
Development of Integrated Behaviour in a

Simulated Humanoid Robot

Exploiting Language Assisted Training and Self Talk

Tobias Leugger
tobias.leugger@epfl.ch

Ecole Polytechnique Fédérale de Lausanne, Switzerland
School of Engineering

Laboratory of Intelligent Systems

Consiglio Nazionale delle Ricerche, Rome, Italy
Institute of Cognitive Sciences and Technologies

Laboratory of Autonomous Robotics and Artificial Life

Masters Thesis
School of Computer and Communication Sciences

March 15, 2012

Supervisor
Dr. Stefano Nolfi
CNR / LARAL

Professor
Prof. Dario Floreano

EPFL / LIS

Assistant
Dr. Steffen Wischmann

EPFL / LIS

Abstract

In this project, a simulated humanoid robot learns to reach for, grasp and move
a spherical object to a desired target location. The trial and error training
process is divided into multiple stages where the robot first develops lower-level
behaviours that it can later integrate to achieve the higher-level goal. The robot
is supported by a caretaker who provides linguistic labels indicating the action
that should currently be performed. Multiple approaches to teaching the robot
to become autonomous (no longer rely on the caretaker) are explored. One such
technique is to let the robot engage in a form of self talk, where it can give itself
the linguistic instructions used by the caretaker.

The robots trained with the proposed method are able to accomplish all the
desired behaviours. The results of the experiments suggest that the lower-level
skills serve as scaffolding for the integrated behaviour. The self talk mechanism
improves the robustness of the autonomous behaviour, and the ability to adapt
it to situations that are not experienced during training. Some individuals are
even able to adapt better to new situations when they are acting autonomously
than when they are guided by the caretaker.

i

Acknowledgements

I would like to thank my supervisor Dr. Stefano Nolfi of the Laboratory of
Autonomous Robotics and Artificial Life for his continued guidance and for the
insightful suggestions during times of difficulty and doubt. Thank you also to all
the members of the lab for their support during my project, but beyond that, for
welcoming me to the LARAL and making me feel at home in Rome. The friendly
environment and the many interesting, fun, and educational conversations I have
had with them have made my thesis work an enjoyable experience.

Thank you also to my supervisor at the EPFL Dr. Steffen Wischmann and
my professor, Prof. Dario Floreano for giving me the opportunity to realise this
project and for their support.

I am also grateful to my girlfriend, Kremena, who answered countless English
questions and has been patient with me through the busy and stressful times.
The gratitude is extended to my family and close friends, who have all had a
positive influence on the outcome of this thesis, whether direct or not.

iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Objectives . 3
1.3 Methods . 4
1.4 Related Research . 4

2 Experimental Setup 7
2.1 Simulation Software and Hardware 8
2.2 iCub Robot . 9
2.3 The Robot’s Neural Network . 10

2.3.1 Torso, Arm and Finger Actuators 12
2.3.2 Focus Output . 12
2.3.3 Proprioception Sensors . 12
2.3.4 Tactile Sensors . 13
2.3.5 Focus Position . 13
2.3.6 Linguistic Input . 14

2.4 Training Algorithm . 14
2.5 The Environment . 15

2.5.1 The Object and Its Initial Positions 15
2.5.2 Target Area . 16
2.5.3 iCub Initial Postures . 16

2.6 Fitness Calculation . 16
2.7 The Simple-Prim Stage . 18

2.7.1 Fitness Calculation . 18
2.7.1.1 Penalty Fitness Pp(t) 19
2.7.1.2 Trial Types and Step Fitness Sp(t) 20

2.8 The Main-Prim Stage . 22
2.8.1 Fitness Calculation . 22

2.8.1.1 Penalty Fitness Pp(t) 22
2.8.1.2 Trial Types and Step Fitness Sp(t) 22

2.9 The Integrated Stage . 24
2.9.1 Neural Network Architecture 25
2.9.2 Expanded Genotype . 25
2.9.3 Linguistic Instructions . 27
2.9.4 Fitness Calculation . 27

