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Abstract. The investigation of community structures in networks is an important issue in many domains
and disciplines. In this paper we present a new class of local and fast algorithms which incorporate a
quantitative definition of community. In this way the algorithms for the identification of the community
structure become fully self-contained and one does not need additional non-topological information in order
to evaluate the accuracy of the results. The new algorithms are tested on artificial and real-world graphs.
In particular we show how the new algorithms apply to a network of scientific collaborations both in the
unweighted and in the weighted version. Moreover we discuss the applicability of these algorithms to other
non-social networks and we present preliminary results about the detection of community structures in
networks of interacting proteins.

PACS. 89.75.Hc Networks and genealogical trees – 87.23.Ge Dynamics of social systems – 87.90.+y Other
topics in biological and medical physics

1 Introduction

The study of complex networks has become a fast growing
field in many different domains [1,2]. Examples range from
technological systems (the Internet and the web [3,4]) to
biological (epidemiology [5,6], metabolic networks [7–9],
food webs [10–12]) and social systems [13,14] (scientific
collaborations, structure of large organizations).

One of the problems that attracted a great deal of in-
terest very recently is the identification of the so-called
community structure. The concept of community is very
common and it is linked to the classification of objects
in categories for the sake of memorization or retrieval of
information. From this point of view the notion of commu-
nity is very general and, depending on the context, can be
synonymous of module, class, cohesive subgroup, cluster,
etc. Among the many contexts where this notion is rele-
vant it is worth mentioning the problem of modularity in
metabolic or cellular networks [9,16] or the problem of the
identification of communities in the web [17]. This last is-
sue is relevant for the implementation of search engines of
new generation, content filtering, automatic classification
or the automatic realization of ontologies.

Given the relevance of the problem it is crucial to con-
struct efficient procedures and algorithms for the identi-
fication of the community structure in a generic network.
This, however, is a highly nontrivial task.
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Qualitatively, a community is defined as a subset of
nodes within the graph such that connections between
the nodes are denser than connections with the rest of
the network. The detection of the community structure in
a network is generally intended as a procedure for map-
ping the network into a tree (Fig. 1). In this tree (called
dendrogram in social sciences) the leaves are the nodes
while the branches join nodes or (at higher level) groups
of nodes, thus identifying a hierarchical structure of com-
munities nested within each other.

Several algorithms exist in literature to deal with this
problem and in the next section we shall give a brief
overview of them. A dendrogram, i.e. a community struc-
ture, is always produced by the algorithm down to the
level of single nodes, independently from the type of graph
analyzed. Typically no prescription is contained in the al-
gorithms to discriminate between networks that are actu-
ally endowed with a community structure and those that
are not. So one needs additional, non topological, informa-
tion on the nature of the network to understand which of
the branches of the tree have a real significance. Without
such information it is not clear at all whether the identi-
fication of a community is reliable or not. Possible ways
out of this problem have been proposed by Wilkinson and
Huberman [18] (limited to the lowest level of the com-
munity structure and specific to algorithms based on be-
tweenness) and by Newman and Girvan [19] who have
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Fig. 1. A simple network (left) and the corresponding dendrogram (right).

introduced an a posteriori measure of the strength of the
community structure, the so-called modularity.

Another crucial issue about algorithms for the detec-
tion of community structures is the computational cost in
time. This has stimulated the research about new and fast
algorithms to solve the problem [20–22].

In this paper we follow the approach of [20] and we
present a new class of self-contained algorithms which in-
corporate a quantitative definition of community. In this
way the algorithms for the identification of the commu-
nity structure become fully self-contained and one does
not need additional non-topological information in order
to evaluate the accuracy of the results. We test the perfor-
mance of our algorithm on artificial and real-world graphs.
In particular we show how the new algorithms apply to a
network of scientific collaborations both in the unweighted
and in the weighted version. Moreover we discuss the ap-
plicability of these local algorithms to other non-social
networks and we present preliminary results about the de-
tection of community structures in networks of interacting
proteins.

