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Abstract

In social insects, both self-organisation and communication play a crucial role for the ac-
complishment of many tasks at a collective level. Communication is performed with different
modalities, which can be roughly classified in three classes: indirect (stigmergic) communica-
tion, direct interactions and direct communication. The use of stigmergic communication is
predominant in social insects (e.g., the pheromone trails in ants), where however also direct
interactions (e.g., antennation in ants) and direct communication (e.g., the waggle dance in
honey bees) can be observed. Taking inspiration from insect societies, we present an experi-
mental study of self-organising behaviours for a group of robots, which exploit communication
to coordinate their activities. In particular, the robots are placed in an arena presenting holes
and open borders, which they should avoid while coordinately moving. Artificial evolution
is responsible for the synthesis in a simulated environment of the robot’s neural controllers,
which are subsequently tested on physical robots. We study different communication strategies
among the robots: no direct communication, handcrafted signalling and a completely evolved
approach. We show that the latter is the most efficient, suggesting that artificial evolution
can produce behaviours that are more adaptive than those obtained with conventional de-
sign methodologies. Moreover, we show that the evolved controllers produce a self-organising
system that is robust enough to be tested on physical robots, notwithstanding the huge gap
between simulation and reality.

Keywords: Swarm robotics, evolutionary robotics, self-organisation, communication,
swarm-bot

1 Introduction

Ants are everywhere, but only occasionally noticed. They run much of the terrestrial
world as the premier soil turners, channelers of energy, dominatrices of the insect
fauna [. . . ] They employ the most complex forms of chemical communication of any
animals and their organization provides an illuminating contrast to that of human
beings [. . . ] (from Hölldobler and Wilson, 1990, page 1).

This way, Hölldobler and Wilson introduce their journey into the ants’ world. They provide
a passionate, yet rigorous description of this fascinating and intriguing animal society. A picture
that serves as inspiration not only for entomologists or socio-biologists, but also for engineers
and computer scientists. Indeed, the principles that lay behind the organisation of an ant colony
have been so far exploited in multiple domains, resulting in the development of robust optimisation
algorithms (see, for example, Dorigo and Stützle, 2004), and giving birth to the swarm intelligence
research domain (Beni and Wang, 1989, Bonabeau et al., 1999). Also robotics could benefit from
the biologically-inspired approach, as demonstrated by the continuously growing interest for swarm
robotics (Dorigo and Şahin, 2004).

In a swarm robotic context, it is useful to allow for self-organisation while designing the different
parts of the robotic system. Self-organisation can be defined as the emergence of order in a system
as a result of the numerous interactions among the system’s components. Despite these interactions
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Figure 1: A swarm-bot moving in a outdoor environment. The traction system of each s-bot is
composed of both tracks and wheels. On top of it, a rotating turret is mounted, which holds many
sensory systems and the rigid gripper for physical connections.

take place on a purely local basis, their effect on the whole system is the increase of its inherent
order. Self-organisation is often observed in biology, and in particular in many animal societies, not
limited to social insects like ants, bees or termites (Camazine et al., 2001). From an engineering
perspective, there are multiple advantages in designing a self-organising system. Among these, it
is worth mentioning that such a system is inherently robust to individual failures, as it is normally
redundant in its constituent parts. It can adapt to varying environmental conditions and it can
maintain its organisation notwithstanding certain external perturbations.

Another important aspect to consider is communication, which is often required for coordina-
tion of collective behaviours. Social insects make use of different forms of communication, outlined
in Section 2. In collective robotics research, the coordination of the activities in a group of robots
requires the definition of communication strategies and protocols among the individuals. These
strategies and protocols need not, however, be particularly complex. In many cases, simple forms
of communication—or no explicit communication at all—are enough to obtain the coordination of
the activities of the group (Kube and Zhang, 1997). This is the case for swarm robotics, which fo-
cuses on local and simple communication paradigms, that can gracefully scale up with the number
of agents involved.

However, designing a self-organising system and the related communication protocols for a
group of simulated and/or real robots is not a trivial task. From an engineering perspective,
the design problem is generally decomposed into two different phases: (i) the behaviour of the
system should be described as the result of interactions among individual behaviours, and (ii)
the individual behaviours must be encoded into controllers. Both phases are complex because
they attempt to decompose a process (the global behaviour or the individual one) that is a result
of dynamical interactions among its sub-components (interactions among individuals or between
individual actions and the environment). These dynamical aspects are in general difficult to be
predicted by the observer. In such a context, we believe that Evolutionary Robotics (ER) is the
methodology to be exploited (Harvey et al., 1992, Nolfi and Floreano, 2000, Harvey et al., 2005).
ER bypasses the problem of decomposition at both the levels of finding the mechanisms that lead
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to the emergent global behaviour, and of implementing those mechanisms in a controller for the
robots. In fact, ER relies on the evaluation of the system as a whole, that is, on the emergence
of the desired global behaviour starting from the definition of the individual ones. Moreover, ER
can exploit the richness of solutions offered by the dynamic robot-environment interaction, which
may not be apparent a priori to the experimenter (Nolfi and Floreano, 2000, Dorigo et al., 2004).

In this paper, we show how ER techniques can be used for solving a complex task, both with
simulated and real robots. In our work, we study a swarm robotic system composed of a number
of autonomous mobile robots—referred to as s-bots—which have the ability to connect one to
the other forming a physical structure—referred to as a swarm-bot —that can solve problems the
single s-bots are not able to cope with (see Figure 1 and Mondada et al., 2004, for details). The
physical connections among s-bots result in physical interactions that can be exploited for the self-
organisation of the swarm-bot. Additionally, s-bots are provided with a sound signalling system,
that can be used for communication. The task we study requires the s-bots to explore an arena
presenting holes in which the robots may fall. Individual s-bots cannot avoid holes due to their
limited perceptual apparatus. On the contrary, a swarm-bot can exploit the physical connections
and the cooperation among its components in order to safely navigate in the arena.

This paper brings forth a twofold contribution. On the one hand, we examine different com-
munication protocols among the robots (i.e., no signalling, handcrafted and evolved signalling),
and we show that a completely evolved approach achieves the best performance. This result is in
accordance with the above assumption, for which evolution potentially produces a system that is
more efficient than those obtained with other conventional design methodologies. Another impor-
tant contribution of this paper consists in the testing of the evolved controllers on physical robots.
We show that the evolved controllers produce a self-organising system that is robust enough to be
tested on real s-bots, notwithstanding the huge gap between simulation and reality. To the best
of our knowledge, only very few works can be found in the literature in which cooperative evolved
behaviours have been successfully tested on a group of physical robots (see, for example, Quinn
et al., 2003, Kamimura et al., 2005). Considering the difficulty of the task we face and the complex
dynamics involved, we believe that we obtained the most advanced evolved group behaviours so
far successfully tested on a physical robotic platform.

This paper is organised as follows. In Section 2, we briefly overview the different communication
forms that can be found in social insects and we draw a parallel with collective robotics research.
A taxonomy of different communication modalities is also introduced. In Section 3, we describe
the s-bot features and its simulation. In Section 4, we introduce the task studied and we detail
the experimental setup used for evolving hole avoidance behaviours. Section 5 shows the obtained
results in simulation, while Section 6 describes the results obtained in transferring the evolved
controllers on the real s-bots. Finally, Section 7 concludes the paper.

2 Communication in Social Insects and Robots

Insect societies abound in examples of self-organising behaviours (see Camazine et al., 2001).
In most of these examples, communication is present in some elementary form. Hölldobler and
Wilson point to twelve functional categories of communication in ants (see Hölldobler and Wilson,
1990, page 227). This wide use of communication with different modalities is justified by the
fact that communication serves as a regulatory mechanism of the activities of the colony. In the
following, we discuss about the different communication modalities observed in social insects.

