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This paper illustrates the methods and results of two sets of experiments in which a group
of mobile robots, called s-bots, are required to physically connect to each other—i.e., to self-
assemble—to cope with environmental conditions that prevent them from carrying out their task
individually. The first set of experiments is a pioneering study on the utility of self-assembling
robots to address relatively complex scenarios, such as cooperative object transport. The results
of our work suggest that the s-bots possess hardware characteristics which facilitate the design of
control mechanisms for autonomous self-assembly. The control architecture we developed proved
particularly successful in guiding the robots engaged in the cooperative transport task. However,
the results also showed that some features of the robots’ controllers had a disruptive effect on
their performances. The second set of experiments is an attempt to enhance the adaptiveness
of our multi-robot system. In particular, we aim to synthesise an integrated (i.e., not-modular)
decision making mechanism which allows the sbot to autonomously decide whether or not envi-
ronmental contingencies require self-assembly. The results show that it is possible to synthesise,
by using evolutionary computation techniques, artificial neural networks that integrate both the
mechanisms for sensory-motor coordination and for decision making required by the robots in the
context of self-assembly.

Categories and Subject Descriptors: I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—Multi-
agent systems; Intelligent agents; Coherence and coordination; I.2.6 [Artificial Intelligence]: Learning—Con-
nectionism and neural nets; I.2.9 [Artificial Intelligence]: Robotics—Autonomous vehicles; Kinematics and
dynamics

General Terms: Algorithms

Additional Key Words and Phrases: Swarm robotics, evolutionary robotics, self-assembly, artificial
neural networks, evolutionary algorithms, swarm intelligence

1. INTRODUCTION

Recently, there has been a growing interest in multi-robot systems since, with respect to a single
robot system, they provide increased robustness by taking advantage of inherent parallelism and
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redundancy. Moreover, the versatility of a multi-robot system can provide the heterogeneity
of structures and functions required to undertake different missions in unknown environmental
conditions. Research in autonomous multi-robot systems often focuses on mechanisms to enhance
the efficiency of the group through some form of cooperation among the individual agents. An
innovative way of cooperation is given by self-assembly, that is, the capability of a group of mobile
robots to autonomously connect to and disconnect from each other through some kind of device
that allows physical connections.

Self-assembly can enhance the efficiency of a group of autonomous cooperating robots in several
different contexts. Generally speaking, self-assembly is advantageous anytime it allows a group of
agents to cope with environmental conditions which prevent them from carrying out their task in-
dividually. For example, robots designed for all-terrain navigation could make use of self-assembly
to move on a particularly rough terrain by reducing the risk of toppling over (see figure 1a), as
well as to bridge the gap between the two sides of a trough larger than the body of a single robot,
reducing the risk of falling in (see figure 1b). In the context of object transport, a group of self-
assembled robots might be capable of pushing/pulling an object which, due to its characteristics
(e.g., mass, size, and shape), can not be transported by a single robot.

Despite its relevance within the context of multi-robot systems, the design of control policies
for self-assembling robots has encountered difficulties. Section 2 shows that, up to now, there are
no examples of self-assembling robots in which more than two autonomous mobile units manage
to approach and to connect to each other. This lack of results is mostly due to hardware imple-
mentations which demand each robot of the group to be able to accurately coordinate its actions
(a) to self-assemble, and (b) to facilitate the movement of the assembled robotic structure once
connected.

The “marginal” role that self-assembly has been playing within multi-robot systems has been a
motivation for us to carry out research work focused on the design of mechanisms underlying the
motor coordination required in self-assembly as well as on the decision making structures which
allow the robots to decide when it is time to physically connect to each other. Indeed, the efficiency
of a group of autonomous robots is strictly associated with the robots capability to exploit the
most efficient strategies with respect to the environmental conditions. Self-assembly may improve
the efficiency of the group if it is triggered by the perception of those environmental contingencies
that jeopardise the accomplishment of a task if carried out in non-assembled structures. In order
to do so, the robots should be equipped with mechanisms that allow them to autonomously decide
whether or not the environmental conditions require self-assembly.

This paper illustrates the methods and results of two sets of experimental works in which robots
are required to make use of self-assembly to cope with environmental conditions that prevent them
from carrying out their task individually. These robots are called s-bots. We use the term swarm-

(a) (b)

Fig. 1. A group of robots physically connected to each other, that (a) moves on rough terrain. This picture
is demonstrative of the capabilities of the self-assembling robots we developed; (b) passes over a gap during an
experiment in a close arena with a flat terrain.
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bot to refer to a multi-robot system composed of several s-bots physically connected.1

The goal of the first set of experiments is to validate on “real” hardware control mechanisms for
self-assembly originally developed in a simulated environment (see section 4). In these experiments,
a group of six s-bots is required to exploit self-assembly in order to transport a heavy object towards
a target area. Each s-bot is driven by a controller made of two modules: the first one—referred to
as “assembly module”—defines the rules for the connection to an object, or to already connected s-

bots ; the second one—referred to as “transport module”—defines the rules for collectively moving
an object towards a target area. In general, we consider an instance of self-assembly to be the
process which ends up in a structure whose elements (i.e., the s-bots) are physically connected
to each other. In particular, in the considered cooperative transport scenario, self-assembly is
such that at least one element of the assembled structure should be connected to the object to
be transported. Experimental results show that the modular controllers can successfully generate
the actions required by the s-bots to physically connect to the object and/or to each other and to
move in a coordinated fashion once connections are established. The control policies we developed
take advantage of the hardware design in order to achieve a successful self-assembly behaviour.
We believe that this work represents a sensible step forward with respect to the state of the art in
the design of self-assembling robots, in particular if we look at (a) the number of robots involved
in self-assembly, (b) the reliability of the system, (c) the speed with which the robots form the
assembled structures, and (d) the capability of the assembled structures to coordinate in order to
transport a heavy object.

The results of the first set of experiments are particularly promising with respect to the effec-
tiveness of the mechanisms underlying the coordination of movement of the single s-bot and of the
swarm-bot as a whole. We also mention that this type of controller has been successfully used in
a different context, to allow a group of s-bots to self-assemble to overcome steep hills which cause
a single s-bot to topple backwards [O’Grady et al. 2005]. Notwithstanding the successful results,
this modular architecture is based on a set of a priori assumptions concerning the specification
of the environmental conditions which trigger self-assembling. For example, (a) the objects that
can be grasped must be red, and those that can not be grasped must be blue; (b) the action of
grasping is carried out only if all the “grasping requirements” are fulfilled (see section 4.2.1 for
details). If the experimenter could always know in advance in what type of world the agents will
be located, assumptions such as those concerning the nature of the object to be grasped would
not represent a limitation with respect to the domain of action of the robotic system. However,
since it is desirable to have agents which can potentially adapt to variable circumstances or con-
ditions that are partially or totally unknown to the experimenter, it follows that the efficiency of
autonomous robots should be estimated also with respect to their capacity to cope with “unpre-
dictable” events (e.g., environmental variability, partial hardware failure, etc.). We believe that a
sensible step forward in this direction can be made by avoiding to constrain the system to initiate
its most salient behaviours (e.g., aggregation, grasping of objects, self-assembly) in response to a

priori specified agent’s perceptual states. As explained at the beginning of section 5, one way to
take into account these principles is by exploiting artificial evolution to synthesise integrated (i.e.,
not-modular) artificial neural network controllers.

Accordingly, the goal of the second set of experiments is to move a first step towards the
development of integrated artificial neural networks that provide an s-bot with all the mechanisms
required to perform tasks that demand self-assembly (see section 5). By exploiting this approach,
we hope to reduce the amount of a priori assumptions to the advantage of improving the capability
of the robotic system to adapt to different and unforeseeable circumstances. Unfortunately, the
simplifications introduced in the experimental set up (e.g., the model of the gripper, and of the
sound sensors) do not allow testing on the real robots. This notwithstanding, we were able to
achieve the important result of integrating in a single neural controller all the adaptive mechanisms
required to solve the task—i.e., mechanisms for individual and collective behaviour, decision-

1The s-bots have been developed within the SWARM-BOTS project, a project funded by the Future and Emerging
Technologies Programme (IST-FET) of the European Commission, under grant IST-2000-31010. See also http:

//www.swarm-bots.org/.
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making, and self-assembly. Further work is certainly required in order to exploit this methodology
to port the evolved controllers on the real s-bots. However, the results illustrated in section 5
look quite promising. They seem to suggest that in a near future we might be able to exploit
integrated artificial neural networks designed by artificial evolution to improve the adaptiveness
of our self-assembling robots.

1.1 Structure of the paper

In what follows, we first present a review of the work on self-assembling robots, with particular
attention to both the hardware elements through which self-assembly is accomplished, and the
characteristics of the controllers which bring forth the robot behaviour (see section 2).

In section 3, we provide a brief description of the most significant hardware characteristics of
the s-bots.

In section 4, we describe methods and results of a first set of experiments in which a modular
architecture has been employed to control the behaviour of the s-bots in a cooperative transport
task. We discuss the results, and also the problems encountered with our approach.

In section 5, we illustrate research work in simulation about the design of collective decision
mechanisms for self-assembling robots that might not be subject to the limitations we discussed
in the previous section.

Conclusions are drawn in section 6 and future work is discussed in section 7.

