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Abstract

In this paper, we study coordinated motion in a swarm robotic system, called a
swarm-bot. A swarm-bot is a self-assembling and self-organising artifact, composed
of a swarm of s-bots, mobile robots with the ability to connect to and disconnect
from each other. The swarm-bot concept is particularly suited for tasks that require
all-terrain navigation abilities, such as space exploration or rescue in collapsed build-
ings. As a first step toward the development of more complex control strategies, we
investigate the case in which a swarm-bot has to explore an arena while avoiding to
fall into holes. In such a scenario, individual s-bots have sensory-motor limitations
that prevent them to navigate efficiently and that can be overcome exploiting the
physical connections and the cooperation among the s-bots. In order to synthesise
the s-bots’ controller, we rely on artificial evolution, which we show to be a powerful
tool for the production of simple and effective solutions to the hole avoidance task.

Key words: evolutionary robotics, swarm intelligence, swarm robotics, swarm-bot

1 Introduction

The first problem to be considered when trying to control an autonomous ro-
bot is to make it move efficiently in a given environment. Depending on the
robot, this task can be rather simple (i.e., the motion of a wheeled robot) or
particularly complex (i.e., walking for a humanoid robot). Also the environ-
ment in which the robot is placed influences the complexity of the problem:
a flat terrain is clearly less challenging than a rough terrain with holes and
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obstacles. An additional source of complexity is found in the coordinated mo-

tion task, in which the robotic system is composed of a number of independent
entities that have to coordinate their actions in order to move coherently.

Coordinated motion is a well studied behaviour in biology, being observed in
many different animal species. For example, we can think of flocks of birds
coordinately flying, or of schools of fish swimming in perfect unison. These
examples are not only fascinating for the charming patterns they create, but
they also represent interesting instances of self-organised behaviours. Many
researchers have provided models for schooling behaviours of fish, and replic-
ated them in artificial life simulations (see [2], chapter 11). Similarly, groups
of artificial fish (e-boids) have been evolved to display schooling behaviours,
obtaining interesting results [13]. Finally, evolutionary computation has been
used to evolve coordinated motion behaviours in small groups of physical ro-
bots [10].

Coordinated motion is a problem of fundamental importance within the
SWARM-BOTS project, 1 wherein this research is conducted. The project
aims at the development of a new robotic system, called a swarm-bot [4,8].
A swarm-bot is defined as an artifact composed of simpler autonomous ro-
bots, called s-bots. An s-bot has limited acting, sensing and computational
capabilities. However, an s-bot can create physical connections with other s-

bots, thereby forming a swarm-bot that is able to solve problems the single
individual cannot cope with. Coordinated motion is a basic ability that the
swarm-bot should display: a swarm-bot should move coherently across the en-
vironment as a result of the cooperation of the s-bots assembled in a single
structure [1].

Another basic ability for the swarm-bot is coping with rough terrains, holes,
gaps or narrow passages. All-terrain navigation is an important feature for
an intelligent autonomous system, opening many possible application scen-
arios, like space exploration or rescue in a collapsed building. Research in this
direction has focused mainly on the development of rovers provided with ar-
ticulated wheels or tracks, such as the sojourner [7]. A different approach is
presented by reconfigurable robotics, where robots can adopt different shapes
in order to cope with varying environmental conditions [3,11,14].

The swarm-bot concept puts together the advantages given by autonomous
rovers and by self-reconfigurable robots for all-terrain navigation. In fact, sim-
ilarly to rovers, each s-bot is fully autonomous in its control and is capable of
moving on moderately rough terrains. On the other hand, whenever individual
abilities are too constraining, the swarm-bot can rely on the collectivity, ex-
ploiting similar features as reconfigurable robots do, such as (i) the possibility

1 A project funded by the Future and Emerging Technologies Programme (IST-
FET) of the European Community, under grant IST-2000-31010.
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of cooperation among assembled elementary units, (ii) the physical support
through inter-unit connections and (iii) the shape changing abilities. Some
pioneer work with comparable features has been done by by Hirose et al. [5].
However, to the best of our knowledge, this work remained at the level of a
proposal, that we significantly improve within the SWARM-BOTS project [8].