2.1 A Glance at Insect Societies

From the study of mass communication modalities arises the concept of stigmergy: it describes
an indirect communication among individuals, which is mediated by the environment. Stigmergy
was first introduced by Grassé (1959), while studying the nest building behaviour of termites of
the genus Macrotermes. Grassé suggested that the cooperation among termites in their building
activities was the result of environmental stimuli provided by the work already done—i.e., the nest
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itself. Other examples of stigmergic communication have been observed in the foraging behaviour
of many ant species, which lay a trail of pheromone, thus modifying the environment in a way
that can inform other individuals of the colony about the path to follow to reach a profitable
foraging area (Goss et al., 1989, Hölldobler and Wilson, 1990). Stigmergy is therefore a form of
communication that is, in some way, indirect and mediated by the environment.

Stigmergy is not the only way of communication that can be observed in social insects. Direct
interactions—i.e., a form of communication that involves some physical contact—account for
various social phenomena (Hölldobler and Wilson, 1990). For example, in many species of ants such
as Œcophilla longinoda, recruitment of nest-mates for the exploitation of a food source is performed
by touching the nest-mate with the antennas (antennation) and by regurgitating a sample of the
food source (throphallaxis). Hölldobler and Wilson (1990) report of another invitation behaviour
during colony emigrations in ants of the species Camponotus sericeus. A recruiter ant invites
another individual to follow it to a new nesting site by first grasping and pulling it by the mandibles.
Afterwards, the recruiter turns around and moves toward the new site, while the other ant follows
maintaining physical contact with its antennae. Mandible pulling and the subsequent tandem
running are striking examples of coordination of movements that exploit direct interactions among
individuals. Similar behaviours have been observed in other ant species, associated to recruitment
for both colony emigration and foraging.

Some forms of direct communication within insect societies have been studied, a well-known
example being the waggle dance of honey bees. A bee is able to indicate to the unemployed
workers the direction and distance from the hive of a patch of flowers, using a “dance” that also
gives information on the quality and the richness of the food source (Seeley, 1995). Another form
of direct communication takes places through acoustical signals. Many ant species use sound
signals—called stridulations—as recruiting, alarm or mating signals. In presence of a big prey,
ants of the genus Aphaenogaster use stridulation during nest-mates recruitment. Here, the sound
signal serves uniquely as a reinforcement of the usual chemical and tactile attractors, resulting
in a faster response of the nest-mates. Another form of acoustic signalling is drumming, that is,
vibrations produced by strokes on the surface of chambers in wooden nests (Fuchs, 1976). This
signal serves as a direct alarm communication, and it has a modulating effect on the probability
of individual workers to respond to other signals.

2.2 From Insects to Robots

The above examples suggest a possible taxonomy of different forms of communication in insect
societies, that can be borrowed for characterising a collective robotic system (Trianni et al., 2004a):

Indirect or Stigmergic Communication. A form of communication that takes place through
the environment, as a result of the actions performed by some individuals, which indirectly
influence someone else’s behaviour (e.g., pheromone trails).

Direct Interaction. A form of communication that implies a non-mediated transmission of in-
formation, as a result of the actions performed by some individuals, which directly influence
someone else’s behaviour (e.g., antennation, mandibular pulling).

Direct Communication. A form of communication that implies a non-mediated transmission
of information, without the need of any physical interaction (e.g., the waggle dance, stridu-
lations).

A number of other taxonomies for communication modalities in robotic systems have been
proposed in the past (see, for example, Balch and Arkin, 1994, Cao et al., 1997, Dudek et al.,
2002, Matarić, 1998). What we propose can be considered equivalent to the taxonomy introduced
by Cao et al. (1997), having adapted it to the natural examples discussed above. The terminology
we used is partly borrowed from Matarić (1998).

A pioneering work on the study of biologically inspired communication in collective robotics
is the one of Balch and Arkin (1994). Three tasks and three different communicative setups were
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considered. Balch and Arkin show that direct communication is not required if the task is char-
acterised by some form of indirect communication that provides the same amount of information.
Additionally, they show that, among the direct communication strategies, a higher complexity
does not forcedly result in an advantage. Stigmergy is the main coordination mechanism em-
ployed in many other works relevant for swarm robotics research (Beckers et al., 1994, Holland
and Melhuish, 1999). Finally, it is worth mentioning the work of Kube and Zhang (1997) and Kube
and Bonabeau (2000), that show how a self-organising behaviour observed in ants (i.e., collective
transport) can be replicated in a group of robots. In this case, the robotic experiments served as
an empirical model useful to uncover some interesting features of the insect behaviour.

Direct interactions are not commonly exploited in robotic systems, as in general physical
contacts among robots are preferably avoided or ignored. A remarkable exception has to be found
in the SWARM-BOTS project,1 in which self-assembling robots and cooperative strategies have
been studied extensively, including the work presented in this paper (for some examples, see Groß
et al., 2006, Baldassarre et al., 2004).

Simple forms of direct communication modalities are often chosen in collective robotics. Hayes
et al. (2000) study how a simple binary communication can result in higher performance in a
collective exploration task. Ijspeert et al. (2001) show how in a strictly collaborative task (i.e.,
a task in which cooperation is strictly required for goal achievement) a simple form of direct
communication can enhance the performance of the system. Similarly to the already mentioned
work of Balch and Arkin (1994), Rybski et al. (2004) study the influence of different forms of
communication on the performance of a collective robotic system in a foraging task.

We conclude this short literature review mentioning some interesting work related to commu-
nication in an evolutionary robotics context. The pioneering work of Werner and Dyer (1991)
studies evolution of communication strategies in a population of male and female artificial organ-
isms selected for their ability to mate. More recently, Di Paolo (2000) has studied the evolution
of communication between two simulated agents, whose goal was staying close to one another
on the basis of acoustic signals only. Another example is given by Quinn (2001), who evolved a
sort of communication strategy between two simulated robots for allocating the roles of leader
and follower. All the above work in evolutionary robotics has been conducted in simulation. A
remarkable exception is the work of Quinn et al. (2003), who studied the evolution of coordinated
motion in a group of three simulated and physical robots. Also in this case, there is no explicit
communication among the robots, but role allocation emerges from the initial interactions among
the robots.

3 A Self-Organising Artefact: The Swarm-bot

A swarm-bot is a self-assembling, self-organising artefact. As mentioned above, the swarm-bot is a
physical structure formed by a number of independent robotic units, called s-bots. In the swarm-
bot form, the s-bots become a single robotic system that can move and reconfigure. Physical
connections between s-bots are essential for solving many collective tasks, such as the retrieval of
a heavy object. Also, during navigation on rough terrain, physical links can serve as support if
the swarm-bot has to pass over a hole larger than a single s-bot, or when it has to pass through a
steep concave region. However, for tasks such as searching for a goal location or tracing an optimal
path to a goal, a swarm of unconnected s-bots can be more efficient. In the following, we describe
in detail the s-bot ’s features and the simulation model used for the experiments presented in this
paper.

3.1 The S-bot

An s-bot is a small mobile autonomous robot with self-assembling capabilities, shown in Figure 2
(Mondada et al., 2004). It weighs 700 g and its main body has a diameter of about 12 cm. Its
design is innovative concerning both sensors and actuators. The traction system is composed of

1See http://www.swarm-bots.org
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Figure 2: View of the s-bot from different sides. The main components are indicated (see text for
more details).

both tracks and wheels, each track-wheel pair of a same side being controlled by a single motor.
This combination of tracks and wheels provides the s-bot with a differential drive motion, which
is labelled Differential Treels c© Drive. The treels are connected to the chassis, which contains the
batteries. The main body is a cylindrical turret mounted on the chassis by means of a motorised
joint, that allows the relative rotation of the two parts. Due to the power and control cables that
connect chassis and turret, rotation of the turret must be limited in the range [−π, π] rad. This
constraint—hereafter referred to as rotational limit—must be taken into account in developing
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hole avoidance control strategies, as we detail in the following sections. The gripper is mounted
on the turret. It can be used for connecting rigidly to other s-bots or to some objects. The shape
of the gripper closely matches the T-shaped ring placed around the s-bot ’s turret, so that a firm
connection can be established. The gripper does not only open and close, but it also has a degree
of freedom for lifting the grasped objects. The corresponding motor is powerful enough to lift
another s-bot.