2.9.4.1 Integrated Behaviour Fitness 27
2.9.4.2 Prediction Fitness 28
2.9.4.3 Maximum Fitness Values 30

v

vi CONTENTS

2.10 Post Evaluation . 31
2.10.1 Integration Test . 31
2.10.2 Robustness Test . 31
2.10.3 Generalisation Test . 31

3 Results 33
3.1 The Simple-Prim and Main-Prim Stage 33

3.1.1 Integration Test . 36
3.2 The Integrated Stage . 37

3.2.1 Condition ST-CT . 38
3.2.2 Condition ST . 38
3.2.3 Condition CT . 38
3.2.4 Condition NI . 40
3.2.5 Generalisation . 41
3.2.6 Strategies . 43

4 Discussion 47
4.1 Motor Primitives . 47

4.1.1 Incremental Primitive Learning 48
4.2 Integrated Behaviour . 48
4.3 Future Work and Conclusions . 49

A Supplementary Results 53
A.1 Post Evaluation Test Results . 53
A.2 Electronic Supplementary Material 53

Bibliography 55

List of Figures

2.1 The simulated iCub robot . 10

2.2 Neural network architecture used in the simple-prim and main-
prim stage. 11

2.3 The green areas represent the locations of the six touch sensors . 13

2.4 The 16 starting postures, each column corresponds to one of the
primitives (reach, open, grasp, move). 17

2.5 The two neural network architectures in the integrated stage. . . 26

3.1 Main, bonus and average fitness during the simple-prim and
main-prim stage of run 2 and 7 (top and bottom figures). Every
10 bonus points represent one successful trial. The dotted line
shows the maximum possible bonus. 34

3.2 Positions when completing the primitives, every row corresponds
to a primitive (reach, open, grasp, move). 35

3.3 Comparison between the incremental (simple-prim and main-
prim stage) and non-incremental (only main-prim stage) approach
regarding the success of the primitive integration. 36

3.4 Comparison of the percentage of successful trials in the trained
positions between the individuals coming from different condi-
tions (the whiskers expand to the minimum and maximum with
outliers marked as +). 37

3.5 Fitness of the best individual in every generation of the integrated
stage, ST-CT condition, runs 1, 3 and 8. 39

3.6 Fitness of the best individual in every generation of the integrated
stage, ST condition, runs 0, 1 and 6. 39

3.7 Fitness of the best individual in every generation of the integrated
stage, CT condition, runs 0, 8 and 9. 40

3.8 Fitness of the best individual in every generation of the integrated
stage, NI condition, runs 0, 2 and 8. 41

3.9 Comparison of the percentage of successful trials in the generali-
sation post evaluation test between the individuals coming from
different conditions. 42

3.10 Percentage of successfully executed integrated behaviours when
the object is located in each of the 49 cells of the generalisation
test. The white dots represent the positions of the object during
training. 43

vii

viii LIST OF FIGURES

3.11 Comparison between self talk (ST-CT, ST) and caretaker (ST-
CT0, ST0) instructions of the final best individual of every run.
Big dots and plus markers indicate that the difference is statisti-
cally significant (p > 0.01). 44

3.12 Self talk and caretaker instructions in the best individual of the
ST-CT condition run 7 and 9 and ST run 2 and 5 during the
four types of trials used in the integrated stage. 45

List of Tables

2.1 Experiment conditions . 25

3.1 Two-tailed Mann-Whitney U Test values of the results of the ro-
bustness test. The smaller the value the more likely the condition
of that row is better than the one of that column. * indicates the
value is significant for α = 0.05 (critical U-value: 23) and ** for
α = 0.01 (critical U-value: 16). 38

