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Abstract

Co-evolutionary algorithms are able to simulate multiple species evolving in a shared environ-
ment. Previously, master tournaments have been employed to establish more accurate fitness
measurements, in response to the Red Queen Effect. This study proposes to apply a taximetric
cluster analysis to master tournament data. This allows to build a hierarchical ‘family’ tree,
based on the phenotypes (i.e. behaviours) displayed during the master tournament. Using this
approach, the study explores the following issues:

First, co-evolution often shows cycling dynamics, which might be related to phenotypic plas-
ticity, i.e. cycling might promote plasticity while plasticity might suppress cycling. Using the
cluster analysis, this study shows that a cyclic phase in evolution might indeed be superseded
by a plastic phase. Furthermore, it was demonstrated that the cluster analysis can be used in
further formalizing previously established results, such as that plastic individuals are able to
cope with multiple rigid individuals.

Secondly, a state of pseudo-plasticity might be realized on a genetic level. This study pro-
poses the existence of ‘switching genes’, which control the expression of dormant phenotypes.
It is plausible such genes might play a role in cyclic phases of evolution as well, as they could
enable a species to adapt quickly, without resorting to costly ontogenics. The study shows that
cyclic phases are expectedly devoid of large genetic change. When randomly mutating families
from these phases, it is possible this could trigger switching genes, causing a switch in opponent
specialization. However, no such effect was clearly seen, possibly due to clouded data resulting
from an indiscriminate mutation technique employed.

Keywords: Co-evolution, cluster analysis, phenotypic plasticity, genetic pre-adaptability.
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CHAPTER 1

INTRODUCTION

1.1 Co-evolutionary robotics

Evolutionary robotics (ER) is the field in artificial intelligence concerned with creating adaptive
robots by applying evolutionary algorithms (EAs) to obtain optimized software controllers (Sec-
tion 2.1). An example of such an EA is a genetic algorithm (GA), which uses a static fitness
function to measure performance (Section 2.1). However, in the natural world there is no such
thing as a fixed fitness measure; animals are engaged in tight interactions with their environment
and species are said to be co-evolving. Co-evolutionary algorithms (CEAs) can in that respect
be considered a closer approximation to the natural world than simple GAs, simulating multiple
species in a shared environment. However, CEAs are known to add an additional layer of com-
plexity to the comprehensibility of EAs, since in a CEA a species’ fitness is directly dependent
on a co-evolving species’ fitness. This fitness interdependency is known as the Red Queen Effect
(Section 2.2.1).

From a biological perspective, co-evolution is often related to the emergence of arms races
(Section 2.2.1). An anecdotal example of this can be demonstrated by asking the question why,
for instance, some animals are so fast. The hypothetical existence of evolutionary arms races
might explain this observation. For instance, both the leopard and gazelle might be so fast
because they could have been pressuring each other on evolutionary timescales to either catch or
outrun the other respectively. In more technical terms, one might call the evolution of the speed
increase seen in the leopard or gazelle examples of adaptations. However, increasing speed is not
the only option an animal might have. The gazelle for example might favour protean behaviour
(i.e. quick, irregular movements) to evade the leopard over pure speed. Both running at speed
and irregular movements can be seen as two different capacities, which of course both can be
adapted further. An adaptation in that respect is thus a refinement of a capacity, while the
development of a new capacity can be called an innovation. Both adaptation and innovation are
examples of evolutionary progress.

Plausible as they might seem, the existence of arms races in nature have by no means been
unambiguously empirically verified, and little is known on the specifics. A similar state of affairs
can be found in computational simulations running co-evolutionary scenarios, where experiments
have demonstrated that the emergence of an arms race does not a-priori follow from interspecific
competition. Instead, species in simulation are often observed to evolve in a cycling pattern,
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Chapter 1. Introduction

a ‘rock-scissors-paper’-like scheme that might lead to short term benefits but as far as current
understanding goes, does not result in long-term progress (Section 2.2.1).1

1.2 Research questions

1.2.1 Phenotypic plasticity

Research Question 1 Can phenotypic plasticity suppress cycling?

One significant factor in the emergence of arms races might be the ability of many animals to
develop phenotypic plasticity, such as learning. Plasticity has since the dawn of evolutionary
thought been a source of confusion as well as a catalyst in its theoretical development. In fact,
the idea that learned experiences and skills could be a unit of hereditary transmission at one
time was considered a valid alternative to Darwin’s natural selection, and while Lamarckism in
its original form is now refuted, the influence that ontogenics might have on the evolution of
species is still in need of further research.

An explanation of how species might cope with a rapidly alternating (e.g. cycling) environ-
ment, is by evolving to a state of ontogenic predisposition (Chapter 2). Consider for example an
unspecified primate. When compared to less developed organisms (such as reptiles), primates
are slower to mature and become self-sufficient. They are born as the proverbial ‘blank slate’,
but are quicker to learn new skills and to adapt to changing circumstances. During its lifetime,
learning allows the primate to explore its phenospace in ways that would take generations for
natural selection to accomplish.

Interestingly, this might imply that evolving to a state of plasticity could act as a normalizing
factor in the cycling/progress trade-off; when a rigid (i.e. non-plastic) species is being outper-
formed by a plastic opponent, this could force the rigid species to evolve plastic individuals as
well. In fact, the presence of cycling might very well be one of the main catalysts for adaptable
behaviour to emerge. Since a cyclic phase in evolution might apply a selective pressure on species
to adapt quickly, whether genetically or ontogenically, it might eventually favour the emergence
of the latter (Section 2.2.2).

1.2.2 Genetic pre-adaptability

Research Question 2 Are there signs of genetic ‘pre-adaptability’? If so, what is its role with
regard to cycling?

Certain degrees of adaptability might not be exclusive to phenotypic plasticity. Plasticity might
enable an organism to quickly ‘switch’ from one (set of) capacities to another, as circumstances
require (Section 2.2.2). We speculate that this switching could possibly also be realized by what
one might call genetic pre-adaptability.

Consider how it might seem intuitive that genetically determined capacities are controlled by
a set of alleles, and that the expression of a different capacity would depend on an alternate set of
alleles. Under this assumption, to evolve from one capacity to another many genes might have to
be changed. However, this study proposes that a genetically pre-adapted organism would contain
multiple sets of dormant genes that are each responsible for expressing different capacities. A
small number of dedicated switching genes could possibly control which of these capacities gets
expressed.

1Note that this analogy illustrates a forced instance of cycling, unlike what is naturally occurring in evolution
where there is a plethora of alternative strategies, including possible phenotypic modifications of those.
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Chapter 1. Introduction

While such a mechanism would not allow phenotypic plasticity, genotypic pre-adaptability
could enable a species to adapt to scenarios from a broad spectrum of environmental circum-
stances within only a couple of generations. If it exists, it is plausible that cycling phases in
evolution have a basis in pre-adapted genetics. Consider that cycling challenges a species with
different types or ‘families’ of opponents in an alternating fashion. To counter an opponent like
this, species might carry the innate capacities required to cope with each of these types, such
that they get expressed by switching genes when required. This then gives the impression of a
species ‘re-discovering’ previously lost capacities.

1.2.3 Cluster meta-analysis

Research Question 3 Can a cluster analysis be used to formally define phenotypic ‘families’
of individuals?

Unfortunately, co-evolving systems are notoriously difficult to understand, especially when taking
ontogenics into account. This difficulty can primarily be attributed due to the Red Queen
Effect, suggesting that a direct measure of a species’ fitness is not sufficiently informed and that
alternative measures have to be used (Section 2.3.1).

One well-known example of these alternatives is measuring an individual’s fitness against a
set of opponent elites from previous and future generations. These master tournaments can then
be visualized in the form of master fitness graphs or CIAO (Current Individual versus Ancestral
Opponents) plots (Section 2.3.2). A master fitness has the benefit of being a more reliable and
objective means to measure progress as compared to when using classical ‘online’ fitness plots,
while CIAO plots can be used to investigate cyling/progress dynamics. However, CIAO plots
have the drawback that they often appear convoluted (Section 2.3.2).

This study suggests that the master tournament can be regarded as a formal representation of
the behaviours displayed from both species. Once formalized, the similarity between two (groups
of) behaviours could constitute a distance measure between them. This formalization can be used
to group individuals into behaviourally based ‘families’, by using a hierarchical cluster algorithm
(Section 3.3.2). This allows to construct a phenetic tree which enables the inspection of local
dynamics, in order to better investigate Research Questions 1 and 2.

1.3 Hypotheses

To answer the research questions outlined it Section 1.2, this study proposes to formalize the
concept of behaviour in the context of a simulated predator-prey scenario. Using the cluster
analysis mentioned in Section 1.2.3, species’ performances can be represented and ordered more
intuitively, by evaluating only a small number of phenotypic families against a small number of
opponent families in an automated fashion, instead of having to inspect more complex, convoluted
measures by hand. To the author’s knowledge, this approach is novel.

It has been shown before that species are able to exploit phenotypic plasticity to counter rigid
opponent types (Section 2.2.2). A state of plasticity seems thus a valid and possibly superior
alternative to a cycling strategy. By testing species’ families against each other, it can be expected
that plastic families are able to cope with a higher number of rigid opponent families, than when
evaluating rigid families against each other. Moreover, one could expect that plastic families will
originate from non-cycling phases in evolution, while rigid individuals will from cycling ones.

While not having been directly observed in nature or in simulation, it does not seem unrea-
sonable that the evolution to a state of pseudo-adaptivity might be realized on a genetic level,
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Chapter 1. Introduction

Family cyclinga cyclingb non-cycling
A 0.8 0.2 0.7
B 0.2 0.8 0.7

(a) Idealized legacy performance.

Family cyclinga cyclingb non-cycling
A 0.2 0.8 0.7
B 0.8 0.2 0.7

(b) Idealized performance after mutation.