2. RELATED WORK

The design of the hardware and of the control policies for self-assembling robots is a particularly
challenging task. In the robotic literature, there are several types of hardware platforms composed
of modules which are capable of connecting to each other through some kind of connection mecha-
nism. The majority of such systems fall in the category of self-reconfigurable robots (see [Yim et al.
2002]). In most studies of self-reconfigurable robotic systems, single modules are pre-attached to
each other by the designer (e.g., PolyBot [Yim et al. 2000], CONRO [Castano et al. 2000], Crys-
talline [Rus and Vona 2001], M-TRAN [Murata et al. 2002], and ATRON [Jørgensen et al. 2004]).
This review does not take into account these studies.

In the remain of this section, we mainly discuss those self-reconfigurable robots in which self-
assembly is the result of autonomous movement of the single modules (see sections 2.1, 2.2,
and 2.3). We also briefly overview recent work in stochastic reconfigurable robots in which the
modules move passively and bound to each other upon random collisions (see section 2.4).

2.1 Chain-based Self-reconfigurable Robots

PolyBot [Yim et al. 2000; Yim et al. 2002; Yim et al. 2003] is a modular chain robot that can
configure its form with no external mechanical assistance. Each module has one degree of freedom
involving rotation of two opposite connection plates through a ±90 degrees range. Additional
passive cuboid segments with six connection plates are necessary to introduce branches to the
structures and to establish connection with an (external) power supply. The active modules are
equipped with IR sensors and emitters integrated in the connection plates, as well as with sensors
to detect the positions of the rotational joints. Yim et al. [Yim et al. 2002] demonstrated the
ability of a modular robot arm composed of six PolyBot modules to grasp another module on
flat terrain. One end of this arm was attached to one of the walls of the arena. The joint angles
for each segment of the arm were calculated by an inverse kinematics routine. This step requires
knowledge about the goal position and orientation. Imprecision in the joints results in positional
errors which increase with the length of the chain. Therefore, this method is applied only in the
long range phase during which the corresponding modules get close to each other. The median

range phase and the short range phase that follow make use of the IR sensors and emitters to
support further alignment and approach.

CONRO is a homogeneous modular chain robot composed of modules that are fully self-
contained [Castano et al. 2000]. The basic implementation of a CONRO module has three segments
connected in a chain: a passive connector, a body and an active connector. Infrared emitters and
receivers are located on both active and passive connectors to support the docking and to enable
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communication between connected modules. Rubenstein et al. [Rubenstein et al. 2004] demon-
strated the ability of two separate CONRO robots to perform an autonomous docking task. Each
robot consisted of a chain of two, linearly-linked CONRO modules. The robots were put on an
obstacle-free, flat terrain, at distances up to 15 cm. To ensure that the chains were able to perceive
each other, they were set-up facing each other with an angular displacement not bigger than 45
degree. Using a simple control policy the robots put themselves in a proper alignment, then one
robot was approaching the other. Finally, the docking was recognised and communicated to all
the modules. The control was heterogeneous, both with respect to the modules of each robot, and
concerning the different robots.

2.2 Lattice-based Self-reconfigurable Robots

Zykov et al. [Zykov et al. 2005] presented a lattice-based self-reconfigurable robot capable of self-
assembling. Each module is a cube, one half of it could swivel relative to the other half. Modules
were powered externally from a grid-based supply fixed on the ground. Zykov et al. demonstrated
self-replication of a four-module robot. The system required a well-ordered supply of additional
modules. Also it could not adapt to situations in which the additional modules were supplied in
other than pre-defined places. These constraints are mainly imposed by limitations in both the
mobility and the perception, as it is the case in most lattice-based self-reconfigurable robots.

2.3 Mobile Self-reconfigurable Robots

Fukuda et al. proposed the concept of dynamically reconfigurable robotic systems and realized
an implementation with CEBOT, the first cellular robotic system [Fukuda and Nakagawa 1987;
Fukuda and Ueyama 1994]. CEBOT is a heterogenous system comprised of cells with different
functions (e.g., move, bend, rotate, and slide). A series of prototypes has been implemented,
including the CEBOT Mark I, II, III, and IV. Fukuda et al. [Fukuda et al. 1988] presented a
successful docking experiment in an obstacle-free, flat terrain with CEBOT Mark II2: a static
cell was put 60 cm away from a moving cell; the latter was oriented towards the static cell. The
orientation of the static cell was displaced for 20 degree with respect to the moving cell. The
moving cell was controlled with a hand-coded controller. To the best of our knowledge there
are no quantitative results provided to assess the performance and the reliability of autonomous
self-assembly in a group of CEBOT cells.

The work of Hirose et al. [Hirose et al. 1996] describes a distributed robotic concept called
Gunryu. Each robot unit is equipped with a versatile manipulation device and is capable of fully
autonomous locomotion. In addition, the manipulator can be employed to establish a physical
link with another robot unit. By exploiting this mechanism, a chain of connected units could
potentially navigate through steep concave regions, or pass large troughs. A prototype of two
units proved capable of locomotion on rough terrain under conditions in which single units failed.
However, units have been mechanically linked by means of a passive arm. As a result, the robot
units were not capable of self-assembling.

Super Mechano Colony (SMC) [Damoto et al. 2001; Hirose 2001] is a modular robotic concept
composed of a single main body (called the mother-ship) and many child units attached to it. Child
units are an integral part of the system’s locomotion. In addition, the child robots can disband
to accomplish separate, autonomous missions, and reconnect once the missions are accomplished.
Hirose et al. [Hirose et al. 2000; Damoto et al. 2001] introduced the first prototype of an SMC
system. Two motorised and two passive wheels are attached to the chassis, and allow for navigation
on flat terrain. Each child robot can be equipped with CCD cameras. The mother-ship is equipped
with passive wheels. Disconnecting and re-docking of a child unit to the mother-ship has been
realized by letting it follow a fixed path by making use of dead-reckoning. The most recent
development is the SMC rover [Motomura et al. 2005]. It is a planetary rover with attachable
child robots (called Uni-Rovers), each one composed of a single wheel and a manipulation arm
(also used as connection mechanism). The current prototype is not equipped with any external

2Similar experiments have been conducted with CEBOT Mark III (see [Fukuda et al. 1990]) and IV (see [Fukuda
et al. 1995].)
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sensors.
Similar to Gunryu, the Millibot Train is composed of multiple, linearly linked, modules [Brown

et al. 2002]. Each module is equipped with caterpillar tracks. A prototype has been developed to
study its mobility in climbing a step or in crossing a ditch. Since no external sensors had been
integrated, the prototype was not capable of self-assembling [Brown et al. 2002].

Bererton and Khosla [Bererton and Khosla 2000; 2001] studied autonomous docking between
two mobile robots in the context of self-repair. Although it might not be considered a self-
reconfigurable system, the robots share some similarities with mobile self-reconfigurable systems.
Hence, we decided to append this work to this section. To guide the docking procedure, a black and
white camera is mounted on top of the approaching robot. However, image processing is performed
externally on a PC. A simple state machine controls the robot to turn counter-clockwise until the
target is perceived. Then, the robot approaches the target and aligns itself towards the receptacle.
The robot drives forward until either a bumping sensor confirms a connection, or a timeout occurs.

2.4 Stochastic Self-reconfigurable Robots

Recently, there has been growing attention to the design and study of a new type of reconfigurable
system made of programmable modules that move passively and bound to each other upon random
collision. White et al. implemented two systems in which the modules float passively on an air
table that was fixed to an orbital shaker [White et al. 2004]. The modules were un-powered and
had no locomotion abilities. However, they became active once they bond to a main structure.
Self-assembly has been demonstrated with up to three modules. In two other systems the modules
were put in a fluid and random motion was induced by the surrounding medium [White et al.
2005]. Self-assembly and self-reconfiguration of two modules were studied.

Griffith et al. [Griffith 2004; Griffith et al. 2005] developed a system capable of self-assembly
to study self-replication of strings of programmable, electromechanical parts. The modules slid
passively on an air table and bound to each other upon random collisions. The system was capable
of autonomous replication of a 5-bit string provided with an unordered supply of additional units.
The replicants themselves were self-replicating artifacts.

Bishop et al. [Bishop et al. 2005] demonstrated self-assembly with simple programmable modules
that slid passively on an air table and bound to each other upon random collisions. Once attached,
they executed a common graph grammar in a completely distributed fashion. Doing so, a collection
of six programmable modules could form a hexagon.

2.5 Discussion

This literature review suggests that, up to now, there seem to be no examples of self-assembling
robots in which more than two robotic units manage to (a) autonomously approach and to connect
to each other, and (b) accomplish self-assembly by starting from any arbitrary initial position of
the modules. Only the work described in [Rubenstein et al. 2004] shows two robotic units capable
of autonomous movement and self-assembling. In all other works, only one unit is capable of
autonomous movement and it assembles to a non-moving module (see [Fukuda and Ueyama 1994;
Bererton and Khosla 2000; 2001]). Some publications report about robotic systems which are
potentially capable of self-assembling. However, due to hardware and/or software limitations of
the existing prototypes, no self-assembly can be achieved yet (see [Hirose et al. 1996; Brown
et al. 2002]) or only if the modules are specifically arranged in particular spatial positions and
orientations with respect to each other [Zykov et al. 2005].

