aspect of perception and more generally of situated
intelligence [see 7].

Although the significance of embodiment and situatedness
for the study of the underlying mechanisms of behaviour
and cognition is widely recognised, building artificial Bm®s
that are able to actively perceive and categorise sensory
experiences is a challenging task. This can be explained by
considering that, from the point of view of the designer,
identifying the way in which an agent should interact with
the environment in order to sense the favourable sensory
states is extremely difficult. One promising approach, iis th

Categorical perception can be considered the ability to diespect, is constituted by evolutionary methods in whiah th

vide continuous signals received by sense organs intoedéscragents are left free to determine how they interact with the
categories whose members resemble more one another t8afironment (i.e., how they behave, in order to solve their
members of other categories. Categorical perceptionsepte task). With these methods, free parameters (i.e., those tha
one of the most fundamental cognitive capacities displaygée modified during the evolutionary process) encode featur
by natural organisms, and it is an important prerequisitRat regulate the fine-grained interactions between thatage
for the exhibition of several other cognitive skills [see lland the environment. The evolutionary process consists in
Not surprisingly, categorical perception has been extehsi retaining or discarding the free parameters on the basis of
studied both in natural sciences such as Psychology, Philogheir effects at the level of the overall behaviour exhibite
phy, Ethology, Linguistics, and Neuroscience, and in &iéifi py the agent [see 8, 9, 10, for a detailed illustration of the
sciences such as Artificial Intelligence, Neural Netwoeksd methodological approach employed].
Robotics [see 2, for a comprehensive review of this researchn this paper, we describe an experiment in which evolu-
field]. However, in the large majority of the cases, researgh tionary methods are used to investigate the perceptuas skil
have focused their attention on categorisation proce$s#s bf an autonomous agent demanded to actively categorise un-
are passive and instantaneous. Passive categorisatic®sses anchored spherical and ellipsoid objects placed in differe
take place in those experimental setups in which the ageptssitions and orientations over a planar surface. The agent
can not influence the experienced sensory states through thea simulated anthropomorphic robotic arm with 27 actuated
actions. Instantaneous categorisation processes are thospegrees of Freedom (hereafter, DoFs). The arm is equipped
which the agents are demanded to categorise the currgith coarse-grained tactile sensors and with propriogepti
experienced sensory state rather than a sequence of sens@Rgors encoding the position of the joints of the arm and
states distributed over a certain time period. of the hand. The task requires the agent to produce different
In this paper, instead, we study categorisation procebses tcategorisation outputs for objects with different shaped a
are active and eventually distributed over time [3, 4]. Thisimilar categorisation outputs for objects with the sarmapsh
task is achieved by exploiting the properties of autonomogsie aim of this study is to prove that, in spite of the compiexi
embodied and situated agents. An important consequencespfhe experimental scenario, the evolutionary approaahea
successfully employed to design neural mechanisms to allow
the robotic arm to perform the perceptual categorisatisk.ta
Moreover, we unveil the operational principles of sucaassf
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agents. In particular, we look at (i) how the robot acts ithe movement of the hand is determined by the experimenter
order to bring fourth the sensory stimuli which provide then the basis of her intuition. Moreover, the discrimination
regularities necessary for categorising the objects itespi phase follows the exploration phase and it is performed by
the fact that sensation itself may be extremely ambiguowdaborating sensory data gathered during manipulatiomef t
incomplete, and noisy; (ii) the dynamical nature of sensonbjects (i.e., the data collected during the exploratioageh
flow (i.e., how sensory stimulation varies over time andannot influence the agents successive behaviour).
the time rate at which significant variations occur); (ifijet  The work described in this paper differs significantly from
dynamical nature of the categorisation process (i.e., ndret the above mentioned literature since the way in which the
the categorisation process occur over time while the robagent interacts with the environment is not designed by the
interacts with the environment); (iv) the role of qualivally experimenter but is adapted in order to facilitate the aaieg
different sensation originated by different sensory cledsim sation task and since the agent is left free to shape its motor
the accomplishment of the categorisation task. behaviour on the basis of previously experienced sensory
We prove that a further elaboration of evolutionary methodgates. Rather than studying the performances of partigula
proposed in related studies can be successfully appliedefective tactile sensors or of specific categorisationo-alg
problems that are non-trivial and significantly more compleithms, we focus on the development of autonomous actions
with respect to the state of the art reviewed in Section ffior the discrimination of objects shape through coarséngrh
In particular, we show that the best evolved robots develtynary tactile sensors and proprioceptive sensors. The igs
a close to optimal ability to discriminate the shape of thieow a robot can actively develop categorisation skills resenb
objects as well as an ability to generalise their skill ialready investigated in few recent research works. In géner
new circumstances. These results prove that the problem tamms, these works demonstrate how adapted robots exploit
be solved in an effective and robust way by self-selectiribeir action to self-select stimuli which enable and/or difg
the required information through action and by integratintipe categorisation process and how this leads to solutions
experienced sensory-motor states over time. which are parsimonious and robust [see 19, 20, 21, 22].
Particularly relevant for this study is the work described
in [23]. The authors studied the case of a simulated robotic
“finger” which has been evolved for discriminating the shape
There is a growing body of literature in robotics which isf spherical versus cubic objects (anchored to a fixed point)
devoting increasingly more efforts in obtaining discrimtiion of different sizes and orientations. The robotic finger ia-co
of material properties (e.g., hardness, texture) and bbfepe stituted by an articulated structure made by three segments
using touch in artificial arms. Many of these works, like theonnected through motorised joints with six DoFs, six cor-
one described in [11], draw inspiration from human percepesponding actuators, six proprioceptive sensors engatie
tual capability to develop highly elaborated touch sensorsurrent position of the joints, and three tactile sensoasqu
In [11], the authors describe a tendon driven robotic hamoh the three corresponding segments of the finger. The author
covered with artificial skin made of strain gauges sensosbserved that the adapted robots solve their problem throug
and polyvinylidene films. The strain gauges sensors mimsimple control rules that makes the robot scan for the object
the functional properties of Merkel cells in human skin andy moving horizontally from the left to the right side and by
detect the strain. Polyvinylidene films mimic the functibnamoving slightly up as a result of collisions between the finge
properties of the Meissner corpuscles and detect the wglocnd the object. These simple control rules lead to the etibribi
of the strain. The artificial hand, through the execution aff two different behaviours. With spherical objects, thbatic
squeezing and tapping procedures, manages to discrimirfaiger fully extends itself on the left side of the object afte
objects based on their hardness. In a similar vein, a rdseafsllowing the object surface. With cubic objects, the rabot
group at the Lund University has developed three progrelssivfinger remains fully bended close to one of the corners of the
complex versions of a robotic hand (LUCS Haptic Hand I, ligube. These two behaviours corresponds to well differetia
and 1) designed for haptic perception tasks [12, 13, 14le T activations of the proprioceptive sensors. These diffezsrare
perceptual capabilities of the three versions of LUCS, Whiased by the finger to distinguish the two types of object. Note
differ in their morphology and in their sensory capabiltie that, although the discriminating cue necessary to caisgor
have been tested during the execution of a grasping proeedigr available in each single sensory pattern experiencent aft
on objects made of different material (e.g., plastic andayoo the exhibition of the appropriate behaviour, this cue tssul
The authors showed that the sensory patterns generatedram the dynamical process arising as a result of several
interactions with the objects are rich enough to be used @bot/environmental interactions. In [24], the authoravslthat
a basis for haptic object categorisation [15]. Other ratsotia visually guided robot arm whose neuro-controller is esdlv
systems combine visual and tactile perception to carry dietr reaching and tracking, can exploit its actions to selest
fairly complex object discrimination tasks [see 16, 17,.18] stimuli which facilitates the accomplishment of spatiadan
Generally speaking, we can say that, in spite of the hetetemporal coordination.
geneity in hardware and control design, the research workdJnlike in the experiments described in [23, 24], sensory-
mentioned above focus on the characteristics of the tactiteotor coordination does not always guarantee the pergeptio
sensory apparatus and/or on the categorisation algorithmsof well differentiated sensory states in different consesor-
these works, the way in which the sensory feedback affecesponding to different categories. Under these circumests,