3.2 Two-tailed Mann-Whitney U Test values of the results of the post
evaluation. The smaller the value the more likely the condition
of that row is better than the one of that column. * indicates the
value is significant for α = 0.05 (critical U-value: 23) and ** for
α = 0.01 (critical U-value: 16). 42

3.3 Average time in seconds needed to move the object to the tar-
get location when using self talk or caretaker instructions. The
average is taken over all the successful trials. 43

A.1 Percent of successful trials of all individuals in the robustness test. 53
A.2 Percent of successful trials of all individuals in the generalisation

test. 53

ix

Chapter 1

Introduction

The objective of this thesis is to allow a humanoid robot to acquire relatively
complex behaviours such as object manipulation skills. The hypothesis is that
such complex behaviours can be developed by combining previously learned,
simpler skills which may be referred to as motor primitives. The other objective
is to verify whether language can facilitate the acquisition of the integrated
behaviour skills. Concretely, the influence of the presence of a caretaker that
instructs the robot on the sequence of motor primitives to use, and the ability
of the robot to follow its own instructions by engaging in a form of self talk, is
studied.

1.1 Background

The subject of this thesis is located at the intersection of human-centred robotics
on one side and developmental and evolutionary robotics on the other. Human-
centred robotics provides the overall vision, developmental robotics serves as an
appropriate methodology for the design of the experiments and the formulation
of the concrete goals, and evolutionary robotics contributes a well-established
learning algorithm. Both developmental and evolutionary robotics share the
view that robots should not be fully hand-designed but should acquire part of
their characteristics through an adaptive process.

The goal of human-centred robotics is to develop robots that interact di-
rectly with humans in normal human environments. Possible application areas
include care for the elderly, support for patients in physical recovery and general
assistance in daily life. These robots will have to operate autonomously in nor-
mal human environments. Such environments are characterised by uncertainty,
rapid changes and the presence of humans. Existing robotic systems work well
when the environment is static and known in advance. No robot today has a
skill set comparable to a human, so the number of tasks they are able to carry
out is rather limited. In order to create robots that are helpful in everyday situ-
ations robots need to expand their skill set and learn to deal with the variability
of our environment. These and other requirements and outstanding issues of
human-centred robotics are outlined by Schaal in [1]. Successful development of
such robots requires the cooperation of various disciplines, including psychology,
ethics, neuroscience and classical robotics.

1

2 CHAPTER 1. INTRODUCTION

Developmental robotics, a field which partially overlaps with human-centred
robotics, refers to the bi-directional exchange of ideas between researchers on
ontogenetic development (development over the lifespan of a biological organ-
ism) and robotics. On the one hand, findings in psychology and neuroscience on
human development are used as inspiration to create better robotic systems; on
the other hand, robots are used to help test and verify models from developmen-
tal sciences [2]. Epigenetic robotics is closely related to developmental robotics
and both can be seen part of biorobotics [2]. It is more and more accepted that
all of these fields provide viable ways to design the next generation of robots
[3].

A more intuitive account of the benefits of using humans as inspiration for
the design of humanoid robots can be given by considering the evolution and
continued existence of our species. Humans are obviously the most robust,
adaptable and advanced humanoid system we have come across, capable of
operating in uncertain and rapidly changing environments. It seems to make
sense, therefore, to fashion the control system of humanoid robots after the
functioning of the human.

Many of the components of ontogenetic development that have been sub-
ject to research (summarised in [2]) are used as guidelines for the experiments
presented here. One key notion is self-organisation: structured behaviour can
emerge from fine-grained local interactions among the components of a system
and its environment. Another is that development is an incremental process:
behavioural skills and cognitive functions evolve in multiple stages. More ad-
vanced structures build on previously established ones that are less efficient or
incomplete. A related idea is that the presence of changing constraints can
benefit development. For example, early limitations of the sensory and motor
system decrease the amount of information to process and can make it easier
to extract the relevant aspects. A final principle of development which should
be mentioned here is the importance of social-interaction and language. Social
peers of a developing individual can guide its attention and actions, which leads
the individual to experience more meaningful stimuli.