An s-bot is provided with many sensory systems, useful for the perception of the surrounding
environment or for proprioception. Infrared proximity sensors are distributed around the rotat-
ing turret, and can be used for detection of obstacles and other s-bots. Four proximity sensors
placed under the chassis—referred to as ground sensors—can be used for perceiving holes or the
terrain’s roughness (see Figure 2). Additionally, an s-bot is provided with eight light sensors, two
temperature/humidity sensors, a 3-axes accelerometer and incremental encoders on each degree
of freedom.

Each robot is also equipped with sensors and devices to detect and communicate with other
s-bots, such as an omni-directional camera, coloured LEDs around the s-bots ’ turret, microphones
and loudspeakers (see Figure 2). The loudspeaker can be used to emit a sound signal varying
its frequency and intensity. The signal is perceived by the microphones and processed by the
on-board CPU in order to discriminate the perceived frequency and intensity.

In addition to a large number of sensors for perceiving the environment, several sensors provide
each s-bot with information about physical contacts, efforts, and reactions at the interconnection
joints with other s-bots. These include torque sensors on most joints as well as a traction sensor
to measure the pulling/pushing forces exerted on the s-bot ’s turret. The traction sensor is placed
at the junction between the turret and the chassis. This sensor measures the direction (i.e., the
angle with respect to the chassis orientation) and the intensity of the force of traction—hereafter
called traction—that the turret exerts on the chassis. The turret of an s-bot physically executes
a vectorial summation of the forces that are applied to it by other connected s-bots. The traction
sensor plays an important role in the context of coordinated movement of a group of physically
connected s-bots. In particular, it can be employed to provide the s-bot with an indication of the
average direction toward which the swarm-bot is trying to move. Traction sensors are responsible
for the detection of the direct interactions among s-bots. An s-bot can generate a traction force that
is felt by the other s-bots connected through their grippers. This force mediates the communication
among s-bots and can be exploited for coordinating the activities of the group: it proved to be
important to evolve coordinated motion strategies in a swarm-bot and for collective obstacle and
hole avoidance (see Baldassarre et al., 2004, Trianni et al., 2004a).

3.2 Simulating the S-bot

In order to design a controller for the swarm-bot through artificial evolution within a reasonable
time, it is necessary to devise a simulation environment. In fact, evolution on the physical robots,
besides being impractical, is extremely time-consuming.2 We defined a simple s-bot model that
at the same time allows fast simulations and preserves those features of the real s-bot that were
important for the experiments (see Figure 3). The developed software is based on VortexTM, a
3D rigid body dynamics simulator. Each simulation cycle corresponds to 0.1 real seconds, which
provides an optimal compromise between simulation accuracy and speed. In each simulation cycle,
every s-bot performs one control cycle, obtaining a frequency of 10 control cycles per second, which
ensures a good reaction time for both simulated and physical robots.

The s-bot ’s traction system was simulated by a chassis and four wheels. Two lateral, motorised
wheels provide the required differential drive motion, modelling the lateral wheels of the treels
system. Two spherical, passive wheels are placed in the front and in the back, and serve as
support. The tracks of the treels system are not modelled, as they would have significantly
reduced the simulation speed. These four wheels are fixed to the chassis, which also holds the

2One single evolutionary run, keeping the same setting we used in the experiments presented here, would require
more than 110 days.
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Figure 3: A simulated swarm-bot, composed of 4 s-bots in square formation. The simulated s-bot
is composed of 4 wheels, a chassis and a cylindrical turret (see text for details). The presence of
a circle painted on top of the turret indicates that the s-bot is emitting a tone. The arrow on the
turret indicates the position of the simulated gripper. The black line exiting from the chassis and
pointing to the ground indicates a ground sensor.

cylindrical rotating turret, that can rotate around its axis. Connections among s-bots can be made
dynamically, creating a joint between two s-bots (see Figure 3). Differently from previous studies
(see Trianni et al., 2004a), we modelled the rotational limit in the s-bot simulation, so that the
turret can rotate only in the range [−π, π] rad, consistently with the hardware counterpart. The
implications of the rotational limit are explained in Section 4.1, in which we detail the different
experimental choices we made for the evolution of behaviours that could be directly transferred
on the physical s-bots.

Concerning the sensors, most of the physical ones have been modelled in the simulator. For
the experiments presented in this paper, we mainly made use of traction and ground sensors. Four
variables encode the traction force information from four different preferential orientations with
respect to the chassis (front, right, back and left, see Baldassarre et al., 2004, for more details).
Also the ground sensor configuration differs from what was previously used. Here it complies
with the physical robot, the ground sensor being integral with the chassis and positioned in a line
parallel to the main direction of motion, in the same position as shown in Figure 2.3 Noise is
simulated for all sensors, adding a random value uniformly distributed in the interval [−5%, 5%]
of the sensor saturation value.

Each s-bot is equipped with a loudspeaker and four microphones, used to detect the tone
emitted by other s-bots. The speaker/microphone system is used to emit a single frequency signal,
that is recognised by the s-bots in a binary way: either one of the s-bots is signalling the presence of
a hole—this could be the s-bot itself—or none of them are signalling. Therefore, sound perception
or production is simulated by means of a binary variable that encodes the presence or absence of
a sound signal.

3In previous work, the ground sensors were integral with the turret and they were distributed evenly around it
(see Trianni et al., 2004a).

8



(a) (b) (c)

Figure 4: Experimental conditions in which the swarm-bot is evolved. In conditions “a” and “b”,
a swarm-bot is positioned on flat terrain and has to perform coordinated motion. The swarm-bot
shape is either a line or a square. In condition “c”, a square swarm-bot is positioned in an arena
with open borders and holes.

4 Evolution of Hole Avoidance Behaviours

The hole avoidance task has been defined for studying collective navigation strategies for a swarm-
bot that moves in environments presenting holes in which it risks remaining trapped. In such a
scenario, due to the limited sensory apparatus of the s-bot, the swarm-bot is more efficient than
individual units. In fact, the position of the ground sensors makes it impossible for an s-bot to
detect holes that are sidelong with respect to its direction of motion, because sensors are placed
under its chassis and parallel to its tracks, as shown in Figure 2. The swarm-bot can instead
perform hole avoidance exploiting its larger physical structure and the cooperation among the s-
bots. However, for a swarm-bot to perform hole avoidance, two main problems must be solved: (i)
coordinated motion must be performed in order to obtain coherent movements of the swarm-bot, as
a result of the actions of its components; (ii) the presence of holes, which cannot be perceived by all
the s-bots at the same time, must be communicated to the entire group, in order to trigger a change
in the common direction of motion. In some preliminary studies, conducted in simulation only,
we successfully evolved cooperative behaviours for the hole avoidance task (Trianni, Labella, and
Dorigo, 2004a, Trianni, Nolfi, and Dorigo, 2005). In this paper, we apply the same methodology to
the evolution of behaviours that can be tested on the physical s-bots. In doing so, new challenges
have to be faced, as the simulation model previously used was differing in some crucial aspects
from the physical robot. In Section 4.1, we give a detailed description of the experimental choices
made in order to cope with these challenges.