The outline of the paper is as follows. In Section 2 we
present an overview of the existing algorithms to detect
community structures. In Section 3 we present the defini-
tions of communities and show how these definitions can
be implemented in a generic divisive algorithm in order
to make it self-contained. In Section 4 we present tests
of the accuracy of our local algorithm (as compared to
other algorithms) on some computer-generated and real
networks. Section 5 is devoted to the extension of the new
local algorithm to weighted graphs, focusing in particular
on the network of scientific collaborations. Section 6 dis-
cusses the application of our algorithm to non-social net-
works. We consider in particular the example of a network
of interacting proteins. We finally draw some conclusions
in Section 7.

2 Overview of the existing algorithms

When the size of the networks analyzed is small, it is rel-
atively easy to check exhaustively on all network subsets
whether they fulfill some given definition of community.
Nowadays, networks of many thousands or millions of ver-
tices are investigated. It is clearly impossible to perform

a complete analysis of such huge data sets. Attention has
then been shifted toward a more limited goal, which never-
theless aims at extracting the key information about the
community structure of a network. People have started
to look for automated procedures to classify vertices in
a network in a nested hierarchy of communities. The fi-
nal output of such a procedure is a dendrogram, i.e. a
tree which iteratively classifies the vertices (leaves) into
groups, groups of groups and so on, up to the highest
level (root), which contains the whole network. The inter-
section of the dendrogram with a line defines a subdivision
of the graph into communities, which is coarser as the line
is closer to the root.

There are many possible ways to build a dendrogram.
Leaving for the final section the discussion about how to
assess which dendrogram is best, we now concentrate on
the different types of algorithms to construct a dendro-
gram.

Algorithms are of two types, depending on the order in
which the dendrogram is built: agglomerative and divisive.

Agglomerative algorithms start from the single net-
work vertices and group them iteratively. Traditional hier-
archical clustering methods [23] belong to this class. They
start by computing for each pair of nodes some quantity
that measures how close the pair is in the network. Ex-
amples of such measures are suitably defined distances or
correlations. Then nodes closer than a certain threshold
are grouped and the procedure is iterated. A new type
of agglomerative algorithm has been recently proposed
by Newman [21]. At each step nodes or group of nodes
are joined so that the pairing maximizes a quantity called
modularity, which measures how much a division in com-
munities is significantly different from a random one.

Opposite to agglomerative ones, divisive algorithms
search for edges that are between different tightly-bound
groups. By removing such edges, communities are singled
out. Divisive algorithms are distinguished by the differ-
ent quantities used to identify such edges between com-
munities. Girvan and Newman (GN) [24] have recently
shown that the edge betweenness is a useful quantity for
this goal. To compute it one must determine the shortest
path between any pair of nodes in the system [25]. The
number of such shortest paths going through a certain
edge is its betweenness. Clearly edges that connect dense
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regions of the graph tend to have higher betweenness
values. Other divisive algorithms have been proposed by
Zhou [26] and by Newman and Girvan [19]. As the GN
algorithm, they focus on non local properties, related to
diffusion of walkers on the networks. They tend to score
worse than the GN method.

Very recently we have proposed a new type of divi-
sive algorithm, which is instead based on a local prop-
erty, related to the number of cycles that include a certain
edge [20]. In the simplest case, when the cycles considered
are triangles, the quantity one looks at is

C̃
(3)
i,j =

z
(3)
i,j + 1

min[(ki − 1), (kj − 1)]
, (1)

where z
(3)
i,j is the number of triangles built on edge (i, j),

min[(ki − 1), (kj − 1)] is the maximal possible number of
them (ki is the degree of node i). Imagine having two
groups of nodes with a large number of connections inside
them and only one link connecting them. Clearly in such
case the number of triangles z

(3)
i,j constructed on the edge

between groups will be zero, while edges in the groups will
have higher values of z

(3)
i,j . Hence we expect low values of

the coefficient C̃
(3)
i,j to characterize inter-community edges

and higher values for edges that link nodes in densely con-
nected regions. This expectation is confirmed empirically
by the finding that in some networks edge betweenness
and the coefficient C̃

(3)
i,j are strongly anticorrelated [20].

Due to of the local nature of the quantity that is con-
sidered, the application of this algorithm requires a much
shorter computational time than non local ones.