In summary, we aim at studying all-terrain navigation as the result of the
cooperation between s-bots, which can self-assemble and build structures that
can cope with hazardous situations like avoiding a hole or passing over a
trough. In such cases, rigid connections serve as support for those s-bots that
are suspended over the gap. This approach to all-terrain navigation also has
a natural counterpart in ants of the species Œcophilla longinoda [6], which
are able to build chains connecting one to the other, creating bridges that
facilitate the passage of other ants.

In this paper, we study an instance of the family of all-terrain navigation tasks,
that is, hole avoidance. A swarm-bot has to perform coordinated motion in an
environment that presents holes too large to be traversed. Thus, holes must
be recognised and avoided, so that the swarm-bot does not fall into them.
The challenges issued by this task are described in Section 2, along with the
experimental setup used for our experiments. Section 3 and 4 are dedicated to
the description of the obtained results. Finally, Section 5 concludes the paper.

2 Evolution of Hole Avoidance Behaviours

The hole avoidance task can be assimilated to a common obstacle avoidance
scenario, in which there are zones that should not be traversed. However, this
task presents challenges that are not found in obstacle avoidance. Above all,
two important differences should be highlighted: (i) the failure in avoiding a
hole leads to a situation from which the robot cannot recover, while a collision
with an obstacle is not harmful as long as the robot is not damaged; (ii) the
sensory configuration of the s-bot and its dynamics make it impossible to avoid
holes with narrow angles (≤ 90 degrees), while normally obstacles can be easily
detected and avoided. 2 These difficulties led us to the choice of exploiting the
cooperation among the s-bots assembled in a swarm-bot configuration. As a
consequence of this choice, new challenges have to be faced. First, s-bots should
coordinate their overall motion. Second, s-bots have to recognise the presence
of a hole, communicate it to the whole group and re-organise to choose a safer
direction of motion.

2 Some experiment performed using a single s-bot revealed that holes with narrow
angles are hard to be perceived, and therefore avoided (data not shown).
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Figure 1. (a) Two s-bots physically connected showing how is it possible to pass
over a gap exploiting the cooperation. The s-bot is provided with a traction system
comprising wheels and tracks, a rotating turret holding the rigid and the flexible
grippers, and many sensors. (b) The simulated s-bot model. The turret is transparent
to show the chassis (centre sphere), the motorised wheels (lighter spherical wheels)
and the passive wheels (darker spherical wheels). The position of the gripper is
shown with an arrow painted on the s-bot ’s body. Ground sensors are displayed as
lines exiting from the s-bot.

The controllers for the s-bots are obtained using artificial evolution. There
are multiple motivations behind this choice for the synthesis of robot con-
trollers for a robot [9]. In particular, in a distributed multi-robot context
as the one considered within the SWARM-BOTS project, hand-crafting the
controllers may be too complex. Here, artificial evolution can bypass this dif-
ficulty, as it directly tests the behaviour displayed by the robots embedded in
their environment. Furthermore, artificial evolution can exploit the richness
of solutions offered by the complex dynamics resulting from robot-robot and
robot-environment interactions [4].

2.1 Experimental Setup

Figure 1a shows two connected s-bot. 3 In this paper, however, experiments
are performed in simulation, using a software based on VortexTM, a 3D rigid
body dynamics engine. In this section, we describe the experimental setup and
give details about the simulation model, the evolutionary algorithm and the
fitness function used for the evolution of hole avoidance behaviours.

The s-bot model and the environment We have defined a simple s-bot

model that both allows fast simulations and preserves those features of the
real s-bot that we considered most important (see Figure 1b). The simulated
s-bot is composed of a cylindrical turret (radius: 6cm, height: 6cm), connected

3 Details regarding the hardware and simulation of the swarm-bot can also be found
in the project web-site (www.swarm-bots.org).
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to a chassis by a motorised hinge joint that allows relative rotation between
the two bodies. The chassis is modelled as a sphere (radius: 1.4 cm) to which
four spherical wheels are connected (radius: 1.5 cm). The lateral wheels are
connected to the chassis by a motorised joint and a suspension system and
they are responsible for the motion of the s-bot. The front and back wheels
are passive and they can rotate in any direction. The gripper that allows con-
nections between s-bots is simulated creating a link between the two turrets.
The gripping position is indicated by an arrow painted over the turret. In this
work, connections are established at the beginning of the simulation and they
are never released.