There are multiple factors which have limited self-assembly to only two robotic units. Among
these factors a main role is played, in our opinion, by the requirement of good alignment during
the connection phase. For all the robotic systems reviewed, physical connections can be estab-
lished only if the modules approach each other at specific orientations. That is, a great accuracy
is required to align the connecting device in order for the robot to successfully connect. This re-
quirement makes self-assembly an issue tightly linked to the capability of the robots to coordinate
their movements. The coordination of motion during alignment becomes more complex when the
connection has to be established between units already formed by assembled robots. In this case,
the alignment is not any more a matter of coordinating the actions of two single units, but it
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(a) (b) (c)

Fig. 2. (a) An s-bot close to a 1 Euro coin; (b) the traction system of an s-bot ; (c) the s-bot ’s gripper.

requires the coordination of several units among which some are already assembled, and therefore
constrained in their movements (see [Brown et al. 2002; Yim et al. 2002; Rubenstein et al. 2004]).

Accurate motor coordination is the result of a tight interaction between the properties of the
hardware and the robot control policy. However, if great accuracy of alignment is required for
connection, even a robot which is “properly” equipped in terms of the nature and the degrees
of freedom of its actuators and the variety and reliability of its sensors, may not be capable of
autonomously achieving self-assembly. This is, for example, the case in the work of Bererton and
Khosla [Bererton and Khosla 2000; 2001], in which, due to time constraints, the robots rely on an
external PC for image processing of their camera vision system. Given the time interval within two
consecutive actions and the computational resources, the robot was not capable of autonomously
extracting from the image provided by the camera the elements of its surrounding world needed
to decide what action to perform.

In the following section, we show how our research work on self-assembling robots managed to
solve these problems. In particular, we show that, thanks to their sensors and motor devices, the
s-bots “facilitate” the design of control systems to allow them to be able to autonomously build
bigger robotic structures by exploiting physical connections.

3. THE S-BOT

Our experiments have been carried out using the s-bots (see figure 2a). The s-bots are mobile
autonomous robots with the ability to connect to and to disconnect from each other (see [Mondada
et al. 2004; Mondada et al. 2005] for a detailed description of the s-bot hardware). An artifact
composed of a swarm of physically connected s-bots is referred to as a swarm-bot.

The hardware design of an s-bot is particularly innovative, both concerning its actuators and
its sensing devices (see figure 4). The s-bot is equipped with an innovative traction system which
makes use of both tracks and wheels as illustrated in figure 2b. The wheel and the track on a same
side are driven by the same motor, building a differential drive system controlled by two motors.
This combination of tracks and wheels is labelled Differential Treels© Drive.3 Such a combination
has two advantages. First, it allows an efficient rotation on the spot due to the larger diameter
and position of the wheels. Second, it gives to the traction system a shape close to the cylindrical
one of the main body (turret), avoiding in this way the typical rectangular shape of simple tracks
and thus improving the s-bot mobility and stability. The s-bot ’s traction system can rotate with
respect to the main body—i.e., the robot’s turret—by means of a motorised joint. The turret
holds a gripper for establishing rigid connections between two s-bots or between an s-bot and an
object (see figure 2c). The gripper is mounted on a horizontal active axis, and it has a very large
acceptance area allowing it to realize a secure grasp at a wide angle range. The s-bot gripper can
grasp another s-bot on a T-shaped ring placed around the s-bot turret (see figure 3a, b, and c).
If it is not completely closed, such a grasp lets the two joined robots free to move with respect
to each other while navigating. If the grasp is firm, the gripper ensures a very rigid connection
which can even sustain the lifting up of another s-bot. An s-bot is provided with many sensory

3Treels is a contraction of TRacks and whEELS
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systems, useful for the perception of the surrounding environment or for proprioception. Infrared
proximity sensors are distributed around the rotating turret, and can be used for detection of
obstacles and other s-bots. Four proximity sensors are placed under the chassis, and can be used
for perceiving holes or the terrain’s roughness. Additionally, an s-bot is provided with eight light
sensors, two temperature/humidity sensors, a 3-axes accelerometer and incremental encoders on
each degree of freedom. Each s-bot is also equipped with audio and video devices to detect and
communicate with other s-bots, such as an omni-directional camera, coloured LEDs around the s-

bot ’s turret, microphones and loudspeakers. Eight groups of three coloured LEDs each—red, green,
and blue—are mounted around the s-bot ’s turret, and they can be used to display colours. The
colour emitted by a robot can be detected by other s-bots by using an omni-directional camera,
which allows to grab panoramic views of the scene surrounding an s-bot. As we will describe
in section 4, the emission/perception of coloured cues plays a crucial role in the controllers we
designed for self-assembling.

In addition to a large number of sensors for perceiving the environment, several sensors provide
each s-bot with information about physical contacts, efforts, and reactions at the interconnection
joints with other s-bots. These include torque sensors on all joints as well as a traction sensor to
measure the pulling/pushing forces exerted on the s-bot ’s turret. The traction sensor is placed
at the junction between the turret and the chassis. This sensor measures the direction (i.e., the
angle with respect to the chassis orientation) and the intensity of the force of traction (henceforth
called “traction”) that the turret exerts on the chassis. The traction perceived by one robot can
be caused either by the force applied by the robot itself while pulling/pushing an object grasped
through the gripper element, or by the mismatch of its movement with respect to the movement
of other robots connected to it, or by both the previous circumstances at the same time. The
turret of an s-bot physically integrates, through a vector summation, the forces that are applied to
it by another s-bot, as well as the force the s-bot itself applies to an object grasped. The traction
sensor plays an important role in the context of coordinated movement of a group of physically
connected s-bots—i.e., a swarm-bot. In particular, it can be employed to provide an s-bot with an
indication of the average direction toward which the swarm-bot is trying to move. More precisely,
the traction sensor measures the mismatch between the direction in which the s-bot ’s own chassis
is trying to move and the direction in which the whole group is trying to move (see [Baldassarre
et al. 2004; Dorigo et al. 2004]).

4. FIRST SET OF EXPERIMENTS: SELF-ASSEMBLING IN COOPERATIVE TRANSPORT

In this section, we describe a set of experiments in which a group of six self-assembling robots
performs cooperative transport. Cooperative transport is extensively exploited by several species
of ants to retrieve large and heavy items to the nest (see [Kube and Bonabeau 2000]). Usually, one
ant finds a prey item, tries to move it, and, when unsuccessful for some time, recruits nest-mates.
The ants grouped around the item “grasp” it and apply pulling/pushing forces until the item
moves. Similarly to ants, the s-bots locate, approach, and finally transport an object towards a
target zone indicated by a light source. Contrary to the group transport strategies employed by
ants, in which each individual grasps the item, the s-bots transport the prey either by connecting

(a) (b) (c)

Fig. 3. (a) Two connected s-bots; (b) and (c) detailed view of a connection between two s-bots.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.



ACM TAAS · 9

- Diameter of the main body 116 mm, 100 mm in height

- All-terrain mobility using a treels© drive mechanism
- Rotation of the main body with respect to

the motion base
- One degree of freedom rigid arm with gripper
- Three degrees of freedom flexible arm with gripper
- Optical barriers on grippers
- 15 IR proximity sensors around the s-bot
- 4 IR proximity sensors on the bottom of the robot
- 8x3-colour LEDs around the robot body
- 8 light sensors around the robot body

- Force sensor between treels © base and main body
- Torque sensor on wheels and body rotation
- 3-axes accelerometer
- Humidity sensor
- Temperature sensor
- One speaker and four microphones
- Omnidirectional camera
- Main board with 400 MHz XScale processor

running Linux
- 13 microchips PIC processor 20 MHz running

real-time task
- Wireless communication
- The force of the rigid gripper is 14.72 N
- The elevation force of the rigid gripper is 6.87 N

Fig. 4. On the left, mechanical drawing of the s-bot ’s hardware components. On the right, a list of the technical
characteristics of the s-bot.

directly to the object or to each other so to generate sufficient pulling/pushing forces to move
the object itself. The way in which the six s-bots assemble around the object is dynamically
determined during the development of the task. As discussed in section 1, we consider an instance
of self-assembly to be the process which ends up in a structure whose elements (i.e., the s-bots) are
physically connected to each other. In particular, in the considered cooperative transport scenario,
self-assembly is such that at least one element of the assembled structure should be connected to the
object to be transported. Therefore, cooperative transport may imply (although not necessarily)
self-assembly. Whether or not the s-bots exploit self-assembly is empirically verified by counting
the number of s-bot to s-bot connections in a group of agents assembled around the object. The s-

bots are controlled by a modular control system: the “assembly” module is in charge of controlling
the behaviour of an agent during the assembly phase, in which the s-bots are required to directly
connect to a cylindrical object, or to other s-bots already connected; the “transport” module is in
charge of controlling the behaviour of an agent during the transport phase, in which the s-bots are
required to coordinate their actions in order to generate sufficient forces to move the object towards
the target. In the following, we first detail the methodology used in our work, and subsequently
we illustrate the results.

4.1 The experimental setup

The cooperative transport task requires the s-bots to locate, approach, and grasp an object—
referred to as the prey, see figure 5a—that has to be subsequently transported from its initial
location to a target zone. The prey has a cylindrical shape and is equipped with a T-shape ring
of the same characteristics as the one mounted on the s-bots ’ turret. This ring makes possible for
the s-bots to use the gripper to physically connect to the prey (see figure 5b). In our experimental
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(a) (b) (c)

Fig. 5. (a) The prey. (b) An s-bot connected to the prey. (c) Overview of the arena with the prey located at a
distance of 225 cm from a light bulb which represents the centre of a circular target zone.

setup, the prey is initially located at a distance of 225 cm from a light emitting beacon. The target
zone is a circular area, centred around the beacon. The robots are successful if they manage to
move the prey all the way down towards the target area within 5 minutes. If moved in a straight
line, the distance covered by the prey to enter the target zone is 125 cm.