Moreover, in this paper we study and compare three different approaches to communication
among the s-bots. In the first setup, s-bots communicate only through direct interactions, that is,
they exploit the pulling/pushing forces that one exerts on the other as a form of communication.
This setup, referred to as Direct Interactions setup (DI ), is the simplest possible for hole avoidance.
The second and third setups make use of direct communication among the s-bots in addition to
the direct interactions. In the second setup, referred to as Direct Communication setup (DC ),
the s-bots emit a tone as a handcrafted reflex action to the perception of a hole. On the contrary,
in the third setup, which is referred to as Evolved Communication setup (EC ), the signalling
behaviour is not defined a priori, but it is left to evolution to shape the best communication
protocol. In the following, we detail the experimental setup. Then, we describe the controllers
and the evolutionary algorithm used, and finally we present the evaluation function defined for
evolving hole avoidance behaviours.

4.1 Experimental Setup

We aim at evolving hole avoidance behaviours for a group of four s-bots connected in a square
formation. This formation was chosen in order to overcome the limitation in the perception of holes
that pertains to individual s-bots or to s-bots connected forming a line. In fact, when connected in
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a square swarm-bot, the s-bots can detect the hole’s edge and timely react notwithstanding their
approaching direction.

The evolution of the hole avoidance behaviour also requires that the swarm-bot performs co-
ordinated motion, that is, the s-bots should prove capable of coherently moving on flat terrain.
We therefore decided to let evolution shape the neural controller testing the swarm-bot both in
environments with and without holes (see Figure 4). Concerning coordinated motion, Baldassarre
et al. (to appear) showed that robust controllers can be evolved if the s-bots move on a flat plane
connected in a linear formation (see Figure 4a). However, this setting alone may produce a sub-
optimal behaviour, which become less probable if the s-bots are evaluated for coordinated motion
connected in a square formation (see Figure 4b). Concerning the evolution of hole avoidance, a
square swarm-bot formation is placed in an arena presenting holes, as shown in Figure 4c. The
arena is a square of 4 meters per side, with 2 rectangular holes and open borders. In all cases, the
s-bots start connected in a swarm-bot formation, and the orientation of their chassis is randomly
defined, so that they need to coordinate in order to choose a common direction of motion. In
conditions “a” and “b”, once coordinated, the s-bots have to maintain straight motion as much as
possible. In condition “c”, the s-bots have to explore the arena without falling into holes or out
of the borders.

In all three setups (DI, DC and EC ), s-bots are equipped with traction and ground sensors,
as described in Section 3.2. In DC and EC, microphones and speakers are also used. The infor-
mation provided to the controller by these sensors proved to be sufficient for the evolution of hole
avoidance behaviours (Trianni et al., 2004a). However, we found that as soon as the rotational
limit between turret and chassis is introduced, a perceptual aliasing problem arises (see also Bal-
dassarre et al., to appear). In fact, the information about the angular displacement of the turret
with respect to the chassis is missing, and the rotational limit can be recognised only referring to
this displacement. Instead of providing this additional information to the neural controller, we
decided to apply a different solution that can bypass the rotational limit. This solution, referred
to as front inversion mechanism, was first introduced by Baldassarre et al. (to appear), in order to
mask the rotational limit to coordinated motion controllers evolved without taking it into account.
Its working principle is very simple: whenever the turret reaches the rotational limit, the front of
the s-bot is swapped with its back, which becomes the new principal front of motion. The front
inversion involves both sensors and actuators, so that the s-bot ends up in a novel condition that
prevents exceeding the rotational limit. A detailed explanation of the front inversion mechanism
and related issues can be found in Appendix A.

4.2 The Controllers and the Evolutionary Algorithm

The s-bots are controlled by artificial neural networks, whose parameters are set by an evolution-
ary algorithm. A single genotype is used to create a group of s-bots with an identical control
structure—a homogeneous group. Each s-bot is controlled by a fully connected, single layer feed-
forward neural network—a perceptron (see Figure 5). Each input is associated with a single sensor,
receiving a real value in the range [0.0, 1.0], which is a simple linear scaling of the reading taken
from its associated sensor. Additionally, the network is provided with a bias unit, that is, an input
unit whose activation state is clamped to 1. The activation of the output neurons is computed as
the weighted sum of all input and bias units, filtered through a sigmoid function. The activations
of the output neurons are real valued numbers in the range [0.0, 1.0], and are used to control the
effectors of the s-bot.

In the basic DI setup, the traction and the ground sensors are used as inputs. Specifically, 4
inputs of the perceptron are dedicated to the traction sensor, encoding the traction force intensity
and direction into 4 variables, as already mentioned in Section 3.2. Four other inputs are dedicated
each to one ground sensor. Concerning the actuators, the two outputs of the perceptron are used
to control the left and the right wheels, scaling the activation values in the range [−ωM , ωM ],
where ωM ≈ 3.6 rad/s. Additionally, the same two outputs control the turret-chassis motor. The
desired speed of the turret-chassis motor was set equal to the difference between the desired speed
of the left and right wheels times a constant k = rw/2dw, where rw is the radius of the wheels and
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dw is the distance between the two wheels. This setting leads to a movement of the turret with
respect to the chassis that counter-balances the rotation of the chassis produced by the wheels’
motion. This is useful to help the rotation of the chassis with respect to the turret when the s-bots
are physically connected one to the other.

In the DC setup, two additional binary inputs encode the information perceived by the mi-
crophones, as shown in Figure 5. We use two inputs (instead of one) in order to cope with the
rotational limit and the front inversion mechanism. One input is active when the s-bot uses the
principal front, while the other is active when the s-bot is using the inverted front. In this way, it is
possible to evolve controllers that can cope with the front inversion mechanism (see Appendix A).
These inputs are set to 1 if at least one s-bot is signalling, while they are set to 0 if no sound signal
is perceived. The activation of the loudspeaker has been handcrafted in this setup, simulating a
sort of reflex action: an s-bot activates the loudspeaker whenever one of its ground sensors detects
the presence of a hole. Thus, the neural network does not control the emission of a sound signal.
However, it receives the information coming from the microphones, and evolution is responsible
for shaping the correct reaction to the perceived signals.

On the contrary, in the EC setup the sound emitter is controlled by an additional output
added to the neural network, along with all the required connections (see Figure 5). Whenever
the activation of this additional neuron is greater than 0.5, a tone is emitted. Therefore, in this
setup evolution is responsible for shaping not only the response to the emission of a signal, but also
the signalling behaviour. In other words, the complete communication paradigm—the signalling
and the reaction to the perceived signal—is under the control of evolution.

The weights of the perceptron’s connections are genetically encoded parameters. In all three
setups a simple generational evolutionary algorithm is used. Initially, a random population of 100
genotypes is generated. Each genotype is a vector of binary values—8 bits for each parameter. The
genotype is composed of 144 bits for DI, 176 bits for DC and 264 for EC. Subsequent generations
are produced by a combination of selection with elitism and mutation. Recombination is not used.
At every generation, the best 20 genotypes are selected for reproduction, and each generates 4
offspring. The 80 offspring, each mutated with a 5% probability of flipping each bit, together with

motors

groundtractionbias sound

sound

Figure 5: The neural controller. Circles represent neurons, while lines represent weighted connec-
tions from input to output neurons. The empty circles and the normal lines refer to neurons and
connections used in the DI setup: the neural controller takes as input the traction and ground
sensors, plus a bias, and it controls the two wheels and turret/chassis motor. The bold lines and
light grey neurons are added in the DC setup: the neural controller receives as input also the
perceived sound signals. The dashed lines and the dark grey neuron are further added in the EC
setup: the neural network now also controls the sound emitter.
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the 20 parents form the population of the subsequent generation. One evolutionary run lasts 200
generations.

