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0 Summary/Abstract 
 

Summary/Abstract 

 

The field of Evolutionary Robotics has given Cognitive Scientists a new way to study Cognition. 

Using simulated, embodied agents one can seek to understand the role of basic mechanisms in 

cognitive processes and how neural control structures give rise to these processes. One such process 

is language whose minimal cognitive correlate, communication, has been studied by de Greeff and 

Nolfi in an experiment in which they successfully evolved communicative abilities in virtual agents. 

While demonstrating that communication can be evolved, questions remain as to exactly how this 

occurs given that a communicative act requires both the production of a meaningful signal and the 

appropriate reaction to this signal. Since it is unlikely that these two abilities emerge at the same 

point, it has been proposed that either a relevant but purposeless production or receptive sensitivity 

arises first and is then either exploited or exapted to give rise to functional communication. With 

this work I wish to show that a statistical approach, unlike the original behavioral analysis, can 

provide certain answers or at least clues regarding the emergence of these abilities. Taking a specific 

evolved agent and developing information-theoretic measures I demonstrate the utility of these 

measures in providing evidence for the presence of a producer bias. I then try to generalize these 

results to other evolved agents. I conclude that while this approach appears promising there is still 

work to do to create a more generic analysis.  
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1 Introduction 
 

 In this report I will relate the project I have been working on while visiting the LARAL-ISTC-CNR in 
Rome. After introducing this work, including its context, the field of Evolutionary Robotics, and its use in 
the study of language, I will detail some previous work, specifically the research of which this present 
project is a continuation. I will then detail my goals and methodology, followed by a presentation and 
discussion of the results.  

Context 

 I set out with the motivation to understand language. More specifically, as a cognitive scientist 
seeing language as a complex high-level cognitive process, I was hoping to be able to develop a model 
which could be used to demonstrate that categories form the basis of communication. First though, I 
would have to become more familiar with the existing tools and models in the field of Evolutionary 
Robotics. In doing so, I became familiar with the work of my colleagues at the CNR and even tried 
developing an idea for a research project based on their work. For the first portion of my stay, I was 
interested in building on the notion of communication as a sensorimotor action the control of which could 
be evolved for. After encountering limitations which I believe to be as much ideological as they are 
technical, I decided to change focus and work instead on an experimental paradigm more in line with the 
potential of Evolutionary Robotics, the so-called Target-switching experiment on the emergence of 
communication which I will present below.   

Evolutionary Robotics  

 Evolutionary robotics is a technique for the design and study of neural control mechanisms of 
either robotic or simulated agents based on evolutionary computational methods. As Turing already 
envisioned, it is the "designing of brainlike networks through genetic search" having as its goal though 
the "understanding [of] cognition" (Harvey et al. 2005). It is an approach that makes use of several 
different lines of research, which are perhaps best introduced individually.  

Evolutionary Computation 

One of the most significant elements of Evolutionary Robotics is the evolutionary aspect. Here it is meant 
to implicate the use of Evolutionary Strategies and Genetic Algorithms to perform a search within the 
space of agent neural controllers. The search is thus parameterized in the form of a genetic code and the 
objective function takes the form of a fitness function measuring the agent's performance on a defined 
task. The basic idea is that of its Darwinian inspiration, that over numerous generations advanced, that is 
“robust adaptive” (Harvey et al. 2005), behavioral strategies will emerge through a process of gradual 
complexification.  

Embodied cognition 

The other element of Evolutionary Robotics, that is the robotic aspect, has its roots in the notion of 
embedded cognition, the idea that cognitive processes are not abstract computational processes which 
occur offline and in isolation from the environment, but instead depend on the constant interaction and 
feedback with the external world provided by being situated in an interactive, potentially dynamic 
environment. The concept of active perception, i.e. that even perceptual processes such as vision  
actually require constant interaction with the environment (Varela et al. 1992), exemplifies the 
justification of seeing cognition as an embodied process.  

Agent/Robot-based simulation 

While nominally associated with robotics, the reality is that most often the agents are entirely virtual 
simulations inside a virtual world that may or may not be based on real robots. The reasoning is that 
evolutionary computation requires faster than realtime simulations to be able to run numerous trials and 
generations in a reasonable amount of time, and in practice real robots are only used to verify the results 
obtained in silico.  

