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Abstract

In this paper we will analyze how supervised learning occurs in ecological neural
networks (i.e. networks that interact with an external environment). Using an evolutionary
method for selecting good teaching inputs we will show how the learning process
interacts with the capability of such networks to partially determine the next input stimuli
with their outputs. In trying to explain the behavior of these networks we surprisingly find
that for obtaining a desired output X it is better to use a teaching input different from X.
To explain this fact we claim that teaching inputs in ecological networks have two
different effects; (a) to reduce the discrepancy between the actual output of the network
and the teaching inputs themselves, (b) to modify the network behavior and as a
consequence the network learning experiences. Evolved teaching inputs appear to
represent a compromise between these two needs. We finally show how evolved teaching
inputs that are alowed to change during the learning process respond differently in
different period of learning first giving more weight to the (b) function and progressively

later on to the (&) function.

The notion of ecological neural networks refers to an
approach to the study of neural networks that views
network as behaving, learning, developing and evolving
in an environment (see Parisi, Cecconi and Nolfi, 1990).
Hence, within this framework, the behavior of a network
tends to be studied with reference to the environment in
which the network behaves. The most important
consequence of behaving in an environment is that the
output of an ecological network partialy determines the
network’s input. By acting on the environment with its
motor output an ecological network may change the
environment (i.e. the network can modify the position or
the characteristics of an object in the environment) or it
may change its relation to the environment (i.e. by
moving itself the network can modify the angle of an
object with respect to the direction it faces or even move
to a different environment). Therefore sensory input
becomes a function of the independent properties of the
environment and the network's behavior.

We imagine that a network represents the nervous
system of an organism (O) and that O's environment is a
two-dimensional square divided up into cells. At any
particular moment O occupies one of these cells. A
number of food elements are randomly distributed in the
environment with each food element occupying a single
cell. O has a facing direction. We shall imagine it has a
rudimentary sensory system that allows it to receive as
input from the environment the angle (relative to where
O is currently facing) and the distance of the nearest

food element. We shall also equip O with a simple
motor system that provides it with the possibility, in a
single action, to turn any angle from 90 degrees left to
90 degrees right and then move from O to 5 cells
forward. Finally, when O happens to step on a food cell,
it eats the food element which disappears.
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Figure 1. Auto-teaching network

The network underlying O's behavior is a
feedforward network consisting of three layers (Figure
1). The input layer includes 2 units which receive
sensory information from the environment. These 2 units
are fully connected with two sets of intermediate
("hidden") layers of 7 units. The first set of hidden units
is connected with 2 output units that code O's movement.



The second set of hidden units is connected with 2
teaching units that code the teaching input for the two
output units. Sensory input is encoded by the 2 input
units representing the angle and the distance of the
nearest food element (both values are scaled from 0.0 to
1.0). Movement is encoded in the 2 output units that
specify the amount and direction of turn and the length
of the step forward (these two values are also scaled
from 0.0 to 1.0).

When O is placed in the environment that has been
described above, a sequence of events will occur.
Sensory input is received on the input units. Activation
flows up through the hidden units to the output units and
to the teaching units. The values of the two output units
are used to move O thereby changing the sensory input
for the next cycle. The values of the two teaching units
are used to change the weights that connect the input
units to the output units according to the
backpropagation algorithm (Rumelhart, Hinton and
Williams, 1986). Then the next cycle begins.

To train the weights that connect the input units to
the teaching units we used an evolutionary method (for
similar approaches see among others: Holland, 1975;
Hinton and Nowlan, 1987; Belew, Mclnerney and
Schraudolph, 1990; Ackley and Littman 1991).

We run 10 simulations each starting with 100
networks with the architecture shown in Figure 1 and
different randomly assigned weights. This is generation
0 (G0). GO networks are allowed to "live" for 20 epochs,
with an epoch consisting of 250 actions in 5 different
environments (50 actions each) for a total of 5000
actions. The environment is a grid 40x40 cells with 10
pieces of food randomly distributed in it. Os are placed
in individuals copies of these environments, i.e. they live
in isolation.