At the beginning of each trial, six s-bots are positioned within the arena, at a certain distance
from the prey. The initial position of each s-bot is assigned randomly by uniformly sampling
without replacement from a set of 16 specific starting points. The s-bots initial orientation is
chosen randomly from a set of 4 specific directions. The 64 potential placements (16*4) of a single
s-bot are illustrated in figure 6a.

The prey weighs 2310 g and cannot be moved by less than four s-bots. However, even four s-bots

may not be sufficient to perform the task. In fact, the performance also depends on the way in
which the s-bots are connected to the prey and/or to each other. Four s-bots connected in a
“star-like” formation around the prey (see figure 6b) can move it with an average speed of about
1 cms−1.

4.2 The control policies for self-assembling

The control system described in this section has been previously designed in a relatively simple
simulation environment [Groß and Dorigo 2004], and subsequently transfered to the real s-bot [Groß
et al. 2006; 2005]. The controller is made of two sub-modules: the “assembly” module, which
is in charge of controlling the s-bot until it is connected to the prey or to another s-bot ; and
the “transport” module, which allows the s-bot to move the prey towards the target area once
a connection is established. The process of self-assembly is triggered by the perception of red
objects. In fact, the prey and the s-bots already attached to the prey or to another s-bot have

30cm

50cm

(a) (b)

Fig. 6. (a) Potential starting points and orientations of the s-bots around the prey. (b) Four s-bots connected in
“star-like” formation around the prey.
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Algorithm I - The assembly module

1 activate colour ring in blue
2 repeat

3 (N1, N2)← feature extraction (camera)
4 (N3, N4)← sensor readings (proximity)
5 (N5, N6, N7)← neural network (N1, N2, N3, N4)
6

7 if (N7 > 0.5) ∧ (grasping requirements fulfilled)
8 then

9 close gripper
10 if (successfully connected)
11 then

12 activate colour ring in red

13 activate transport module
14 else

15 open gripper
16 fi

17 fi

18 apply (N5, N6) to traction system
19 until timeout reached

their ring coloured in red. The s-bots not yet connected have their ring coloured in blue. At the
beginning of a trial, all the s-bots, controlled by the assembly module, move towards the nearest
red object within their visual field and avoid collisions with not-connected s-bots by maintaining
a certain distance to blue objects. If an s-bot managed to successfully connect to a red object, it
activates its colour ring in red. Therefore, it becomes itself an object with which to establish a
connection. The transport module takes control of an s-bot as soon as the latter is successfully
connected. However, there is no pulling/pushing if a connected s-bot perceives blue objects within
its visual field. In the following, we detail the working of the two sub-modules.

4.2.1 The assembly module. The assembly module allows an s-bot to approach/connect with
red objects and to avoid blue objects. This module is made of a feed-forward artificial neural
network—a single-layer perceptron—and some hand-designed code to pre-process sensory input
and to make sure that the output of the network is correctly “interpreted” by the s-bots ’ actuators.
The parameters of the neural network—i.e., the connection weights—have been determined in
simulation by using evolutionary algorithms. A detailed illustration of the simulation and the
evolutionary algorithm used to design the artificial neural network and to develop the entire
module can be found in [Groß and Dorigo 2004]. As illustrated in figure 7, the neural network
of the assembly module has four input nodes N1, N2, N3, and N4, a bias Nb, three output nodes
N5, N6, and N7, and 15 connection weights (ωij). At each cycle, the network takes as input the
s-bot ’s sensor readings. The input neuron N1 and N2 are set by extracting and pre-processing data
from the s-bot ’s vision system (Algorithm I, line 3). In particular, the feature extraction algorithm
first checks whether any red or blue coloured object is perceived within a limited perceptual range
bounded to the left and right side of the s-bot ’s heading. Subsequently, the algorithm assigns a

3N2N1N 4N bN

5N 6N 7N

ω15 ωb5
Nj =

1

1 + e(−xj)
; j ∈ {5, 6, 7}

xj =
4

X

i=1

ωijNi + ωbjNb

(a) (b)

Fig. 7. (a) A graphical representation of the feed-forward two-layers artificial neural network of the assembly
module. N1, N2, N3, and N4 are the nodes which receive input from the s-bots sensors. Nb is the bias term.
N5, N6, and N7 are the output nodes. (b) The equations used to compute the network output values.
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Algorithm II - The transport module

1 repeat

2 wait until no blue objects are perceived
3 α← compute target direction (camera)
4 if (stagnation)
5 then

6 execute recovery move
7 else

8 if (risk of stagnation)
9 then

10 hard alignment (α)
11 else

12 soft alignment (α) and forward motion

13 fi

14 fi

15 until timeout reached

value to the input N1 ∈ {0, 1} and N2 ∈ {0, 1} according to the rules detailed in appendix A.1.
The input variable N3 ∈ [0, 1] and N4 ∈ [0, 1] are set by taking the reading of the front-left-side
and front-right-side s-bot ’s proximity sensors (Algorithm I, line 4).

The network has three outputs N5 ∈ [0, 1], N6 ∈ [0, 1], and N7 ∈ {0, 1}. The output neuron N5

and N6 set the angular speed of the left and right s-bot ’s wheels. The values of the speed vector
(N5, N6) are linearly scaled within the range defined by the s-bot speed limits. The output neuron
N7 is used to control the status of the gripper. In particular, the gripper is closed (a) if the output
neuron N7 > 0.5, (b) if a red object is detected by the camera, and (c) if the gripper optical light
barrier detects an object between the lower and the upper teeth of the gripper. While closing the
teeth, the gripper is slightly moved up and down for several times to facilitate a tight connection.
Failures of the grasping procedure can be detected by monitoring the aperture of the grasping
device. In case of failure the gripper is opened again and the assembly procedure restarts from
the beginning. If a red object is successfully gripped, then the s-bot sets the colour of its ring to
red, and the transport module takes control of the robot. The s-bot life-span expires if it does not
connect to a red object within 300 s (Algorithm I, line 19).

4.2.2 The transport module. Algorithm II describes the transport module which allows a con-
nected s-bot (a) to align its chassis towards the light beacon indicating the target-zone, and (b)
to apply pushing/pulling forces in order to move the prey towards the target.

During the transport, the s-bot monitors the magnitude of the torque acting on its traction sys-
tem and on the turret. If the torque reading values exceed a certain threshold, there is stagnation.
In this case, a short recovery move is performed to prevent the hardware from being damaged.

The transport module uses the camera vision system to detect the direction of the light source
with respect to the s-bot ’s heading. By adjusting the orientation of the chassis with respect to the
s-bot ’s heading (i.e., the orientation of the turret) the controller sets the direction of motion. The
realignment of the chassis is supported by the motion of the traction system. We implemented
two different types of realignment referred to as “hard” and “soft” alignment. The hard alignment
makes the s-bot turn on the spot. The soft alignment makes the s-bot turn while moving forward
with maximum speed. The hard alignment is executed if there is risk of stagnation. This is the
case, for instance, if the angular mismatch between the current and the desired orientation of
the chassis exceeds a certain threshold. The life-span of a connected s-bot expires if it does not
manage to bring the prey to the target-zone within 300 s (Algorithm II, line 15).

4.3 Results

In this section, we report data which represent a quantitative description of the performance of
the s-bots engaged in the cooperative transport task. Recall that, in this task, six s-bots are
required to assemble to and transport the prey from its initial position to a target zone. A trial
can be divided in two different phases. In the first phase, the s-bots, controlled by the assembly
module, try to establish a connection either directly to the prey or indirectly via a chain of other
s-bots. This phase terminates once every s-bot has successfully established a connection. In the
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(a) (b) (c)

Fig. 8. These pictures show a sequence of actions, during a trial, in which a group of six s-bots

randomly placed around the prey (a), initially locates, approaches and connects to the prey (b)
and finally, once assembled, transports the prey to the target zone (c).

subsequent phase, the s-bots, controlled by the transport module, push/pull the prey towards the
target. This phase terminates when the prey enters the target zone.4

We performed 30 replications of the experiment—i.e., 30 trials. A trial begins with the s-bots

randomly placed around the prey, and it ends (a) successfully if the s-bots manage to transport
the prey inside the target zone within the time-limits, or (b) unsuccessfully if, for any reason,
the s-bots fail to transport the prey to the target-zone within the time-limits. Figure 8 shows a
sequence of three pictures taken during a successful trial.

Figure 9a shows, for each trial, the number of s-bots which have successfully established a
connection. In 26 out of 30 trials, all six s-bots connected. In trials n. 3, n. 12, and n. 29, a single
s-bot failed to connect within the time limits. In trial n. 18, two s-bots failed to connect. Thus, out
of the 180 connections required by the 30 trails—i.e., 6 connections per trial times 30 trials—we
recorded only 5 failures. Due to the missing connection/s, in 4 out of 30 trials the s-bots did
not reach the transport phase. In fact, in these unsuccessful trials, the connected s-bots did not
start to transport the prey due to the perception of an unconnected s-bot. Recall that, connected
s-bots start transporting the prey only if they do not perceive any blue object—i.e., unconnected
teammates.