Each s-bot is provided with a traction sensor placed at the turret-chassis
junction. It detects the direction and the intensity of the traction force
that the turret exerts on the chassis. The traction sensor, integrating all
the pulling/pushing forces created by the movement of the connected s-bots,
provides an indication of the average direction toward which the swarm-bot

is trying to move as a whole. 4 Besides the traction sensor, we also make use
of 4 ground sensors, which are infrared proximity sensors evenly distributed
around the chassis of the s-bot and pointed toward the ground. Ground sensors
are used to perceive the presence of a hole in the vicinity of the s-bot.

Concerning the actuators, each s-bot can control its wheels independently.
The maximum angular speed has been set to 10 rad/s, which corresponds to
a maximum speed of the s-bot of 0.15 m/s. In addition, the movements of the
s-bot are also influenced by the turret/chassis motor. Its desired angular speed
is set as half of the difference between the desired angular speed of the left and
right wheels. This motor assists the rotation of the chassis with respect to the
turret also when one or both wheels of the s-bot do not touch the ground [1].

We designed a square arena (side 3 m) that contains four square holes (side
60 cm, see Figure 2b) evenly distributed. The swarm-bot consists of a linear
structure made of four s-bots, which are rigidly connected by means of their
grippers. Each s-bot is controlled by a simple perceptron, a neural network
connecting its sensory inputs to the motor outputs. The network has 8 sensory
inputs: 4 are dedicated to the readings coming from the ground sensors, and
the other 4 encode the intensity and direction of traction (for more details,
see [1]). Moreover, the neural network is provided with one bias unit and
2 outputs that control the two wheels and the turret/chassis motor. This
perceptron has in the whole 18 connections, for which weights are evolved.

4 This particular kind of sensor proved to be of fundamental importance for the
evolution of coordinated motion in a swarm-bot [1].
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The evolutionary algorithm A simple generational evolutionary al-
gorithm is used for the synthesis of neural controllers. The initial population is
composed of µ = 100 randomly generated genotypes. Each genotype is binary
encoded, and is mapped into a neural network controller for a single s-bot.
Each weight of the neural network ranges in the interval [−10, 10] and is rep-
resented in the genotype by 8 bits. Therefore, the genotype length corresponds
to L = 18× 8 = 144 bits. In every generation, all genotypes of the population
are evaluated using the fitness function defined in the following paragraph.
The best λ = 20 genotypes of each generation are allowed to reproduce, each
generating µ/λ = 5 offspring, which are exact copies of the parent. Afterwards,
each offspring is mutated—i.e., each bit has a probability 2/L of being flipped.
Parents are not copied to the offspring population (no elitism). No recombina-
tion operator is applied. Every replication of the evolutionary experiment lasts
100 generations. This algorithm is very simple and straightforward, and we
found that it is sufficient to evolve simple and efficient controllers for groups
of robots [4].

The fitness evaluation The neural network controller obtained from a
genotype is cloned and downloaded in each of the n = 4 s-bots involved in
the experiment, so that all s-bots are homogeneous in their control. In this
way, the fitness of a genotype can be computed looking at the performance
of the group. The fitness F of a genotype is a random variable, because of
the random initialisation of the positions and orientations of the s-bots. Its
expected value F can be estimated evaluating the behaviour of the swarm-bot

for a number M of trials and then averaging the obtained values. Therefore,
in each trial e we compute a sample Fe of the random variable F . In these
experiments, we use the sampling size M = 5.