4.3 Fitness Evaluation

During evolution, a genotype is mapped onto a control structure that is cloned and downloaded
onto all the s-bots taking part in the experiment (i.e., we make use of a homogeneous group of
s-bots). Each genotype is evaluated 12 times—i.e., 12 trials. Each trial is characterised by a
different seed for the initialisation of the random number generator, which influences both the
initial position of the swarm-bot and the initial orientation of each s-bot ’s chassis. Each trial
lasts T = 400 control cycles, each corresponding to 0.1 simulated seconds. As already mentioned,
we have defined three different conditions for the evolution of both coordinated motion and hole
avoidance (see Figure 4). Conditions “a” and “b” are intended to evolve robust coordinated
motion strategies on flat terrain. Condition “c” is devoted to the evolution of hole avoidance.
During evolution, the swarm-bot is initialised to one of these different conditions for 4 trials, thus
obtaining 12 trials in total per genotype.

The behaviour produced by the evolved controller is evaluated according to a fitness function
that takes into account only variables directly accessible to the s-bots (see Nolfi and Floreano,
2000, page 73). In each simulation cycle t, for each s-bot s belonging to the swarm-bot S, the
individual fitness fs(t) is computed as the product of three components:

fs(t) = ωs(t) · ∆ωs(t) · γs(t), (1)

where:

• ωs(t) accounts for fast motion of an s-bot. It is computed as the sum of the absolute values
of the angular speed of the right and left wheels, linearly scaled in the interval [0, 1]:

ωs(t) =
|ωs,l(t)| + |ωs,r(t)|

2 · ωM

, (2)

where ωs,l(t) and ωs,r(t) are respectively the angular speed of the left and right wheels of
s-bot s at cycle t, and ωM is the maximum angular speed achievable.

• ∆ωs(t) accounts for the straightness of the s-bot ’s motion. It is computed as the difference
between the angular speeds of the different wheels, as follows:

∆ωs(t) =

{

0 if ωs,l(t) · ωs,r(t) < 0,

1 −
√

|ωs,l(t)−ωs,r(t)|
ωM

otherwise.
(3)

This component is different from zero only when the wheels rotate in the same direction, in
order to penalise any turning-on-the-spot behaviour. The square root is useful to emphasise
small speed differences.

• γs(t) accounts for coordinated motion and hole avoidance. It is computed as follows:

γs(t) = 1 − max
(

Fs(t),Gs(t),Ss(t)
)

, (4)

where Fs(t) is the intensity of the traction force perceived by the s-bot s at time t, Gs(t) is the
maximum activation among the ground sensors of s-bot s at time t and Ss(t) is a binary value
corresponding to 1 if s-bot s is emitting a tone at time t, and 0 otherwise. This component
favours coordinated motion as it is maximised when the perceived traction is minimised,
which corresponds to a coherent motion of the swarm-bot. It also favours hole avoidance
because it is maximised if the s-bots stay away from the holes. Finally, the component
referring to the speaker has been designed to minimise the usage of direct communication,
in order to signal only when it is necessary.
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Given the individual fitness fs(t), the fitness Fθ of a trial θ is computed as follows:

Fθ =











0 if fall,

1

T

T
∑

t=1

min
s∈S

fs(t) otherwise,
(5)

where T is the maximum number of simulation cycles. This fitness computation strongly penalises
every fall of the swarm-bot, in order to evolve robust avoidance behaviours. However, given that
many trials are performed on a flat plane, genotypes that result in a good coordinated motion
strategy are still rewarded. Additionally, at each simulation cycle t we select the minimum among
the individual fitnesses fs(t), which refers to the worst-performing s-bot, therefore obtaining a
robust overall fitness computation. As a final remark, it is worth noting that in all the three
setups the same evaluation function is used. Even if it may appear that the fitness evaluation has
been designed explicitly for the EC setup, it ensures a fair comparison of the three setups. In fact,
in DI sound is not used, so that Ss(t) is always 0, while in DC sound is used corresponding to the
maximum activation of the ground sensors, so that both Ss(t) and Gs(t) are equal to 1, therefore
the handcrafted emission of a tone is not penalised more than in the EC setup.

5 Results

For all setups—DI, DC and EC—the evolutionary experiments were replicated 10 times, so that
30 evolutionary runs have been performed on the whole. In all cases, a successful hole avoidance
behaviour was evolved. The average performance of the best individuals of all evolutionary runs
is close to 0.5, where a value of 1 should be understood as a loose upper-bound to the maximum
value the fitness can achieve.4

5.1 Behavioural Analysis

Looking at the behaviour produced by the evolved controllers, we observe no particular difference
among the three setups for what concerns the initial coordination phase that leads to the coordi-
nated motion of the swarm-bot. This is not surprising, because coordinated motion results mainly
from the evaluation of the controllers on a flat terrain—namely, in conditions “a” and “b” shown
in Figure 4. In these conditions, the use of direct communication does not lead to any particular
advantage, and the performance achieved by the three different setups is comparable. Therefore,
in the following we describe the initial coordination phase referring to one particular controller
evolved in the DI setup, as the other controllers produce similar behavioural strategies.

At the beginning of a trial, the s-bots start to move in the direction in which they were initially
positioned, resulting in a rather disordered overall motion. Within one or two control cycles the
physical connections transform this disordered motion into traction forces, that are exploited to
coordinate the group. When an s-bot feels a traction force, it rotates its chassis so to reduce
this force. Once the chassis of all the s-bots are oriented in a same direction, the traction forces
disappear and the coordinated motion of the swarm-bot starts (see also Baldassarre et al., 2004,
Trianni et al., 2004a).

The differences between the three setups appear once the hole avoidance behaviour is consid-
ered. In the DI setup, s-bots can rely only on direct interactions in the form of traction forces
in order to communicate the presence of a hole and consequently avoid falling into it. The s-bot
that first detects a hole immediately inverts its direction of motion, and therefore it produces a
traction force that is perceived by the other s-bots. Exploiting this force, a new coordination phase
is triggered, which results in a new direction of motion that leads the swarm-bot away from the
hole. However, s-bots are not always capable of avoiding falling. In fact, the avoidance behaviour is

4This maximum value could be achieved only if all s-bots start with their chassis already aligned in a same
direction and always move in a flat environment, without holes.
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based on a delicate balance of the forces involved—i.e., motors, traction and friction forces—which
does not always ensure a prompt reaction to the detection of the hole.

A faster reaction to the detection of a hole is achieved in the DC and EC setup, in which
s-bots have the possibility to exploit direct communication mediated by sound signals.5 This is
always the case in all the controllers evolved in different evolutionary runs. In the DC setting,
the activation of the speaker is handcrafted and corresponds to the perception of a hole with any
of the ground sensors, while the response to this signal is shaped by evolution. In most of the
different evolutionary runs, the perception of the signal corresponds to the rotation on the spot of
the chassis of all the s-bots but the one that perceives the hole. This latter one tries to move away
from the arena border and, in doing so, it does not encounter much resistance from the others,
until it ends up not detecting the hole any more. At this point, the signalling ceases and the group
reorganises moving in a new direction.

The situation is much more complex for the EC setup. In fact, in this case evolution is in
charge of shaping both the signalling mechanisms and the response to the perceived signals. It is
very interesting to notice how evolution produced a variety of behaviours, all well adapted to the
hole avoidance task. A detailed description of all the communication and behavioural strategies
corresponding to the different evolutionary runs is out of the scope of this paper. It is anyway
interesting to highlight some of the common points that characterise these behaviours, which seem
to be the cause of the better performance achieved in this setup, as we show in the following.