Figure 9b shows, for each trial, the number of s-bot to s-bot connections. In this scenario, the
process which generates this type of connections is considered an instance of self-assembly. As we
can see, in each trial, included those in which the robots did not successfully transported the prey

(i.e, trial n. 3, n. 12, n. 18, n. 29), we have at least two s-bot to s-bot connections. Note that the
number of s-bot to s-bot connections is not predetermined. Instead, it is an emergent property of
the system.

Figure 9c shows the amount of time per trial spent by the s-bots in the two phases of the
experiments mentioned above. Data concerning the 4 unsuccessful trials in which one or more s-

bots fail to establish a connection are not shown. In 20 out of the 26 trials, the whole group could
successfully self-assemble within 83 s, in the other trials self-assembly was successfully completed
within 167 s.

Only in a single case out of those in which the s-bots connected successfully, the group failed
to transport the prey entirely inside the target zone. In this unsuccessful trial, the transport
was interrupted in the proximity of the target zone. This failure during the transport phase was
probably due to the light reflections in the immediate vicinity of the beacon which indicates the
target zone. In fact, a too high intensity of the light disrupts the mechanism used by each s-bot to
establish the direction of movement. Therefore, it may happen that, in the immediate vicinity of
the target, the entire group loses efficiency in moving the prey. In all other cases, the prey entered

4The entire experiment has been recorded on video tape. Example movies are available at http://www.swarm-bots.
org/cooperative_transport.html.
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the target zone within a short period of time. The average transport speed was 8.20 cm per s,
which is about 55% of the maximum speed of a single s-bot moving without any load. Note that
the average transport speed is eight times faster than the speed observed for the group of four
s-bots connected in a “star-like” formation (see figure 6b).

4.4 Discussion

The results of our experimental work have shown that the s-bots have the required characteristics
to facilitate the design of control systems to allow them to self-assemble in a bigger physical
structure. With respect to (a) the number of robots involved in self-assembly, (b) the reliability
of the system, (c) the speed with which the agents generate the assembled structure, and (d) the
capability of the assembled structures to coordinate their movement, our work represents a sensible
step forward with respect to the state of the art in the design of controllers for self-assembling
robots.

Moreover, our modular architecture has already proved successful in controlling the s-bots in a
different scenario in which self-assembly is required to navigate a terrain with two different types
of hills (more details on this research work can be found in [O’Grady et al. 2005]). In this task,
simple hills can be overcome by a single s-bot, the difficult ones can not; that is, the s-bots topple
backwards due to the steepness of the slope. The s-bots have to self-assemble in order to overcome
the steep hill. The experiment shows that the modular architecture previously described can be
easily extended with other control mechanisms to allow the s-bots to exploit self-assembly in a
different context.

Although these results are particularly encouraging, we are not underestimating the limitations
of our modular approach which may have a disruptive effect on the performance of the robotic
system. For example, we have seen in the cooperative transport task that, if a “red” s-bot (i.e., an
s-bot already connected) sees a “blue” s-bot (i.e., an s-bot not connected yet), the red one remains
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the group was busy self-assembling and transporting the prey inside the target zone.
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still. This mechanism has both positive and negative consequences. On the one hand, it facilitates
the connection of the “blue” s-bot to “red” s-bots, as all the red objects located in its surrounding
do not move. On the other hand, as far as even a single s-bot fails to connect, and at the same
time it remains within the visual field of other s-bots already attached, the transport phase can
not begin, and consequently the trial ends unsuccessfully.

In order to overcome this type of problems, we are starting to investigate new collective decision
mechanisms. For example, the decision to start a collective action (e.g., the group transport of
an item, or moving uphill along a steep hill) might be made anytime a swarm-bot is capable
of overcoming the difficulties which demand self-assembling, regardless of the number of s-bots

connected. With this approach, we would let the system comply with its objectives without
having to satisfy a set of a priori defined conditions, such as the requirement of having all the
robots of a group connected to an item and/or to each other before starting the transport phase.

In our “work in progress” on the development of controllers for self-assembling robots, we are also
exploring alternative methodologies, which try to minimise the amount of a priori assumptions—
made by the experimenter—regarding the domain of perception and action of the autonomous
agents. The next section introduces our initial efforts on the design of integrated (i.e., not-modular)
controllers which can potentially enhance the adaptiveness of our multi-robot autonomous system,
reducing in this way the risk of incurring in the drawbacks discussed above.

5. THE EVOLUTION OF INTEGRATED NEURO-CONTROLLERS FOR SELF-ASSEMBLING
ROBOTS

The complexity of self-assembly resides in the nature of the perceptual and motor mechanisms
with which each single robot must be equipped. In particular, a robot necessitates mechanisms
to be able to autonomously (a) decide whether or not the environmental contingencies require
self-assembly, (b) coordinate its movements to connect to and/or facilitate the connection from
other s-bots, and (c) coordinate its movements once connections are established. As we said in
the previous section, we are currently investigating different alternatives to enhance the adaptive-
ness of our self-assembling autonomous robots. One of our research directions is to explore the
potentiality of integrated (i.e., not-modular) artificial neural network controllers synthesised by
evolution (see [Harvey et al. 1997; Nolfi and Floreano 2000]). The rationale for employing these
methodological tools can be found in the following two considerations.

First, it is known to be particularly difficult to handcraft individual behavioural rules which
arbitrate the response of an autonomous cooperative multi-robot system. Any time the individual
behaviour is the result of the interaction between an agent and a dynamic environment, it is
difficult to predict which behaviour results from a given set of rules, and which are the rules
behind an observed behaviour. With respect to this, artificial evolution can be used to bypass the
problem of decomposition at both the level of finding the mechanisms that lead to the emergent
global behaviour and at the level of implementing those mechanisms in a controller for the robots.
In fact, it can rely on the evaluation of the system as a whole, that is, on the emergence of the
desired global behaviour starting from the definition of the individual ones.

Second, the adaptiveness of an autonomous multi-robot system is reduced if the circumstances
an agent should take into account to make a decision concerning individual or collective behaviour
are defined by a set of a priori assumptions. For example, when and with whom to self-assemble are
two decisions which should be governed as much as possible by robots-environment contingencies
not determined by the experimenter. In the case of the “integrated” approach we are proposing,
the adaptiveness of the agent’s mechanisms is determined by an evolutionary process which favours
(through selection) those solutions which improve the “fitness” (i.e., a measure of an agent’s ability
to accomplish its task) of an agent and/or of a group of agents. The evolved mechanisms are also
expected to cope with a certain amount of environmental variability experienced during evolution.
Artificial neural networks provide evolution the building blocks to design the mechanisms an
agent needs to perceive and act in its world. The evolved neuro-controllers allow an agent to
distinguish and recognise the elements of its surrounding by exploiting perceptual cues which,
“viewed” through its sensors, distinctively identify an object. Consequently, actions are initiated
with respect to particular environmental conditions that emerge through the dynamics of the
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system components. Thus, these conditions might be a priori unforeseeable by the experimenter.
In the modular approach illustrated in section 4, each agent perceives and acts according to
conditions that are based on arbitrary associations, done by the experimenter, between sensorial
cues and elements of the agent world (e.g., the red colour indicates objects to connect with). For
example, the output of the neural network that controls the gripper is not directly used to set its
state, but it is an element among others used to define the action to perform. In the approach we
are going to present in this section, the evolved neural network is fully in charge of determining
the state of the robot actuators and consequently its behaviour.

Notwithstanding its potentialities, the “integrated” approach hasn’t been extensively used to
design controllers for robots required to perform individual and collective responses such as self-
assembling. In this section, we describe the methodology and we show the results of a set of
simulations which represent a first step toward the synthesis through artificial evolution of inte-
grated (i.e., not-modular) artificial neural network controllers. The neuro-controllers should allow
the s-bots (a) to autonomously decide which actions—i.e., individual or collective—to undertake
with respect to the environmental conditions; and (b) to coordinate their actions to bring forth a
bigger physical robotic structure. We underline that this section illustrates a study that represents
a stepping stone toward the development of more advanced neuro-controllers for self-assembling.
In spite of the simplifications introduced, we believe that this work contains all the required in-
gredients to evaluate the potentiality of the “integrated” approach. The obtained results bring
significant contributions, because this is one of the first works in which integrated artificial neural
network controllers, synthesised by artificial evolution, proved capable of controlling robots that
display a wide repertoire of individual and collective behaviours.

5.1 Methods

In the following subsections, we detail the characteristics of the task, the methodology employed
to evolve s-bots ’ controllers and the evaluation function used.

5.1.1 Description of the task. Our study is focused on a scenario in which the s-bots should
prove capable of performing individual and collective responses with respect to what the circum-
stances seem to require. In particular, we are interested in circumstances in which the s-bots

should:

(1) Independently perform a specific task. That is, if assembling is not required, s-bots should be
capable of individually achieving their goal.

(2) Aggregate in order to allow subsequent assembling. That is, if assembling is required by
particular environmental contingencies, the s-bots should be capable of bringing forth the
conditions which facilitate self-assembly. Aggregation is the first steps in order to form an
assembled structure—i.e., a swarm-bot.

(3) Move coordinately in order to physically assemble. That is, each s-bot should find the correct
position with respect to another s-bot in order to be able to establish a connection.