Researchers have found evidence that cognition and language are closely
linked in the human brain (findings summarised in [4, 5]). This idea has been
used to show that language can help with motor control in robots [6, 7] and
with classification of objects and postures [4, 8]. Exploration of the influence of
language on learning and motor control in robots is an emerging field that is not
yet very well understood [9]. Psychologist Lev Vygotsky was the first to develop
the idea that language is an important tool in human cognition [5]. Inspired by
this theory, Mirolli and Parisi [5] hypothesize that language comprehension and
self-talk can facilitate the acquisition of action skills in robots. Vygotsky gives
one example of children learning to solve a new task that illustrates this concept:
after having been given instructions on how to solve a task, children repeat the
instructions out loud to themselves when faced with the task again. This use
of self talk helps them to internalise more and more complex behaviours. In
the last part of our experiments we explore a similar process to learn the order
and timing of a sequence of motor primitive. This is based on the first part
of the experiments where the robot learns to respond to verbal instruction by
performing a certain action.

The last of the three mentioned robotics fields is evolutionary robotics. It
is a method for developing autonomous robots by letting them adapt to the

1.2. OBJECTIVES 3

environment and the desired tasks without intervention of a human designer.
The algorithms used are inspired by the evolution of biological organisms. An
evolutionary algorithm is a process that makes random changes to the free
parameters of the robot’s control system (or the robot’s morphology) and keeps
or discards the changes based on the resulting behaviour. This can bee seen as
the application of the self-organisation principle mentioned above. Note that in
this thesis, an evolutionary algorithm is simply used as a learning method, it
has nothing to do with the biological evolution (for a theoretical discussion of
this approach see [10]).

After this high-level overview of related research areas, the following para-
graphs describe the more concrete problems addressed by this thesis. In the
experiments, a robot develops reaching and grasping skills which is an impor-
tant research focus in humanoid robotics [11]. A proposed means to achieve
general motor control, and therefore also reaching and grasping skills, is using
motor primitives [1]. The idea is that complex behaviours can be divided into
simpler parts which can then be used to form other behaviours. These action
building blocks are called motor primitives, or simply primitives. They have
been given different names in the literature, including behaviour primitives,
motor schemas, control modules and movemes [12, 13].

Motor primitives are not only a topic in robotics research: evidence sug-
gests that they also play a role in how humans and other animals control body
movement [14, 15, 12]. One such hypothesis is called called equilibrium point
control and gives a plausible explanation of how the degrees of freedom problem
could be solved. This problem states that there are redundant degrees of free-
dom when planning body movements and that the planning of trajectories is
therefore non-trivial.

Most of the research on controlling movement of robots with motor prim-
itives uses some form of programming by demonstration [1]. An overview of
programming by demonstration is given in [16] and concrete examples of learn-
ing motor primitives can be found in [17, 18, 19, 20]. Not only the question
how motor primitives can be learned, but also the issue on how to use these
primitives to form higher-level behaviour is a challenging task that is addressed
in this thesis.

Tani et al. [18] explain the characteristics motor primitives need to have to
be truly useful for controlling robots. The most important factor is what they
call organic compositionality. This means that the primitives must be flexible
enough to adapt to different environments: in terms of the object acted upon,
its location, and the preceding and subsequent primitives. A motor primitive
for grasping, for example, should be able to grasp an apple just as well as a
banana. The grasp may also need to be adapted depending on whether the
banana is going to be peeled or moved to another place.

1.2 Objectives

There are two main research questions behind the experimental setup. The first
is whether it is possible to learn motor primitives with a goal-directed trial and
error process. This encompasses the question whether the developed primitives
have some of the properties of organic compositionality, especially if it is possible
to assemble them to form more complex behaviours. By goal-directed learning,

4 CHAPTER 1. INTRODUCTION

we refer to a learning process that drives the robot toward the development
of actions achieving a certain result. By trial and error, we mean a process
that: (i) does not require information on how the goal-directed action should be
realised, and (ii) leaves the robot free to determine how to act providing that
its action achieves the given goal.