The definition of equation (1) can be straightfor-
wardly generalized by considering higher order cycles.
Coefficients of order g are defined as:

C̃
(g)
i,j =

z
(g)
i,j + 1

s
(g)
i,j

, (2)

where z
(g)
i,j is the number of cyclic structures of order g

the edge (i, j) belongs to, while s
(g)
i,j is the number of pos-

sible cyclic structures of order g that can be built given
the degrees of the nodes. In this way a whole set of de-
tection algorithms, smoothly interpolating between local
and nonlocal features, can be defined [20].

3 Definitions of communities
and self-contained algorithms

In the previous section we have briefly mentioned the dif-
ferent types of algorithm that, given a graph, construct a
corresponding dendrogram. This task, however, is only the
first step in the identification of the community structure
of a network. This is made evident by considering the case
of the Erdos-Renyi random graph [27]. By construction,
such a network has no communities, since on average each
group of nodes has the same density of connections inside
or outside it. However, the application of algorithms pre-
sented above always produces a dendrogram that reflects

the small fluctuations with respect to the average pattern
of connections.

In order to distinguish between random graphs and
networks with robust community structure, we have to
check whether the candidate communities detected by the
algorithms are really such according to some quantita-
tive and unambiguous definition. If the subgraph does not
meet the criterion, it should not be considered as a com-
munity and the corresponding branch in the dendrogram
should not be drawn.

Many definitions of community are given in the liter-
ature. Here we use two of the simplest possible of them,
which correspond to rather intuitive prescriptions and are
equivalent or very similar to other widely used [23].

The basic quantity we consider is ki, the degree of a
generic node i, which in terms of the adjacency matrix
Ai,j of the network G is ki =

∑
j Ai,j . If we consider a

subgraph V ⊂ G, to which node i belongs, we can split
the total degree in two contributions:

ki(V ) = kin
i (V ) + kout

i (V ). (3)

kin
i (V ) =

∑
j∈V Ai,j is the number of edges connect-

ing node i to other nodes belonging to V . kout
i (V ) =∑

j /∈V Ai,j is clearly the number of connections toward
nodes in the rest of the network.

Definition of community in a strong sense

The subgraph V is a community in a strong sense if

kin
i (V ) > kout

i (V ), ∀i ∈ V. (4)

In a strong community each node has more connections
within the community than with the rest of the graph.

Definition of community in a weak sense

The subgraph V is a community in a weak sense if∑
i∈V

kin
i (V ) >

∑
i∈V

kout
i (V ). (5)

In a weak community the sum of all degrees within V
is larger than the sum of all degrees toward the rest of the
network.

Clearly a community in a strong sense is also a com-
munity in a weak sense, while the converse is not true.

From the definitions given above, it is apparent that,
if a network is randomly split in two parts, one very large
and the other with only few nodes, the very large part
almost always fulfils the definition of community. In or-
der to deal with this problem, let us consider again the
Erdös-Renyi random graph [27]. If we cut it at random
in two parts containing αN and (1 − α)N nodes, respec-
tively, it is easy to evaluate analytically the probability
P (α) that the subgraph containing αN nodes fulfils the
weak or the strong definition.
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To see this, let us consider the more general case of
a graph of size N that we divide in Nsub sub-graphs Vj

(j = 1, ..., Nsub) each of the same size Nin = N/Nsub.
We insert edges in the graph with a probability pin for
pairs of nodes belonging to the same sub-graph (inward
edges) and probability pout of linking two nodes belonging
to different sub-graphs (outward edges).

We start computing the probability that a sub-graph
Vj satisfies the definition of community in the strong case.
The probability that node i ∈ Vj has m inward edges is
given by

inPm
Nin−1 = Cm

Nin−1p
m
in(1 − pm

in)Nin−1−m. (6)

where Cm
Nin−1 is the binomial coefficient. Analogously the

probability that node i ∈ Vj has n outward edges is
given by

outPn
Nout

= Cn
Nout

pn
out(1 − pn

out)
Nout−n, (7)

where Nout = N −Nin. Therefore the probability that the
node i ∈ Vj has exactly n outward and m inward edges is

W (m, n) = inPm
Nin−1

outPn
Nout

, (8)

and the probability that node i belongs to the commu-
nity Vj , in the sense of the strong definition, is

P (i ∈strong Vj) =
∑
n<m

W (m, n). (9)

The probability that all nodes in subgraph Vj fulfil the
strong condition is P (i ∈strong Vj)Nin (in the approxi-
mation that variables describing the presence of an edge
between two nodes are independent) and the probability
for all subgraphs to be communities is