Minimal cognition 

Perhaps the most important idea associated with this approach is that of minimal cognition, that is that 
Evolutionary Robotics is a tool to explore cognition by seeking the phylogenetically more simplistic 
building blocks of cognition. Harvey et al. prefer to define cognition not as an advanced process akin to 
human cognition but rather as “the capability of an agent interacting with its environment so as to 
maintain some viability constraint”.  

 

 



Minimal bias 

While the constraint of studying these simplistic building blocks of cognition may seem limiting, this 
approach presents one major advantage; it permits the reduction of prejudice and bias to a minimum 
(Harvey et al. 2005). Specifically, this is a consequence of the only constraints on the behavior of the 
agent being the “viability constraints” that is their tasks and any selective pressures. Any evolved 
behaviors are not the direct result of programming and are thus less biased towards solutions envisioned 
by the programmer.  

Studying Language with Evolutionary Robotics 

 Evolutionary robotics can be used as an instrument to study myriad cognitive phenomena, 
including high-level cognitive functions by means of their minimal-cognitive correlates. Thus, even a 
complex high-level cognitive function such as language can be studied when looking at its reduced, or 
phylogenetically antecedent version, communication.  

Studying Language through Communication 

While language is a complex phenomenon, its abstraction, its minimally-cognitive correlate, 
communication is simply “the execution of a behavior that alters the behavior of another individual (or 
individuals) that has evolved because it is beneficial to either one of both individuals” (Nolfi 2010).   

Numerous Evolutionary Robotics experiments have thus been performed within this view on 
communication. Two major lines of research have been the studies on its emergence (e.g. Marocco et al 
2003), or its characteristics, such as the development of referential communication (Beer 2008), or the 
development of categorization (Beer 2003, Nolfi 2005, Hanard 2005).   

A question to be answered 

In the line of research on emergence of communication, Nolfi has identified one major question that can 
hopefully be answered with these techniques: 

 “Whether and how communication can emerge and evolve despite the need to concurrently 
 develop two skills at the same time (an ability to produce signals encoding useful information and 
 an ability to react to those signals appropriately)” (Nolfi 2010) 

There are two elements to this question, whether and how. That is, the first question pertains to the 
possibility of the emergence of such a system and the second pertains to the details regarding the nature 
of this emergence. The first question has largely been answered in work by Nolfi et al. which I will detail in 
the section on previous work. One of the goals of my work is to address the second question within the 
following framework.   

As mentioned in Nolfi's question, in order to have a functional communicative act two conditions must be 
satisfied: there must exist the production of a signal encoding useful information and there must exist an 
ability to react to those signals appropriately. The question is then in which order these abilities occur in 
the evolutionary timeline. Several scenarios have been proposed. 

It can be imagined that the ability to produced a signal containing information pertaining to the current 
state of the agent is developed simply through the tendency of information to be propagated throughout 
a neural controller. This is akin to saying that agents have the tendency to report on their current state, 
either sensory or motor. This scenario is known as a producer bias. (Mirolli and Parisi 2008, 2010) 

Alternatively, it could be imagined that first a sensitivity to external signals is developed which is 
subsequently exploited by the evolutionary process to increase performance, a scenario known as a 
receiver bias. (Mirolli and Parisi 2008, 2010)  

These two scenarios should not be taken to be mutually exclusive or to form a closed set. One could 
imagine the perhaps less probable scenario in which a mutation engenders both the production and 
sensitivity at the same time, a case in which the interest would then be identifying the evolutionary and 
genetic dynamics that give rise to such a fortuitous event. 

The development of computational models of the evolution of language, or at least communicative 
behavior, presents a unique opportunity to explore these questions empirically. While the results will only 
be generalizable to human language to the same, limited extent that the communication evolved is an 
approximation of human language,  

 

 To summarize, Evolutionary Robotics is a tool for studying models of the base elements of 
cognition. The base element of corresponding to the high-level cognitive process of language is that of 
communication, which has been studied using these techniques both in the context of its emergence and 
its composition. The project I have undertaken is in the line of research on its emergence, specifically in 
response to the question posed regarding the mechanisms by which a functional communicative act 
requiring both meaningful production and appropriate reaction can evolve.  



2 Previous Work 
 

 Of the work on Emergence of Communication and thus the study of language with Evolutionary 
Robotics, one of the most significant is that of Joachim de Greff and Stefano Nolfi (detailed in de Greeff 
and Nolfi 2010). Their work will serve as the basis for this current project, so I will first present their setup 
and summarize their results. 

Set-up/Methodology 

 As mentioned above, the work of Nolfi and de Greff seeks to address the possibility of whether 
communication can emerge in an Evolutionary Robotics set-up. Essentially, teams of simulated mobile 
robots are rewarded for accomplishing a task for which communication is advantageous.  