Il. STATE OF THE ART
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the agent can actively categorise their perceptual expezie

by integrating ambiguous sensory information over timav Fe
studies have already shown that evolved wheeled robots com-
pensate for unreliable sensory patterns due to coarsergenso
apparatus by acting and re-acting to temporally distrithute
sensory experiences, in a way to bring forth the necessary
regularities that allow them to associate a stimulus wigh it
category [see 25, 26].

The experiment presented in this paper focuses on a non-
trivial task that is significantly more complex to that inties
gated in previous studies due to the high similarity between
the objects to be discriminated, the difficulty of contnodi
a system with many degree of freedom, and the need to
master the effects produced by gravity, inertia, collision
etc. As shown in Section VII, the analysis of the strategy ()
displayed by best evolved robots demonstrates that, also in
this case, sensory-motor coordination plays a crucial, rade
in [23, 24]. Indeed, the best robots manipulate the objextse s
experience the regularities which allow them to approphat
categorise the shape of the objects. However, sensoryrmoto
coordination does not seem to guarantee the perception of
fully differentiated sensory states corresponding toedéht
categories. The problem caused by the lack of clear catejori
evidences is solved through the development of an ability to
integrate ambiguous information over time through a preces
of evidences accumulation.

Shoulder

IIl. THE ROBOT' S STRUCTURE

The simulated robot consists of an anthropomorphic robotic
arm with 7 actuated DoFs and a hand with 20 actuated DoFs.
Proprioceptive and tactile sensors are distributed on the a (b)

; ; Jg J2 33 J4 B J6  J7  Handjoints Categories
and the hand. The robot and the robot/environmental mter—A Aj Ag
actions are simulated using Newton Game Dynamics (NGD)z &
a library for accurately simulating rigid body dynamics and
collisions (more details at www.newtondynamics.com). The >
arm consists mainly of three elements: the arm, the fore- @ & (3 (>
arm, and the wrist. These elements are connected through __——=
articulations displaced into the shoulder (joidi for the G @A ® G GO G G @ @G QO OB D) D) 22
extension/flexion,/, for the abduction/adduction, ang for * * * 4+ 4 4 4 4 4 A e
the supination/pronation movements), the elbow (jointfor O
the extension/flexion movements), and the wrist (joiftSJs, 31 32 33 3435 J6 J71 T2 T3 T4 T5 T6 T7 T8 TOT10J8 J9 J1M1LI12

11 12 13 14 15 16 17 18 19 110111112 113 14 115 116 117 118 119 120 121 |22

J7 for the roll/pitch/yaw movements, see Figure 1a). ~— T ~
The robotic hand is composed of a palm and fourteen pha- A™ Proprio-sensors Tactile Sensors Hand Proprio=s
langeal segments that make up the digits (two for the thumb (©)

and three for each of the other four fingers) connected tHITOU,gig_ 1: The kinematic chain (a) of the arm, and (b) of the hand.

15 joints with 20 DoFs (see Figure 1b). There are three diffefy he architecture of the arm neural controller. In (a) and
ent types of hand joints: metacarpophalangeal (MP), prakimp) - cvjinders represent rotational DoFs; the axes of dylis
interphalangeal (PIP), and distal interphalangeal (D). ingicate the corresponding axis of rotation: the links agon
of them bring forth the extension/flexion movements of eacly|ingers represents the rigid connections that make up the
finger while only the metacarpophalangeal joints are for thin, sirycture. In (c) the circles refer to the artificial rans.
abduction/adduction movements. The thumb has an extra D8Fntinyous line arrows indicate the efferent connectians f

in metacarpophalangeal joints which is for the axial reRti he first neuron of each layer. Dashed line arrows indicate th

This rotation makes possible to move the thumb towards tpgrespondences between joints and tactile sensors and inp
other fingers [see 27, for a detailed description of the 8irat o ,;ons. The labels on the dashed line arrows refer to the

properties of the arm]. The active joints of the robotic am@ a,,ation used in equation 1a to indicate the readings of the
actuated by two simulated antagonist muscles implemen responding sensors.

accordingly to the Hill's muscle model, as detailed in th&tne
Section.
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IV. THE ROBOT' S SENSORS CONTROLLER, AND The activation valueg;; of motor neurons determine the
ACTUATORS state of the simulated muscles of the arm. In particular, the
The agent controller consists of a continuous time recﬂrréﬂtal force exerted by a musclg IS the sum of three forces
non-linear network (CTRNN) with 22 sensory neurons, A(U(yi_Jrﬂi)’x)+TP(_3:)+TV(‘?)’ which are calculated on
internal neurons, and 18 motor neurons [see Figure 1c a & hasis of the following equations:
also 28]. At each time step, the activation valyesf sensory

. . AshTmaw (x - RL)2
neuronsi = 1,..,7 is updated on the basis of the state of Ta=o(y: +06i) | —

J’_ T’UL(L’L‘) (2)

R2
the proprioceptive sensors of the arm and of the wrist which ) L
encode the current angles, linearly scaled in the randel], A = 5
of the seven corresponding joints located on the arm andeon th ° (Lmaz — RL)2

wrist (see joints/y, Jo, Js, J4, J5, Jg, andJ; in Figure 1a).