R0 =

[ ∑
n<m

W (m, n)

]NinNsub

. (10)

For the weak definition, a similar calculation yields

R0 =

[ ∑
r<2s

W(s, r)

]Nsub

(11)

where W(s, r) = inP s
Nin(Nin−1)/2

outP r
NinNout

.
We can now use these results to compute the probabil-

ity P (α) that a subgraph of αN nodes, randomly chosen
in a random graph, fulfils the definitions. One simply sets
Nin = αN , Nout = (1−α)N and pin = pout = p. Then for
the strong definition P (α) =

[∑
n<m W (m, n)

]αN , while
for the weak definition P (α) =

[∑
r<2s W(s, r)

]
.

It is interesting to look at the limit for large N . For
the weak definition the probability P (α) becomes

P (α) =
1
2

[1 + erf(f(α, N, p)] , (12)

with
f(α, N, p) =

√
αp

2(1 − p)
(2α − 1)N. (13)
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Fig. 2. Comparison of the computational times taken by our
local algorithms (with g = 3 and g = 4) and by the GN algo-
rithm to generate the whole hierarchy of subgraphs (putative
communities) of random graphs. No criterion to validate the
communities was imposed. While the GN algorithm features
a scaling N3 for the computational time, our local algorithms
feature an asymptotic N2 scaling with a much smaller prefac-
tor.

On the other hand, for the strong definition the prob-
ability P (α) becomes

P (α) =
{

1
2

[1 + erf(f(α, N, p)]
}αN

, (14)

with
f(α, N, p) =

√
p

2(1 − p)
(2α − 1)

√
N. (15)

Hence in the limit N → ∞, P (α) tends to a step function
in both cases.

Therefore it is extremely likely that, in a random graph
randomly cut in two parts, the largest one is a commu-
nity according to the previous definitions. However it is
extremely unlikely that both subgraphs fulfil simultane-
ously the definitions: therefore if we accept divisions only
if both groups fulfil the definition of community, we cor-
rectly find that a random graph has no community struc-
ture. We extend this criterion to generic networks: if less
than two subgraphs obtained from the cut satisfy the def-
initions, then the splitting is considered to be an artifact
and disregarded. It is important to remark that the quan-
tities appearing in equations (4) and (5) must always be
evaluated with respect to the full adjacency matrix.

In summary, in this section we have used some quan-
titative definitions of community to make a generic detec-
tion algorithm self-contained. This means that the proce-
dure is fully automated, no parameter has to be tuned and
the dendrogram produced consists only of subgroups that
fulfil the definition of community chosen. It is straightfor-
ward to do the same using other quantitative definitions.

4 Results for unweighted networks

Figure 2 compares the computational times of our local
algorithm with the ones of the GN algorithm. The task
considered was the generation of the whole hierarchy of
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Fig. 3. Plot of the dendrograms for the Zachary’s Karate Club network, obtained using the Girvan-Newman algorithm (left)
and our local algorithm with g = 4 (right). Different symbols denote the individuals belonging to the two groups formed after
the Club split.

subgraphs of random graphs of increasing size N and fixed
average degree (M ∼ N).

The new local algorithm presented in Section 3 is
clearly faster than algorithms based on nonlocal quanti-
ties. In this section we show, with some explicit examples,
that it is also as accurate. More evidence can be found
in reference [20]. One of the networks that have become
a benchmark for the validation of algorithms to detect
communities is the graph of acquaintances in the Karate
Club studied by Zachary [28]. Results of the application
of both the GN and the new algorithm to such network,
are presented in Figure 3.

Some observations are in order. With both types of al-
gorithm the first separation divides the set of nodes into
two groups of roughly the same size. These two groups cor-
respond to the eventual split of the club that followed a
dispute between the manager and the trainer. Hence both
algorithms perform well with respect to this main separa-
tion, since the first meaningful division into communities
coincides with the pattern of the eventual breakup, with
the exception of node 3, which is misclassified in both
cases [29]. Interestingly, other separations in communities
are found. In particular both main groups are in their turn
subdivided into two sub-communities, with a remarkable
overlap between the two methods. It is important to re-
mark that the algorithms are self-contained: no additional
non-topological information has been used. The structure
found reflects only properties of the network topology.