Table 1.1: An example of the highly idealized results one might expect when switching genes
exist. Shown are the success-rates of phenotypic families from different phases (cycling and
non-cycling) against two opponent families from cycling phases (A and B). The cycling families
are only effective against one opponent family. When mutated, the cycling family expresses a
different phenotype, and reverses its specialization. The plastic individuals are not susceptible
to genetic mutation and show an overall higher performance against both opponent families.

especially when a species is situated in an environment where historical challenges are continu-
ously resurfacing (i.e. when confronted with a cycling opponent). The switching genes mentioned
in Section 1.2.2, if they exist, could thus be expected to be found in the families originating of
cycling phases of evolution. More interestingly, such genes would be susceptible to physical mu-
tation. Therefore, if one would mutate an individual from a genetically pre-adapted family and
re-evaluate its performance, the individual’s phenotype might switch from expressing one set of
capacities to the next, thereby also switching its specialization to cope with a certain opponent.
Conversely, such mutations should have less effect when applied to individuals that originate
from families that have not been genetically pre-adapted (e.g. from non-cycling phases). Table
1.1 summarizes these expectations.

1.4 Structure

To investigate the hypotheses just discussed, the rest of this thesis is arranged as follows. Chapter
2 provides the reader with a more elaborate theoretical background on the topics introduced in
this chapter. Moving from abstract and general topics to more applied and specific ones, this
includes a brief, general outline of ER (Section 2.1), a discussion of the interactions between
progress, cycling and plasticity (Section 2.2) and an exposition on the details of the master
tournament (Section 2.3). Chapter 3 describes the methods employed to investigate the raised
research questions, whose results are illustrated in Chapter 4. Finally, the results are discussed
in Chapter 5.
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CHAPTER 2

BACKGROUND

2.1 Why evolutionary robotics?

The strength of evolutionary robotics comes from the fact that in many ways it takes a step back
in robot design; instead of a distal perspective (i.e. from the point of view of a designer), a more
proximal one (i.e. from the robot’s perspective) is taken (Sharkey & Heemskerk, 1997). For
example, when a human designer might want a robot to pick up a ball and drop it in a specific
area, he or she might intuitively formulate this expected behaviour as a collection of goals the
robot has to accomplish. However, interactions between robot and environment can be difficult
to fathom. Difficulties in understanding real-world dynamics might not only be a limiting factor
in the accuracy of a distally designed model, a human designer might also inadvertently impose
unnecessarily and possibly unwanted constraints on robot design (Nolfi & Floreano, 2000). ER
on the other hand might be less constricted by distal descriptions. By reverting to principles
that are found in natural selection, which are essentially blind and self-regulating, EAs used by
ER could design robot controllers with comparably little external intervention.

Of course, EAs in general have their own difficulties concerning design and fine-tuning. In a
GA for example (the technique used in this study; Section 3.2.4), a problem is defined in close
relation to a fitness function, that measures (possibly heuristically) how well a solution solves
that problem. When running a GA, one first initializes a pool (or population) of candidate
solutions (or individuals). These individuals are numerically encoded by a genotype, that can
be easily modified. To evaluate an individual, its genotype is transformed into a phenotype.
These phenotypes are evaluated using a fitness function, and the best scoring ones are selected
to seed a new generation of individuals. Generating the next generation (of offspring) is done
on the genetic level, by means of the mutation and/or recombination operators. The process
of selecting, altering and evaluating only the fittest individuals is repeated until a termination
condition is reached. It goes almost without saying that all these steps require careful parametric
fine-tuning (Eiben & Smith, 2008).

The potential of using an EA as the one just described becomes apparent when comparing its
solutions to the solutions from classical engineering approaches. For example, in (Nolfi, 1996) a
robot was evolved to stay close to a cylindrical object. Other than the EA yielding desired robot
behaviour, this behaviour did not lent itself well to distal descriptors. Robot behaviour appeared
to be based on emergent sensori-motor equilibria, called behavioural attractors. It is not to say a
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classical approach could have had no success in letting a robot approach a cylindrical object, but
it would probably have no basis on behavioural attractors. Moreover, ER can not only be used
to design efficient robots, but in doing so one is also able to study the mechanisms underlying
evolution in the natural world.

Co-evolutionary algorithms display some additional points of interest that regular EAs lack.
One notable advantage of a CEA is that in simple EAs, it is often difficult to formulate the
fitness function adequately such that it provides an appropriate challenge throughout the different
phases of evolution. If the fitness function is either too easy or too hard, the genetic search space
could appear homogeneous to the otherwise uninformed algorithm. For instance, an EA is often
unable to solve a hard problem by simply applying a ‘suitably’ hard fitness function. The EA will
not be able to progress beyond the initial stages of evolution, since at that point all candidate
solutions are evaluated as equally inadequate.

As a solution to this bootstrap problem, one might use a series of fitness functions of an
increasingly demanding nature; the further the algorithm progresses, the more demanding the
fitness function can (and should) be (these compound fitness functions are known as incremental
fitness functions (Urzelai, Floreano, Dorigo, & Colombetti, 1998)). Co-evolution offers another,
more implicit alternative: A CEA could potentially be able to exploit the self-scaling properties
that arise between co-evolving elements (Angeline & Pollack, 1993). Not only could this kickstart
evolution, but it might even lead to long-term progress beyond the bootstrap problem.

2.2 Progress in co-evolution

2.2.1 Arms races, cycling and the Red Queen

In a simple EA where a static fitness function is used, one can expect to see a gradual fitness
progression. In contrast, co-evolution knows no fixed metric that evaluates an individual’s per-
formance objectively. Instead, a species’ fitness is completely dependent on and relative to its
environment, which is itself is also (partly) subject to natural selection. This implies that the
fitness of two species is often directly related (Kendeigh, 1961). For instance, in a mutualistic
interaction between species, this relation is symmetric (e.g. the clownfish and the sea anemone),
while in a competitive (e.g. lions versus hyenas) or antagonistic (e.g. cheetahs versus gazelles)
interaction the relations would be inversed. In the latter two cases, observe that one species’
progress is another one’s setback. Thus, when both species are progressing at an equal rate,
those improvements will ceteris paribus cancel each other out. This observation is known as the
Red Queen Effect (Van Valen, 1973).1

One might suspect that the Red Queen Effect can be prolongated indefinitely. This could
eventually lead to the formation of evolutionary arms races. However, one must realize that an
arms race need not alway be a long-lasting, incremental one. In (Dawkins & Krebs, 1979) it was
already recognized that there are many forms of arms races, and that they could terminate rela-
tively quickly. For instance, it was postulated that while conspecific symmetrical arms races (i.e.
a well-balanced arms race between members of the same species) could lead to incrementality,
this would not be something to be expected when observing interspecific competition. In the
latter case, it was speculated that an individual taking step to decrease an interspecific oppo-
nent’s survivability would simultaneously increase the survivability of a conspecific ‘opponent’.
This view however assumes that natural selection acts on the level of the individual (or even on
that of the gene (Dawkins, 1976)), while there has been a recent resurgence of interest in group
selection (Wilson & Wilson, 2008).

1The Red Queen effect is named after Lewiss Carrolls Through the Looking Glass, where the Red Queen
character has to keep running to just remain stationary.
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Chapter 2. Background

Figure 2.1: A more abstract representation of cyclic evolution. The right box shows two species
(‘Pop1’ and ‘Pop2’) cycling through their two respective strategies in alternating fashion. The left
box shows the prevalence of each interspecific combination of strategies (from (Nolfi & Floreano,
1998)).

Regardless of the exact form of the arms race at hand, it should eventually terminate in one
of three possible outcomes (Dawkins & Krebs, 1979). First, one species may win the arms race,
for example by causing the opponent to go extinct. Secondly, an arms race might end in an
equilibrium (e.g. a virus being sufficiently virulent and a host being sufficiently resistant such
that neither will perish, nor will prevail over the other). Finally, an arms race may end in periodic
cycling, an example of which can be seen in conspecific parental investment (Parker, 1979).2

In simulation, the nature of arms races is often investigated in the context of predator-prey
simulations (Section 2.3) (Cliff & Miller, 1995a; Miller & Cliff, 1994). Notably, Nolfi and Floreano
(1998) illustrated a more abstract generalization of cyclic evolution (Figure 2.1).

2.2.2 The role of ontogenics on progress

In the context of co-evolving predator-prey robotics, Floreano, Nolfi, and Mondada (2001) have
shown that phenotypic plasticity might enable an individual with enhanced performance. The
experiment investigated three scenarios, all with neural network-based controllers with evolvable
connection weights; a genetically determined one, one with evolvable noise applied to connections,
and one with evolvable Hebbian rules (Hebb, 2002). It was demonstrated that both predator and
prey benefited from plasticity; prey took advantage of the noisy controllers by demonstrating
protean (i.e. unpredictable) behaviour, while predators were able to exploit Hebbian learning,
resulting in superior performance against all three types of prey opponents. The authors conclude
by speculating that ER should not focus on evolving to a state of optimality, but to adaptivity.

Evidently, phenotypic plasticity might enable an organism to deal better with a dynamical
environment, but what is its relation to evolutionary progress? One well-known proposed mech-
anisms regarding this interaction is the Baldwin Effect (Baldwin, 1896). Generally, the effect
postulates that 1) species might evolve plasticity, followed by 2) the genetic assimilation of those

2Offspring might evolve a ‘conflictor gene’ that exploits parental attention. Parents might evolve a ‘suppressor
gene’ that allows them to invest in each offspring equally, regardless of the conflictor gene. Since both genes have
associated costs, the conflictor gene will slowly diminish (since it is ignored), following by the extinction of the
suppressor gene (since it is no longer needed) and the cycle repeats.
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Chapter 2. Background

(a) The genospace is explored by the GA (in the
direction of the arrow). Each slice represents a
(snapshot of a) dynamic fitness landscape (i.e. a
phenospace) that an evolved individual is con-
fronted with during its life.

(b) A plastic organism might be able to dynam-
ically move around the phenospace during its
lifetime (the arrows) and explore high-fitness re-
gions. Once at a (stable) local optimum, the ac-
quired traits might be genetically assimilated.