(4) Move coordinately in order to contribute to the effectiveness of the behaviour of the assembled
structure. That is, the s-bots should perform coordinate actions in order to achieve their
common goal.

(5) Disconnect. That is, once the environmental contingencies do not require any longer the
assembled structure, the s-bots should disconnect and carry out their goal independently of
each other.

An example of task with the above characteristics is the one in which a group of s-bots must
move from a starting position to a goal location. During the movement the robots must traverse
zones that may require or not to be in a self-assembled configuration (i.e., a swarm-bot). For
example, the s-bots might start in a flat terrain zone in which the most efficient choice is to
move independently of each other, then reach a rough terrain zone where by self-assembling into
a swarm-bot they minimise the probability of toppling over, and finally enter the goal location
area where the terrain is again flat and where they should therefore disband and continue moving
independently of each other.
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Fig. 10. A graphical representation of the task. See text for details.

Committed to the principle of the Occam’s razor, we tried to simplify as much as possible the
characteristics of the above scenario without losing the significance of our work. In particular,
the task we selected requires navigation within a rectangular corridor in order to approach light
bulbs, representing the s-bots ’s goal, positioned on the opposite end with respect to the s-bots ’
starting positions (see Figure 10). The corridor (4 meters long, 1 meter wide) is divided in an area
of high temperature, representing a flat terrain area, and an area of low temperature, representing
a rough terrain area (respectively, light and dark gray in Figure 10). Aggregation and assembling
are required in order to traverse a low temperature area, within which a swarm-bot (i.e., assembled
s-bots) navigates more effectively than a group of disconnected s-bots.

In our simulation, the “climatic” metaphor is just a simple way to model an environment made
of two parts: one in which the s-bots should move not-assembled, and the other in which they
should move in a swarm-bot formation (i.e., assembled). The “temperature” can be perceived
by a single binary sensor which returns 1 if the s-bots are in a high temperature area, and 0
otherwise. This is a strong simplification with respect to more realistic scenarios, in which the
s-bots might be required to employ more complex sensory-motor skills in order to perceive those
environmental contingencies that require assembling. However, moving away from more “realistic”
to our simulated scenario, the peculiarity by which different areas of the environment require
different responses (i.e., individual or collective) is kept unchanged.

In our simulation, the s-bots are allowed to make use only of a sub-set of all the sensors and
actuators available to a real s-bot. Concerning the sensors, the s-bots can use their traction sensor,
whose reading returns four variables encoding the traction force from four different preferential
orientations with respect to the robot’s chassis (front, right, back, and left, see [Baldassarre et al.
2003] for more details). The s-bots can also use two light sensors positioned on the front and on
the back of their body. Notice that the light sensors are positioned on the turret, which might
rotate with respect to the chassis. The simulated s-bot takes the readings from those light sensors
which at any time happen to be at a specific orientation with respect to the chassis. Finally,
s-bots are provided with three directional sound sensors in order to perceive the signals emitted
by other s-bots. Directional sound sensors, although not available on the physical s-bots, could be
implemented using the microphones mounted on the real robots (preliminary experiments have
been performed and the obtained results are promising). Noise is simulated for all sensors, adding
a random value uniformly distributed within the 5% of the sensors saturation value.

Concerning the actuators, s-bots can control the two wheels, independently setting their speed
in the range [−6.5, 6.5] rad/s. The loudspeaker can be switched on, simulating the emission of
a continuous tone, or it can be turned off. S-bots are provided with a simulated gripper, that
can be in either of two states: connected to another s-bot or open. Connections among s-bots

are simulated creating a joint between the two s-bots ’ bodies. The creation of the joint between
the s-bots ’ bodies directly follows a successful attempt to close the gripper. If the connection
attempt fails, we force the gripper to stay open and ready for another connection. The connection
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Fig. 11. (a) A graphical representation of the artificial neural network employed to control the s-bots. The nodes
in light grey represent those which receive input from the s-bots sensors. The nodes in dark grey represent those
whose activation values are used to set the s-bots actuators. (b) The equations governing the neuron internal state.
Here, by analogy with real neurons, yi is the cell potential, τi the decay constant, βj the bias term, zj the firing
rate, ωji is the strength of synaptic connections from the jth neuron to the ith neuron, Ii the intensity of the
sensory perturbation on sensory neuron i, g is a gain factor.

procedure is idealised and is performed within a single time-step. Finally, the motor controlling
the rotation of the turret is used, even though it is not directly controlled by the evolved neural
network. When s-bots are not connected, this motor ensures the alignment between the turret
and the chassis. On the contrary, when an s-bot is connected to other s-bots to form a swarm-bot,
the turret can rotate freely.

At the beginning of each trial, three s-bots are randomly positioned and oriented at one end
of the corridor, in the area of high temperature. The light bulbs, located at the opposite end of
the corridor, can be perceived by the s-bots from anywhere within the corridor. The intensity of
the light which impinges upon the s-bots light sensors decreases quadratically with the distance
from the light sources. The simulation is deliberately noisy, with noise added to all sensors. This
is also extended to the environmental parameters: at the beginning of each trial, the point in
which the temperature changes from high to low is redefined randomly within certain limits (see
also [Trianni et al. 2004] for further details).

5.1.2 The controller and the evolutionary algorithm. Groups of s-bots are controlled by artifi-
cial neural networks, whose parameters are set by an evolutionary algorithm. A single genotype
is used to create a group of individuals with an identical control structure—i.e., a homogeneous
group of robots. The s-bot ’s controller is a fully connected, 14 neuron continuous time recurrent
neural network (see also [Beer 1995] for details). The neurons either receive direct sensor input
or are used to set the state of an s-bot ’s actuators (see figure 11). There are no internal neurons.
All but four of the neurons receive direct input from the robot sensors. Each input neuron is
associated with a single sensor, receiving a real value in the range [0.0, 1.0], which is a simple
linear scaling of the reading taken from its associated sensor.5

The four remaining neurons are used to control the s-bot ’s actuators, after mapping their cell
potential yi onto the range [0.0, 1.0] by a sigmoid function. Two of them are used to set the s-bot ’s
wheels speed, linearly scaling the output into [−6.5, 6.5]. The third motor neuron is used to set
the state of the loudspeaker, which is turned on if the neuron output is higher than 0.5, and off
otherwise. The last motor neuron controls the gripper actuator, trying to set up a connection if
the neuron output is higher than 0.5, and keeping the gripper open otherwise. The strengths of
the synaptic connections, the decay constants, bias terms and the gain factor are all genetically

5Specifically, neurons N1 to N4 take input from the 4 variables encoding the traction force, neurons N5 to N7 take
input from the sound sensors (i.e., the directional microphones), N8 and N9 from the virtual light sensors, and N10

from the temperature sensor.
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encoded parameters. Cell potentials are set to 0 each time a network is initialised or reset. State
equations are integrated using the forward Euler method with an integration step-size of 0.1.

In order to set the parameters of the s-bots ’ controllers, a simple generational evolutionary
algorithm is employed (see [Mitchell 1996]). Initially, a random population of 100 genotypes is
generated. Each genotype is a vector of 1800 binary values—8 bits for each of the 225 parameters,
that is, 196 connections, 14 decay constants, 14 bias terms, and 1 gain factor. Subsequent gen-
erations were produced by a combination of selection with elitism and mutation. Recombination
is not used. At every generation, the best 20 genotypes are selected for reproduction, and each
generates 4 offspring. The genotype of the selected parents is copied in the subsequent genera-
tion; the genotype of their 4 offspring is mutated with a 5% probability of flipping each bit. One
evolutionary run lasts 1000 generations.

The binary values of a genotype were mapped to produce CTRNN parameters with the following
ranges:

—connection weights: ωji ∈ [−6, 6].

—biases: βj ∈ [−2, 2].

—gain factor: g ∈ [1, 13].

Concerning the decay constants, the genetically encoded parameters were firstly mapped onto the
range [−1, 1] and then exponentially mapped onto τi ∈ [10−1, 10].

5.1.3 The evaluation function. During the evolution, a genotype is mapped into a control
structure that is cloned and downloaded to the s-bots taking part in the experiment. Groups of 3
s-bots are evaluated 5 times—i.e., 5 trials. Each trial differs from the others in the initialisation
of the random number generator, which influences mainly the s-bots starting positions and the
point beyond which the temperature drops from 1 to 0. In each trial θ, the lifetime of an s-bot is
limited to 600 simulation cycles, corresponding to 60 s of real time. The behaviour of the s-bots

is evaluated according to an evaluation function that averages the individual contribution of each
s-bot. Individual contributions are designed in order to reward (a) phototaxis, looking at the
distance covered along the corridor, and (b) self-assembly, looking at both the strength an s-bot

has at the end of a trial and at the size of the swarm-bot formed in order to reach the light bulbs
(see appendix A.3 for a detailed description of the evaluation function).

Notice that, the effectiveness of the navigational strategies is evaluated by employing a perfor-
mance measure which we refer to as “strength”. At the beginning of a trial each s-bot has a certain
strength. While performing the task, each s-bots keeps its strength by navigating disconnected in
the area of high temperature, and assembled—i.e., by forming a swarm-bot—in the area of low
temperature. If, while navigating, an s-bot exhausts its strength, it is not able to move any more.
The s-bots do not have any information concerning their strength. However, the s-bots can reach
the light bulbs before running out of strength if they properly react to the characteristics of the
environment. In particular, an optimal strategy requires the s-bots (i) to individually move toward
the light bulbs as long as the temperature remains high; (ii) to aggregate by exploiting the sound
signalling system they are provided with as soon as the temperature drops; (iii) to continue their
phototactic behaviour in an assembled structure (i.e., by forming a swarm-bot) throughout the
low temperature area. A detailed description of how the s-bot strength varies while it is acting
within the corridor is given in appendix A.2.