At the end of their life (5000 actions) Os are allowed
to reproduce. However, only the 20 Os which have
accumulated the most food in the course of their life are
allowed to reproduce by generating 5 copies of their
genotypes. These 20x5=100 new Os constitute the next
generation (G1). Random mutations are introduced in the
copying process (crossover is not applied). Four of the
weights, randomly selected, connecting the input units to
the teaching units are mutated adding to them a random
value included between -1.0 and +1.0. On the contrary,
the weights connecting the input units to the output units
are randomly generated in each offspring (i.e. they are
not inherited). After Os of G1 are created they are
allowed to live for 5000 cycles. The process continues
for 200 generations.

In each cycle the discrepancy between the activation
values of the output units and the teaching units is used
to change the weights connecting the input units to the

output units according to the backpropagation learning
algorithm. A learning rate of 0.15 and no momentum
was used. Weights are updated each cycle.

If one looks at the eating ability (i.e. number of food
elements eaten) of successive generations of Os, one
finds a significant increase (see curve (@) in Figure 2).
Thisimplies that weights able to generate good teaching
inputs evolve and that the random weights connecting
the input units to the output units are able to learn from
such teaching inputs. On the other hand, if one measures
how the evolved teaching inputs are good by themselves
(see curve (b) in Figure 2) one finds surprisingly that
they are not as good than what they are able to teach. In
order to measure how good teaching inputs are we tested
the Os determining their motor behavior as a function of
the state of their teaching units instead of the state of
their output units.
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Figure 2. Performance of best Os of successive
generations. (a) represents the performance of Os that
learn from their auto-teaching units (b) represents the
performance the same Os tested in a condition in which
their movements are functions of the activation state of
the auto-teaching units instead of the output units. (c)
represents the performance of Os that move selecting a
random action for each time step. Each curve represent
the average results of 10 different simulations.

If the evolved teaching inputs had represented the
right answers to each stimulus, Os that use their auto-
teaching inputs to determine their movements should
gather a larger amount of food of Os that use an output
that start from being bad (because of the weights that
generate it are random) and progressively approximate
the teaching input through learning. On the contrary,
after generation 75, Os tested with movements controlled
by their auto-teaching units start to gather less food than
the same Os that learn receiving such values as teaching
input. How can we explain this fact?

Let us consider the effect of a teaching input on these



ecological neural networks. It has two different effects;
one is to reduce the discrepancy between the actual
output of the network and the teaching itself; the second
is to change network behavior and, as a consequence, to
change the successive stimuli the network will
experience. This second effect will in turn influence
what is learned because what is learned depends on the
learning experiences (for the role of the learning
experience in back-propagation learning see Plunket and
Marchmann, 1991; Elman, 1991).

From the point of view of reducing the discrepancy
with the output of the network a teaching input should
correspond to the desired answer; but from the point of
view of determining good experiences a teaching input
can differ from the desired answer. We can then
hypothesize that teaching inputs able to change Os
behavior in a way that makes them have good learning
experiences are selected.

In order to verify this hypothesis we train Os
receiving "optimal” teaching inputs (i.e. teaching inputs
that correspond to food gathering movements) in two
different learning conditions;, in condition (a) we
exposed Os to the experiences they will spontaneously
self-select as a function of their initial random weights
and of the changes such weights progressively receive in
trying to approximate their "optimal" teaching input, in
condition (b) we exposed Os with the same initia
random weights to the same list of stimuli they would
experience if they would change as a consequence of the
evolved (not "optimal") teaching input even if they
actualy try to approximate the "optimal” one. As
"optimal" teaching inputs we used the output of the best
Os of each generation at the end of their life (i.e. we
used the best performance obtained from evolved Os of
successive generations). After this training process we
evaluated Os obtained in the two test conditions for 5000
cycles letting them move in the environment without
being affected by learning.
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Figure 3. Performance of Os that receive as teaching

input the best behavior obtained by the Os of the
corresponding generation; (a) represents the performance
after training in natural conditions (b) represents
performance after atraining in which Os experienced the
same stimuli of Os trained with evolved teaching inputs.
Each curve represents the average results of 10 different
simulations.