Figure 2.2: The different ways (genetically and ontogenically) a genospace/phenospace might be
explored. Note that these plots represent ever-changing fitness landscapes as simple snapshots;
in an actual simulation they would continuously morph and warp as environmental pressure
changes. Also note that the distinction between genospace and phenospace is not as clear as is
suggested here, since the phenospace is indirectly accessible through the genospace.

traits ontogenically acquired. Now, the question arises why species have to go through a plastic
stage, to arrive again at a rigid, genetic stage. Why not simply go from a genetically deter-
mined trait to an alternative genetically determined trait? There has to be some benefit and
cost associated with both stages.

Emergence of plasticity

In (Turney, 1996) the first part of this question is elegantly summarized. To simplify, there exists
a trade-off between phenotypic plasticity and rigidity that might be compared to the trade-off
between flexibility and robustness. The phenospace neighbourhood of an organism would have
various fitness associations, possibly with large differences. A plastic individual would be able
to move to those positions that yield the highest fitness, contrary to rigid individuals. In effect,
phenotypic plasticity thus ‘smooths’ the fitness landscape (Figure 2.2).

In (Hinton & Nowlan, 1987) an experiment was conducted that convincingly demonstrated
the smoothing influence of plasticity in a simulated environment. Suppose environmental cir-
cumstances would require one binary weighted neural network with 20 specific connections to
be the right and only right one. The phenospace of this scenario would look a completely flat
surface of size 220, with one position sticking out (the figurative needle in the haystack).

The study applied a GA to a population of 1000 randomly generated candidate networks. In
a rigid scenario, the network would be encoded by 20 genes that could either disable or enable
a connection. In the plastic scenario, genes had a 0.25 chance to either disable or enable a
connection, and a 0.5 chance to let it be undetermined (i.e. subjected to plasticity). Attempting
to use 1000 rigid networks would revert to random search, since there is no indication whether
a candidate solution is close to the global optimum. However, when enhancing the individuals
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Figure 2.3: The results from (Hinton & Nowlan, 1987) show that plasticity enables evolution
to internalize beneficial traits. Note that after 20 generation, more than 50% of the genes are
correctly set, in a phenospace of size 220. Also observe that the number of fixed genes never rises
over 60%, implying that in this experiment full rigidity is unneeded.

with plasticity (i.e. the undetermined connections would randomly flip 1000 times; if the needle
would be found, the trial would end), the GA would produce individuals that had more than
fifty percent of the genes correctly set after 20 generations. This indicates plasticity is able to
guide evolution in certain cases (and that acquired traits can be genetically internalized).

In (Nolfi & Floreano, 2000) it was speculated how cycling might play a facilitating role in the
emergence of plasticity. First, cycling could be expected to appear when there are no general
strategies available. Instead, a species would resort to quickly switching from one partial strategy
to the next (cycling). This would at the same time create an amplified conspecific selective
pressure; those individuals who are able to adapt quickly would be favoured. As ontogenic
adaptation is potentially much faster than genetic adaptation, individuals with a predisposition
to learn would start to emerge. For instance, in linear evolution there might only be a need to
adapt to the most recent opponent, while not preserving adaptations to historical opponents. In
cycling, the perception of rapidly alternating types of opponents might create a selective pressure
to exploit plasticity, or more speculatively; genetic pre-adaptability.

Genetic assimilation

So, why would, as shown in (Hinton & Nowlan, 1987), evolution favour rigidity after a plas-
tic phase? Basically, the benefits of phenotypic rigidity would be that it requires no resource
investments and corresponding risks associated with plasticity (Turney, 1996). Moreover, if
environmental factors are relatively steady, they could be considered trustworthy and traits as-
sociated with them can be internalized. Still, the specifics on internalization are far from clear
up until this point.

Godfrey-Smith (2003) gave three interpretations (that are not mutually exclusive) of the in-
ternalization phase of the Baldwin Effect. The breathing space interpretation, the one originally
proposed by (Baldwin, 1896), supposes internalization arises because plasticity raises survivabil-
ity. Thus, plastic individuals would have a higher change to produce offspring that, through
mutation and recombination, have those traits to survive internalized.

The canalization interpretation is derived from an idea proposed by Waddington (1942).
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Canalization can be thought of as a predisposition to ontogenically develop some trait, with a
lessened sensitivity to environmental circumstances. The hypothesis is that in some cases, the
need for canalization of a trait can be so big that its development will happen almost without
exception. In a later experiment, this hypothesis was backed up by empirical data (Waddington,
1953). Likewise, a predisposition to learn a certain trait might become so strong that the trait
itself would be assimilated, as in (Hinton & Nowlan, 1987).

Finally, niche construction interprets internalization as a result from shifts in the social envi-
ronment of a population when transitioning to a plastic phase (Deacon, 1997). The population
that now occupies a new social niche are subject to additional conspecific social selective pres-
sure, eventually favouring internalization of those traits that are beneficial to compete in the
niche.

2.2.3 Conclusion

Co-evolution does not always lead to incremental arms-races, but can also lead to cycling dynam-
ics. Furthermore, the Baldwin Effect plays an intricate role regarding the interaction between
ontogenics and genetics, which is of importance when one considers this study’s hypothesis that
plasticity might suppress cycling. First, the exploitation of plasticity can be expected, as it can
a) accelerate evolution and b) enhance a species’ coping effectiveness, especially when evolution
is going through a cyclic phase. Secondly, when ontogenic traits are being internalized, plastic
phases might eventually consolidate into rigid phases. It goes without saying that internaliza-
tion might in turn influence evolutionary progress; while plastic phases might suppress cycling,
rigid phases may again allow for them. This could lead to the formation of higher order cycling
harmonics, where not only fundamental cycling is present, but cycling/non-cycling phases are
themselves cycling.

2.3 Making sense of co-evolution

2.3.1 Difficulties in measurements

Consider the Red Queen Effect: Imagine a species A and B evolving in a shared environment,
where A’s fitness is (partly) dependent on B’s, and vice versa. How could one measure a species’
fitness? Say there would be an increase in A’s fitness at some point. Would this be due to A
having made progress, or due to loss of competence of B? Suppose one would observe a stagnation
of both species’ fitness. Does this simply imply progression has stagnated as well, or is one unable
to measure symmetrical development? How would one know which species performs better?

An intuitively insightful approach to answer these questions would be to observe behaviour
directly (in simulation). There are however some caveats when choosing to this approach.

• There is an inherent stochasticity in evolution and the resultant behaviour.

• The sheer number of combinations between all individuals between species is overwhelm-
ingly large.

• Even when just looking at elites or top-x individuals in order to prevent a combinatorial
explosions, these truncations might not be representative of a species as a whole. In the
case of the presence of sub-populations, different types of elites might be promoted to the
top layers by little more than chance.

12
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• Behaviour, especially in the case of anything displaying more than purely reactive intelli-
gence, can be very context-dependent. Some types of behaviour that might emerge against
one opponent might be completely absent against another.

Because of these difficulties, the prevalence of whose are often hard to predict in advance,
distal observations can in certain cases be supplemented or replaced with more advanced metrics.

An influential paper by Cliff and Miller (1995b) introduced some alternatives to measuring
a species’ fitness in situ, of which the so-called master tournament is of particular interest. The
master tournament can be regarded as an offline metric, i.e. one that is obtained after the EA
has been terminated. The master tournament is based on evaluating all a species’ elites against
each other. Thus, if an experiment is based on s species and i individuals per species, the master
tournament would represent is evaluations; every elite is evaluated against all its opponent’s
elites. The advantage here is that, since an individual is tested against past, present and future
opponents, the master tournament’s fitness can be interpreted as a measure of long-term fitness,
or robustness. For example, if an individual would be able to defeat all past, or perhaps even
future opponents, it would now be justly measured as fitter than one who would only be able to
defeat, say, a fraction of its past opponents.

2.3.2 Visualizing progress

The master tournament is often visualized as a total fitness score, but perhaps more appropriately,
a CIAO plot; an s-dimensional (in practice always 2-dimensional) graphic (Figure 2.4a).3 In the
CIAO plot, each interspecific evaluation is presented by a voxel; the lightness or colouration of
the voxel indicates the fitness score that was obtained during the evaluation (Figure 2.5).

In an ideal case, the CIAO plot would be diagonally bisected (Figure 2.5d), showing that
all individuals are able to beat all opponents from previous generations, but none from future
ones, implying that every new generation shows significant progress to the point where they are
superior to all ancestors. In contrast, cyclic evolution would show up as diagonal banding (Figure
2.4b). In real-world applications however, these patterns are rarely to never seen (Figures 2.5a,
2.5b and 2.5c).

In Nolfi and Floreano (1998) a predator-prey scenario was evolved which provides some typical
examples of what a practically obtained CIAO plot might look like. Here, two robot populations
were evolved by applying a GA that modified a neural network’s connection weights (similarly
to this study; see Chapter 3). Figure 2.5a shows a scenario that seemed to show the predator
and prey species being engaged in cycling, as illustrated by the perpendicular banding in the
CIAO plot. In a second scenario, Hall-of-Fame Selection (Rosin & Belew, 1997) was used (i.e.
individuals are evaluated against elites from previous generations during the GA), resulting in
sudden and abruptly emerging innovation that showed up in the CIAO plot as a distinctive
‘staircase’ pattern (Figure 2.5b). Finally, in a third scenario, the prey robot’s sensors were
reconfigured to provide it with a ‘richer’ sensory input. Both species’ evolution now showed a
gradual progression, observable in the CIAO plot as a noisy gradient (Figure 2.5c) that is vaguely
reminiscent of the ideal case plot (Figure 2.5d).

It has been suggested that the CIAO plot is less than clear when the cyclic nature of evolution
is irregular (Cartlidge & Bullock, 2004). This is evident from the fact that most scenarios where
cycling is suspected do not show the diagonal banding pattern (Figure 2.4b) but the perpendicular

3In the original incarnation of the CIAO plot by (Cliff & Miller, 1995b), the plots were true to their name
(Current Individual versus Ancesteral Opponents) and were visualized as two triangular plots; one for each species.
More recent versions of the plot often combine both halves for both species in one rectangular graphic that in
effect also shows the performance of an individual against future opponents. For sake of simplicity, this study
refers to both as simply ‘CIAO plot’.
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(a) A CIAO plot displayed schematically. Each
axis denotes a species. The perpendicular and
diagonal slices from the plot relate to each other
in terms of the generations from which species’
elites were obtained.