Agents are composed of wheels, infrared, ground, and rudimentary vision sensors in addition to a fully 
duplex communication channel. Their neural controller is a multi-layer recurrent neural network having 
the values of the infrared, vision, ground and communication channel sensors, plus the agent's own 
communication output and ground sensor at the previous timestep as input connected both to the 4 
neurons of the hidden layer and directly to the output layer. The output layer consists of two motor 
neurons controlling the wheels and an outgoing signal as seen in Figures 2.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 2.0a and 2.0b: Connectivity diagram of the neural controller (left) and explanatory schematic 
representation (right). 

 

Regarding the neural equations (de Greeff and Nolfi 2010):   

 
The output of the motor neurons at time t is computed as the weighted sum of all inputs units 
and bias, filtered through a sigmoid functions:  

where Ii (t) corresponds to the activation of the i
th

 neuron at time t, wij is the weight of the 
synaptic connection between the input neuron i

th
 neuron and the current neuron j, and Bj is a 

bias term.  
 

The output of the internal neurons at time t is computed by the following equation: 
Oi (t) = τ ▪ Oi (t – 1) + (1- τ) ▪ Oi (t) 

Where Oi (t – 1) represents the output of the neuron at time t-1, and Oi (t) represents the 
weighted sum of all input units and bias filtered through a sigmoid function (see above), τ 
represents a time constant ranging between [0.0, 1.0].  

 
 



The environment consists of a rectangular arena with two randomly placed circular areas, one gray, the 
other black (see Figure 2.1). Agents are rewarded for alternating their position between the two circular 
areas in a coordinated way. That is, they receive fitness points when they successfully switch areas, 
staying in opposite areas at the same time. They are not rewarded directly for any other abilities, neither 
communication nor such tactics as obstacle avoidance. Their task is known as the T(arget)SWITCH task. 

Figure 2.1: Arena during execution of successful strategy. The agents are represented by black circles 
and their trails are the red and blue lines. Here they are successfully alternating between the two areas, 
shown in dark green and light green.  

 

The parameters of their neural networks, including synaptic connection and bias values comprise the 
genetic code which is evolved on using a 10020+1 Evolutionary Strategy for 2000 generations. During 
each generation the agents are allowed to live for 4000 timesteps and their fitness is calculated as the 
average of 20 trials.  

Results 

 The results were that agents evolved to “exploit the possibility to communicate through explicit 
signals in most of the replications”.  

They observed two families of strategies. The first strategy which they called the symmetrical strategy 
was characterized by “a synchronized target-switching behavior in which the two robots, located in the 
two different target areas, simultaneously leave their current target area and move directly toward the 
other target area”. The second strategy which they called the asymmetrical strategy in which there is “a 
switching behaviour organized in two phases in which first a robot exits from its target area and travels 
toward the other target area containing the second robot and then the latter robot exits from its target 
area and travels directly toward the target area previously occupied by the former robot.” 

 

 

 

 

 

 

 

 

 

 

 

Figures 2.2 and 2.3: Snapshots of the two observed “families” of strategies evolved. On the left 
asymmetrical strategy in which both agents have exited the areas contemporaneously, and on the right 
the asymmetrical strategy in which one agent awaits the arrival of the other before leaving. 



Analysis 

Progressive complexification  

Beyond the result of the specific families of strategies evolved, evidence was found for a process of 
progressive complexification by which simple behaviors and signals acquired new meaning or become 
more diversified or otherwise more complex as they “adapt to their task/environment”.  

Behavioral Analysis of an exemplar solution 

Within this perspective, they performed a detailed analysis looking at “how the behavioral and 
communication skills exhibited by robots of succeeding generations vary over the course of evolution”. 
They did so by cataloging “elementary motor and communicative behaviors” trying to find those which 
are functionally productive and how they are related to each other across generations. The result of this is 
a fairly coherent and highly detailed cross-generational behavioral analysis which brings light on the 
mechanisms the agents use, at a behavioral level, to perform their task, explaining the role of 
communication signals and their content as shown in Figure 2.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: (From original article by de Greeff and Nolfi 2010). Displays the “relations between different 
behavioral and communication skills”. This analysis shows that more advanced communicative behaviors 
appearing in later generations are based on behaviors developed previously.  