The activation valueg; of sensory neurons = 8,..,17 is Tp =T
updated on the basis of the state of tactile sensors distdbu exp{Kqn} —1
over the hand. These sensors are located on the palm (sée labe Ty =b - &

Ty in Figure_ 1b), on the second phalange of the thumb (s\t,ev ereo(y; + B;) is the firing rate of output neurons —
label T in Figure 1b), and on the first phalange (see laligls 31, .. 46. z is the current elongation of the muscle;,,, and
Ts, Ts, T1o in Figure 1b) and the third phalange (see lalgls 7" " mar

Tv. Ty, Ty in Figure 1b) of each finger. These sensors retué{if are the maximum and the resting length of the muscle;

exrp {KS;LL‘”;RL} -1

maz—RL

1 if the corresponding part of the hand is in contact with™*® IS t_he maximum force that can pe ggneraté@_h_ IS
.~ . 'the passive shape factor armdis the viscosity coefficient.
any another body (e.g., the table, the sphere, the ellipsoid : . .
. S The parameters of the equation are identical for all fourtee
other parts of the arm), otherwise 0. The activation valyes .
. . ; muscles controlling the seven DoFs of the arm and have
of sensory neurons = 18,..,22 is updated on the basis of )
; . . een set to the following valuesky, = 3.0, Ry = 2.5,
the state of the hand proprioceptive sensors which encade . .
. . . Lo maz = 3.7, b = 0.9, Ag, = 4.34 with the exception of
current extension/flexion of the five corresponding fingses( o L
o o . parametefl;, ., which is set ta3000N for joint Js, to 300V
joints Jg, Jo, Jio, J11, and Jio in Figure 1b). The readings . g
: ) . >~ for joints Jy, J3, Jy, andJs, and to200N for joints Jg and
of the hand proprioceptive sensors are linearly scaled én t A . . o
. 7. Muscle elongation is simulated by linearly mapping within
range|0, 1] (with O for fully extended and 1 for fully flexed o .
) . .specific angular ranges the current angular position of each
finger). To take into account the fact that sensors are noi

tactile sensors return, with 5% probability, a value difer O'I'ic[aS(jaoeinZtZ'c]:?rtr?:tﬁgi]a are actuated by a limited number
from the computed one, and 5% uniform noise is added tQ. . . .
proprioceptive sensors. 0? independent variables through a velocity-proporticzaal-

Internal neurons are fully connected. Additionally, eacﬁﬁ”er' That is, for the extension/flexion, the force ererby
C

internal neuron receives one incoming synapse from eady. MP, PIP, and DIP joints (MP-A, MP-B, and PIP in the
g synap case of the thumb) are controlled by a two step process: first,

sensory neuron. Each motor neuron receives one incomw% set equal to the firing rate(y: - B (with i — 45 for the
synapse from each internal neuron. There are no direct con- v

nections between sensory and motor neurons. The valueﬁicﬂ‘mb movement, and— 46 for the other finger movement),

. . nearly mapped into the range-90°, 0°]; second, the desired
sensory neurons are updated using equation 13, the Valuegn(%filar positions of the finger joints MP, PIP, DIP are sét,to

péﬁrrgilsrﬁ?gogsu\;\ltlit:)ﬂnelqceat|on 10, and the values of motg,r and(2.0/3.0)- 6 rgspective_:ly. For the thumb, it_s movement
towards the other fingers (i.e., the extra DoF in MP joints)
—yi + gli; fori=1,..,22; (1a) corresponds to the desired angle-of2.0/3.0) - 6. The DoFs
30 _ that regulate the abduction/adduction movements of thefing
—yi+ Y wioly; +6;);  fori=23,.,30; (1b) are not actuated.
TiYi = 3:01 The activation valueg; of output neurons = 47,48 are
. used to categorise the shape of the object (i.e., to produce
Yt Z wjio(y; +0;);  fori=31,..,48; (10) ifferent output patterns for different object types, sésoa
=23 Section VI).
with o(z) = (1 + e~®)~1. In these equations, using terms
derived from an analogy with real neurong,represents the
cell potential;r; the decay constany,is a gain factor/; the in-
tensity of the perturbation on sensory neuipn;; the strength A simple generational genetic algorithm is employed to set
of the synaptic connection from neurgrto neuroni, 3; the the parameters of the networks [see 29]. The initial popariat
bias term,o(y; + 3;) the firing rate.r; with ¢« = 23,..,30, contains 100 genotypes. Generations following the first one
B with 7 = 1,..,48, all the network connection weighis;;, are produced by a combination of selection with elitism, and
and g are genetically specified networks’ parametefswith mutation. For each new generation, the 20 highest scoring
i =1,..,22 andi = 31, ..,48 is equal to the integration time individuals (“the elite”) from the previous generation are
step AT = 0.01. There is one single bias for all the sensoryetained unchanged. The remainder of the new population
neurons. is generated by making 4 mutated copies of each of the 20

V. THE EVOLUTIONARY ALGORITHM
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At the beginning of each trial, the arm is located in the
corresponding initial position (i.e., A or B), and the stafle
the neural controller is reset. A trial lasts 4 simulatedosels
(T = 400 time step). A trial is terminated earlier in case the
object falls off the table.

In each trial k, an agent is rewarded by an evaluation
function which seeks to assess its ability to recognise and
distinguish the ellipsoid from the sphere. Note that, rathe
than imposing a representation scheme in which different
categories are associated watlpriori determined state/s of the
categorisation neurons (i.e., neurons 47 and 48), we ldsve t
@) (b) robot free to determine how to communicate the result of its
decision. That is, the agents can develop whatever regeesen
tion scheme as long as each object category is clearly fohti
by a unique state/s of the categorisation neurons. Thigmsyst
has also the advantage that it scales up to categorisatks ta
with objects of more than two categories, without having to
introduce structural modifications to the agent’s congroll
More precisely, we score agents on the basis of the extent

(©) (d) to which the categorisation outputs produced for objects of

different categories are located in non-overlapping negiof

Fig. 2: (a) Position A; angle of joints.Ji,..,J7 atwo dimensional categorisation spaée= [0,1] x [0, 1]. The
are {-50°,-20°,-20°, —100°, —30°,0°, —10°};  categorisation and the evaluation of the agent's discaton
(b) Positon B; angle of joints Ji,.,J; are capabilities is done in the following way:
{*1000.’OO’.loo’f?’OO’OO’OO’ —10°}; (c) the sphere and « in each trialk, the agent represents the experienced object
th? el!lpsq|d viewed from .above; (@) t_he sphere and the (i.e., the spheré& or the ellipsoidE) by associating to it
ellipsoid wewednfrom the .S|de._ The radius of the sphere is rectangleR? or RZ whose vertices are:
2.5 cm. The radii of the ellipsoid are 2.5, 3.0 and 2.5 cm. In )
(c) the arrows indicate the intervals within which the iaiti the bottom left vertex:

rotation of the ellipsoid is set. ) _
(0.95I%H<I}:<T o (yar(t) + Bar), .00 o (yas(t) + Pas))

. o ) ) the top right vertex:
highest scoring individuals. Each genotype is a vector atsnp

ing 420 parameters. Each parameter is encoded with 16 bits. ( max o(ya7(t) + fa7), max o(yas(t) + Oas))
Initially, a random population of vectors is generated. Mian 0-95T<t<T 0-95T <t<T

entails that each bit of the genotype can be flipped with a

1.5% probability. Genotype parameters are linearly mappeds the sphere category, referred to@s, corresponds to the
to produce network parameters with the following ranges: Minimum bounding box of alRy’; the ellipsoid category,

biases3; € [—4,—2], weightsw;; € [~6,6], gain factor referred to a®o”, corresponds to the minimum bounding
g € [1,10] for all the sensory neurons; decay constants box of all Rf.
with i = 23, .., 30 are exponentially mapped info0~2,10%-3] The final fitnessF I attributed to an agent is the sum of

with the lower bound corresponding to the integration stize- two fitness components; and F;. F; rewards the robots for
used to update the controller and the upper bound, arliytrariouching the objects, and corresponds to the average déstan
chosen, corresponds to about half of a trial length (i.e). 2 ®ver a set of 16 trials between the centre of the palm and the
Cell potentials are set to 0 when the network is initialiseeixperienced objectd:; rewards the robots for developing an
or reset, and circuits are integrated using the forward rEulenambiguous category representation scheme on the basis of
method [see 30]. the position in a two-dimensional space @f and C*. I,
and I, are computed as follows:
VI. THE FITNESSFUNCTION