1. Signalling is associated with the perception of a hole, similarly to the DC setup. However, not
all ground sensors are associated with a signalling behaviour, but only those corresponding
to the direction of motion. In this way, s-bots do not influence each other if they perceive a
hole while they are moving away from it.

2. The signalling behaviour is not only linked to the perception of a hole, but it is influenced
also by other factors, such as the traction force perceived and the perception of sound signals.
In particular, in some cases, a high traction force inhibits the production of the signal. The
adaptive function of this inhibition consists in the fact that in the absence of sound signals,
the s-bots try to coordinate based on traction only, which may lead to a faster choice of a
new direction of motion away from the hole.

3. Similarly to point 2, signal production is in some cases inhibited also by sound perception.
In particular, when the perception of the self-emitted sound inhibits its production, an s-bot
performs an alternate signalling, switching the loudspeaker on and off every control cycle.
In this way, the s-bots ’ behaviour is influenced only in part.

The above mechanisms contribute to achieve a fast and reliable reaction to the perception of a
hole, a reaction that in general results in an efficient avoidance.

From the qualitative analysis, the use of direct communication seems to confirm our expec-
tations: it results in a faster reaction to the detection of a hole and therefore in a more efficient
avoidance behaviour. Additionally, the evolved communication strategy appears more adaptive
than the handcrafted solution. In order to assess the performance difference between the different
setups, we performed a quantitative analysis, described in the following.

5.2 Quantitative Analysis

We performed a post-evaluation analysis and we compared the results obtained with the three
setups. For each evolutionary run, we selected the best individual of the final generation and we
re-evaluated it 100 times. Each performance evaluation is the average of the fitness scored in three
trials, one for each experimental condition encountered during evolution and shown in Figure 4.
In each trial, characterised by a different random initialisation, the performance is measured using
equation (5). All individuals are tested against the same set of trials, using the same random
initialisation. On the whole, the selected controllers are evaluated in 300 trials, obtaining 100

5Falls are also registered for these setups, even if much more sporadically than in the DI case (see also Table 1).
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Table 1: Average and standard deviation of the performance of the best evolved controllers for
each evolutionary run in the three different setups. For each controller, the percentage of falls is
also shown.

DI setup DC setup EC setup
run F falls % F falls % F falls %
1 0.43 ± 0.06 41 0.48 ± 0.06 0 0.51 ± 0.06 0
2 0.45 ± 0.07 33 0.50 ± 0.08 22 0.49 ± 0.06 2
3 0.43 ± 0.07 34 0.49 ± 0.06 2 0.50 ± 0.06 0
4 0.47 ± 0.07 56 0.47 ± 0.06 1 0.48 ± 0.08 1
5 0.44 ± 0.07 47 0.51 ± 0.06 1 0.50 ± 0.06 1
6 0.45 ± 0.07 37 0.50 ± 0.05 0 0.55 ± 0.06 2
7 0.44 ± 0.07 39 0.47 ± 0.06 0 0.53 ± 0.05 0
8 0.44 ± 0.06 41 0.48 ± 0.06 1 0.50 ± 0.06 1
9 0.46 ± 0.08 23 0.44 ± 0.08 7 0.51 ± 0.06 2
10 0.45 ± 0.08 30 0.50 ± 0.06 0 0.51 ± 0.06 0

performance values that characterise their behaviour with respect to both coordinated motion
and hole avoidance. A box-plot summarising the performance of these individuals is shown in
Figure 6. It is possible to notice that EC generally performs better than DC and DI, while DC
seems to be generally better than DI.
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Figure 6: Post-evaluation analysis of the best controller produced by all evolutionary runs of the
three different setups. Boxes represent the inter-quartile range of the data, while the horizontal
lines inside the boxes mark the median values. The whiskers extend to the most extreme data
points within the inter-quartile range from the box. The empty circles mark the outliers.
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Table 1 reports the average performances obtained from the post-evaluation analysis, along
with the number of falls registered in condition “c”. This seems to confirm that the use of direct
communication has a relevant effect on the performance. We can also notice that in the DI setup,
the swarm-bot is often unable to avoid falling. In the other setups, the swarm-bot falls only
sporadically.

On the basis of these data, we performed a two-way analysis of variance (Montgomery, 1997)
to test if there is a significant difference in performance among the three setups. The analysis
considers 3 factors (the setups), 100 blocks (the testing trials) and 10 replications for each com-
bination of factor/block (the evolutionary runs). The applicability of the method was checked
looking at the residuals coming from the linear regression modelling of the data: no violation of
the hypothesis to use the analysis of variance was found. The result of the analysis, summarised in
Table 2, allows us to reject the null hypothesis that there is no difference among the three setups
with confidence of 99%.

The above analysis tells us that there is a statistical difference among the three setups, but it
does not show which setup is different. Therefore we performed pairwise Tukey’s tests among the
three setups. The obtained results show with 99% confidence that the behaviours evolved within
the EC setup performs significantly better than those evolved with both the DI and the DC
setups. The latter in turn results to be significantly better than the DI setup. We can conclude
that the use of direct communication is clearly beneficial for hole avoidance. In fact, it speeds
up the reaction to the detection of a hole, and it makes the avoidance action more reliable. We
have also shown that evolving the communication protocol leads to a more adapted system. In
the following, we show how these behaviours can be efficiently transferred to the physical robots.

6 Transfer on Physical S-bots

So far, we have shown how evolution can synthesise neural controllers that produce coordinated,
cooperative behaviours in a group of simulated robots. We have also shown that evolution can
shape the communication protocol in order to maximise the performance of the robotic system. In
this section, we show how the controllers evolved in simulation can smoothly transfer to the real
world. In order to do so, we first describe the methodology applied for choosing the individuals to
test in reality. Then, we describe some issues related to the porting of the evolved controllers on
physical robots. Finally, we present the results obtained with the physical robots and we compare
them with the simulation.

6.1 Selection of the Controllers

In order to test the evolved behaviours on the physical robots, a choice had to be made among the
available controllers, because testing all the best evolved neural networks in a sufficient number
of trials would have been impractical and very time-consuming. We therefore decided to test a
single controller per setup, and to compare its performance between simulation and reality.

We based the selection of the best controller on a different performance metric with respect to
what was used during evolution. In fact, the function defined in equation (5) is a very conservative
evaluation of the hole avoidance behaviour. It always takes into account the worst performing
individual of the group, and makes a product of measures that are based on individual sensor

Table 2: Analysis of Variance for the effect of the setups.

d.f. Partial SS MS F P

Setups 2 1.823 0.911 279.43 < 0.0001
Trials 99 4.153 0.042 12.86 < 0.0001
Total 101 5.9760 0.059 18.14 < 0.0001
Error 2898 9.4525 0.003
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(a) (b)

Figure 7: The square arena used for the comparison between simulation and physical s-bots. (a)
The simulated arena. (b) The real arena.

readings, which are affected by high levels of noise in the real world. Therefore, when computed
on data obtained from the physical robots, Fθ resulted in very low values, and a comparison with
simulation results was not fair. The new performance metric T gives a more informative measure
of the controller’s quality with respect to hole avoidance and allows making a fair comparison
between simulation and reality. This performance metric corresponds to the distance covered by
the swarm-bot and is computed integrating the trajectory covered by the centre of mass of the
s-bots during a trial θ. This metric is computed as follows:

Tθ =











0 if fall

1

DM

T
∑

t=1

||XS(t) − XS(t − 1)|| otherwise
(6)

where XS(t) is the coordinate vector of the centre of mass of the swarm-bot S at cycle t, T is
the number of control cycles performed and DM is the maximum distance that an s-bot can cover
moving straight at maximum speed in T control cycles.