The self-contained nature of the algorithms allows a
more quantitative test of their accuracy. The benchmark
is an artificial model with a well controlled community
structure built in. It is the simple network with N nodes
divided into Nsub groups already introduced in the previ-
ous section. As the probability pout of outward connections
grows from zero, the community structure in the network
becomes less well defined. The analytical results presented
in the previous section are immediately applicable to this

model. To test the algorithm we generate a large num-
ber of realizations of the artificial graph for several values
of the probability pout, keeping the average degree fixed.
On each realization we apply the self-contained detection
algorithm and construct the dendrogram. Then we count
the fraction R0 of times the dendrogram reproduces, at
the lowest level, the ’perfect’ community structure, i.e.
Nsub communities each including exactly all the nodes.
This is a quite sharp measure of success. The misclassifica-
tion of a single node is considered to be a complete failure.
With this prescription, formulas (10) and (11) give the ex-
pected value of R0 for the strong or the weak definition of
community, respectively.

Results are presented in Figure 4 for N = 120 nodes
and Nsub = 6 groups. They show that the algorithms are
able to detect the community structure almost perfectly
when the strong definition of community is used. The per-
formance is not as satisfactory with respect to the weak
definition. However the algorithms work better than what
these plots seem to suggest. For small pout it is actually
the analytical estimate that is not correct, since it does
not take into account the possibility that one or more of
the Nsub communities could be, in their turn, formed by
two sub-communities satisfying the definitions. This event
happens for very small values of pout and relatively small
system sizes. For larger values of pout the apparent poor
performance of the algorithm is due to the very restrictive
definition of the success rate R0. In the region where com-
munities are still well defined (analytical R0 close to 1)
but R0 for the algorithm is practically zero, what occurs
is that the detection algorithms build almost perfect den-
drograms with only few nodes misclassified. In any case
Figure 4 shows that the local and GN algorithms give
comparable accuracy.

We then conclude that the local algorithm for the de-
tection of the community structure performs as well as the
GN in these controlled tests.
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Fig. 4. Test of the efficiency of the different algorithms in the analysis of the artificial graph with six communities. The
construction of the graph is described in text. Here N = 120 and pin is changed with pout in order to keep the average degree
equal to 10. (Left) Strong definition: fraction of successes for the different algorithms compared with the analytical probability
that six communities are actually defined. (Right) Weak definition: same quantities as in the left graph.

5 Extension to weighted networks

So far we have considered only unweighted (or dichoto-
mous) networks, i.e. systems where all connections are
exactly the same. Many interesting networks are instead
weighted (or valued), i.e. each edge is characterized by a
numerical value Ai,j that indicates how strong the connec-
tion is. While it is always possible to neglect the weights
as a first approximation in the analysis of the community
structure of a network, it is clear that weights may carry
crucial pieces of information. The community structure of
a weighted dendrogram may be very different from the
one of its unweighted counterpart.

The definitions presented in Sections 2 and 3 must
be suitably modified for considering weighted graphs.
The generalization of the weak and strong definitions is
straightforward. They remain formally the same, only the
meaning of the quantities kin

i and kout
i changes. Rather

than being the total number of connections (degree) to-
ward nodes in the same subgroup or nodes in the rest of
the graph, they measure the corresponding total weights.

We generalize the local algorithm for detecting com-
munities by simply taking equation (1) and multiplying
the number of triangles z

(3)
i,j by the weight of the edge Ai,j .

In this way strong edges will tend to have high values of
C̃

(3)
i,j and then will be cut later than edges with the same

topological local configuration but smaller weight.
An example of nontrivial weighted graph is the net-

work of scientific collaborations that can be inferred from
papers on the cond-mat electronic repository [14]. The
weight of an edge is proportional to the number of pa-
pers co-authored by the two scientists connected by it.
When such a weighted network is analyzed using the lo-
cal algorithm, one finds a dendrogram which differs in the
details from the one obtained when the weights are ne-
glected [20]. In particular the dendrogram is much deeper
(i.e. it features a larger number of generations) and there

is a larger number of small communities with size of the
order of 10 nodes or less. This is evident in Figure 5 where
the number of communities of size s is plotted versus s.
Apart from the increase of small communities it turns out
clearly that the power law decay with exponent 2 [15] is
the same with or without weight.