K
: . . . 1 d .
During evolution, each genotype is translated into an arm Fy = — E JR— , with K = 16; 3)
controller and evaluated 8 times in position A and 8 times k=1
in position B, for a total of K = 16 trials (see Figure 2a 0 if Fy #1;
. \ . B =
and 2b). For each position, the arm experiences 4 times the 12 1_ min{aizz?(cc;r;g;)(cq} otherwise:

ellipsoid and 4 times the sphere. Moreover, the rotation of
the ellipsoid with respect to the z-axis is randomly set i@ thwith d; the euclidean distance between the object and the
range [350°,10°] in the first presentation|35°,55°] in the centre of the palm at the end of the trigld,,, ... the maximum
second presentatiof§0°, 100°] in the third presentation, anddistance the centre of the palm can reach from the object when
[125°,145°] in the fourth presentation (see also Figure 2cjocated on the tablef, = 1 if C° and C® do not overlap
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A. Robustness

s b To verify to what extent the robots are able to discrim-
rung

inate between the two types of object regardless the initial

! un, /" un, orientation of the ellipsoid object, we run post-evaluatiests

(referred to as test P) in which we systematically vary the
/J‘ run meﬁ ellipsoid initial orientation. More precisely in te$t, an agent

1 100 200 300 400 500 1 100 200 300 400 500 is dema_mded _t_o distinguish for 3GQ times the tyvo ob_J(_acts
Generations Generations placed in position A, and for 360 times placed in position
B. In each position, the agent experiences half of the times
Fig. 3: Graph showing the fitness of the best agents at edbg sphere (i.e., for 180 trials) and half of the times the
generation of the five evolutionary runs that managed €dlipsoid (i.e., for 180 trials). Moreover, trial after atj the
generate highest score individuals for at least 10 conisecutnitial orientation of the ellipsoid around the z-axis cigas of
generationsruni, runs, runs, rung, runs. 1°, from 0° in the first trial to179° in the last trial. For each
run, we selected and post-evaluated 10 agents chosen among
those with the highest fitness. It is important to note thaséh
(i.e., if C5 N CF = (). The fact that, for each individual, agents are selected from evolutionary phases in which the ru
F must bel to be rewarded withfy,, constrains evolution to managed to generate highest score individuals for at léast 1
work on strategies in which the palm is constantly touchirg t consecutive generations. Table | shows the results of teetag
object. This condition has been introduced because we titougl; generated by-un;, with 4; being the best agent among
it represents a pre-requisite for the ability to percepyualthose selected fromun; .
discriminate the shape of the objects. However, altereativ Note that, compared to the evolutionary conditions, in Whic
formalisms which encode different evolutionary selecpves- the agents are allowed to perceive the ellipsoid only 4 times

n
S]
1

No
oo

No
oo

Fitness score

o
o
1

sures may work as well. with 4 different initial orientations,P is a severe test. The
results unambiguously tell us whether or not the five setecte
VII. RESULTS highest fitness agents are capable of distinguishing ared cat

Ten evolutionary simulations, each using a different randod0rising the ellipsoid from the sphere in a much wider range
initialisation, were run for 500 generations. Figure 3 showf initial orientations of the former object. For each sedec
the fithess of the best agent at each generation for the fR@ent, testP is repeated 5 times (i.eF; with i = 1,..,5),
evolutionary runs that managed to generate highest sc¥féh each repetition differently seeded to guaranteed send
individuals for at least 10 consecutive generations. Therot Variations in the noise added to sensors readings. Tabtensh
five runs failed to achieve this first objective. A quick glacefor each selected agedt;, the results of all the five tests;.
at these curves indicates thain; reaches very quickly (in  The performance of the agedt; at testP; is quantitatively
about 100 generations) a plateau on the highest fithess sastablished by considering all the responses givenr ppver
and keeps on generating highest score agents until the en@®@®0 trials (i.e., 720 trials per te$}, repeated 5 times, with
evolution.runsy runs, rung, runs also generate highest scorg,j = 1,...,5). In each post-evaluation trial, the response of
agents but they need more generations and the solutions s#agnagent is based on the firing rates of neurons 47 and 48
to be more sensitive to the effect produced by those parasne@uring the last 20 time steps (i.€),95 -7 < t < T) of
of the task randomly initialised and/or by noise. Althoudh aeach trailk. In particular, the smallest and the highest firing
the agents with the highest fithess are potentially capablerates recorded by both neurons are used to define the bottom
accomplishing the task, the effectiveness and the robsstneft and the top right vertices of a rectangle, as illustiate
of their collective strategies have to be further estimatitti in Section VI. At the end of each tesf;, we have 360
more severe post-evaluation tests. In the next Section, v@stangles associated to trials in which the agent expegkn
show the results of a series of post-evaluation tests airhecdthe sphere (i.e., rectanglgd’ with & = 1,..,360), and 360
estimating the robustness of the best evolved discrintinatirectangles associated to trials in which the agent expegikn
strategies chosen fromuny, runs, runs, runs, andruns. In  the ellipsoid (i.e., rectangleRf with k = 1, ..,360). At the
Section VII-B, we show the results of post-evaluation tesend of the five post-evaluation tests, we build five pairs of
aimed at estimating the role of different sensory channeion-overlapping minimal bounding boxes (i.€ and CF),
for categorisation. Finally, in Section VII-C, we analyset a pair for each test, as explained in Section VI. At this
dynamics of the best evolved agents categorisation syratggoint, we take as a quantitative estimate of the robustness o
It is important to note that, although all the post-evalbmti an agent categorisation strategy, the highest numbg&gaind
analyses have been carried out on all the best evolved ageR§ rectangles that can be includedity andC respectively,
for the sake of space, for several tests we include only thg fulfilling the condition that none of thé’® overlaps with
results concerning the performances of one of these dgentany of theCF. Table | shows, for each selected agent and

for each testP;, the number of rectangles?{ and R) for

1An exhaustive description of the analyses carried out onthal best post-evaluated agent, and for post-evaluation test, #rate
evolved agents, results of tests not shown in the papeheusimulations . - g B e o
as well as movies of the bests evolved strategies can be fauratp: Included inCP and € by fulfilling the condition that none
INaral.istc.cnr.it/esm/activeperception. of the CZ-S overlaps with any of the?F. The last row of this



TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, MONTH YEAR 7

Table tells us that, for agem;, A3, A4, and As, the total radius of the ellipsoid progressively increases/deczase
number of rectangles that can be included by the minimabtice that distortions that further increase the longkigtseid
bounding boxes without breaking the non-overlapping rale iadius up to 1 cm, are rather well tolerated by the agents,
extremely high, with a percentage of success over 97%. Thegth A; and A5 that manage to reliably differentiate the two
four agents are quite good in discriminating and categayisiobjects with a success rate higher than 90%. Distortionis tha
the sphere and the ellipsoid in a much wider range of initis#gnd to reduce the longest radius of the ellipsoid are glearl
orientations of the ellipsoid. Agentls, whose performance disruptive for all the agents, with an expected 50% success
is slightly worse, is excluded from all further post-evdioa rate when the ellipsoid is reduced to a sphere. In tests in
tests. which the ellipsoids have a radius progressively shortat th

The agents with a performance at the first test P abotfe radius of the sphere, the performance of all the ageats ar
95% (i.e., A1, As, A4, and As) undergo a further series ofquite disrupted (see Figure 4a).
tests P in circumstances in which (i) the length of the lohges As far as it concerns tests in which the length of the radius
radius of the ellipsoid progressively increases/deceeésee Of the sphere progressively increases/decreases, we tiodt
Figure 4a); (ii) the length of the radius of the sphere prdhese distortions are particularly disruptive for all thgeats
gressively increases/decreases (see Figure 4b); (iiijnftial except for A5. This agent is not as disrupted as the other
position of the object and of the hand varies (see Figure 4@gents in those tests in which the sphere becomes progelyssiv
In these as well as in all the other post-evaluation tests wealler, and it is very successful in tests in which the radiu
describe from now on concernindy,, As, A4, and A5, a trial  Of the sphere is at least 7 millimetres longer than the longes
k can: (i) successfully terminate if th&/, built as illustrated radius of the ellipsoid (see Figure 4b).
above, completely falls within the agent’s two-dimensiona Finally, in a further series of post-evaluation tests we- est
space delimited by the five bounding box€§ built during mated the robustness of the best evolved strategies initests
the first test P; (ii) unsuccessfully terminate with a spheghich the initial positions of object and of the arm change. T
response if theRE completely falls within the agent's two- simplify our analysis, we focused only on those circumséanc
dimensional space delimited by the five bounding boxgs in which the movement of the arm respect to the initial
built during the first test P; (iii) unsuccessfully termieatith  positions experienced during evolution are determinediby d
a none response, if the”, completely falls outside the agent’splacements of only one joint at time (see Figure 4c). Altioug
two-dimensional space delimited by the ten bounding box# results are quite heterogeneous, there are some feature
C? N CF built during the first test P. which are shared by all the agents. First, displacementsuf j
As far as it concerns tests in which the length of the longeét for position A are tolerated quite well. Second, the wider
the displacement, the bigger the performance drop, with the
exception ofJ, for agentsA; As A4, in which displacements
that tend to progressively bring the hand/object closer to
TABLE I: The table shows, for post-evaluated agedt (vith  the body result in a better performance for both positions.
J=1,..,5), and for post-evaluation tesP(with i = 1,..,5), It is important to note thatA, is particularly sensitive to
the number of rectangleg;” and R} that can be included disruptions to jointJ; and.J; for position B, and jointJs
in bounding boxesCE and C7, respectively, by fulfilling for position A.
the condition that none of th&€” overlaps with any of
the Cf. The last row indicates the total number of correct ) o
categorisation choices and percentage of success over 3Bodhe role of different sensory channels for categorisatio
evaluation trials. See the text for further detalils. To understand the mechanisms which allow agehtsAs,
A, A, A, A4, andAg,, to solve thei_r task, we first establishe_d the re_la—
RE RS RE &S RE RS tive importance of the different types of sensory inforroati
k k k k k k H H H H ;
Pr 357 360 | 3101 351 | 340 358 gvallable through arm proprloceptlvg sensors (|_Ie.,w!th
2 3591 360 | 311 347 | 342 358 i=1,..,7, see also Flgqre 1c), tactile sensors (|Ie.lwlth _
2 i1 = 8,...,17, see also Figure 1c), and hand proprioceptive
Ps 356 | 360 | 312| 349 | 343| 356 ; L .
P, 357 360 13041 353 | 3411 355 sensors (i.e..l; with ¢ = 18,...,22, see _also Figure 1c).
This has been accomplished by measuring the performance
L 358 360 |303| 348 | 349| 356 displayed by the agents in a series s@afbstitution testsn
Tot./(%) | 3587 1 99.6%] 3288 / 91.3%| 3498 / 97.2% which one type of sensory information experienced by each
agent during the interaction with an ellipsoid has beereegd
with the corresponding type of sensory information presigu
recorded in trials in which the agent was interacting with a
sphere. In these tests, each agent experiences the @allipsoi
in all the initial rotations (i.e., fromD° to 179°) excluding
those for which, given the randomly chosen seed for the
Lig 342| 354 |354| 35 tests, its responses turned out to be wrong in the absence of
s 349| 355 | 353] 353 any type of substitution (i.e., the rectangi¥’ did not fall
Tot./(%) | 3520 / 97.8%]| 3545 / 98.5% within any of the five bounding boxeS” resulted from the

Ay As
Ry | Ry [R7| R}
P 347 356 355 354
P 356 358 356 355
P3 348 355 356 354
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Fig. 4: Graphs showing the percentage of success in poktatiem tests in which (a) the length of the longest radiushef
ellipsoid progressively increases/decreases; (b) thgtheof the radius of the sphere progressively increasesgdses; (c) the
initial position of the object and of the hand varies. Blaskfor position A, and grey for position B. Note that grey areas
extend upward over the black areas. Black and grey nevelapveBee also the text for further details. Recall that theiral
radius of the sphere is 2.5 cm, and the radii of the ellipso&25, 3.0, and 2.5 cm.

test P described in Section VII-A). For each ellipsoid aditi hand proprioceptive sensors in position A, only marginally
orientation, eaclsubstitution testés repeated 180 times. Theinterfere with their performance. That is, for position Agt
rational behind these tests is that any performance drogechuagents undergo a substantial performance drop only due to
by the replacement of different type of sensory informatioreplacement of tactile sensation (see Figure 5 black cadumn
provides an indication of the relative importance of thah correspondence of tactile sensors). The clear perfocman
sensory channel on the categorisation process. drop in thesesubstitution testsconcerning tactile sensation
clearly indicates that, for position A, the agents heavélyr

on tactile sensation to distinguish the ellipsoid from thbese

d to correctly perform the categorisation task.

The results of this first series sfibstitution testtell us that,
for all the agents, the replacement of the sensory infoomati
originated by the arm proprioceptive sensors and by tRE
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Fig. 6: Graphs showing the results sdibstitution testgon-
Fig. 5: Graphs showing, for agents;, As, A4, and Ay, the cerning the readingg; with ¢ = 8,..,17 of all the possible
results of substitution testsconcerning the readings of armcombinations of two elements of the tactile sensors fortjpwsi
proprioceptive sensors, tactile sensors, and hand pgptive A. Each square is coloured in shades of grey. The grey scale is
sensors for position A (see black columns) and for position foportional to the percentage of success, with white atitig
(see grey columns). combinations in which the agent is 100% successful, andkblac
combinations in which the agent is 100% unsuccessful.