 

Productive and reactive abilities 

Lastly, they discuss their results in the context of the question presented above, that is whether and how 
communication can emerge even though both productive and reactive abilities are necessary for 
communication to be adaptively influential. They provide examples of both cases in which a preexisting 
signal acquires communicative functionality through changes in the agents' reaction and in which a 
preexisting ability to react to signals in a specific way acquires functionality through variation of the 
signal produced but not the agents' reaction.  

Commentary 

 In the end they were successful in responding to the first portion of the question, on whether or 
not communication can be evolved. With respect to the second part they have only presented evidence 
for the presence of both such mechanisms at work in behavioral and communicative functionality. There 
are two main problems with this. Firstly, the response is not definitive as to which bias is responsible, or 
more responsible for the evolved skills. While both mechanisms are at play over time, both cases they 
indicate deal with the evolution of one behavior into another. Secondly, even these results depend 
entirely on the act of cataloging the behaviors and only make sense in this context.  

I wish to avoid entirely behavioral characterization of evolved skills, instead looking only towards 
statistical methods which can be much more easily generalized to multiple replications. Their analysis was 
almost entirely ad-hoc in that it was not much more than a detailed inspection of the agents at different 
points along the evolutionary history.  

 

 



3 Goals/Methodology 
 

 Here I explain what I hoped to accomplish with this project and the methodology that I used. 

Goals/Motivation 

 While the work of Nolfi and de Greeff has demonstrated the emergence of communication in this 
experimental set-up, thus responding to the first question, that is the possibility of the emergence of such 
communication, their behavioral analysis does not provide any clear answers regarding the question of 
either a producer or receiver bias. My first motivation is thus to attempt a statistical and information-
theoretic, instead of behavioral, analysis of the evolved communication with the hope that this will be 
able to provide information relevant to the questions of interest. Specifically, the questions of interest are: 
can statistical methods provide information regarding the onset of functional communication, evidence 
for either a producer bias, or a receiver bias?  

Methodology 

 In order to accomplish this I was given 80 seeds from the study of Nolfi and de Greeff of which 
approximately 10 evolved successful strategies, presumably all involving communications tactics, to solve 
the TSWITCH task. My first task was then to identify exactly which of these seeds resulted in interesting 
solutions. After cleaning up the data and obtaining fitness histories for each seed, it was apparent that 
only 8 achieved a best fitness consistently above 7, as can be seen in Figure 3.0.  

Figure 3.0: Fitness of each generation separated by seed and (arbitrary) threshold line shown at 7. I 
consider only those 8 seeds for which the best agent's fitness exceeded this threshold. It is also visible 
that Seed 71 attained a fitness considerably higher than the others.  

Cataloging the solutions  

The first task was then to cataloging these solutions. This was done looking both at the evolved strategies 
and the fitness/evolutionary profile. Of note was that the two types of strategies, as previously identified 
by Nolfi and de Greeff were present, symmetrical and asymmetrical. 5 of the 8 observed used the 
asymmetrical strategy, including the seed for which the fitness was notably higher than in any other run – 
Seed 71. Also of note was that in 6 of the 8 fitness histories, there were considerable, sudden jumps in 
fitness. Again, Seed 71 presented itself as the run with the most drastic and clear-cut jumps. It was thus 
selected for a pilot study.  

A pilot study 

Preliminary Behavioral Analysis 

The first step in analyzing this agent was to understand how the evolution proceeded. From observation 
of the fitness history, it is clear that there are 3 distinct phases (marked in Figure 3.1). The agents were 
then tested in each phase of development and an attempt to understand and categorize their behavior 



was made.  

Figure 3.1: Plot of the fitness values across generations for Seed 71. The sudden jumps in fitness are used 
to separate the history into 3 phases, marked in gray.  

What follows is a brief summary of the observations.  

Phase I: The agents learn basic skills such as avoiding the walls and each other (they are penalized for 
collisions) and the ability remain in the target area (whichever one they encounter first) since they are 
given a small reward for finding the two areas (i.e. when each is in a different area). It does not appear 
that they use their communication channel, if not for some occasional noise relating to the behavior they 
have once in the black target area (cycling). 

Phase II: By phase II the agents have acquired the ability to solve the task with relative success, and do so 
using rudimentary communication. It appears that whichever agent is in the black area emits a fairly 
stable signal. When the other arrives the first one leaves. So essentially the first waits for the second in 
the black area. I presume that they use the signal to negotiate the fact that only one can remain there 
(and thus emit the signal).  