The fitness function is designed to favour coordinated motion, exploration of
the arena and a fast reaction to the detection of a hole. The fitness estimation
Fe in each trial is given by the average of two components, Fe1

and Fe2
(see

below). In order to compute the fitness components, we divide each trial e into
two sub-trials, e1 and e2. In the former, we test the controller for its ability to
perform coordinated motion in a flat environment. Here the s-bots start con-
nected in a linear formation, having the orientation of their chassis randomly
initialised. They are rewarded for the ability to move as far as possible from
their initial position, which indirectly implies an ability to display coordinated
movements. Therefore, the fitness estimation Fe1

is computed as the distance
covered by the group:

Fe1
=

‖X(0) − X(T )‖

D
, (1)

where X(t) is the coordinates vector of the centre of mass of the group, and D is
the maximum distance achievable. The sub-trial e1 lasts Te1

= 150 simulation
cycles, each cycle corresponding to 100 ms of real time.
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In sub-trial e2, the s-bots are positioned in the centre of the arena with holes,
and start connected in a linear formation. Their chassis are all initialised with
the same random orientation. In this way, there is no need for a coordination
phase at the beginning of the sub-trial, the focus being on hole avoidance. Also
the chain is randomly oriented at the beginning of each sub-trial. The sub-trial
lasts Te2

= 200 cycles. 5 The fitness estimation Fe2
is given by the product

of two sub-components: the survival sub-component Fs and the exploration

sub-component Fx. The former rewards only those behaviours that reach the
end of the trial without resulting in a fall. It is computed as follows:

Fs =











1, if Ts = Te2
;

0, otherwise;
(2)

where Ts is the number of cycles the swarm-bot “survived” without falling into
a hole. This sub-component introduces a strong selective pressure towards safe
behaviours, as it penalises every fall, even if it happens at the end of the sub-
trial. 6 The second sub-component is designed to favour those genotypes that
are able to better explore the arena. In this case, the arena is virtually divided
in 25 square zones (side: 60 cm). The genotype is rewarded for the number of
visited zones during the sub-trial, formalised as follows:

Fx =
z(Ts)

Z(Te2
)
, (3)

where z(Ts) is the number of visited zones at cycle Ts and Z(Te2
) = 5 corres-

ponds to the maximum number of zones that can be visited in Te2
cycles. A

zone is considered visited if the swarm-bot ’s centre of mass lies within the cor-
responding square area. A zone can be visited only once—i.e., passing multiple
times over a visited zone does not correspond to any additional reward.

3 Obtained Results

We performed 10 replications of the evolutionary experiment, every time start-
ing with a different population of randomly generated genotypes. The average
fitness values of the best individuals and of the whole populations, computed
over all the replications, are plotted against the generation number in Figure 2.

5 A longer time is needed in this sub-trial in order to let the swarm-bot interact
with holes and edges of the arena as much as possible.
6 However, we cannot ensure that a swarm-bot that does not fall within 200 sim-
ulation cycles will never fall in the future. A tradeoff value must be chosen for the
length of the sub-trial, which strongly influences both the selective pressure and the
duration of the evolutionary experiment.
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Figure 2. Hole avoidance results: (a) Average fitness over 10 replications of the
experiment. (b) Trajectories displayed by a swarm-bot performing a hole avoidance
task.

The plot indicates that the evolutionary experiments were successful: the av-
erage fitness value of the best individuals reaches the 80% of the maximum
achievable value, which cannot normally be reached due to the particular ex-
perimental setup. 7

We tested the performance of the controllers evolved in the 10 different rep-
lications of the evolutionary experiment. We evaluated the 10 best individuals
of the last generation obtained in the different replications, averaging their
fitness Fe over 100 different trials. The corresponding results are shown in
Table 1. All individuals perform reasonably well. It can be noted that their
performance is lower than 0.8, which is the average performance achieved at
the end of the 10 replications of the evolutionary experiment, as shown in Fig-
ure 2a. This is due to the small sampling size M used for the estimation of the
fitness during the evolution (M = 5 samples). In fact, a small sampling size
usually leads to an over-estimation of the fitness of the best individual dur-
ing the evolution. Thus, the post-evaluation analysis with a larger sampling
size (M = 100 trials, in this case) gives a better approximation of the real
performance of the evolved controllers.

Direct observation of the behaviours evolved showed that all solutions rely on
similar strategies. We observed the evolved behaviours placing the swarm-bot

in the arena with holes, and starting with different orientations of the chassis of
the s-bots 8 (see Figure 2b). At the beginning, the s-bots start to move in their
initial direction, resulting in a rather disordered overall motion. Within few
simulation cycles, the physical connections transform this disordered motion

7 The maximum value for Fe could be reached only if in the first sub-trial s-bots
started with their chassis perfectly aligned, so that no coordination phase is required,
allowing the swarm-bot to cover the maximum distance. This is normally not the
case due to the random initialisation of the orientations of the chassis.
8 See http://www.swarm-bots.org/hole-avoidance.html for some movies of
these behaviours.
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Table 1
Mean performance of the best individuals for each replication of the experiment,
averaged over 100 trials. The best evolved individual is highlighted in bold.