6 Social vs. non-social networks

Up to now we have only discussed examples of the so-
called social networks. It has been shown [30] how social
networks differ substantially from other types of networks,
namely technological or biological networks. The origin
of the difference has been shown being twofold. On the
one hand they exhibit a positive correlation between ad-
jacent vertices (also called assortativity) while most of
the other non-social networks [31–33] are disassortative.
On the other hand social networks show clustering coeffi-
cients well above those of the corresponding random mod-
els. In [30] Newman proposed that these differences could
be explained by the presence of a community structure.

If these results are consistent with our and other’s find-
ings about community structures in social networks, the
question concerning the existence of a community struc-
ture in non-social networks remains wide open.

From the perspective of our local algorithm, an inter-
esting insight comes from the study of the loops of arbi-
trary order [34,35]. In particular in [34] Caldarelli et al.
study the statistics of cycles of order four (equivalent to
the squares in our terminology) for four different types of
networks, two of them social (and assortative) and two
non-social (and disassortative). In all cases they report
values for the so-called average grid coefficient (the ex-
tension of the concept of clustering coefficient to cycles of
order four) which are two to four order of magnitude larger
than the corresponding coefficients of a random graph with
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Fig. 5. Size distribution of all the communities of scientists
identified in a weak sense by the algorithm described in Sec-
tion 2 for the unweighted (circles) and the weighted (squares)
graphs of scientific collaborations. In both cases the behaviour
is well reproduced by a power law with exponent −2.

the same average degree and size N . They conclude argu-
ing in favor of the presence of some sort of hierarchical
structures and well-defined communities.

Given the above considerations we think it is impor-
tant to check the outcomes of our algorithm, focused on
the existence of local cycles of generic order n, also to
non-social (and disassortative) networks.

A detailed analysis of this issue is beyond the scope of
the present paper and we refer the reader to a forthcoming
publication. Nevertheless we present some preliminary re-
sults obtained analyzing a network of protein interactions.
We have analyzed in particular the Yeast subset of the
Database of Interacting Proteins (DIP [36]) which con-
tains all the pairs of interacting proteins identified in the
budding yeast, Saccharomyces cerevisiae. In our dataset
4746 proteins were included with more than 15000 inter-
actions.

We applied our algorithm to identify communities to
this network and we obtained the corresponding trees
where only the communities satisfying the weak or the
strong definitions are drawn. An emerging difference with
respect to social networks analyzed in the previous sec-
tions is that the giant component of the network is not
split progressively in smaller and smaller subgroups, but
only very small communities separate. In Figure 6 we re-
port the size distribution of the small communities the
algorithm recognized in a weak sense. Also in this case
the distribution is compatible with a power-law with ex-
ponent −2.

The picture emerging from this analysis seems to point
in the direction of the existence of modules in the network,
i.e. groups of proteins that are highly interconnected with
each other but with a few links outside of the module and
carrying out some biological function. In [9] it has been
proposed the concept of hierarchical modularity to recon-
cile a scale-free topology for a network with the existence
of modules. This picture has been confirmed in [37] where
the scaling of the clustering coefficient has been studied for
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Fig. 6. Normalized size distribution of all the communities of
proteins identified in a weak sense by the algorithm described
in Section 2 for g = 3. The straight line has slope −2.

several databases of interacting proteins. In this perspec-
tive it is tempting to associate the concept of community
(as emerges from our or equivalent algorithms) to that of
module.

In order to have a zero-th order check of this hypothesis
it is important to check whether the communities our algo-
rithm identifies are composed by group of proteins with a
known equivalent functional classification. With this pur-
pose in mind we utilized the functional classification pro-
vided by the MIPS database (Munich Information Center
for Protein Sequences [38]) and reported in Table 1.