Phase III: By the third phase, the agents have developed an additional sensitivity to the presence of one 
another through their visual system, a fact which they exploit upon entering the black area to recover the 
direction from which the other agent has arrived. The signaling is similar in that a signal is still emitted 
while in the black area, but a new signal occurs at the moment when it enters. The old signal may now be 
indicating that the agent is on the edge of the area (where it waits for the other one to arrive) and the 
new signal indicates that it has not yet reached a stable position on the border. There may also be a 
similar signal upon exiting.  

While intentionally preliminary and incomplete, it is clear that a more detailed picture of the 
communicative and behavioral skills evolved could be made as was done by de Greeff and Nolfi. This is 
where our analyses separate.   

Towards a statistical analysis  

A first step towards a statistical vision of the communicative abilities evolved in these agents, and 
specifically its evolutionary history, is a histogram of the communication channel throughout the 
evolutionary run. As can been seen in Figure 3.2, this view shows the variability of the signal, and the 
formation of stable signals. This picture confirms that during the first phase there is no variability in the 
signal, with its value remaining almost constantly 0. During Phase II, there already appears to be a stable 
signal, and during Phase III, there is the appearance of a third signal and corresponding shift in the first 
signal (which through observation was confirmed to indeed be behaviorally related in both phases). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Signal histogram across generations with phases and apparent signals marked.  

 

Entropy 

The first statistical characterization of the communicative abilities of the evolved agents, specifically the 
variability of their signal, was thus the entropy of the produced signal. Formally entropy is defined as the 
average uncertainty in a random variable, intuitively, its information content, (Cover and Thomas 2006) 
and is given by the following formula:   

 

 

where X is the random variable and p(x) is its probability distribution function. In this work the random 
variable is the value of the signal or neuron activity level and its distribution function must be estimated 
numerically. To do so the simplest model is used, according to which a count is maintained of the times 
that a variable obtains a certain value. 

That is, the probability that random variable X takes on value x is the number of times the signal s was 
observed with that value divided by the total number of timesteps T. In practice the signal was first 
discretized into 10 bins.  

While the entropy seems to provide a reliable picture of the onset of the signal, for reasons to be 
discussed below, it does not provide a complete picture. It can be characterized as providing evidence for 
the presence of a produced signal, but not whether that signal is meaningful to either the agent that 
produces it or receives it, or whether there is any functional communication. The next measures seek to 
do this.  

 

Mutual Information between Signal and Motor Output 

The first idea was to look at the relationship between the signal produced and the motor output, hoping 
that there would be a meaningful relationship between these two quantities. This was done calculating 



their mutual information. Mutual information is formally defined as the amount of information one random 
variable contains about another (Cover and Thomas 2006) and is given by the following formula:  

 

Again, the picture described by these measures is incomplete. Specifically, the question is whether the 
motor output is a relevant value. The motor output, that is, the level of the motor neurons, is used to 
control the left and right wheels. Thus the motor output can be mapped to the movement of the agent, 
but not simply, as the direction of movement is related to the difference in output between the motor 
neurons. Thus instead of measuring the degree to which the movement of the of the agent is related to 
its output signal it is measuring this relation between the output signal and the motor profile of the agent, 
which depends on things such as the distance between the target areas, among other things. An attempt 
to counter for this fact was made by also calculating the mutual information against the difference 
between the value of the two motor neurons.   

 

Mutual Information between Signal and System State 

With the hope of understanding more about the controlling mechanism, the idea was developed to use, 
instead of the motor output, the sensory state, at least inasmuch as it pertains to the task devised, as the 
basis of a measure. One of the sensory inputs is the ground state, that is whether the agent is on either 
the black or gray zone, or if it is outside them. This sensor thus has three levels. In fact, the current 
system state, that is the location of the two agents in these terms, is enough to calculate the fitness 
function and it thus seems reasonable to think that this value may be related to the communicated 
information. Thus two versions of a system state variable were created, one of 3 states detailing an 
individual agent's current state, as it would be aware of through its sensory input, and one of the entire 
system state (3x3). Essentially, the system state was devised as a more abstract measure of the agent's 
behavior, not susceptible to the variability and complexities of the motor output.  

 

Input Signal 

Since the goal was not only to be to identify the moment in which a useful, pertinent, signal carrying 
relevant information began being produced, but also when a sensitivity to such a signal is developed, the 
above-described measures were repeated against the received signal.  

Summary of Measures:  

Entropy:  

 - produced signal – goal of showing presence or absence of signal by measuring  amount of    
   information contained in signal 

Mutual Information: 

 - between the distribution of the signal received and the motor output with the goal of capturing 
    degree to which received signal influences motor output. 