For position B, the results are slightly more heterogeneous

For agentA;, the results ofsubstitution testsndicate that \ve applied replacements to all the possible combinations of
both the replacement of tactile sensations and of the haig elements of the tactile sensors. Although this analysie
proprioceptive sensor produce about 20% performance diggen carried out on all the agents for position A, and on agent
(see Figure 5 white columns in correspondence of tactile and, and A, for position B, in the following we illustrate
hand sensors). For the other agents, tactile sensatiors ke@pdetails only the results ofd; (i.e., the best performing
on being extremely important for the correct categorisatib agent, see Table 1) for position!AThe results are shown
the objects (see Figure 5 white columns in correspondengerigure 6, in which, the grey scale of the small squares is
of tactile sensors). However, for agedt, the replacement proportional to the percentage of success, with white ititig
of the arm and of the hand proprioceptive sensor produceg@nbinations in which the agent is 100% successful, andblac
performance drop of about 40% in the case of the arm and 2@¥mbinations in which the agent is 100% unsuccessful. These
in the case of the hand sensors (see Figure 5 white columnsijbstitution testdid not produce clear cut results. However, by
correspondence of arm and hand sensors). Thus, we concligding at Figure 6 we can see that there are specific sensors
that, for agent4; the categorisation of the ellipsoid in positionyhich, when disrupted in combination with any other sensor,
B is performed by exploiting information distributed ovelproduce a clear performance drop. In particular, disrustio
two sensory channels, that is tactile and hand sensors. Hpplied to the reading of the tactile sensors placed on ihe th
information provided by the two sensory channels seems gfalange of the middles finger (i.€42), and in minor terms,
be fused together in a way that, for several orientations, thisruption applied to the reading of the tactile sensorsqula
lack or the unreliability of information from one channeinca gn the first phalange of the ring finger (i.€5) induce the
be compensated by the availability of reliable informafimm  agent to mistake the ellipsoid for the sphere. We conclude
the other channel (data not shown). The other agents seenhig, agentA; heavily relies on the patterns of activation
strongly rely on tactile sensation, with ageaf that makes of tactile sensors in which the reading &f, and I;5 are
also use of arm and hand sensation to discriminate the sbjegfrticularly important to distinguish the ellipsoid frorhet
Given that, tactile sensation is the major source of discrirgphere. For what concerns the other agents, the performance
inating cues in order to distinguish spheres from ellipsaid of agentAs drops in position A when substitutions concern
position A, for all the selected agents, and in position B fahe reading ofl;, in combination with any other tactile
Az, and A5, we pursue further investigations, to see whethgensor. In position B, a performance drop is recorded when
among the tactile sensors, there are any whose activatiaps gubstitutions concern the reading &f or I, in combination
a predominant role in the categorisation task. We begin byth any other sensor. Agent, in position A is particularly
running substitution testsn which we applied the kind of disrupted by substitutions concerning the readingefor I,
replacements described above only to single tactile senlor in combination with any other sensor. Agefif in position A
turned out that the categorisation abilities of the agerdshat is disrupted by substitution concerning the readind,gfwith
hindered by replacements which selectively hit the fumitig any other sensor, and df, or I;; with any other sensor in
of single tactile sensors. The performance of all the agemissition B. In conclusion, in those circumstances in whigh w
remain largely above 90% success rate (data not shown). observed a predominance of tactile sensation to carry @ut th
Thus, we proceeded by runnisgibstitution testsn which categorisation task, the agents tend to rely on combingtion
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of tactile sensors, with the tactile sensor placed on thel this computed in the following:

phalange of the middles finger basically more relevant than 1%
the other sensors for all the agents (data not shown). GSI(t) = 1 Z 2, With K = 180;
K k=1
. o 1 ifmPE < mP3;
C. On the dynamics of the categorisation process =20 i fmEE > mES.
In this section, we focus our attention on the dynamics of o otherwise; )
the categorisation process. More specifically, we analyst mPE — min (H(IF, I7))
what extent the sensory stimuli experienced while the agent Vi#£k kot
interact with the objects provide the regularities requiite mPsS = min(H(f,f,ff))
categorise the objects; (ii) to what extent the agents satce v
in self-selecting discriminative stimuli (i.e., stimuhat can w= {17 H(IF IP) = m""}y;zl
be unambiguously associated with either category); (iijvh V= |{f§g : H(f,f,ff) _ mES}w|

long the agents need to interact with the object before beinc};1 ) ) _ _

able to tell whether they are touching a sphere or an ellipsotvnere H(x, y) is the Hamming distance between tactile sensor
(iv) whether the categorisation process occurs instaotsstg '€@dings|z| means the cardinality of the set@Slequal to 1

by exploiting the regularities provided by single unamiigs  Means that at time stejthe closest neighbourhood of eath

sensory patterns or whether it occurs over time by integgati'S One or more elements of the S@ GSlequal to 0 means
the regularities provided by several stimuli. that at time step t the closest neighbourhood of egciis one

To answer these questions we run qualitative and quantif4-M°re elements from the séf. As shown in Figure 7a,
tive tests. The former are observations of the trajectarigge [0 @9entA; position A, theGSI(f) tends to increase from
categorisation outputs in the two-dimensional categteisa 220Ut 0.5 at time step 1 to about 0.9 at time step 200, and
space{o(y(t)sr + Bar), o(y(t)as + Bas)}, in single trials. '€MAins around 0.9 until time step 400. This trend suggests
The latter are tests that further explore the dynamics of tfjdt during the first 200 time steps, the agent acts in a way to
categorisation processes by taking advantage of the facirth bring forth those tactile sensors readings which facéitéte
both positions almost all the best evolved agents exploiii¢a object identification and classification task. In other vepiitie

sensation to carry out the task. The quantitative tests bega 2€haviour exhibited by the agent allows it to experience two
carried out on all the agents for position A, and on agehts classes of sensory states which tend to become progrgssivel

and 45, for position B. In the following, we illustrate in details MOT€ Separated in the sensory space. However, the fact that
only the analysis concerning; (i.e., the best performing the GSldoes not reach the value of 1.0 indicates that the two
agent, see Table I) for position A. However, it turned o i"ouPS of sensory patterns belonging to the two objectsatre n
that, successful categorisation strategies are veryairfiom Ully separated in the sensory space. In other words, some of

a behavioural point of view, and in terms of the mechanisn{d€ Sensory patterns experienced during the interactioms w

exploited to perform the task. Therefore, the reader shoutd ellﬁpsoid are very similqr or iQenticaI {0 sensory paser
consider the operational description df representative of €XPerienced during interactions with the sphere and viceave