Replication 1 2 3 4 5

Performance 0.6640 0.6541 0.6502 0.6079 0.5835

Replication 6 7 8 9 10

Performance 0.6376 0.6866 0.6397 0.6640 0.6458

into traction forces, that are exploited to coordinate the group. When an s-

bot feels a traction force, it rotates its chassis in order to cancel this force.
Once the chassis of all the s-bots are oriented in a same direction, the traction
forces disappear and the coordinated motion of the swarm-bot starts. Then,
when one s-bot perceive an edge with its ground sensors, it rotates the chassis
and changes the direction of motion in order to avoid falling. This change in
direction creates a traction force for the other s-bots, which they perceive by
means of their traction sensors. At this point, a new coordination phase is
triggered, which ends up in a new direction of motion leading the swarm-bot

away from the edge. In some cases, the reaction of a single s-bot may not be
sufficient to influence the behaviour of the rest of the group. As a consequence,
the s-bot may be pushed out of the arena. However, physical connections serve
as support for this s-bot, while the rest of the group continues to perform hole
avoidance and eventually leads the whole swarm-bot in a safer position.

4 Generalisation

The evolved strategy for hole avoidance is very robust, being able to work in
a number of different situations. This is a result of the physical connections
among the s-bots and, above all, of the use of the traction sensors. First of all,
the evolved strategies are independent of the shape and position of the holes in
the arena. We also tested the scalability of the evolved controllers varying the
size and the shape of the swarm-bot. We observed that the evolved controllers
perform well in many different conditions. For example, Figure 3a shows the
case of a swarm-bot comprising 8 s-bots connected in a “star” shape. The
swarm-bot is placed in a square arena without holes, but with open borders.
The swarm-bot is still able to avoid falling out of the arena, notwithstanding
the higher inertia of the star formation.

Another interesting feature of the evolved controllers is that they are able to
perform collective obstacle avoidance. In fact, when an s-bot hits an obstacle,
its turret exerts a force on the chassis in a direction opposite to the obstacle.
This force is felt as a traction pulling the s-bot away from the obstacle. In
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response to this traction, the s-bot rotates its chassis to cancel it, as explained
before. Moreover, the rigid connections between s-bots transmit the force res-
ulting from the collision to the whole group, triggering a fast change in the
direction of movement of the swarm-bot. As shown in Figure 3b, the swarm-bot

is able to avoid both holes and obstacles, represented here by walls surround-
ing the arena. It is worth noting that the traction sensor works as an omni-
directional bumper distributed on the whole body of the swarm-bot, allowing
collective obstacle avoidance.

Finally, we tested the evolved controllers when the s-bots are linked using flex-
ible, rather than rigid, connections. Flexible connections allow the rotation of
the connecting s-bots around the turret of the connected s-bot. The use of
this type of connections allows the shape of the swarm-bot to change during
motion. Because of the flexibility of the connections, traction can be transmit-
ted only in the radial direction, but not in the tangential one. Nevertheless,

(a) (b)

(c) (d)

Figure 3. Generalisation properties. The trajectories and the final position of the
swarm-bot are shown. (a) Size and shape change. A “star” formation is tested in
a square arena (grey area) without holes but with open borders. The trajectories
indicates that the swarm-bot is able to avoid falling out, even if some s-bots are
pushed out from the border. (b) Obstacle avoidance. The square arena with holes
(grey area) is surrounded by walls (dark grey borders). The swarm-bot proves able to
avoid both holes and obstacles. (c) Obstacle and hole avoidance of a “star” formation
with flexible connections. Here the cylindrical obstacles (light grey objects) create
a narrow passage with the edge of the arena (grey area), which is faced by the
swarm-bot trough reconfiguration of its shape. (d) Hole avoidance of a big linear
formation with flexible connections. Here the swarm-bot completely deforms when
it reaches the edge of the arena (grey area), therefore adapting its shape.
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Table 2
Performance comparison of different swarm-bot formations using rigid and flexible
connections among s-bots.