The second question is concerned with the influence of language on the
robot’s ability to learn the integrated behaviour. More specifically, the influence
of the presence of a caretaker giving instructions is examined and compared to
the possibility of the robot to talk to itself. The hypothesis behind this is that
self talk can be a useful tool for the robot to find and memorise the order and
timing of primitives when combining them to new behaviours.

1.3 Methods

In order to achieve the objectives of this thesis and verify the underlying hy-
potheses, an experimental scenario has been designed in which a relatively com-
plex humanoid robot should develop elementary and integrated behaviours. The
robot first learns four motor primitives while a corresponding linguistic instruc-
tion (a binary label) is given. Then, the robot is expected to solve a task for
which it has to combine the primitives. Different conditions for learning the
integrated behaviour are explored. The influence of the presence of continued
instruction by a caretaker and the use of a self talk feedback loop allowing the
robot to give itself the linguistic instructions it has been given during the initial
training is studied.

The robot is controlled through a single neural network. The free parame-
ters of the network (connection weights, biases and time constants) are found
through an evolutionary algorithm: the behaviour of the robot individuals is
evaluated in a series of trials where a fitness function assigns them a value
expressing how close they got to achieving the goal of that trial. The best indi-
viduals are retained and are allowed to generate offspring. This algorithm has
been chosen because it is a simple implementation of trial and error learning and
it has proven useful in similar situations as we will see in the next paragraphs.

1.4 Related Research

This method is an extension of the approach used by Massera et al. [7] where an
anthropomorphic robotic arm learns to reach for, grasp and lift objects located
in front of it on a table. As in our setup, the robot is controlled by a neural
network whose parameters are found through an evolutionary algorithm. The
most important difference of their approach is that the task was learned without
first learning elementary behaviours. The robot was directly expected to do the
whole task, but in one of the experimental conditions, there were linguistic
instructions indicating when the type of behaviour should be switched. The
reach label, for example, was given until the robot’s hand was placed above
the object and then switched to grasp indicating that the robot should now
wrap the fingers around the object. The results suggested that the use of these
instructions makes it easier to learn the desired task. In fact, the full behaviour
was only learned when the linguistic support was available. Their experiments

1.4. RELATED RESEARCH 5

also showed that it is possible to incorporate different types of behaviours into
a single neural network.

This result suggests that several motor primitives could be incorporated into
the same control unit, at least if they have some commonalities. A lot of the
research to develop motor primitives focuses on having well-defined subsystems
that each perform one motor primitive (for an exception see for example [21]).
We see an advantage in having a single neural network that can execute multiple
primitives. In all of the primitives of our experiment, the robot has to learn to
keep the hand close to a specified position. The reaching and remaining and
this position has only to be learned once for all the primitives. Additionally, we
expect the integration of the primitives to be smoother as the control system
will most likely keep a similar posture for the different primitives.

Our approach of learning motor behaviours with a trial and error process
has several advantages over learning by demonstration. The most important
one is that the learning is by definition goal-directed. A problem that can arise
in learning by demonstration is that it is difficult for the robot to know which
parts of the demonstrated behaviour is important for achieving the goal and
which parts are more coincidental. Another issue is that some crucial aspects
of the behaviour might be missed altogether when observing the demonstrator.
It is for example very difficult to observe how much force is applied to an object
or what the stiffness of a body part is.