Using equation (6), we performed a post-evaluation analysis of all the best controllers evolved
in the 30 evolutionary runs. The swarm-bot was put in a small square arena, its side measuring
180 cm, shown in Figure 7a. A real version of this arena was built, making the comparison between
simulation and reality possible (see Figure 7b). The results obtained from the post-evaluation are
summarised in Table 3. Both the average performance and the number of times the swarm-bot
fell out of the arena are shown.6 It is possible to notice that the number of falls is rather high for
the DI setup, and in general much lower for the DC and EC setups.

The choice of the best controller for each setup should be based on its performance. However,
other factors are also relevant when considering porting on real robots. In our case, we were
mainly interested in avoiding damage to the s-bots, therefore we decided to select those controllers
that resulted in the least number of falls. In case of multiple possibilities, as for the DC setup, a
choice based on the highest mean performance has been performed. Consequently, we chose the
controllers evolved in the 9th, 6th and 10th evolutionary runs respectively for the DI, DC and EC
setup.

6.2 Issues in Porting on Physical S-bots

The neural network controller is used on the real s-bots exactly in the same way as in simulation.
The values returned by the various sensors are read every 100 ms, they are scaled in the range
[0,1] and finally fed to the neural network. The outputs of the network are used to control the
wheels and the turret-chassis motor. There are only two differences compared to the simulation.

6Using these data we performed the same statistical analysis described in Section 5.2, and also in this case we
obtained a significant difference among the setups, confirming that EC is the best setup, followed by DC and DI

(data not shown).
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Table 3: Results of the post-evaluation using the performance based on the integrated trajectory.
Average performance and standard deviation are displayed for the best evolved controllers of each
evolutionary run. For each controller, the percentage of falls is also shown. The individuals chosen
for transfer to the physical s-bots are displayed in bold.

DI setup DC setup EC setup
run Tθ falls % Tθ falls % Tθ falls %
1 0.10 ± 0.21 69 0.48 ± 0.28 5 0.63 ± 0.31 8
2 0.08 ± 0.15 62 0.19 ± 0.26 52 0.46 ± 0.31 13
3 0.10 ± 0.20 66 0.53 ± 0.30 5 0.48 ± 0.32 15
4 0.04 ± 0.12 76 0.32 ± 0.28 28 0.54 ± 0.33 10
5 0.10 ± 0.15 52 0.40 ± 0.27 14 0.43 ± 0.31 14
6 0.11 ± 0.20 61 0.49 ± 0.24 0 0.50 ± 0.28 8
7 0.12 ± 0.19 60 0.43 ± 0.25 0 0.58 ± 0.31 9
8 0.09 ± 0.18 63 0.54 ± 0.27 2 0.46 ± 0.32 14
9 0.28 ± 0.26 29 0.43 ± 0.32 21 0.42 ± 0.37 29
10 0.13 ± 0.24 63 0.56 ± 0.26 1 0.57 ± 0.30 5

First of all, an exponential moving average is applied to the outputs of the neural network that
control the wheels and the turret-chassis motor:

ω(t) = τy(t) + (1 − τ)ω(t − 1), (7)

where ω(t) is the desired angular speed of the wheels at time t, y(t) is the set-point defined by
the neural controller and τ = 0.8 is the time constant used. This average is required to avoid
damage to the robots if the network output varies too much, and it adds to the smoothing of the
wheels’ speed performed by the PICTM controller of the motors. Moreover, we added a recovery
function that is necessary to avoid damage of the s-bots due to excessive efforts by the motors of
the wheels. This function constantly monitors the torque applied by the motors of the left and
right wheels, and in case the torque exceeds a given threshold for a long time, the speed of the
wheels is set to 0. Both these modifications make the system somewhat less reactive to external
stimuli, but they are required in order to avoid an excessive strain of the motors.

No parameter tuning was required except for the maximum traction force FM . This parameter
is used for scaling the readings R(t) of the traction sensor:

F(t) =







−1 if R(t) < −FM ,
R(t)
FM

if |R(t)| ≤ FM ,

1 if R(t) > FM ,

(8)

where F(t) is the normalised value fed to the neural controller. The optimal value of FM depends
on the neural controller, the individual properties of the s-bots (level of noise, effective power of
the motors) and the friction coefficient of the ground, which can vary due to dust or humidity.
Therefore, we tuned this parameter independently for each neural controller in order to maximise
its performance.

6.3 Results

Each selected controller was evaluated in 30 trials, always starting with a different random initial-
isation. A square swarm-bot was placed in the centre of the square arena shown in Figure 7b. The
behaviour of the swarm-bot was recorded using an overhead camera, and its trajectory obtained
using the tracking software SWISTrack,7 which proved to be a valuable tool for tracking a robot
swarm (Correll and Martinoli, 2006). Figure 8a shows an example of the trajectory extracted

7A software developed by the Swarm-Intelligent Systems Group, EPFL, http://swistrack.sourceforge.net
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Figure 8: (a) View of the arena taken with the overhead camera. The black line corresponds to the
trajectory of the swarm-bot in a trial lasting 900 control cycles. (b) A physical swarm-bot while
performing hole avoidance. It is possible to notice how physical connections among the s-bots can
serve as support when a robot is suspended out of the arena, still allowing the whole system to
work. Notwithstanding the above difficult situation, the swarm-bot was able to avoid falling.

using the tracking software. The obtained data were used to compute the performance of the
system using equation (6).

Qualitatively, the behaviour produced by the evolved controllers tested on the physical s-
bots is very good and closely corresponds to what observed in simulation8 (see Figure 8). S-
bots coordinate more slowly in reality than in simulation, taking a few seconds to agree on a
common direction of motion, also due to the smoothing of the wheel speed discussed in Section 6.2.
Some problems are caused by the front inversion mechanism, which sometimes leads to a loss of
coordination, due mainly to the high friction of the treels system. Hole avoidance is also performed
with the same modalities as observed in simulation. With the DI controller, the combination of
tracks and wheels of the traction system brings an advantage compared to the results recorded in
simulation, in which the tracks are not modelled (see Section 3.2). In fact, differently from what
happens in simulation, the s-bot that perceives the hole can produce a traction force even if it
is nearly completely suspended out of the arena. Moreover, the higher friction provided by the
tracks allows to produce higher traction forces that can have a greater influence on the behaviour
of the rest of the group. Similarly, the treels system is advantageous for the DC controller, in
which the s-bot perceiving the holes pushes the other s-bots away from the arena border while
emitting a sound signal. Concerning the EC controller, on the contrary, the treels system does
not lead to a clear advantage from a qualitative point of view. In both DC and EC, we recorded
some communication failures, in which an s-bot misses either to switch on the loudspeaker or to
perceive an emitted signal. In particular, in the EC setup, failures are more frequent whenever
an s-bot tries to switch the loudspeaker on and off at a high pace.

From a quantitative point of view, it is possible to recognise some differences between simulation
and reality, as shown in Figure 9 and in Table 4. We compare the performance Tθ recorded in 100
trials in simulation with the one obtained from the 30 trials performed in reality. Generally, we
observe a decrease in the maximum performance, mainly due to a slower coordination among the
s-bots. This means that physical s-bots start moving coordinately later than the simulated ones,
both at the beginning of a trial and after the perception of a hole. This influences the performance,
as the swarm-bot cannot cover high distances until coordination among the s-bots is achieved.

Looking at Figure 9 and Table 4, we can notice that the performance of the DI controller is
better in reality, thus confirming the qualitative analysis for which the treels system allows to en-
hance the direct interactions among the s-bots, therefore leading to a better avoidance behaviour.
This is also confirmed by the percentage of falls, which is lower in reality than in simulation.

8Movies of these behaviours are available in the electronic supplementary material.
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Table 4: Average and standard deviation of the performance obtained by the selected controllers
tested both in simulation and reality. The percentage of falls is also shown.