 – between the distribution of the signal produced and the motor output with the goal of capturing      
    evidence of meaningfulness of the produced signal.  

 – between the signal produced and the state of the agent producing it 

 – between the signal produced or received and the state of both agents 

 – between the received signal and the state of the agent with the hope of measuring the degree 
    to which the incoming signal influences the agent's behavior  

Generalization 

 The last component is an attempt to generalize these methods and results to the entire dataset of 
evolved agents. While the measures were developed with the S71 dataset in mind, the size of the 
datasets and the time required for computation prevented the testing of the validity of these measures on 
the other seeds. Afterward however, these procedures have been run on the other datasets.  

It should be noted that this present work is simply a pilot study the end goal of which is the verification of 
the validity of these measures. A longer term goal however is to be able to apply these tests generally so 
this attempt at generalization is truly preliminary and but a step towards the longer-term goal of being 
able to increase the scope of the answer obtained.  



4 Results 
 

 In this section I will present my results. This section is divided into first a general presentation of 
the results by each measure and then a specific presentation organized by the question of interest. 

By measure 

Entropy 

Entropy, or the amount of information contained in the signal is shown here to correspond rather nicely to 
the phases as defined by the fitness measure (Figure 4.0). In the first phase there is minimal entropy, 
with occasional spikes that amount to noise as occasionally agents produced signals randomly. At the 
moment of the first spike in fitness, there is a spike in entropy. The entropy remains at a fairly constant 
level for the remainder of the evolutionary run. Of interest, and perhaps importance, is that there is a 
variation of entropy that begins approximately 50 generations before the first jump in fitness (Figure 4.1).  

 

 

 

 

 

 

 

 

 

 

 

Figures 4.0 and 4.1: Entropy and fitness at each generation, for all 2000 generations, or area of interest. 

Mutual Information between Signal and Motor Output 

Unlike the entropy measure shown above, the various measures of mutual information between the 
signals and the motor outputs are less easily interpretable. Depending on the specific measure, there 
appear to be three patterns. The first is the mutual information between the signals and motor neuron 1 
which rises with the fitness at its first jump and then remain high. The second is the mutual information 
between the signals and motor neuron 2 which rises only at the second fitness jump and then remain 
high. The third is the mutual information between the signals and the difference between the motor 
neurons which rises at the first jump and then decrease significantly (although not to 0) at the moment of 
the second jump. The difficulty in the interpretation of these data lies in the fact that the pattern depends 
not on whether or not the received or produced signal is used, but which motor neuron.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Mutual information (MI) between {Signal Produced (Sp),Signal Received (Sr)} and {Motor 
neurons (M0, M1), Difference between M0 and M1 (|M0-M1|)} for each generation 

 



Mutual Information between Signal and System State 

As was the intended goal of the System State-based measures, a much cleaner picture is presented here 
(Figure 4.3). Both values appear to rise at the same moment in time, in conjunction with the first jump in 
fitness. While there appears to be a momentary perturbation at the moment of the second jump in 
fitness, these values remain for the most part stable after the first jump.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Mutual information (MI) between {Signal Produced (Sp),Signal Received (Sr)} and {3-state. 9-
state} for each generation 

By goal  

Measuring onset of communication 

From Figure 4.0 it is apparent that the increase in entropy corresponds to the first jump in fitness. This is 
consistent with the vision of things obtained through the behavioral analysis. Furthermore, the entropy 
value, which provides an objective measure of the presence of a signal shows that while the entropy 
increases drastically at the moment of the first jump in fitness, there is a period of approximately 50 
generations previous to this jump in which there is activity on this channel. Thus, the entropy measure 
indicates that a signal is being produced before the development of any functional communicative act 
(which would be evidenced by an increase in performance) but does not provide any clues as to whether 
that signal is being modulated with any relevant/useful information, that is, the meaningfulness of the 
signal.  

Measuring production/meaningfulness  

Instead, in order to measure its meaningfulness, one must look towards the mutual information. The most 
pertinent measure of meaningfulness is the mutual information between the produced signal and the 
state of the agent (3-state). This measure, as seen in blue in Figure 4.4, shows that overall the relation 
between the signal and the current state of the agent becomes stronger exactly at the moment in which 
the fitness jumps and successful communication is developed. Additionally, it can be seen that even 
previous to this, in the 50-generation phase of non-functional communication from g550 to g600, while 
remaining small, the relation follows almost precisely that of the entropy, suggesting that for every 
occurrence of a signal, there is at least a minimal correlation between that signal and the entropy.  