the categorisation strategies 4§, A4, and A5 in position A, To analyse in more details to what extent the stimuli
and of A3 and 45 in position B, experienced by the agent could be associated to the correct
The first two tests aim at establishing to what extent the the wrong category we calculated tBerepresentativness
stimuli experienced byA; during its interactions with the The latter refers to the probability with which a single tizct
objects provide the regularities required to categorigedh- sensors pattern is associated to the category ellipsoiel Eth
jects. We begin our analysis by computing a slightly modifie@presentativhess computed on a set of 32.400 trials, given
version of the Geometric Separability Index (hereaftéerred by repeating 180 times each the 180 trials corresponding to
to asGSl). The GS|, originally proposed by Thornton [31], is 180 different ellipsoid initial orientations, from® to 179°.
an estimate of the degree to which tactile sensors readingring these trials, for each single tactile sensors pattee
associated with the sphere or with the ellipsoid are sepdratecorded the number of times each pattern appears during
in sensory space. We built four hundred data sets, one foteraction with the ellipsoid/{’) and during interactions with
each time step with the ellipsoid (i.e{f,f},ﬁ)l), and four the sphere /). The E-representativnesef a single pattern
hundred data sets, one for each time step with the spheregiven by (N%). It is important to notice that ark-
(i.e., {I7}18%). Where, IF is the tactile sensors readingrepresentativnesef 1.0 or 0.0 corresponds to fully discrimi-
experienced by the agent while interacting with the elligsonative stimuli that can be unambiguously associated wigh th
at time step t of triak; and ff is the tactile sensors readingellipsoid or the sphere category, respectively, while B5
experienced by the agent while interacting with the sphererapresentativnessorresponds to fully ambiguous stimuli. The
time step t of trialk. Recall that, trial after trial, the initial graph in Figure 7b refers to thE-representativnesef the
rotation of the ellipsoid around the z-axis changes1®f last 20 patterns (i.e, patterns recorded from time step 880 t
from 0° in the first trial to 179° in the last trial. Each trial time step 400) of single successful trials of test P desdribe
is differently seeded to guaranteed random variations é tBection VII-A. Each trial refers to a different initial oriation
noise added to sensors readings. At each time step G8le of the ellipsoid. A quick glance at Figure 7b indicates that
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Fig. 7: Graphs showing: (a) the Geometric Separability ¥\n@&Sl); (b) theE-representativnessf the tactile sensors patterns
recorded in the last 20 time steps of 180 different trialshwifte ellipsoid; (c) the percentage of succespiie-substitution
tests(see triangles) ang@ost-substitution testésee empty circles); (d) the percentage of success atvihe@ow-substitution
tests

there are trials in which the agent has to deal with tactiley A; in interaction with the ellipsoid with those experienced
sensors patterns that have very |&arepresentativnesd hat in interaction with the sphere. In a first series of testgnred

is, they are very weakly associated with the ellipsoid.d?att to as pre-substitution testssubstitutions have been applied
with very low E-representativhestend to appear in trials from the beginning of each trial up to time step t where t
in which the initial orientation of the ellipsoid is chosem i = 1,...,400. In a second series of tests, referred tpes-

the interval75°, ..., 175°. These patterns may have at leagubstitution testssubstitutions have been applied from time
two not mutually excluding origins: (i) they may come fronstep t, where t = 1, ..., 400, to the end of a trial t=400.
the fact that the agent is not able to effectively positioa tHEach test has been repeated at intervals of 10 time steps. For
object in a way to unequivocally say whether is a spheegentA; position A, the results opre-substitution testand

or an ellipsoid; (ii) they may be determined by the noispost-substitution testare illustrated in Figure 7c. This graph
injected into the system. The fact that ageht succeeds in shows that, regardless of the rotation of the ellipsoid; pre
correctly discriminating the category of the objects alsdry substitutions which do not affect the last 100 time steps do
trials in which it does not experience fully discriminatingnot cause any performance drop. oe-substitution testhat
stimuli indicates that the problem is solved by integratingr involve more than 300 time steps the amount of performance
time the partially conflicting evidences provided by sequesn drop is higher for longer substitution periods (see triasgl
of stimuli. In fact, if the agent employs a reactive strategyn Figure 7c). Similarly, the agent does not incur in any
(i.e., no need of memory structure), it would be deceivaaerformance drop if post-substitutions affect less thahtiie

by those sensor patterns, very strongly associated with #teps. Foipost-substitution testthat affect more than the last
sphere, that appear in interaction with the ellipsoid. Wnd&00 time steps the amount of performance drop is higher for
this circumstance an agent that employs a reactive stratédgyger substitution periods (see empty circles in Figurg 7c

would mistake the eIllpSOId for a Sphel’e. Since, in Splteheft By |ooking at the results qbre_substitution testand post_
deceiving patterns, the agent is 100% successful, it loéks | sypstitution testswe suppose that the agent is integrating
the agent is employing a discrimination strategy which usegnsory states over time for a certain amount of time around
the dynamic properties of its controller. time step 310. In particular, the results shown in Figure 7c

Other evidence that supports the integration over time hyeem to indicate that, for what concerns agédnt position
pothesis come from additional analyses conducted emmoyif, the interactions between the agent and the objects can
further types ofsubstitution testsln particular, we substitute, be divided into three temporal phases that are qualitativel
for a certain time interval, tactile sensors patterns eérpeed different from the point of view of the categorisation prese
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Fig. 8: Graphs showing: (a) trajectories of the decisiorpotg in the two-dimensional categorisation spaegy(t)s7 + B47),
o(y(t)ss + Pas)), with (@) t = 50, ..., 400, recorded in a successful trialhwite ellipsoid initially orientated at15°. Big

and small rectangles at 100, 200, 300, and 400 time stepsatedthe bounding box of the ellipsoid and sphere category,
respectively; (b) thé-representativnessf the tactile sensory patterns recorded in a successélivtith the ellipsoid initially
orientated atl 15°.
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(i) an initial phase whose upper bound can be approximateyaph seems to suggest that the performance of the agent is
fixed at time step 250, in which the categorisation processa way correlated to the amount of empirical evidences it
begins but in which the categorisation answer produced hyanages to gather over time starting from about time step 270
the agent is still reversible; (ii) an intermediate phaseseh until time step 340.