(b) An ideal case of cyclic evolution. Individu-
als from generation g are alternatingly successful
against previous generations from the opponent
species.

Figure 2.4: Two stylized examples of a 2-dimensional CIAO plot (adapted from (Cliff & Miller,
1995b)).

(a) A real-world exam-
ple of cycling dynamics;
note the perpendicular
banding patterns.

(b) A real-world exam-
ple of jittery progress;
note the distinct stair-
case pattern indicating
suddenly emerging ca-
pacities.

(c) A real-world exam-
ple of gradual progress;
note the vague resem-
blance to Figure 2.5d

(d) An ideal case; all
individuals from gener-
ation g are able to beat
opponents from genera-
tion g′ < g.

Figure 2.5: Examples of CIAO plots. Pixel lightness indicates the fitness obtained during eval-
uation (from (Nolfi & Floreano, 1998)).
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one (Figure 2.5a). An explanation is that the perpendicular CIAO plot is indeed a result of
cycling, but due to complex ‘layers’ of cycling, this could result in plots that show interference
and are far from intuitive to understand. In Cartlidge and Bullock (2004), it has been shown
that a meta-analysis on the CIAO plot might prove to be fruitful; applying image processing
algorithms on the perpendicular CIAO plots could reveal the obfuscated diagonal patterns to
some degree again.

Another potential for a CIAO meta-analysis can be found in the bioinformatics community,
where cluster algorithms have found a wide application with regard to various domains (Xu &
Wunsch, 2005). Surprisingly, ER makes little use of these proven techniques, while the fields
can have significant overlap. Notably, the use of taximetrics (i.e. the classification of organisms
based on their phenotype (Sneath & Sokal, 1973)) could be just as suitable to categorize artificial
life as it is to natural life. In fact, some hierarchical cluster algorithms have been specifically
designed for this purpose (Sokal & Michener, 1958).
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CHAPTER 3

METHODS

3.1 Overview

This study investigated the research questions outlined in Chapter 1 utilizing two e-puck robots
(Mondada et al., 2009) in simulation, one fulfilling the role of ‘predator’, the other one of ‘prey’.
The robots’ controllers were neural network-based (Section 3.2.3), and its weights were evolved
using a GA (Section 3.2.4). Each scenario was replicated 10 times (as ‘Seeds’) with pseudo-
random initial conditions.

A series of pilot studies were conducted to determine the most suitable algorithmic param-
eters and to refine the more conceptual design choices. Once finalized, the actual scenarios
were simulated (Section 3.2.4). A cluster analysis on the master tournament data was applied
by implementing a variant of the UPGMA/WPGMA ((Un)weighted Pair Group Method with
Arithmetic mean) algorithm (Sokal & Michener, 1958) (Section 3.3.2). This analysis was de-
signed to summarize and visualize cycling/progress dynamics for each species on a local level
(Figure 3.1). The analysis could then be used to select interesting seeds and families for further
investigation (Figure 3.2). For example, a transition from cycling to non-cycling dynamics could
indicate the emergence of plasticity (Section 2.2.2, Figure 3.1).

To test whether it might be genetic pre-adaptability that enables cycling families to quickly
switch from one capacity to the next, the cycling families’ performance was aligned and compared
to ‘genetic bitmaps’ (a visualization that shows genetic change) (Cliff & Miller, 1995b). This
served as a first check if phenotypic change is accompanied by large or little genetic change
(the latter being a likely case if switching genes exist). A ‘mutation tournament’ (i.e. a master
tournament variant where the tested individuals are subjected to random genetic mutations
(Section 3.3.3)) was used in order to more precisely investigate the existence of switching genes.

3.2 Experiment

3.2.1 Computing environment

The simulation software was derived from the Evorobot* codebase (Nolfi & Gigliotta, 2010),
modified to support multiple populations and provide more elaborate data recording (Figure 3.3).
The code was compiled for testing using the Microsoft Visual C++ compiler v4.0.30319 under
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cycling phase non-cycling phase

Figure 3.1: An illustration of how local dynamics might be hidden on a global level. The plots
show the idealized master fitness scores of species A against species B. Species B (‘global’) has
been bisected into two sub-families, identified by a cluster algorithm (‘subtype1’ and ‘subtype2’).
The y-axis denotes the fitness scores of species A against B. The x-axis denotes the generation
from which A’s elite was derived. Note that the cycling of A is hidden when plotted against the
all of B, but becomes visible when plotted against B’s sub-families. Also note that in the former
case, A’s transition from cycling to less-cycling is not visible.

Pilot

GA 
Seed 1

Master 
tournament

Cluster 
analysis

Mutation 
tournament

Genetic
distance

...

Figure 3.2: The experimental pipeline.
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Figure 3.3: The Evorobot* GUI.

Microsoft Windows XP. The final source code was compiled with cmake 2.8.3 under openSUSE
11.4. The experiments were run on a computer cluster at the ICTS1, consisting of 10 nodes
and one master node, each containing two quad-core AMD Opteron 2374HE processors. The
Evorobot* software stored all relevant data on the cluster’s network storage device, either in a
CSV or custom-built format.

3.2.2 Simulated environment, sensors and actuators

Two 75mm diameter e-puck robots were situated in a 600x600mm simulated environment. Each
robot was positioned and oriented randomly. The robots were placed at minimally 175mm
(2.5 times the e-puck diameter) from the walls to allow them some opportunity to avoid them.
Moreover, if the spacing between two robots was less than a certain distance (Equation 3.1), one
of these robots was assigned a new random position until both robots satisfied both distance
constraint.

minDistance = 0.4
√
arenaX · arenaY + �robot (3.1)

The robots were equipped with a VGA camera, eight infrared senors and two wheels (Figure
3.4a).

The linear VGA camera was positioned at 0◦ on the robot’s body, with a predator field of
view of 45◦ and a prey field of view of 360◦.2 Furthermore, it was divided into five 9◦ or 72◦

segments respectively, which could each yield an activation value 0 ≤ αseg ≤ 1. Each of these
segments was connected to an input neuron in the neural network (Section 3.2.3). Moreover, a
segment was divided into nine or 72 1◦ photoreceptors (Figure 3.4b).

For each timestep, the geometric projection of each visible object onto any photoreceptor was
calculated. If the photoreceptor detected any object, it was activated with a value of αphoto = 1.
The activation of all photoreceptors was averaged to determine a segments’s total activation level.
Dividing a segment into nine photoreceptors allowed a robot not only to perceive the direction of
a stimulus (depending on which segment got activated), but also to get a better sense of distance

1Institute of Cognitive Sciences and Technologies, National Research Council, Rome
2This distinction was inspired by the observation that prey animals often have eyes in the sides of their heads,

while predator animals’ eyes are pointed forward.
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(a) Sensors and actuator layout. Shown is the e-
puck from a dorsal point of view. Eight infrared
sensors (dotted lines) are positioned at 45◦ in-
tervals. The linear camera (dashed line) is posi-
tioned at 0◦. The wheels are attached at 90◦ and
180◦ positions.

(b) The 45◦ (predator) VGA camera configura-
tion. Shown are the five 9◦ photoreceptors, each
constituted out of nine 1◦ segments. Each pho-
toreceptor is connected to an input layer neuron.
The prey camera (not shown) had a 360◦ field of
view; five 72◦ segments each composed out of 72
1◦ photoreceptors.

Figure 3.4: The e-puck sensors and actuators. The arrows show the robot’s forward direction.

to it (a segment’s activation is proportional to how many photoreceptors were activated; objects
that were far away would activate it less than objects that were closer by). The camera was
configured to detect only the opponent robot.

The eight infrared sensors were spaced 45◦ apart, with the first sensor positioned at 315◦.
Sensor activation could yield a value 0 ≤ αifr < 1024 and was determined by calculating the
distance and angle for a sensor to the closest object or wall present in the arena. The position
of such an object relative to the sensor was then matched to a sample table that contained the
actual activation measurements from real infrared sensors used with the e-puck. Each infrared
sensor was connected to a neuron in the input layer of the neural network. Since the neural
network internally used neuron activation values of 0 ≤ Oj(τ) ≤ 1 (Section 3.2.3), the raw
infrared sensor values were normalized into the network’s native activation range.

The two wheels were positioned at 90◦ and 180◦ on the robot’s body. The wheels could move
independently from each other. The Evorobot* software was designed to be computationally
efficient. Therefore, the wheels were not simulated as actual objects with physical dimensions,
but instead the activation from the two motor neurons 0 ≤ Oν(τ −1) ≤ 1 and 0 ≤ Oφ(τ −1) ≤ 1
in the neural network’s output layer were directly translated into wheel speed sside∈{left,right}(τ),
where −smax ≤ sside ≤ smax. Neuron Oν encoded the baseline robot velocity, while neuron Oφ
encoded the robot’s turning rate (Equations 3.2 and 3.3). The speed limit for the predator was
set to smax = 8, while for the prey is was set to smax = 10

sleft(τ) =

{
smaxOν(τ − 1)φ if Oφ(τ − 1) < 0.5
smaxOν(τ − 1) else

(3.2)

sright(τ) =

{
smaxOν(τ − 1)φ if Oφ(τ − 1) > 0.5
smaxOν(τ − 1) else

(3.3)
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Figure 3.5: The turning neuron activation Oφ(τ−1) decoded into wheel speed sside(τ). The green
line shows the left wheel speed, while the red line shows the right one. When Oφ’s activation
is at ∼ 0.5, both wheel speeds remain unchanged and the robot moves forward. When Oφ’s
activation starts to deviate from ∼ 0.5, one of the wheels decreases speed causing the robot to
turn. Note that smax = 1, Oν = 1 and ψ = 1 for this illustration.

Here, φ refers to Equation 3.4, where ψ = 1 refers to the turning ‘fall-off rate’ that determined
how abruptly a robot’s velocity decreased when turning (this parameter was varied during the
pilot studies).