Another advantage of our approach is that a change in the robot’s mor-
phology is possible without much effort. A robot that is trained on reaching
a certain location with its hand can essentially be trained with the same algo-
rithm regardless of the number of joints involved (for example using only the
arm or using the upper body too). This also means that an algorithm and fitness
function that has proven useful on one robot might easily be adapted for other
types of robots. However, as the number of degrees of freedom of the robot and
the complexity of the task increases, the fitness calculation that evaluates an
individual gets more complicated. The design of such a fitness function can be
quite difficult and is not a straightforward process.

With these experiments, we hope to contribute to the ongoing research on
whether and how motor primitives can be used to form a complete and adapt-
able control system for human-centred robots and how they can use language
as a cognitive tool. If continued, this line of research might also give valuable
feedback to other disciplines looking to find out how motor control is achieved
in humans. As the control systems resulting from such research can be explored
much more easily than the ones in humans, the workings can be studied and the
research in humans can be guided by the findings. The idea that advances in
robotics can help understanding humans better is outlined in detail in [22, 2].

Chapter 2

Experimental Setup

This thesis studies how a simulated iCub robot can acquire the ability to produce
a complex action, i.e. moving an object to a desired location, after having learned
to display more simple elementary actions such as moving the hand to a location
or grasping an object. To this end, the experiment is divided into three stages.
In the first two, the simplified primitive stage (simple-prim stage) and main
primitive stage (main-prim stage), the robot learns to respond to symbolic
linguistic instructions given by a caretaker. For every instruction, the robot
learns to execute a subcomponent of the full behaviour with a clearly defined
goal. These motor primitives are learned in similar circumstances as they will
later be needed when assembled together. The four primitives are the following:

Reach Place the hand above the object

Open Open the hand and align the palm to face downwards

Grasp Close the hand around the object to grasp it

Move Move the grasped object to the specified target area

Once these motor primitives are learned, the experiment progresses to the last
stage, the integrated behaviour stage (integrated stage). In this stage, the care-
taker gives a new linguistic instruction and the robot has to learn to do the full
integrated behaviour. Four experimental conditions are compared in this last
stage. In some of these conditions, the robot is able to give itself instructions by
producing linguistic symbols that have previously been used by the caretaker.
The conditions serve to study the effects of this self talking mechanism and of
the continued linguistic support by the caretaker on the robot’s ability to learn
and internalise the integrated behaviour.

In the rest of this chapter explains the detailed. First, the software and
hardware used for the experiments are introduced. Then, the robot, its neural
network and the evolutionary algorithm is explained. After that, a compre-
hensive description of the fitness calculation and all the experiment stages and
conditions follows. Finally, the tests that are run to evaluate the learned be-
haviour are presented.

7

8 CHAPTER 2. EXPERIMENTAL SETUP

2.1 Simulation Software and Hardware

The experiments are run with the EvoICub software developed at LARAL1

by Gianluca Massera and collaborators. All of the code is open source and is
written in C++ with the help of the Qt framework.2 There are three main
components: the genetic algorithm, the neural network framework and the sim-
ulator of the world and the iCub. The last component relies on two external
libraries: the Newton Game Dynamics physics engine3 and the iKin kinematics
library from the iCub repository4 for kinematic calculations. EvoICub also has
a graphical user interface in which individuals can be loaded and their actions
can be inspected.

The simulation of the robot and its environment is divided into steps. Every
step corresponds to 50 milliseconds of simulated time (1 second = 20 steps). At
every time step the inputs of the neural networks are updated and propagated
to the outputs. These are then applied to the robot, changing the velocity
of the robot’s joints. The calculations of the movement of the robot and the
interaction with the environment are done in two different ways. In kinematic
mode the kinematics library is used and in dynamic mode the physics engine.
In dynamic mode all objects are simulated as rigid bodies. Gravity as well as
the effect of collisions between objects is simulated realistically. The movement
of an object is therefore determined by all the forces that are applied to it.
In kinematic mode no forces are simulated and collisions have no effect. The
movement of an object is simply determined by the velocity that has been set for
it. The kinematic mode is of course not suited for a realistic simulation, but the
advantage lays in the seven to eight times faster computation time. The use of
the simulation modes is explained in the detailed descriptions of the experiment
stages in Sections 2.7 to 2.9.