We would like to emphasise that “strength”, as a performance measure, does not refer to any
physical property of the s-bots. Moreover, it does not imply the use of unrealistic sensors, which
cannot be instantiated on the real s-bots. In fact, the s-bots do not have any feedback about their
own strength. The strength has been mainly introduced to evaluate the behaviour of a robot and
to associate it to a fitness score. Thus, the strength plays an important role only in the evaluation
procedure, because it locates the observed behaviour in a unidimensional metric space in which
good strategies have a high score and bad strategies have a low score. This metric space, by
playing a role in determining the fitness of the agents, helps the evolutionary algorithms to find
a path towards the emergence of more adaptive controllers. We also make use of the “strength”
in the results section to visualise what kind of strategy an s-bot is employing while it is moving
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towards the light. For example, a sudden drop in the strength level can be interpreted as the shift
of a non-assembled robot from a high to a low temperature area.

5.2 Results

Ten evolutionary runs, each using a different randomly initialised population, were run for 1000
generations each. Two runs out of ten ended up successfully by producing controllers capable of
displaying self-assembly. Figure 12 shows the fitness of the best group of s-bots and the average
fitness of the population for each generation. Two prototypic runs are shown: a particularly
successful one (top) and an unsuccessful one (bottom).

An analysis of the controllers produced by the unsuccessful runs revealed that these groups
of s-bots have been only partially capable of solving the task. We observed that, while in these
runs the s-bots were capable of phototaxis and obstacle avoidance, only in few runs they were
able to properly react to the decrease in temperature. On the contrary, in the two successful
runs, the groups of s-bots showed the complete repertoire of behaviours required by the task. In
an additional series of post-evaluations we looked at the behavioural strategies employed by the
best evolved group of s-bots to perform the task. In the first post-evaluation test, we simply
observe, for each s-bot, how the strength level and the covered distance—the distance between
the current position of an s-bot and the starting position, along the x axis—vary over time (see
figure 13). Given the way in which these two variables change over time within a trial, we can infer
that each s-bot undergoes four different behavioural phases: individual phototaxis, aggregation,
self-assembly and collective phototaxis.

In the first phase—from cycle 0 to the time indicated by the empty circle—the three s-bots,
located in the high temperature area and with full strength, perform individual phototaxis, as
shown by the continuous line in figure 13. The second phase starts when the s-bots enter the low
temperature area. Three phenomena can be observed: aggregation, decrease in the strength level
and signalling behaviour. Aggregation is indicated by the covered distances of the three s-bots

(see continuous lines in figure 13), which reach similar values before the end of the phase. The
decrease in the strength level indicates that the s-bots move independently. The s-bots react to
the temperature decrease by switching on their loudspeaker, signalling their position to the other
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Fig. 12. The graphs show the fitness of the best group of s-bots (thick line) and the normalised average fitness of
the population (thin line), for each generation, for a successful run (top graph) and an unsuccessful one (bottom
graph).
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Fig. 13. The graphs refer to a post-evaluation of the best evolved group of three s-bots. In particular, each graph
shows how the covered distance along the corridor (continuous line) and the strength (dashed line) of an s-bot vary
during a post-evaluation which lasts 1000 simulation cycles. The empty circles indicate the time when an s-bot
enters the low temperature area.

temperature
areas of high

temperature
areas of low

Fig. 14. A graphical representation of the environment with two high temperature and two low temperature areas.
This environment has been used for post-evaluation to check whether the s-bots capable of assembling were also
capable of disassembling in response to an increase in the environmental temperature.

s-bots (see eq. 2 in appendix A.2). The rate of change of the s-bot strength value is also affected by
the signalling behaviour of the s-bot. Since the strength level converges, for each s-bot, to a certain
value higher than 0, we can deduce that the s-bots react to the temperature decrease by switching
on their loudspeaker, signalling their position to the other s-bots. The sound signalling should in
principle provide enough information to allow the s-bots to aggregate. However, we observed that
the s-bots tend also to exploit environmental structures, such as the walls of the corridor, in order
to get close to each other. The third phase corresponds to self-assembly. In figure 13, this phase is
indicated by an increase in the strength level (dashed line), caused by the s-bots connecting to each
other when located in the low temperature area (see eq. 1 in appendix A.2). In this particular case,
s-bots 1 and 2 self-assemble first, while s-bot 3 joins the swarm-bot later. Collective phototaxis
is performed during the last phase. Here, s-bots move assembled in a swarm-bot that approaches
the light bulbs, as indicated in figure 13 by the synchronous increase of the covered distance (see
continuous lines).
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In the second post-evaluation test, we looked at the capability of the best evolved group of
s-bots to disassemble—i.e., to switch from a swarm-bot formation to not-connected s-bots—as a
reaction to an increase of the environmental temperature. Notice that this circumstance has never
been encountered by the s-bots during the evolutionary phase. Therefore, disassembling should
be considered an additional capability of the evolved controllers, which confers robustness to the
system. We placed the s-bots in a corridor with four temperature areas: two high temperature and
two low temperature areas (see Figure 14). The graphs in Figure 15 show how the covered distance
and the strength level of each s-bot vary in time while the s-bots move down the corridor toward
the light bulbs. In this case, we focus our attention on how the s-bots react to the transition from
low to high temperature areas. In fact, the transitions from high to low temperature areas result
in a variation of the covered distance and of the strength levels similar to what was observed and
discussed for Figure 13.

The transition of the s-bots from low to high temperature areas is indicated in the graphs by
a filled circle. This transition is characterised by two different phases. Initially, a decrease in the
strength level is observed, when an s-bot, still assembled in a swarm-bot formation, perceives the
new environmental condition (high temperature). Subsequently, the s-bots progressively discon-
nect from each other, which results in a gain in the strength level (see eq. 3 in appendix A.2). In
the particular case illustrated in Figure 15, s-bot 1 is the first to perceive the high temperature
area and consequently to disassemble from the swarm-bot. It is possible to notice that s-bot 1, after
disconnecting, moves back and forth, experiencing twice the low-to-high temperature transition.
Similarly, s-bot 2 disconnects from s-bot 3 as soon as it ends up in the high temperature area.
Consequently, s-bot 3 finds itself alone in the area of low temperature. It is possible to notice that
its strength drops, due to the fact that the s-bot has the loudspeaker turned on. Nevertheless,
the s-bot still has enough strength to perform individual phototaxis and to approach the high
temperature area. Once in the high temperature area, its strength increases again, indicating that
the s-bot has switched off the loudspeaker. Its covered distance indicates that the s-bot approaches
the light bulbs, reaching and finally connecting to the other 2 s-bots.

In conclusion, the post-evaluation tests showed that the group of three s-bots mentioned above
successfully employs self-assembly to navigate the low-temperature area. Self-assembly is func-
tional to the accomplishment of a particular task, that could not be individually solved by the
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Fig. 15. Each graph shows how the distance to the light bulbs (continuous line) and the strength (dashed line) of
an s-bot vary during a post-evaluation which lasts 1250 simulation cycle. The empty circles indicate the time when
an s-bot enters a low temperature area. The filled circles indicate the time when an s-bot enters a high temperature
area.
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s-bots. Simple and effective decision making mechanisms trigger (a) the aggregation and the
subsequent assembling of the s-bots as soon as the latter enter the low temperature area; (b)
disassembling of the swarm-bot as soon as the environmental contingencies that hinder individual
actions cease to exist.

6. CONCLUSIONS

The experimental work illustrated in this paper summarises our research activities carried out with
robots capable of physically connecting to each other—i.e., the s-bots. Owing to their character-
istics, the s-bots facilitate the design of the mechanisms required for self-assembly. In particular,
the functional properties of the gripper mounted on the s-bots turret, the T-shape ring which
surrounds the s-bots body, the good mobility and the large sensory capabilities of the s-bots are
the ingredients which make our robots particularly suitable to investigate the potential benefit of
self-assembly in multi-robot systems. The empirical evidences shown in the paper seem to confirm
our claim.

The results of the first set of experiments proves that our work represents a sensible step forward
with respect to the state of the art in the design of controllers for self-assembling robots, in
particular if we look at (a) the number of robots involved in self-assembly, (b) the reliability of
the system, (c) the speed with which the agents generate the assembled structure, and (d) the
capability of the assembled structures to coordinate in order to transport a heavy object at high
speed. These experiments make clear that the control policies design is facilitated by the fact that
the s-bots do not require a very precise alignment during the connection phase, and that they
are equipped with a set of sensors which guarantees a sufficient accuracy as far as it concerns
the capability of the robot to coordinate their movements, both before and after a connection is
established.