φ = −22ψ+1(Oφ(τ − 1)− 0.5)2ψ + 1 (3.4)

Once wheel speed was calculated, it was matched to a sample table that contained real e-puck
Cartesian displacement vectors for a large number of wheel speed combinations to calculated the
final robot position.

The specialization between one neuron controlling baseline velocity and one controlling the
turning rate was designed to reduce neuron interdependency when engaged in complex manoeu-
vres. If a robot would want to switch from being engaged in a left turn to initiating a right
turn, this would only require an adjustment of the turning neuron while keeping the velocity
neuron’s activity steady. If the output neurons were controlling the speed of one wheel each,
both neurons’ output would have to change.

The turning neuron’s hyperbolic signature (Equation 3.4) ensured that robots had enough
leeway to maintain a stable forward direction (Figure 3.5). For example, with a linear wheel
speed decrease instead of a hyperbolic one, robots tended to wobble when moving forward, since
their turning neuron Oφ was never able to maintain a precise activation level of 0.5.

3.2.3 Neural network

All the robots shared the same neural network architecture (Figure 3.6). The input layer of the
network contained 13 neurons, of which the first eight received direct input from the infrared
sensors, while the last five received input from the linear camera.

The hidden layer contained four neurons receiving connections from the input layer. Fur-
thermore, these neurons projected onto themselves, in addition to retaining a fraction of their
activation levels from previous timesteps. Both ‘leakiness’ and recurrent connections could allow
the robots to utilize forms of memory to enable phenotypic plasticity.
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Figure 3.6: The neural network architecture. Arrows indicate neurons are fully connected be-
tween layers. Grated neurons denote an evolvable responsiveness. Graded neurons indicate both
a evolvable responsiveness and activation retention (i.e. leakiness). The numbers indicate the
internal ranges which the sensors, wheels and the network’s neurons and weights worked with.

Finally, the output layer contained two neurons, indirectly controlling robot velocity and
bearing. These neurons received input from both the input and hidden layer.

Thus in total, the network contained 19 neurons. When connected, layers were fully con-
nected, resulting 102 connections. The network’s activation state was computed for every
timestep.

The activation Oj(τ) of (hidden/output) neuron Oj at timestep τ was computed using a
logistic weighted sum function (Equation 3.5). A neuron’s activations was calculated from two
sets of input connections; −5 ≤ wij ≤ 5 denotes the set of feed-forward connections from
‘upstream’ neurons while −5 ≤ whj ≤ 5 denotes the set of recurrent connections from lateral
ones (which is an empty set in the case of the output layer). Furthermore, βj denotes Oj ’s
evolvable responsiveness parameter.

Oj(τ) = σ

(
βj

(∑
i

wijOi(τ) +
∑
h

whjOh(τ − 1)

))
(3.5)

Here, σ refers to the sigmoid function in Equation 3.6.

σ(x) =
1

1 + e−x
(3.6)

The activation of the leaky neurons (in the hidden layer) required an extra computation step,
shown in Equation 3.7, where 0 ≤ δj ≤ 1 denotes Oj ’s evolvable decay-rate.

Oj(τ) = (1− δj)Oj(τ) + δjOj(τ − 1) (3.7)

3.2.4 Genetic algorithm

Representation

A steady state algorithm (Algorithm 1 and Table 3.1) was used to evolve two populations (preda-
tor and prey), each containing N = 20 individuals (this number formed a trade-off between
computational resources available and population diversity). Subject to the GA operators were
the connection weights and neurons’ responsiveness decay-rate parameters. Individuals were
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Class Steady state
Representation Integer valued vector
Recombination None
Mutation Bitwise
Parent selection Exhaustive
Survivor selection µ+ λ
Replacement Replace worst

Table 3.1: A brief summary of GA settings.

each genetically represented by a genotype; an integer vector ~v where 0 ≤ v ≤ 255. When de-
coded to a phenotype, values were normalized to the neural network’s connection weight range
of −5 ≤ wij ≤ 5. The evolvable decay-rate required normalization into the range 0 ≤ δj ≤ 1
(Section 3.2.3).

The size of the genome was equal to the number of free parameters that determined an
individual’s phenotype. Each connection weight would have to be represented by a single allele,
as well as the responsiveness for all the neurons not in the input-layer. Additionally, the leaky
neurons were each associated with an additional allele determining the decay-rate, totaling to
112 genes. All the genes of each individual of each population were randomized at the start of
an experiment.

Evaluation

The GA iterated until the predetermined number of g = 500 generations was reached (this
number allowed enough time for macro dynamics to emerge). For each generation, there were
several computational steps taken. First, pairs of predators and prey were assigned fitness
scores by evaluating them in a simulated environment. The individuals of both populations were
exhaustively matched with each other (Figure 3.7a). So, the total number of trials played in
this phase would be N2. For each trial, the two selected genomes were decoded into the neural
network controllers. Each trial lasted a maximum of tmax = 500 discrete, 100ms timesteps. Thus,
each trial lasted up until 50 seconds, unless it was prematurely terminated when the prey got
caught.

Fitness function

The fitness function for predator and prey was inversely related (Equation 3.8). The function
rewarded predators for catching the prey as fast as possible. Here, 0 ≤ fit(n) ≤ 1 denotes the
fitness value for individual n, ti denotes the ith timestep with t0 ≤ ti ≤ tmax while PD and PY
denote the predator and prey populations respectively. Maximum predator fitness was yielded
when the predator caught the prey at timestep t0 (which was in practice impossible due to the
starting distance constraint (Equation 3.1)). Maximum prey fitness was assigned when the prey
did not get caught at the 500th timestep tmax. Since each individual participated in 20 trials
and could survive an indeterminate number of generations, the fitness score of an individual was
constantly summed at the end of a trial (this allowed for individuals that survived for multiple
generations to build a ‘solid’ average, less sensitive to random fitness fluctuations). The total
number of trials an individual participated in was recorded likewise to calculate averages.

fit(n) =

{
1− ti

tmax
if n ∈ PD

ti
tmax

if n ∈ PY (3.8)
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(a) The first step to produce a new generation;
establish the fitness of both parent populations.
Alphanumerics indicate the sequence of evalua-
tion (i.e. 1 vs. a, 1 vs. b, 1 vs. c, 2 vs. a, etc.
Solid arrows indicate evaluations.
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(b) The second step involves evaluating the off-
spring. The dotted arrows (1) shows the creation
of offspring (only the first individual is shown
here), in the order of alphabetic lettering. The
solid arrows (2) show how that offspring is eval-
uated against all opponent parents. The dashed
arrows (3) shows how the newly generated off-
spring might replace a conspecific parent individ-
ual.

Figure 3.7: The GA in a schematic visualization; shown are the steps to progress from one
generation to the next. The dashed boxes represent the predator and prey populations, while
the solid ones represent individuals. The solid arrows indicate the pairs of opponent species
playing in the trials.

Mutation

When a generation was completed, each parent individual generated an offspring by means of
mutation (Figure 3.7b, pointer 1). This offspring was then evaluated against the entire opponent
parent population (Figure 3.7b, pointer 2). The opponent parent’s fitness was not updated in
this phase. This was done so to not influence the opponent population with untested offspring,
preventing possible fitness inflation. So, the total number of offspring evaluated in this step is
2N2. For the first generation, no offspring was yet produced, in order to determine the fitness
of the initial populations with a larger degree of certainty.

The mutation operator was a bitwise one. Each gene in the genome got base-converted from
an integer to a vector of eight bits. Every bit has a 0.02 chance of being flipped, so the chance of
a single gene mutating somewhere is 1−0.988 ≈ 0.15, resulting in an average of ∼ 16.8 mutations
in an entire genome.

Selection

After a single offspring’s fitness was established, it was immediately compared to its own parent
population. If the offspring had a higher fitness than the worst parent, it replaced it (Figure
3.7b, pointer 3).3 The new offspring, together with all the individuals that did not get replaced,
formed ‘the next generation’. Fitness averages were recorded, and the algorithm looped back to
perform evaluations on the surviving individuals.

3Note that this implies that a newly generated offspring could be immediately replaced by another offspring
from the same generation, if the latter had a higher fitness than the former and was generated at a later point in
time. Also note that the steady state algorithm does not necessarily replace any parent individuals, if all those
are of a higher fitness than any offspring.
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for generation ← 0 to x do
// Evaluate parents

foreach Predator do
foreach Prey do

pdFitness,pyFitness ← trial(Predator,Prey);
totalPdFitness ← totalPdFitness + pdFitness;
totalPyFitness ← totalPyFitness + pyFitness;

if generation > 0 then
// Evaluate offspring (either predator or prey)

foreach Individual do
Child ← generateChild(Individual);
foreach Opponent do

childFitness ← trial(Child,Opponent);
totalChildFitness ← totalChildFitness + childFitness;

// From own species

WorstParent ← getWorstParent();
if avgChildFitness ≥ WorstParent.avgFitness then

replace(WorstParent, Child);

writeFitnessToFile();

Algorithm 1: The genetic algorithm.

3.3 Analysis

3.3.1 Computing environment

The data obtained from the simulator was processed and visualized with custom-built Python
2.7.2 scripts, developed in (Python(x,y), 2012), in conjunction with various open-source modules.
Exploratory clustering was done using the Scikit-learn

3.3.2 Hierarchical cluster analysis

The master tournament allows to add a degree of formalization to the concept of ‘behaviour’,
as individuals are likely to show specific rates of success against different types of opponents;
an individual can be phenotypically defined based on its fitness-score against all its master
tournament opponents. In effect, we can define a behaviour as in Definition 1.

Definition 1 Behaviour: A series of fitness scores against all an individual ni’s master-tournament
opponents 0 ≤ mj ≤ |M |, represented by a vector ~ni such that nij = fit(ni,mj). Here, ni ∈ N
and mj ∈M denote the ith and jth individual from species N and M respectively. Furthermore,
fit(ni,mj) forms a function that yields ni’s fitness value obtained from testing it against mj.