 

 

 

 

 

 

 

 

 

Figure 4.4: Fitness, Entropy, and Mutual Information (MI) between the Signal produced (Sp) and the state of the 
individual agent (3-state) for each generation.  



Measuring reactivity 

Now looking at the mutual information between the received signal and the state of the single agent, one 
should have a measure of the degree to which that agent is reactive to the signal. In fact, looking at this 
value (purple in Figure 4.5) one sees a similar trend as before in that the value jumps at the same 
moment as the fitness, entropy, and the mutual information between the signal produced and the state fo 
the agent, confirming that at that moment the agents develop the ability to react appropriately, or at 
least coherently, to the signal they receive. It is also the last piece necessary to show that that jump in 
fitness corresponds to the onset of functional communication in that there is a produced signal, it 
contains relevant information about the agent who sends it, and the receiving agent has the ability to 
react appropriately to it.   

Figure 4.5: Fitness, Entropy, and Mutual Information (MI) between {Signal Produced (Sp), Signal Received 
(Sr)} and the state of the agent for each generation.  

Evidence for Producer Bias or Receiver Bias 

Lastly, the question is whether or not anything conclusive can be said about the events just previous to 
the onset of functional communication. Since there is a measure of reactivity and meaningfulness, which 
at least macroscopically follow the same trend and undergo a major change at the same moment, it must 
be seen whether or not they follow the same trend before that moment as well. Looking at the moment 
before the jump (Figure 4.6) one sees that the reactivity does indeed fail to appear before that moment.  

Figure 4.6: Close-up of generations 520-620 of Fitness, Entropy, and Mutual Information (MI) between 
{Signal Produced (Sp), Signal Received (Sr)} and the state of the agent.  

Other 

Otherwise not much can be concluded except that perhaps the mutual information measures based on 
the motor levels may be able to help in the understanding of the second fitness jump. That is, they were 
the only measures that changed significantly at that point, but without further analysis, such as an 
analysis of the motor activity itself, nothing more can be said. 

 



Preliminary Generalization 

 There were several key phenomena observed in the case study that one would like to see in other 
instances too in order to generalize the findings:  

First, there was an increase in entropy associated with an increase in fitness.  

Next, the onset of functional communication was identified to be the moment when entropy and the 
mutual information between the signal (both produced and receive) and the  state of the individual agent 
had all three increased above their base levels.  

Lastly, a period of variations in entropy and “meaningfulness” precede “reactivity” that is the onset of 
communication.  

The data from five additional replications was examined looking for evidence of these phenomena. In 4 
out of the 5 cases, the analysis was rather clear, while in one case (Figures 4.11), further tests would 
need to be performed to interpret the results, specifically, to identify the onset of communication, or even 
if the format of communication is qualitatively similar.  

In all 4 of the first 4 cases (Figures 4.7-4.10), increases or stabilization of entropy were associated with an 
increase in fitness.  

In 3 of the 4 cases, there is a clear onset of communication as indicated by the presence of the three 
measures (Figures 4.7,4.8,4.10). In the fourth case, this onset is gradual but appears to still be explained 
by these measures (Figures 4.9).  

In only 1 of the 4 cases was there a clear period of meaningfulness that preceded the onset of 
communication (Figures 4.7). In 2 other cases (Figures 4.9, 4.10), there was a possible period of 
meaningfulness, but either the gradual nature of the increase or the brevity of the period made it difficult 
to identified such a period with any certainty. In the last of the 4 cases (Figures 4.8), the onset of 
communication is preceded by a period of variability in entropy but apparently no meaning. 
Meaningfulness, reactivity and increased performance appear to occur contemporaneously.  

 

 

 

 

 

 

 

 

 

 

Figures 4.7a and 4.7b: Data from Seed 13, Fitness, Entropy and Mutual Information between {produced, 
received signal} and agent state. Across all generations on left, zoomed to area of onset on right.  

 

 

 

 

 

 

 

 

 

 

 

Figures 4.8a and 4.8b: Data from Seed 91,   

 

 



 

 

 

 

 

 

 

 

 

 

Figures 4.9a and 4.9b: Data from seed 85. 

 

 

 

 

 

 

 

 

 

 

Figures 4.10a and 4.10b: Data from seed 23. 