In the second set of experiments, we started considering self-assembly within a framework in
which the mechanisms for sensory-motor coordination are combined to decision making structures
to allow the s-bots to decide when it is time to gather and pursue collective strategies. The aim
of this work is to enhance the adaptiveness of a group of self-assembling robots by reducing to
the minimum the a priori assumptions concerning the nature of the control mechanisms that, by
working on the agent’s perceptual evidence, guide a multi-robot system in an intrinsically complex
scenario. The results show that our methodology is promising: the evolved controllers are capable
of displaying individual and collective obstacle avoidance, individual and collective phototaxis,
aggregation and self-assembly. To the best of our knowledge, our experiments represent one of the
first works in which self-assembly in a homogeneous group of robots has been achieved and evolved
neural controllers successfully cope with such a complex scenario, producing different individual
and collective responses based on the appropriate control of the state of various actuators triggered
by the local information coming from various sensors.

7. FUTURE WORK

Overall, our work represents the beginning of a challenging research agenda in which we intend to
further develop the capabilities of self-assembling robots. The results we achieved so far encourage
us to further pursue our interests. There seems to be several directions for future work. Our main
objective is in further developing the methods we described in section 5 to investigate scenarios in
which the controllers can be directly ported and tested on the real s-bots. The following are just a
few of the instances in which the functionality of the swarm-bot should be preferred to any other
individual solution:

(1) passing over a trough larger than the body of a single s-bot ;

(2) climbing a steep slope;

(3) navigating on very rough terrain in which a single s-bot might topple over;

(4) collective and cooperative transport of heavy items.

In order to face these challenges, the s-bots necessitate (a) the decision making structures to per-
ceive those environmental contingencies that require self-assembling; (b) the mechanisms to bring
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d r

d b

β

rule conditions N1 N2

1 db < dr ∧ db ≤ D −90° < β < 60° 0 0

2 db < dr ∧ db > D −25° < β < 25° 0 0

Fig. 16. The figure depicts a scenario in which an unconnected s-bot, represented by the small round object at the
bottom left side, perceives another unconnected s-bot and the prey, represented respectively by the small round
object at the top and by the big circle on the right.

forth the coordination of actions necessary for self-assembling; (c) the mechanisms to guarantee
the efficiency of the assembled structures. Our intuition is that, in a near future, we might be
able to design, through artificial evolution, an integrated neural network capable of providing a
real s-bot with all the above mentioned mechanisms. As far as it concerns (a) and (c), we are
particularly optimistic. We believe that, even if the conditions that require self-assembling are
perceived through articulated visual (i.e., through the camera image) and/or proprioceptive sen-
sors (i.e., through the inclinometer reading), an artificial neural network can potentially process
this input to let an agent initiate collective responses. Moreover, we have already tested in sev-
eral circumstances the efficacy of the traction sensor to coordinate the movement of a swarm-bot

(see [Trianni et al. 2005] for details).
At the moment, the uncertainties lie rather in (b). We still have to prove that, first, it is possible

for an integrated network to coordinate the actions of a real s-bot during the docking phase by
modulating the speed of the robot wheels and the state of the gripper; second, that it is possible
to design mechanisms to accomplish docking when the agent/object to grasp moves as well. A
successful docking might be accomplished by exploiting the infra-red proximity sensors which can
provide information on the distance and orientation between an agent and an object or another
agent to grasp. Furthermore, the output of the network can be used to set the acceleration of the
robot wheels instead of the speed. This might help the network to better modulate the movement
of an agent during docking. Our future work will concentrate on studying these alternatives for
the evolution of neural networks to allow the s-bots to self-assemble in response to the above
mentioned scenarios.

APPENDIX

A.1 The “feature extraction” algorithm

The state of the first two input neurons (N1, N2) of the neural network that controls the robot
during the assembly phase are set at each time-step by pre-processing the s-bot ’s camera image.
These readings are determined with respect to the presence/absence of red/blue objects within the
s-bot ’s visual field. In particular, the tuple (N1, N2) keeps the default value (0, 0) in the following
cases: (a) if there is no blue or red object within the s-bot visual field; (b) if only blue objects are
perceived; (c) if any blue object is perceived closer than the nearest red object. This last case is
depicted in figure 16. The table at the bottom of this figure details the conditions employed to set
the values of the variables N1 and N2. The value db is the distance between the robot and the blue
object, while dr is the distance between the robot and the nearest red object, and β corresponds
to an angle (in degrees) which measures the distance between the red and the blue object. D is
an estimate of the distance between the s-bot and another object under which there is high risk of
collision. The tuple (N1, N2) is set to values (1, 1), (0, 1), or (1, 0) in case a red object is perceived
by the s-bot and this red object is closer to the s-bot than any other blue object, as depicted in
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d r

α

rule conditions N1 N2

1 dr > D | α |≥ 20° 0 0

2 dr > D | α |< 20° 1 1

3 0 ≤ dr ≤ D 0° ≤ α < 45° 1 0

4 0 ≤ dr ≤ D −45° < α < 0° 0 1

Fig. 17. The figure depicts a scenario in which an unconnected s-bot, represented by the small round object on the
left, perceives on the left side of its camera-vision system the prey, represented by the big circle on the right.

figure 17. The table at the bottom of the figure details the conditions employed to set the values of
the variables N1 and N2. The values dr and α (in degrees) correspond respectively to the distance
of and the direction to the closest red object within the perceptual range of 45° left and right with
respect to the s-bot ’s heading. D is an estimate of the distance between the s-bot and another
object under which there is high risk of collision. This set of conditions is applied only if the set
of conditions illustrated in figure 16 is not satisfied.

A.2 The performance measure “strength”

In the second set of experiments illustrated in section 5, the effectiveness of the navigational
strategies of the s-bots is evaluated by employing a performance measure which we referred to as
“strength”. Each s-bot s has an initial amount of strength es = 1. The strength must be higher
than a certain threshold ǫ = 0.01 for the s-bot to be able to move. The strength of each s-bot can
increase or decrease depending on:

(1) The temperature of the area in which the s-bot is currently located. The temperature is 1 if
the s-bot is in a high temperature area, 0 if it is in a low temperature area.

(2) The state of the s-bot ’s loudspeaker. An s-bot emits a tone to signal its position to other s-bots.
This signalling behaviour can facilitate the aggregation of the group, which is a prerequisite
for the assembling.

(3) Whether the s-bot is assembled or not.

More precisely, when s-bot s is assembled in a swarm-bot formation, its strength decreases in
the area of high temperature and increases in the area of low temperature, as described by the
following equation:

es(t + 1) = es(t) + τ · ((1 − Γs(t)) − es(t)), (1)

where es(t) is the strength of the sth s-bot at cycle t, τ = 0.2 is a time constant governing the
speed of the strength variation and Γs(t) is the temperature sensed by the sth s-bot at cycle t in
its current position. When an s-bot is not connected but it emits a sound signal, it loses strength
in both areas. In the areas of low temperature its strength converges to a low but non-null value.
This is described by the following equation:

es(t + 1) = es(t) + τ · (k(1 − Γs(t)) − es(t)), (2)

where k = 0.1 is a constant. In all the other situations, the s-bot ’s strength increases in areas of
high temperature and decreases in areas of low temperature:

es(t + 1) = es(t) + τ · (Γs(t) − es(t)). (3)

The time constant τ guarantees that the s-bots ’ strength varies smoothly according to the state
of the system as described above. This smooth variation gives time to the control system of each
s-bot to react to the new environmental situation in order to perform appropriate actions, before
its strength drops under the threshold ǫ = 0.01.
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A.3 The evaluation function

In each trial θ, the behaviour of the s-bots is evaluated according to an evaluation function Fθ

that takes into account the individual contribution of each s-bot s:

Fθ =
1

n3
·

(

n
∑

s=1

ds ·
n
∑

s=1

es · c

)

, (4)

where the factors ds, es and c are explained below:

– ds rewards s-bots that perform phototaxis; this fitness component is computed as follows:

ds =



































0.1 ·
xf,s − xi,s

xΓ − xi,s

if xf,s ≤ xΓ,

0.1 + 0.9 ·
xf,s − xΓ

xM − xΓ

if xΓ < xf,s ≤ xM ,

1 otherwise,

(5)

where xi,s and xf,s are respectively the initial and final x coordinate of the sth s-bot position,
xΓ is the x coordinate in which the temperature drops from 1 to 0, and xM is the x coordinate
of the light bulbs position.6

– es is the final strength possessed by the sth s-bot, at cycle t = 600. The variation of the
strength es(t) of the sth s-bot at cycle t is regulated by equations (1), (2) and (3) as discussed
in appendix A.2.
This fitness component rewards s-bots that end their lifetime with a high amount of strength.
For example, if we compare groups of s-bots that managed to reach the end of the corridor
close to the light bulbs, those which proved to be capable of assembling early in response to the
decrease in the environmental temperature will get a higher fitness score than those which did
not perform such collective response.

– c is the maximum size of a swarm-bot observed at the end of the trial, ranging from 1 (no
connections among s-bots) to n (all s-bots connected in a single swarm-bot). This fitness com-
ponent rewards s-bots that reach the end of the corridor assembled in a swarm-bot formation.
Recall that, due to the characteristics of the environment—an initial area of high temperature
is followed by an area of low temperature at the end of which the light bulbs are located—
successful s-bots should terminate the trial in swarm-bot formation close to the opposite end of
the corridor with respect to their starting position.

The average performance of the group F is computed averaging the evaluations Fθ performed
in each trial θ. This value corresponds to the fitness of the genotype: it is used to select which
genotypes will reproduce in the current generation, but is not in any sense a reinforcement directly
available to the s-bots.
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