The results show that Os which receive "optima”
teaching inputs performe better if they are exposed to the
experiences induced by the evolved not "optima”
teaching input (see Figure 3, curve (b)). From that we
can conclude that the evolved teaching inputs are able to
induce good learning experiences. If we let the "optimal”
teaching input naturally determine, through changing the
weights, Os experience we get poorer performance (see
Figure 3, curve (a)). The evolutionary process discovers
that and select teaching inputs that are a compromise
between this two needs; making Os approximate a good
target and making Os have good experience in order to
approximate that target.

If our hypothesis is correct we can expect that, if we
allow teaching inputs to change during lifetime, the
evolutionary process will select teaching inputs that in
the first part of Os life will be particular suited for
selecting good learning experiences and, later on, will
progressively approximate desired answers. In fact, we
should expect that learning experiences are particularly
important in the first part of the learning process while,
when the network progressively approximate the
teaching inputs, become more and more important that
such teaching inputs correspond to the best possible
answer.
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Figure 4. Auto-teaching network with an additional input
units that code the age of the network itself.

In order to verify this prediction we ran another set of
10 simulations using Os with an additional input unit
that code the age of the O itself (i.e. the learning cycle
normalized between 0 and 1). Such an input unit affects
only the part of the network that determines the auto-
teaching inputs, not the part that determines the motor
output of the network itself. In this way the teaching



input can change becoming sensitive to different periods
of the learning process (see Figure 4). All other
parameters remained the same.

If we measure how evolved teaching inputs in such
more complex Os change during the learning process
with respect to how they approximate desired answer we
can see that our prediction was correct (see Figure 5).
After a few generations, teaching inputs start to change
during lifetime progressively approximating desired
answers (i.e. teaching inputs that allow food gathering
when directly evaluated as movements).
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Figure 5. Eating ability during lifetime of Os of
successive generations tested with movements generated
as a function of the auto-teaching units activation values
instead of that of the output units. Each curve is
identified by the number of the corresponding generation
and represents the average result of 10 different
simulations.

Conclusions

We evolved networks that auto-generate their
teaching inputs in order to learn to perform a simple
approaching task in a simulated environment. Analyzing
the evolved teaching input we surprisingly found that
such teachings do not correspond to desired answers.
Further analysis of the obtained results showed why this
happened. Teaching inputs in ecological neural networks
(i.e. in networks that partially determine their successive
input stimuli as a consequence of their outputs) have two
different effects; the first is to reduce the discrepancy
between the actual output of the network and the
teaching itself; the second is to change network behavior
and, as a consequence, to change the successive stimuli
the network will experience. As we showed teaching
inputs that correspond to desired answers are not able to
alow networks to have good experiences. As a
consequence, the evolutionary process selects teaching

inputs that are a compromise between two needs; making
networks approximate a good target and making
networks have good experience in order to approximate
that target.

We further showed that if we allow auto-generated
teaching inputs to change during the learning process,
teaching inputs sensitive to different needs in different
parts of the learning process are selected. Teaching
inputs progressively change, approximating the desired
answers during the course of the learning process.
Teaching inputs appear particularly suited for inducing
good learning experiences in the first part of the learning
process when such experiences are more crucia in
determining the result of learning. This finding confirms
the double function of teaching inputs and suggests that,
for networks that interact with an external environment
an "optimal” teaching input does not exist but different,
teaching inputs are adequate for different periods of the
learning process.

Despite the fact that our results and our claims apply
only to ecological neural networks (i.e. networks that
partially determine their successive inputs as a
consequence of their outputs) we think that further
investigations should be conducted in order to verify if
also in non ecological networks, desired answers do not
always correspond to good teaching inputs.
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