DI setup DC setup EC setup
Tθ falls % Tθ falls % Tθ falls %

simulation 0.28 ± 0.26 29 0.49 ± 0.24 0 0.57 ± 0.30 5
reality 0.33 ± 0.20 20 0.47 ± 0.18 3.3 0.45 ± 0.21 6.6

Concerning the DC controller, the performance difference between simulation and reality is mini-
mal. In this case, we observed that the possible performance drop due to communication failures
was compensated for by the higher force transmitted from one s-bot to the other due to the high
friction of the treels system. Here, only one fall was observed out of the 30 trials performed. On
the contrary, the best controller of the EC setup does not perform as well in reality as in simula-
tion. S-bots are always able to coordinate and to perform coordinated motion and hole avoidance.
However, we observe here that s-bots are slower in avoiding holes due mainly to some failures in
the communication system, which is fundamental to trigger and support the avoidance action. For
this reason, quantitatively the performance decreases. However, the behaviour is altogether good,
and the percentage of falls is in line with the results obtained in simulation, as shown in Table 4.
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Figure 9: Comparison of the performance produced in the different settings by the selected con-
trollers tested both in simulation and reality. For an explanation of the plot, see Figure 6.

20



7 Conclusions

The definition of collective behaviours based on self-organisation is a problem of particular interest
for many researchers. In this paper, we show that through artificial evolution it is possible to
synthesise controllers that achieve very good performance in simulation and that can be smoothly
ported to physical robots.

We have shown that the use of direct communication among the s-bots is particularly beneficial
in the case of hole avoidance. It is worth noting that direct communication acts here as a rein-
forcement of the direct interactions among the s-bots. In fact, s-bots react faster to the detection
of the hole when they receive a sound signal, without waiting to perceive a traction strong enough
to trigger the hole avoidance behaviour. However, traction is still necessary for avoiding the hole
and coordinating the motion of the swarm-bot as a whole. Additionally, the statistical analysis of
the results obtained in simulation showed that the completely evolved setup outperforms the setup
in which direct communication is handcrafted. This result is in our eyes particularly significant,
because it shows how artificial evolution can synthesise solutions that would be very hard to design
with conventional approaches. In fact, the most effective solutions discovered by evolution exploit
some interesting mechanisms for the inhibition of communication that would have been difficult
to devise without any a priori knowledge of the system’s dynamics.

The neural controllers synthesised by artificial evolution proved to be robust enough to be
tested on physical robots, notwithstanding the huge gap between the simulation model used for
the evolution and the actual s-bot. The neural controller produced a qualitatively equivalent
behaviour to what was observed in simulation. The performance measured in the real world was
somewhat affected by various factors, but the difference with simulation was never higher than
20% on average. We can therefore conclude that we succeeded in transferring an evolved self-
organising behaviour from simulated to physical s-bots. To the best of our knowledge, no other
comparably advanced behaviour has been evolved in simulation and successfully tested on physical
robots.

In future work, we will continue the development of self-organising, communicating behaviours
for the swarm-bot and, possibly, other robotic platforms. Mainly, two problems attract our at-
tention: on the one hand, we are interested in studying the formation of a physically assembled
structure—i.e., a swarm-bot—as an adaptive response to adverse environmental contingencies that
prevent the single individuals—i.e., the s-bots—to accomplish their task. This problem, that goes
under the name of functional self-assembling (Trianni et al., 2004b), is still at an early stage of
study, and approaching it using evolutionary techniques is our main goal. On the other hand, we
are interested in the evolution of communication for synchronisation of the activities of a group. As
in the experiments presented in this paper, the evolution of communication should be functional to
the achievement of a particular goal—e.g., efficiently avoiding holes. In the case of synchronisation
of the group activities, communication should emerge as a means for reducing waste of energy at
the individual level when strictly cooperative actions are required.
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M. Dorigo and E. Şahin. Swarm robotics – special issue editorial. Autonomous Robots, 17(2–3):
111–113, 2004.
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A The Front Inversion Mechanism

Suppose that an s-bot is driven by a controller that rotates the chassis toward the traction direction,
covering the minimum angular distance. This controller takes as input the intensity and direction
of the traction force computed from a reference frame integral with the chassis. Moreover, this
controller does not take into account the rotational limit. Suppose also that the s-bot finds itself
in the situation depicted in Figure 10a: the chassis is oriented in the direction indicated as A and
a traction force is perceived as indicated. Driven by its controller, the s-bot rotates the chassis
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counterclockwise, but it encounters the rotational limit and gets stuck. Now, suppose that the
traction force stays the same, while the chassis is oriented in the opposite direction, indicated by
B in Figure 10b. In this case, the controller rotates the chassis clockwise and reaches the desired
position without encountering the rotational limit.

In the situation depicted in Figure 10, A and B correspond to the two directions—hereafter
called fronts—of the s-bot ’s chassis: one corresponds to forward motion, the other to backward
motion. The symmetry of the chassis allows to make no distinction between these two fronts.
The front inversion mechanism consists in swapping front A with front B and vice versa every
time the rotational limit is encountered. With respect to the above example, when the s-bot is in
the situation depicted in Figure 10a, it is exploiting the front A as main direction of motion and
turns counterclockwise, until the rotational limit is encountered. At this point, the front inversion
mechanism swaps the fronts, so that the s-bot exploits front B as main direction of motion. As
the traction force comes now from the left, the s-bot rotates clockwise and reaches the desired
orientation.

Technically, inverting the front from A to B or vice versa involves a 180◦ rotation of the chassis’
reference frame, therefore passing from xaya to xbyb, as in Figure 10. The inputs of the controller
must be computed referring to the new reference frame. In particular, the traction encoding must
be inverted:

~Fb = − ~Fa,

where ~Fa is the traction as perceived by the traction sensor, and ~Fb is the value fed to the
controller. If other sensors are used, their readings must be swapped with respect to both x and
y axes before using them as input to the controller.9 Concerning the wheels, using the front B

instead of front A requires that the controller outputs are inverted as well:

ωb,l = −ωa,r,

ωb,r = −ωa,l,

where ωa,- is the angular speed defined by the controller, while ωb,- is the angular speed set to the
wheel.

The precondition for the application of the front inversion mechanism is the central-symmetry
of the sensory-motor equipment, because it allows a 180◦ rotation of the reference frame. Moreover,
the controller must be somewhat “symmetric” itself: in the inverted condition, the controller
should produce an action that is opposite with respect to the non-inverted condition. For example,
a controller that rotates the chassis clockwise for every perceptual condition is not symmetric. In
such a case, swapping the fronts does not lead to any advantage. A symmetric controller would
turn counterclockwise when using A and clockwise when using B for a given perceptual state,
similarly to the situation depicted in Figure 10. Notice that the controller does not have to be
perfectly symmetric, but it is sufficient that it results in a “qualitatively” symmetric action with
respect to symmetric perceptual conditions.

The necessity of having a symmetric controller when using the front inversion mechanism
justifies the introduction of two sound inputs in the DC and EC setups (instead of adding only
one), as mentioned in Section 4.2. Having a single input would lead to a single action no matter
which front is used. For example, if the response to a perceived signal is a clockwise turn, it would
not change when inverting the fronts. Therefore, we make use of two inputs, which are alternately
set whether the active front is A or B. This allows to obtain a symmetric behaviour with respect to
the perception of sound signals (i.e., a clockwise rotation using A and a counterclockwise rotation
using B). Finally, it is worth noting that it is up to the evolutionary algorithm to synthesise a
symmetric controller: in fact, if the controller were not symmetric, the front inversion mechanism
would not work properly and the s-bot would get stuck on the rotational limit.

9This applies to ground sensors in the experiments presented in this paper.
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