The data of a single master tournament can be represented by an |N | × |M | matrix A, where
~ai,∗ denotes the fitness score of the ith individual from species N against all of M, and ~a∗,j
denotes the fitness-score of the jth individual from species M (Equation 3.9).
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A =


a1,1 a1,2 · · · a1,|N |
a2,1 a2,2 · · · a2,|N |

...
...

. . .
...

a|M |,1 a|M |,2 · · · a|M |,|N |

 (3.9)

It follows from Definition 1 and Equation 3.9, that the master tournament data contains a
description of all the behaviours that were displayed during the tournament. This allowed to
apply a cluster analysis to the master tournament data to build a well-informed ‘family tree’ of
phenotypic families and associated individuals.

The cluster analysis applied in this study was based on the UPGMA/WPGMA algorithm,
an agglomerative (‘bottom-up’) hierarchical cluster algorithm (Sokal & Michener, 1958). Ag-
glomerative cluster algorithms construct their hierarchies by iteratively grouping the two most
similar clusters in a collection together until all clusters are grouped under one big ‘root’ cluster,
thereby forming a binary tree (note that initially unclustered elements form singleton clusters).
Applied to the master tournament data, each node in this tree represents an abstract ‘family’ of
individuals and each leaf represents a concrete individual.

MasterData ← loadMasterData();
foreach Species do

Tree ← newEmptyTree();
DistanceMatrix ← initDistanceMatrix(MasterData,Species);
while sizeOf(DistanceMatrix > 1) do

// Euclidian metric used

ClusterA,ClusterB ← removeClosestClusters(DistanceMatrix);
// averaging measure used

NewCluster ← mergeClusters(ClusterA,ClusterB);
addCluster(NewCluster,DistanceMatrix);
addCluster(NewCluster,Tree);

writeToFile()

Algorithm 2: The UPGMA/WPGMA based cluster algorithm.

The cluster algorithm used a distance matrix to keep track of newly formed clusters and
their distance to the other known clusters. The algorithm calculated this matrix at its initializa-
tion. Next, the two closest clusters were merged into a new cluster. The newly formed cluster’s
(un)weighted average was calculated and used to update the distance matrix. Cluster repre-
sentations were simultaneously stored in a binary tree datastructure to ease later visualization
and data access. This process continued until every cluster was merged into one final cluster
(Algorithm 2).

The metric used for calculating the distance between two singleton clusters qa and qb was
simply the Euclidian distance between ~qa and ~qb (Equation 3.10).

∆(~qa, ~qb) =

√√√√ |N |∑
n=1

(qa,n − qb,n)
2

(3.10)

Distance computation between compound clusters necessitated the formulation of an appro-
priate averaging measure that specified how nested clusters could be represented by a single
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vector to be used by Equation 3.10. Two measures were used in different instances; an un-
weighted (Equation 3.11) and weighted average (Equation 3.12).

Suppose there exists a cluster Q = Qa ∪Qb, where Qi can either represent a fitness vector ~qi
or another cluster Q. The averaging measure for such a cluster can be formulated by Equations
3.11 (unweighted) or 3.12 (weighted).

µυ(Q) =
1

2

 1

|Qa|
∑
qa∈Qa

Qa +
1

|Qb|
∑
qb∈Qb

Qb

 (3.11)

µω(Q) =
1

|Qa|+ |Qb|

 ∑
qa∈Qa

Qa +
∑
qb∈Qb

Qb

 (3.12)

Conceptually, the unweighted average seems to be the more appropriate one, since this reflects
the idea that sub-families are equally important when combined to form a new super-family, no
matter out of how many individuals those sub-families are composed. However, ultimately which
measure was used was simply based on which one yielded the more usable cluster tree.

To draw the phenogram, the binary tree was converted to a Newick formatted string (Felsenstein
et al., 1986) which could then be visualized using (Huerta-Cepas, Dopazo, & Gabaldón, 2010).
With some modifications, this allowed for additional graphics to be drawn into the tree visualiza-
tions. This was used to enhance the visualization by displaying small average-fitness histograms
at the tree’s nodes. This allows to quickly observe the overall performance of the family cor-
responding to that node against the opponent during the entire evolutionary run. Note that
for this visualization one would not be interested in the unweighted but weighted performance
(based on the intuition that a family’s fitness performance should be an average over all the
individuals it is composed of, not solely on the binary average of its two sub-families) (Equation
3.12). Thus, the visualization is always based on a weighted average, while the average used in
building the tree varies.

3.3.3 Mutation tournament

The mutation tournament (Algorithm 3) was designed to investigate the existence of ‘switching
genes’, who might be responsible for genetic pre-adaptability and play a role in cycling (Chapter
1). The mutation tournament was similar to a regular master tournament, except that individuals
are subjected to random mutations before being evaluated in a trial. These mutations (as used in
the GA; see Section 3.2.4) might result in a hypothetical switching gene being activated, causing
a switch in opponent specialization. To save computing time, only selected families/seeds (i.e.
representative of cycling and non-cycling phases) were selected to participate in the mutation
tournament.

foreach IndividualA ∈ FamilyA do
foreach IndividualB ∈ FamilyB do

for n ← 0 to g do
mutate (IndividualB);
fitness ← trial (IndividualA,IndividualB);

writeToFile (fitness);

Algorithm 3: The mutation tournament.
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For example, suppose one wanted to test the existence of switching genes in species A in the
idealized example shown in Figure 3.1. Now, 20 individual from each of A’s selected families
were randomly chosen and tested 112 times (i.e. the genome length) against both opponent B’s
families B1 and B2 (‘subtype1’ and ‘subtype2’ in the graphic). The random mutations would
then result in a number of individuals starting being effective against B1 at the expense of doing
so against B2 (or vice versa). An idealized outcome is shown in Table 1.1.
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CHAPTER 4

RESULTS

4.1 Procedure

This study selected one particular seed (Seed 9) for further investigation on the basis that it
seemed to provide a case where a cycling phase was followed by a non-cycling one, aligning with
this study’s research questions (Chapter 1). Thus, this seed was explored in more detail using
the cluster analysis and mutation tournament described in Sections 3.3.2 and 3.3.3 respectively.

4.2 Classical measures

Figures 4.1 and 4.2 show the ‘classical’ online fitness and master fitness charts, on both the
averaged data and the selected seed (Seed 9) in particular. Overall, one can observe a fairly large
difference between the seed-specific data (Figures 4.1a and Figure 4.2a) and the seed-averaged
one (Figures 4.1b and 4.2b). This gives testament to the notion that there can be a large degree
of variability between different conditions. Figure 4.1a also illustrates the influence of the Red
Queen Effect; fitness seems to be in constant flux due to a direct fitness interdependency between
species. Both the master fitness charts (Figure 4.2) show a slow but steady progress for both
species, which is particularly visible in the seed-average graph (Figure 4.2b).

The degree in variability between seeds and averages is also visible in the CIAO plots (Figure
4.3). The seed-specific plot (Figure 4.3a) shows a partial checkerboard pattern that is often
interpreted as typical of cyclic evolution. Also visible is the ‘smoother’ half of the plot, indicating
the transition from a cycling phase to a non-cycling one. The seed-average plot (Figure 4.3b) on
the other hand shows a subtle but discernible diagonal bisection that is reminiscent of the ideal
case shown in Figure 2.5d.

4.3 Cluster analysis

4.3.1 Results

Figures 4.4 and 4.5 show the output of the weighted cluster algorithm on the master tournament
data from Seed 9 (Figure 4.3a). Figure 4.4 shows the tree structure truncated at a depth of
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(a) Seed 9. Values are averaged over 400 tri-
als per generation trials (20 individuals, each
against 20 opponents). Note the large fluctua-
tions due to the Red Queen Effect.

(b) Average over 10 seeds (4000 trials per generation).
The dashed line indicates the fitness standard devia-
tion (over all 4000 trials; which is equivalent for both
species, since species’ fitnesses were related inversely
proportional.

Figure 4.1: Online fitness progression. Red lines indicate predator fitness, while blue ones indicate
prey fitness. Thick lines indicate a moving average over 25 generation. Thin lines indicate the
actual recorded fitness.

(a) Seed 9. Values are based on 12500 trials (500
opponents, 25 replications).

(b) Average over 10 seeds. Values are based on 125000
trials.

Figure 4.2: Master fitness progression. See Figure 4.1 for legend.
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(a) Seed 9. Note the possible transition from
cycling to non-cycling, especially along the hor-
izontal (prey) axis. Values are averaged over 25
trials.

(b) Average over 10 seeds. Note the resemblance to
the ideal case scenario (Figure 2.5d). Values are av-
eraged over 250 trials.

Figure 4.3: CIAO plots. Each colored dot represents the performance in terms of predator fitness
(i.e. red indicates high predator performance and low prey performance, while blue indicates
low predator performance and high prey performance). The y-axis denotes the predator elite’s
originating generation, while the x-axis denotes the prey elite’s one.

level four. Shown is a hierarchy of phenotypic families. The small histograms indicating the
performance of that family against all 500 opponent elites. Figure 4.5 shows the same histograms,
but stacked vertically for easier visual comparison. One can observe big families with alternating
performance dynamics for both species (predator families 1 and 2 and prey families 12 and 14).
The smooth CIAO half in Figure 4.3a is visible here as the plateau that starts to emerge around
generation 250 in the prey families.

Effectively reading master plots and their derivatives might not be a trivial task for the
uninitiated reader. First and foremost, it is important to remember that master tournament
data is acquired after the GA has been terminated. It therefore does not indicate any of
‘online’ fitness progression, but constitutes a means to estimate a progression of that which
already has been previously evolved.

Secondly, the master tournament performance of an individual (and thus, according to
our definitions, its behaviour) is always defined in relation to all its opponent’s elites (i.e.
the best individual that each generation produced). When applying a cluster analysis to
one of the species represented in the master tournament data, one is effectively clustering
on a series of performances against all opponents elites. In that case, it is best to position
oneself in the perspective of the clustered species. In doing so, it becomes clear that the
cluster visualizations are showing hierarchical, behaviour based families, each represented
by a performance sequence (i.e. a histogram showing fitness averages) (Figures 4.4 and 4.5).