Since each protein of the DIP database can belong to
more than one MIPS functional class, for each protein i
belonging to the community k we have defined a vector vk

i
where each of the 18 components (one for each potential
functional class) is zero when the protein does not belong
to the corresponding functional class and it is equal to the
MIPS code when it does. We can define in this way the
an overlap index for each community, defined as:

δk =
Nk∑
i=1

Nk∑
j=i+1

2
Nk(Nk − 1)

vk
i · vk

j , (16)

where Nk is the number of proteins (not being not yet
clear-cut (98) or unclassified (99)) belonging to the kth
community, and the scalar product vk

i · vk
j is defined as

the ratio of the number of common components (differ-
ent from 0, 98 and 99) of the two proteins to the total
number of different components they express. The expres-
sion (16) provides then, for each community, with a quan-
tification of the homogeneity of the different proteins of
the community with respect to the functional classifica-
tion. In Figure 7 we report the results for the overlap index
as a function of the community size, for the communities
identified by our algorithm (for g = 3) in a weak sense.
For comparison we report, for each community, the same
quantity computed in a reshuffled network obtained keep-
ing exactly the same topology but reshuffling the labels of
the proteins on each node.
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Fig. 7. Overlap index for the communities of proteins found by our local algorithm with g = 3. See text for details.

Table 1. Functional Classification of proteins according to the
MIPS database [38].

MIPS code Functional Category

01 Metabolism
02 Energy
03 Cell cycle and DNA processing
04 Transcription
05 Protein synthesys
06 Protein fate
08 Cellular Transport and Transport Mechanisms
10 Cellular communication/signal transduction
11 Cell rescue, defense and virulence
13 Regulation/Interaction with cellular envir.
14 Cell fate
29 Transposable elements, viral and plasmid
30 Control and Cellular organization
62 Protein activity regulation
63 Protein with binding function
67 Transport facilitation
98 Classification not yet clear-cut
99 Unclassified proteins

It is evident how the communities found by our al-
gorithm are strongly correlated from the functional point
of view with respect to the corresponding random case.
Notice that in the reshuffling we have restricted ourselves
to the case where the identity of the proteins is main-
tained, i.e. we have not changed the ensemble of classes of
belonging for each protein. A random assignment of a cer-
tain number of classes of belonging (always keeping the
original probability distributions) to each protein would
have led to much smaller values of the overlap index for
the random case.

With our procedure of reshuffling, the average value of
the overlap index for the communities smaller than 100 el-
ements gives a value 〈δ〉random 
 0.30 ± 0.01 for the ran-
dom case and a value 〈δ〉 
 0.41±0.03 for the normal case.

〈δ〉random coincides with the value of the overlap index for
the original giant component.

Following the same procedure one could check the ho-
mogeneity of each community with respect to other factors
like localization of the proteins, belonging to complexes,
etc. This work is still in progress.

7 Discussion and conclusions

In this paper we have discussed the introduction of two
new ingredients in the algorithms for the detection of the
community structure of networks. On the one hand we
have presented a new type of divisive algorithm aimed
at the identification of densely connected subgroups in a
generic network. Such method is based on the computa-
tion of local quantities and therefore is fast and can easily
be applied to large data sets. On the other hand we have
pointed out a way to render any detection algorithm self-
contained, i.e. an automated procedure to build a dendro-
gram such that each group in it fulfils an unambiguous
definition of community. We have then checked the per-
formance of the local algorithm on some networks with
known community structure, extended the considerations
to the case of weighted graphs and finally presented some
results for a network of protein interactions, as a test of
the performance of the new method for non social systems.

From the results presented, one can conclude that the
local algorithm for detecting communities works well in
the cases where a large number of short cycles (trian-
gles, squares, and so on) is present in the network. This is
the case of assortative networks. For non social networks,
which tend to be disassortative, the algorithm tends to
perform less well, and in particular many of the nodes in
the graph are not associated to relatively small communi-
ties. While this is clearly a shortcoming of the algorithm,
nevertheless the community structure found bears some
significance also in these cases, as shown by the correlation
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between topological communities and functional classes in
the protein interaction network.

In the end, let us remark that at present the question
whether a detection algorithm is better than another one
is not well posed. In all recent works about this problem,
in order to compare the results of the application of an
algorithm people have resorted to test on a limited num-
ber of small networks for which the “true” community
structure is in some way known. However, this is far from
being systematic and objective. Only the introduction of
precise measures of the quality of a dendrogram would al-
low establishing which of the many available algorithms is
best.

We thank Mark Newman for providing us the data for the so-
cial networks we have analyzed. We wish to thank Paolo De
Los Rios for interesting discussions about the networks of in-
teracting proteins, Alain Barrat and Guido Caldarelli for very
stimulating discussions.
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