 

The last case (Figures 4.11) does not seem to fit with the others for several reasons. Among these are 
that the first clearly significant increase in fitness corresponds to a significant decrease in entropy and 
that the “meaningfulness” score remains quite low for the duration of the trial. Despite this, there is the 
possibility that communication is evolved in a manner consistent with that of the other replications but in 
the first few generations. In approximately the first 20 generations there appear to be all the components 
of the onset of communication – increase and stabilization in entropy, increase in meaningfulness and 
reactivity – except the corresponding drastic increase in fitness. While there is a gradual increase in 
fitness, the rest of the evolutionary run does not proceed as would be predicted. If these clues are taken 
to show the presence of communication early on, what happens next is necessarily a significant change in 
the nature of this communication, with a sudden change in the level (in fact, a decrease) of all three 
measures of the onset of communication. All that can really be said is that these measures do not provide 
a complete picture of what happens in this replication.  

 

 

 

 

 

 

 

 

 

 

 

Figures 4.11a and 4.11b: Data from seed 104. 

 



5 Conclusion and Perspective 
 

 In this section I will first summarize the conclusions that this work allows for and then I will 
present some directions for future work on this topic.  

Conclusion 

 This work was undertaken with the goal of moving away from a dependence on the type of 
analysis done up until this point on the evolved agents in experiments on the emergence of 
communication, that is a behavior-based analysis which requires a hands-on analysis and observation of 
the performance of agents and providing a proof of concept  for the use of statistical or information 
theoretical tools to perform similar, but complementary analyses. In this sense, this work was largely 
successful, in that it was clear that information theoretical tools are relevant and useful to questions 
regarding communication. Less successful was the demonstration of the power of these tools to replace 
outright the behavioral analysis. The picture presented in isolation was simply not clear enough and I thus 
propose that these tools should be used in conjunction with the types of tools used previously.  

Measuring the onset of communication  

In the case study, the measures developed - the entropy of the signal produced, the mutual information 
of the signal produced or received and the state of the agent - characterized nicely the onset of functional 
communication and provided solid evidence for an adaptive advantage of this ability.  

Regarding producer bias versus receiver bias 

This work was successful in providing evidence in the case study of the development of functional 
communication arising from a signal produced containing meaningful information but at first going 
unused. It was thus demonstrated that the replication in question exploited a so-called producer bias. 
What can be concluded beyond this statement is unclear. Beyond the issues of generalization to other 
seeds, there is a fundamental issue which needs clarification before any conclusions can be made 
regarding a generic role of this phenomenon in evolutionary processes. As it stands, the explanatory 
power of this model is limited to the configuration and parameters used in generating the data.  

From the preliminary generalization 

Applying of these methods to another 5 seeds, the relevance of these tools was reinforced in that they 
seem to provide evidence for the onset of functional communication and even its dynamics in the 
majority of the cases. Equally reinforced however is the need for a framework for generalizing the results.  

Lack of objectivity 

Another point that can be concluded from this work is that even the application of information-theoretic 
methods requires a certain degree of subjective interpretation in the format presented. Thus it can be 
said that one of the weaknesses of the methodology presented here was the lack of a statistical definition 
of significance, something which is not however unforeseeable. The data presented throughout has been 
the result of 100 trials at each timestep. While this was done to clean up the data, a confidence measure 
could also be derived. Likewise, one of the difficulties for generalization was the lack of an objective 
measure of, for example, the presence of a period of meaningful production without appropriate reaction.  

Perspective 

 I will now address some of the issues raised above presenting ideas for future continuation work.  

Statistical test of significance 

Addressing the lack of objectivity for the issue of the producer bias, an objective definition for the 
absence of significant reaction and a statistical test for its presence should be created. An idea for such 
an objective definition is that, since the reactivity measure usually stabilizes at a value x approximately 
half of the stabilized value of the meaningfulness measure, it can be said there is a momentary producer 
bias whenever the value of the reactivity drops below this fraction of the meaningfulness value. A 
confidence score can then be derived applying this test to each trial (e.g. N=100). A similarly objective 
method would need to be developed extending the presence of momentary producer biases to a general 
one, keeping in mind that one also wants to be able to say with confidence that no such bias occurred.  

Framework for Generalization  

Once such a test and objective definition have been developed, one will be able to generalize the results 
to as many replications as desired. The results will still be limited in context however to this model 
(environment, task, neural control structure, with these parameters, etc.). A framework for generalizing 
these results to evolutionary processes in general and perhaps the origins of language should be a goal.  
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