exploration survival

rigid line 5.82 0.46

flexible line 6.52 0.66

rigid star 5.43 0.30

flexible star 4.4 0.33

rigid circle 5.22 0.40

flexible circle 5.04 0.60

the evolved strategies still work. We performed tests with both a “star” and
a chain formation composed of 8 s-bots each. As shown in Figures 3c and
3d, the flexible formations are able to perform coordinated motion, obstacle
and hole avoidance, changing shape when passing through narrow passages.
The flexible formation adapts more easily to the environment, and in some
situations can avoid holes more efficiently than a rigid structure. In fact, the
s-bots do not completely feel the inertia of the swarm-bot, because they can
change their relative positions, therefore deforming the structure and adapting
it to the edge of the hole. In order to asses to what extent flexible connections
among s-bots make the system more efficient, we compared the performance
of 3 different swarm-bot configurations using both rigid and flexible links. The
first configuration is the standard linear formation with 4 s-bots, the second
configuration is the “star” formation with 8 s-bots shown in Figure 3(a) and
the third is a circular formation, again composed of 8 s-bots. The performance
was measured over 500 simulation cycles, and the two fitness components de-
scribed in Section 2 were computed. 9 Table 2 shows the exploration and the
survival performance for these formation. The most interesting data is given
by the survival factor, which indicates the ability of the swarm-bot to avoid
falling out of the arena. 10 We can notice that, as far as the linear and the
circular formation are concerned, flexible formations are advantageous, lead-
ing to a higher survival factor. On the contrary, when s-bots are connected
in a “star” formation, the use of flexible formations does not correspond to
a significant improvement. This fact can be explained considering that the
“star” formation is rather compact, and therefore it does not allow a drastic
shape change. This means that the swarm-bot can adapt to the environment
(i.e., the presence of holes, edges) only to a limited extent.

9 The arena used for the formations comprising 8 s-bots is larger than before, having
a side of 4 m, in order to ease the passage of the larger swarm-bot.
10 The exploration factor is less relevant in this case. In fact, the longer the trial, the
higher the probability that the swarm-bot retraces his steps visiting already covered
zones. This justifies the observed drop in performance when using flexible links.
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5 Conclusions

We presented a set of experiments for the evolution of hole avoidance beha-
viours in a group of simulated s-bots that are physically connected to form a
swarm-bot. The solutions found by evolution are simple and in many cases they
work in different environmental situations. The obtained results suggest that
evolution is a suitable tool for synthesising controllers for a group of homogen-
eous robots. In this case, evolution was able to produce a self-organising system
that relies on simple and general rules, a system that is consequently robust
to environmental changes and to the number of s-bots involved in the experi-
ment. The evolved strategies strongly rely on the traction forces produced by
those s-bots that feel the presence of a hazard. Using the information given
by the traction sensors, the whole group can change the direction of motion
when heading toward a hole.

The traction sensor is a very powerful means for achieving coordination in
the swarm-bot. In fact, it allows the exploitation of the complex dynamics
arising from the interactions among s-bots and between the s-bots and the
environment. It provides robustness and adaptivity features with respect to
environmental or structural changes of the swarm-bot. Besides, traction forces
are used as a sort of communication of the presence of a hazard. Finally,
the traction sensor can work also as a distributed bumper for the swarm-bot,
allowing collective obstacle avoidance.

The hole avoidance task represents the first step toward the solution of more
difficult problems. We will extend this work in order to obtain controllers that
can pass over holes that are sufficiently small, while avoiding to fall into holes
that are too big to be traversed by the swarm-bot. Additionally, we plan to
study problems that belong to the all-terrain navigation family, such as cop-
ing with uneven terrains. In these perspectives, physical connections among
s-bots become an essential feature to be exploited. Finally, we intend to invest-
igate functional self-assembling for all-terrain navigation, that is, the problem
of forming or disbanding swarm-bots with a shape functional to the environ-
mental conditions and to the task to be performed, in order to maximise the
efficiency in the navigation [12].
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