Figure 4.6 shows how the cluster families are distributed over the course of the generic GA
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(a) Predator phenogram. (b) Prey phenogram.

Figure 4.4: The phenograms as generated by the cluster analyses on Seed 9. Each node represents
a family of individuals. The histogram shows the average fitness score of that family against all
500 opponents (note here that the root node corresponds to the graphs in Figure 4.2a; these
nodes represent families encompassing the whole master pool). The numbers near the branches
indicate the Euclidian distance from parent to child node. Each node shows three additional
numbers. The first one identifies the cluster by a unique ID. The second one corresponds to the
enumeration seen in Figure 4.5 and histogram colouring. The third one denotes the size of the
node’s subtree. The phenogram was truncated at a depth of four levels.
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(a) Predator family performance. Note the pres-
ence of two phases; the first one having a distinct
alternating pattern between the two large families 1
and 2, and the second one showing a more gradual,
plateauing pattern. Also note the resemblance to
Figure 3.1.

(b) Prey family performance. Note the alternating
pattern between families 12 and 14.

Figure 4.5: The nodes from Figure 4.4 stacked for easy comparison. The y-axis corresponds to
the red numbering in Figure 4.4

run. Observe how the large alternating families align with peaks and drops in the opponent
species’ performance in Figure 4.5. In particular, the predator performance of families 1 and 2
(Figure 4.5a) seems to align with the distribution of prey families 12 and 14 (Figure 4.6a), while
predator performance of families 12 and 14 (Figure 4.5b) seems to do so with the distribution
of predator families 1 and 2 (Figure 4.6b). This shows the mutual interleaving pattern that is
typical of cycling phases in evolution. Also of interest is the alignment between the distribution
of prey family 13 (Figure 4.6a) and the general plateauing phase in Figure 4.5a.

4.3.2 Conclusion

It is temping to propose that the cluster algorithm has (partially) captured two phases in the
evolution of the prey species; a cycling one followed by a plateauing one. The cycling phase is
constituted of two families; 12 and 14. These families are superseded by another family (13)
around generation 300, marking the plateauing phase (Figure 4.6a).

Secondly, if cycling is the result of genetic pre-adaptability one should expect some switching
genes in families 12 and 14. Moreover, this study’s hypotheses suggest that the plateauing phase
represented by family 13 should be the result of phenotypic plasticity (Section 1). Both these
issues will be investigated in Section 4.4.
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(a) Prey family distribution. Note how the pres-
ence of prey families 12 and 14 correspond with
performance in predator families 1 and 2 in Figure
4.5a. Also note how the coupling with prey family
13 seems to be related to the more general second
(plateauing) phase among predator families.

(b) Predator family distribution. Note the alignment
between the distribution of predator families 1 and
2 and prey families 12 and 14’s performance (Figure
4.5b).

Figure 4.6: The classification of elites over the course of the GA. Solid bars indicate that the
elite from the xth generation has been classified as belonging to the family denoted on the y-axis.
Note that individuals are always members of multiple families, with more specific classifications
among the higher-numbered families. Also note that with respect to Figure 4.5, the plots have
been swapped horizontally, to emphasize interspecific alignment.

4.4 Mutation tournament

4.4.1 Results

If switching genes exist, they would suggest that large behavioural changes does not need to
require large genetic change (Section 1.2.2). Figure 4.7 shows the prey (elites) over the course
of the evolutionary run against two large predator families which are showing cycling dynamics
(Figure 4.7a). Furthermore, the prey’s performance has been aligned with a visualization of
genetic change (Figure 4.7b).

One can observe that overall there is little abrupt genetic change accompanying phenotypic
change. The only clear transition point is located around generation 20, which might mark
the departure from random behaviour. The genes that align with phenotypic cycling (up until
around generation 200) however seem to be behave more chaotically than those aligned with the
plateauing phase, and some suggestions of genetic transitions are visible. This would suggest
that a) robot behaviour was either a-priori dependent on only a small number of genes (i.e.
there is a lot of unused ‘junk DNA’), b) plasticity is a large factor in the cycling phase as well
as it is hypothesized to be in the plateauing phase or c) the use of switching genes is indeed of
importance in the cycling phase. Conclusively, it can be said that large phenotypic change does
not require large genetic change.

The clusters obtained previously were used to select individuals for the mutation tournament.
More specifically; 20 individual from prey families 12, 14 (both from the cycling phase) and 13
(from the plateauing phase) were randomly selected and played against all opponent predators.
Figures 4.8, 4.9 and 4.10 show how those families’ original performance compares to when having
applied random mutations.

It appears there is some degree of patterned change in performance visible for all prey families,
especially when having yielded a high success rate (blue color) in the pre-mutation scenarios.
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(a) The performance (i.e. phenotypic change) of all prey elites against (cycling) predator families 1 and
2 from Figure 4.5a.

(b) The genetic change of all prey elites. The x-axis denotes the prey originating generation. The
y-axis denote prey genes. Colours indicate allele values (higher values represented by red, lower ones by
blue). Note the lack of (clear) vertical banding that could be expected in the alternating phase, when
phenotypic change would largely depend on genetic change.

Figure 4.7

(a) Legacy performance.

(b) Mutation performance.

(c) Difference between legacy and mutation performance.

Figure 4.8: Prey family 12 (cycling phase) mutation sensitivity.
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(a) Legacy performance.

(b) Mutation performance.

(c) Difference between legacy and mutation performance.

Figure 4.9: Prey family 14 (cycling phase) mutation sensitivity.

(a) Legacy performance.

(b) Mutation performance.

(c) Difference between legacy and mutation performance.

Figure 4.10: Prey family 13 (plateau phase) mutation sensitivity.
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Family py12 (cycling) py14 (cycling) py13 (non-cycling)
pd1 0.79 0.30 0.61
pd2 0.34 0.52 0.63

(a) Legacy performance.

Family py12 (cycling) py14 (cycling) py13 (non-cycling)
pd1 0.68 0.30 0.55
pd2 0.32 0.45 0.53

(b) Performance after random mutation.

Family py12 (cycling) py14 (cycling) py13 (non-cycling)
pd1 -0.11 0.00 -0.06
pd2 -0.02 -0.07 -0.10

(c) Differences between post-mutation and pre-mutation performance.

Table 4.1: The average performances of prey families 12, 14 and 13 against predator families 1
and 2 (see Table 1.1 for the expected performance).

4.4.2 Conclusion

Table 4.1 summarizes the performance of the pre-mutation (Table 4.1a) and post-mutation in-
dividuals (Table 4.1b) against predator families 1 and 2. First, it shows that the prey family
representing the plateauing phase (family 13) is able to cope with both predator families, and
only performs worse than prey family 12 against predator family 1, which in turn performs much
worse against predator family 2. This strongly suggests the use of a form of plasticity by family
13 (see Section 5.1.2). It also shows that the prey families from the cycling phases each have
specialized in coping with one type of predator.

Secondly, there appears to be a large drop in performance for prey family 13 when having
been subjected to random mutations (Table 4.1c). This could be due to a) the existence of a
switching gene having been flipped a number of times or (more likely) b) the suspicion that
random mutations affect higher performing individuals more than lower performing ones (the
cycling families show large drops in performance as well when evaluated against their ‘preferred’
opponent).
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DISCUSSION

5.1 Interpretation of results

5.1.1 Cluster analysis as a tool in ER

The results obtained demonstrated the usability of phenotypic taximetrics in ER. In particular,
it was shown that a cluster analysis could be applied to master tournament data to extract
behavioural families of individuals. Notably, this could be used to construct a phenetic tree not
unlike those used in the bioinformatics community.

The cluster analysis provides a level of formalization and automation that, to the author’s
knowledge, has not been seen before with respect to master tournament meta-analyses. First,
the analyses could be used to ‘filter’ master tournament data, in that it is able to extract and
visualize performances between selected families. This enables the experimenter to focus on their
(interspecific) interactions, instead of having to deal with the possibly obfuscated totality of data
present in the original master tournament.

As a more speculative suggestion corcerning future developments of cluster analyses in ER,
it would be interesting to broaden the taximetric approach to include genotypes. For example,
future studies could record ancestral continuity between all generations/individuals and construct
an unrooted genetic tree, in which nodes (individuals) can then be phenotypically identified using
the clusters obtained from the master tournament. This should provide insight on behavioural
sub-populations that constitutes the generations of the generic evolutionary run (Figure 5.1).

However, this would require a modified/alternative cluster algorithm, that allows for ad-hoc
classification (i.e. classifying individuals using clusters that have already been finalized).1 When
using a hierarchical cluster algorithm, one could for example use the centroid of a cluster a
form of ‘prototype’ to compare the GA’s individuals to, although this might be a crude solution.
Alternatively, one could use more exotic algorithms, such as OPTICS (Ankerst, Breunig, Kriegel,
& Sander, 1999) which combines ideas from hierarchical clustering with density-based clustering.2

1It would also require a significant computational resource investment; every individual produced during the
GA needs to be saved and tested against all 500 master tournament opponents, and this performance needs to
be recorded.

2Density based clustering has the advantage of being more ‘accurate’ (i.e. produces clusters that correspond
more with human intuition), can handle complex cluster shapes better, and offers performance benefits.
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Figure 5.1: An unrooted genetic tree that has been classified on a phenotypic basis using a
cluster algorithm. Nodes indicate the different sub-populations of a generation, where each level
represents a generation from the GA. Arrows indicate genetic continuity while node patterning
indicates phenotypic classification. Shown are possible transitions (not exhaustive), e.g.: 1 →
3 → 6; cycling, 1 → 4; transference, 1 → 3; innovation, 3 → 7 ← 4; convergence, 3 ← 1 → 4;
divergence, 3→ 6; extinction, 3→ 6; re-emergence, 0→ 3← 1; absorption.

5.1.2 Plasticity and cycling

The families extracted by the cluster analyses were used to confirm the suggestion that plastic
individuals have an extended range of flexibility, compared to rigid individuals. First of all,
this has been demonstrated by evaluating interspecific family performance in the context of a
simulated predator-prey scenario. It was shown that selected non-cycling prey families performed
noticeably better against cycling predator families than when cycling prey families were observed.