upper bound can be approximately fixed at time step 350, inFipally, additional evidence in support of a dynamic cate-
which very often a categorisation decision is taken on tissbagorisation process based on the integration of tactileagims
of all previously experienced evidences; and (iii) a finahg® oyer time come from a qualitative analysis of the trajee®of
in which the previous decision (which is now irreversiblg) ithe categorisation outputs in the two-dimensional caisger
maintained. The fact that the categorisation decision &ty  tion space{c(y(t)ar + Bar), o(y(t)as + Bas)}, in single trials.
A; during the initial phase is not definitive yet is demonstliatq:igure 8a shows the trajectory recorded My in a trial in
by the fact that substitutions of the critical sensory stimuyhich the initial orientation of the ellipsoid was5°. As we
performed during this phase do not cause any performangg, see A; moves rather smoothly in the categorisation space
drop (see Figure 7c, triangles). The fact that the interatedi by reaching in slightly less than 2 s (200 time steps) theecorr
phase corresponds to a critical period is demonstrated Qonding bounding box. If we now look at Figure 8b, we see
the fact thatpre-substitution testand post-substitution tests nat during the interaction with the ellipsoid; experiences:
affecting this phase produce a significant performance drgp few stimuli with a high percentage @&-representativness
(see Figure 7c). The fact that, takes an ultimate decision e  stimuli that are experienced in interaction with dn e
during the intermediate phase is demonstrated by the fﬂﬁ‘soid object most of the times); (i) several stimuli wigm
that post-substitution testaffecting the last 80 time steps,intermediate level oE-representativnesé.e., stimuli that are
approximately, do not produce any drop in performance (Sg@perienced in interaction with the ellipsoid and the spher
Figure 7c, empty circles). in about the 3/4 and 1/4 of the cases, respectively); and (iii
In a further series of tests, we looked at whether there is afalv stimuli with a low percentage d-representativneds.e.,
eventually how big it is the hypothesised temporal phase $timuli that are experienced in interaction with a spheijeatb
which the agent is supposed to integrate tactile sensdesstamost of the times). If we visually compare Figure 8a with
To look at this issue, we employ tl@indow-substitution tests Figure 8b, we notice that the experienced sensory patterns
In these tests, substitutions are applied before and aftewih different percentage oE-representativhessippear to
temporal window centred around time step 310. The lengthive the categorisation output in different regions of the
of the temporal window with no substitutions can variethe categorisation space, corresponding to the ellipso@l a
from 1 time step (i.e., no substitution at time step 310) tine sphere bounding box, respectively. The final position of
69 time steps (i.e., no substitution from time step 276 the categorisation output (i.e., the categorisation dmtjs
344). As shown in Figure 7d, the wider the window with naherefore is not determined by a single or few selected jpette
substitutions the higher the performance of the agent, witlt is rather the result of a process extended over time intwhi
100% success rate when no substitutions are applied tgatially conflicting evidence provided by the experienced
temporal phase of about 50 time steps or longer. Althoug#ctile sensation is integrated over time. Similar dynamic
the graph in Figure 7d does not exclude the possibility theave been observed by inspecting all other trials. Gives thi
the agent employs an instantaneous categorisation prahessevidence, we conclude that the performance of all best edolv



TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, MONTH YEAR 13

agents in position A, and of agert; and A5 in position B, using the experienced evidence to confirm and reinforce the
is the result of a dynamic categorisation process baseden tlurrent tentative decision or to change it. Similar striegeg
integration of tactile sensation over time. have been observed in the other three best evolved agetds (da
not shown). On this aspect see also [22, 33, 34].

The importance of the ability to integrate the regularities
provided by sequences of stimuli is also confirmed by the
In this paper, we described an experiment in which @sults obtained in a control experiment, replicated 1@&4&m
simulated anthropomorphic robotic arm acquires an alitity in which the agents were provided with reactive neural con-

categorise un-anchored spherical and ellipsoid objeetsepl trollers (i.e., neural networks without recurrent coniuats,
in different positions and orientations over a planar stefa with simple logistic internal neurons, and in which all athe
The agents neural controller has been trained through garameters were kept equal to those described in Section V)
evolutionary process in which the free parameters of theateuindeed the performance displayed by the best evolved ihdivi
networks are varied randomly and in which variations afgals in this control experiment were significantly worsentha
retained or discarded on the basis on their effects on tligyse observed in the basic experiment in which the agents
overall ability of the robots to carry out their task. Thisglies were allowed to keep information about previously experi-
that the robots are left free to determine (i) how to interaehced sensory states (data not shhwAlthough we cannot
with the external environment (by eventually modifying thexclude that different experimental scenarios (e.g., &tes
environment itself); (ii) how the experienced sensory atim involving agents provided with different neural architeet
are used to discriminate the two categories; and (iii) how tind/or different physical characteristics of the agents)la
represent in the categorisation space each object categorylead to qualitatively different results, the analysis & tesults
The analysis of the obtained results indicates that thetagenbtained in this specific scenario overall indicates thattétsk
are indeed capable of developing an ability to effectivelfoes not admit pure reactive solutions or alternativelyt tha
categorise the shape of the objects despite the high simitch solutions are hard to synthesise through an evolutiona
larities between the two types of objects, the difficulty ofirocess. This may also be due to functional constraintstwhic
effectively controlling a body with many DoFs, and the neelimit the movements of the robotic arm (e.g., the fact that
to master the effects produced by gravity, inertia, cdlisi the fingers can not be extended/flexed separately, or tha the
etc. More specifically, the best individuals display an iapil was no adduction/abduction movement of the fingers), as well
to correctly categorise the objects located in differersiffans as other implementation details (e.g., the dimensions ef th
and orientations already experienced during evolutionyels objects with respect to the hand). This issue will be defipite
as an ability to generalise their skill to objects positieamsl investigated in future works.
orientations never experienced during evolution. Moreahe The analysis of the role played by different sensory channel
agents are robust enough to deal with categorisation taghkdicates that the categorisation process in the best egaiv
in which the longest radius of the ellipsoid is progressiveldividuals is primarily based on tactile sensors and seadgda
increased. Other distortions on the original objects dsiers on hand and arm proprioceptive sensors (with arm proprio-
result more disruptive. These results prove that the methogptive sensors playing a role only for ageht position B,
proposed can be successfully applied to scenarios whiebe Figure 5). It is interesting to note that at least one ef th
appear to be more complex than those investigated in previdiest evolved agents (i.e4;) does not only display an ability
works based on similar methodologies. to exploit all relevant information but also an ability tosgi
The analysis of the best evolved agents indicates that dnéormation coming from different sensory modalities irder
fundamental skill that allows them to solve the categoigsat to maximise the chance to take the appropriate categanisati
problem consists in the ability to interact with the extérnalecision [see also 32]. More specifically, the ability toelse
environment and to modify the environment itself so to exp@&formation provided by the tactile and hand proprioceptiv
rience sensory states which are progressively more differsensors, for objects located in position B, allows the rdbot
for different categorical contexts. This result represeat correctly categorise the shape of the object in the majafity
confirmation of the importance of sensory-motor coordovati the cases even when one of the two sources of information is
and more specifically of the active nature of situated categocorrupted (see Figure 5).
sation, already highlighted in previous studies [e.g., 2%}, For the future, we plan to validate the obtained results
On the other hand, the fact that sensory-motor coordinatibg porting the best evolved controller on the I-CUB hu-
does not allow the agents to experience fully discrimireatiimanoid robotic platform [see 35]. Note that, the porting may
stimuli demonstrates how in some cases sensory-motor cagguire only few changes. In particular, while structwrall
dination should be complemented by additional mechanisntise simulated arm described in Section Il is identical to
Such mechanism, in the case of the best evolved individudlse real I-CUB, from the functional point of view, it may
consists in an ability to integrate the information prowd®y not match the dynamics of the tendon actuators moving
sequences of sensory stimuli over time. More specifically, vihe arm of the real I-CUB. The simulation-reality gap can
brought evidence showing that ageht categorise the currentbe closed by firstly quantitatively estimating the mismatch
object as soon as it experiences useful regularities aridhtba between simulation model and real robot and by appropyiatel
categorisation process is realised during a significanibger adjusting the system to undo this mismatch. Moreover, we
of time (i.e., about 50 time steps) in which the agent keeptan to scale up the experiment to a larger number of object

VIIl. Di1scussiION ANDCONCLUSIONS
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categories, and to study experimental scenarios in whieh th
robots are rewarded for the ability to perform a maniputatio
task (e.g., grasping different type of objects) that presiig
requires categorisation rather than directly for the gbilo

perceptually categorise the shape of the objects.
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