However, it should be noted that the experiments have by no means unambiguously confirmed
the existence of the hypothesis that phenotypic plasticity can subdue cycling, although we think
strong hints for this hypothesis have been provided. The problem in answering this hypothesis
boils down to three issues; that of the conventional conceptualization of cyclic evolution, how to
measure it, and how to identify plasticity.

Firstly, in this study the robots had the potential for phenotypic plasticity at any time.
Now consider that the master tournament works on phenotypic data. This implies that the
dynamics shown in the master tournament and its meta-analyses can have both a genetic and
ontogenic basis. Thus, one needs to carefully consider the definition of cycling; does it include the
phenotypic kind? In artificial life often the distinction between genetic and ontogenic adaptation
is made. However, this position if difficult to justify biologically (Yamauchi & Beer, 1994). In
this study for instance, while the GA modifies the neural network’s interconnectiveness and the
neural network modifies its own internal state, both mechanisms are essentially modifying neuron
activation levels. Nevertheless, while realizing macro-strategies such as cycling using expensive
and risky ontogenics instead of a genetic alternative seems implausible, it remains possible. Still,
one should keep in mind that the cycling behaviour discussed in this study, could in fact be of
the phenotypic kind. In order to narrow the scope and, for instance, use the cluster analysis to
investigate purely genetic cycling, robot controllers would have to be adjusted to not allow for
plasticity.

Secondly, consider the fact that the master tournament is based on only the elites that each
generation produces. This implies that there is no guarantee of ancestral continuity throughout
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the master tournament. Since it has been shown that large changes in behaviours, i.e. shifts
from one family to another, show little genetic change, it is tempting to conclude this implies
the existence of a few genes that are responsible for the expression between different phenotypes.
However, these shifts observed can theoretically just as well be caused by the presence of multiple
sub-populations during the generic evolutionary run. By random or environmental circumstances,
it is possible that, at different phases in evolution, different subpopulations provide the elite that
gets transferred to the master tournament pool. This might create the illusion of not only cyclic
evolution, but also raises questions on the reliance on the master tournament to establish the
presence of cycling in the first place. A logical first step for a follow-up study in this direction
would therefore be to keep track of the ancestral lineage of at least a number of individuals. If
those individuals show the same cycling pattern as observed in the master tournament and its
derivatives, it can be safer to assume they are indeed representing cyclic or plastic phases.

Finally, the last remaining issue is that one might argue that this study has not conclusively
demonstrated that it is indeed plasticity that is responsible for the termination of the cycling
phase that was observed; one might suggest it could also be possible that a single, general strategy
is responsible. However, it seems likely that general strategies are a-priori harder to obtain than
plastic strategies (where one switches between simpler partial strategies). Furthermore, in Nolfi
and Floreano (2000) it was reasoned that, if general strategies do not exist or can not be found,
evolution might have to resort to cycling when confronted with a challenging opponent. Thus,
since our case clearly shows cycling, one is forced to admit a general solution is at least hard to
find. Moreover, as argued in Section 2.2.2, at this point the cycling phase has a certain bias to
develop plasticity. Thus, one must conclude it is more likely that the plateauing phase following
the cycling phase is based on plasticity, not generality.

However, to be certain, a thorough distal analysis is required. As a suggestion, future research
might use the cluster analysis to filter distal data in the same way this study filtered master
tournament data. For instance, during the master tournament robot coordinates for all trials
could be recorded. The cluster analyses could then extract families based on master tournament
fitness values, and average the coordinates to obtain family based density and vector plots, that
might demonstrate plasticity more convincingly. However, one should keep in mind that a human
interpretation of behaviour might lead to an unjust interpretation of it, and be based on false
assumptions (Section 5.2.2).

5.1.3 Hints for switching genes

As a more explorative investigation, the issue of genetic pre-adaptability was questioned. If rapid
phenotypic change as seen in cyclic evolution is present, it could possibly be realized by a few
genes. As these ‘switching’ genes would have to be sensitive to mutation, mutating individuals
from cyclic phases should at times result in a performance switch from being effective against
one type of rigid opponent to another.

This study found no conclusive evidence that such a mechanism exists. When subjected
to genetic mutations, individuals from cyclic prey families did not seem so switch predator
specialization. However, it was shown that high performing prey seemed more sensitive to
mutation, both originating from cycling as well as non-cycling families; in both cases performance
dropped after mutation. In retrospect, this would be something to anticipate in follow-up studies.
The number of effective phenotypes is evidently a small fraction of the total phenospace, thus
indiscriminate mutation would logically result in a nett performance degradation.

Nevertheless, comparing prey genetic change with phenetic change showed a degree of corre-
spondence. It seemed that cyclic changes in a prey family’s expressed phenotype was reflected by
some degree of genetic change. This is expected if switching genes control the cyclic behaviour;
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it refutes the idea that that substantial phenotypic change requires substantial genetic change
as well. However, if the majority of genetic mutations does not explicitly target switching genes,
chances are high such mutation would simply destroy the phenotype. A future study would
therefore have to select those genes that would be suspected to be the switching ones (probably
those who show the most change during cyclic phases), and subject them to random mutations.

5.2 Extended discussion

5.2.1 A needle in the haystack

One should stress that all results discussed here are only based on a fraction of the total amount
of data that has been generated during the experiments. Moreover, all experimental seeds were
based on random initial conditions, and these conditions often lead to large differences between
scenarios and even seeds. This fact has two important implications.

First, it is quite likely there are many more cases in which interesting dynamics emerge, where
this study only focused on one in specific (the cycling/plasticity transition). These interesting,
yet unexplored dynamics, might already be present in the data that has been recorded, but more
likely, remains dormant in an uninitialized random seed. Secondly, this observation also implies
that one might get the impression there are interesting dynamics in every condition. Let it be
stressed this is definitely not the case.

For example, while this study has shown the possibility that the emergence of phenotypic
plasticity can be a valid alternative and beneficial alternative to cycling, most seeds in the same
experiments did not show this transition, or not as clearly. Some experiments do not show cycling
at all, but a smooth performance transition throughout evolution (Fig 5.2a). In the latter case,
the lack of clear distinction between behavioral categories makes applying a cluster analysis seem
counter-intuitive (Section 5.2.2).

Other seeds show only cycling, while some seem to show cycling, followed by plateauing,
followed by cycling again (Figure 5.2b). This latter observation is particularly interesting from
a theoretical perspective. A tempting explanation is that genetic internalization, discussed in
Section 2.2.2, might play a role in this. For instance, it could happen that during a plateauing
phase, a species might encounter one certain opponent family/strategy disproportionately often,
thus the species will be pressured to switch to the appropriate coping strategy in the majority
of cases. If sufficiently stable, this might allow for genetic assimilation. Now, if this process of
assimilation has produced individuals of a certain degree of rigidity, this might in turn lead to the
re-emergence of cycling. The cluster analysis proposed in this study can be used to investigate
such issues further.

5.2.2 A definition of behaviour

When observing the actual robot behaviour, one can be struck by the overall subtleness and
obfuscated character that differentiate the families as classified in Section 4.3, unlike previous
studies, where behaviours could be relatively easily grouped in clear categories. It seems very
minute adjustments like the angle of approach or speed can lead to big changes in performance
against different types of opponents. Moreover, these observation are complicated by a large
degree of context-dependency, as mentioned in Section 2.3.1, particularly when dealing with
phenotypic plasticity.

The unavoidable discrepancy between a human definition of behaviour and the formal (master
fitness based) one now becomes apparent. For example, a prey might evade a predator by moving
at high speed against the walls or run fast, small circles around it. A human observer might be
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(a) Seed 1 of a scenario that includes five random ob-
stacles. Note a lack of banding that is seen in the other
CIAO plots. Values are averaged over 50 trials.

(b) Seed 1 of the same scenario discussed in
Section 2.2.3. Observe how the predator goes
trough three phases: cycling, non-cycling and
cycling again. Values are averaged over 25 tri-
als.

Figure 5.2: An illustration of how alternate seeds or scenarios can result in different evolutionary
progressions.

tempted to classify these behaviours as belonging to different categories, while performance-wise
they could show virtually identical performance characteristics. Of course, the formal definition
of behaviour proposed in this study forms an abstraction that might not always correspond to a
distal perspective (Section 2.1); what to a human observer might be separate forms of behaviour,
might be one and the same according to definition.

However, from a blind evolutionary perspective, as well as from a proximal one, the distal
viewpoint (Sharkey & Heemskerk, 1997) could perhaps be regarded as irrelevant. From a cer-
tain point of view, the definition of behaviour introduced in this study seems to resonate quite
harmoniously with the philosophy of doing ER in the first place; i.e. to let the ‘algorithm’ of
natural selection be in charge of neural controller design; to switch from the distal perspective
to a more proximal one and to relieve the human designer from the burden of (possibly unnec-
essarily constraining) design (Nolfi & Floreano, 2000). However, one should emphasize that any
definition is in effect an arbitrary one. This also is evident from the fact that, since this study
applied a relatively unsophisticated cluster algorithm, multiple distance measures were used to
obtain workable results (in alternative scenarios not discussed in detail in this study). In the
end, a cluster analysis can be powerful tool to explore local dynamics in the master tournament,
but exactly what kind of analysis is a thing that is subservient to the usability of the results.
One might suspect that more informed algorithms could yield more impressive results.

5.3 Conclusion

Conclusively, this study has demonstrated the application of cluster analysis in the context of
evolutionary robotics. In doing so, it has illuminated some of the performance characteristics
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of cycling and non-cycling phases in simulated evolution. In particular, it was shown a) plastic
individuals are able to counter multiple rigid opponents, which might in turn lead to the termi-
nation of the cycling phase b) there are hints that switching genes might exist and are related to
cycling and c) the use of taximetric cluster analyses can be of value to the ER community. In the
process, this study has raised a number practical, theoretical as well as philosophical questions
which require further exploration.
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