For every experiment that is run with EvoICub one needs to implement
a class that sets up the world with all the necessary objects, sets the correct
inputs to the neural network, applies the outputs of the network to the robot
and determines how the fitness is calculated. This is the part of the code that
had to be written for the experiments of this thesis.5 Additionally, some minor
changes to the core software had to be implemented. The specific settings of
the genetic algorithm, the types of trials and the fitness functions are stored in
a configuration file. There is a separate file that specifies the architecture of the
neural network. The code of the experiments has been written to make it easy
to quickly try out different settings. This means there are a lot of configuration
parameters that can change the experiment in a myriad of ways.6

All the experiments are run on the LARAL computer cluster. Every of

1Laboratory of Autonomous Robotics and Artificial Life, Institute of Cognitive Sciences
and Technologies at the Consiglio Nazionale delle Ricerche

2LARAL SVN repository at http://laral.istc.cnr.it/svnrepos/laral/laral2, docu-
mentation on http://laral.istc.cnr.it/laral++/farsa/

3See http://www.newtondynamics.com
4iCub SVN repository at https://robotcub.svn.sourceforge.net/svnroot/robotcub/

trunk/iCub, installation instruction on http://eris.liralab.it/wiki/ICub_Software_

Installation, documentation of the iKin library on http://eris.liralab.it/iCub/main/

dox/html/group__iKin.html
5The code used for the final experiments can be found on http://laral.istc.cnr.it/

svnrepos/laral/laral2/evoicub/experiments/tobiasExperiments/exp4/
6The configuration files used for the different stages and conditions are given on the website,

see Appendix A.2

2.2. ICUB ROBOT 9

the 10 machines has two quad-core AMD Opteron 64-bit 2.2GHz CPUs and
is running OpenSuse. It is possible to run the algorithm in parallel and most
experiments are run with three to four threads, depending on the availabilities
on the cluster.

2.2 iCub Robot

The robot used in the experiments is a realistic simulation of the humanoid
iCub robot [23] shown in Figure 2.1.7 The iCub is a research robot slightly over
a meter in height; about the size of a three and a half year old child. It has
a total of 53 degrees of freedom (DOF). During all the experiments only the
torso, the left arm and the left hand of the robot is used. All the other parts
stay immobile. The torso has three DOF of which the following two are used:

• Torso yaw: rotation of the torso (turning to the sides)

• Torso pitch: extension/flexion of the torso (leaning forwards and back-
wards)

These two DOF are used because of the rather short arms of the iCub that do
not allow it to reach very far. The last DOF that would tilt the torso sideways
is not used because the other two are sufficient for the robot to reach the whole
area needed for the experiments.

All of the arm’s seven DOF are used:

• Shoulder pitch: flexion/extension of the arm (front and back movement)

• Shoulder roll: abduction/adduction of the arm

• Shoulder yaw: rotation around the upper arm’s principal axis

• Elbow: extension/flexion of the elbow

• Wrist pronsupination: rotation around the forearm’s principal axis

• Wrist pitch: flexion/extension of the wrist

• Wrist yaw: abduction/adduction of the wrist

The hand consists of 5 fingers with 3 phalanges each. These can be moved
through the following nine DOF:

• Spreading the index, middle, ring and little fingers apart (abduction/adduction)

• Opposing the thumb to the other fingers

• Extension/flexion of the proximal thumb phalanx

• Extension/flexion of the two distal thumb phalanges

• Extension/flexion of the proximal index finger phalanx

• Extension/flexion of the two distal index finger phalanges

7All information on the iCub can be found on http://www.icub.org/.

10 CHAPTER 2. EXPERIMENTAL SETUP

Figure 2.1: The simulated iCub robot

• Extension/flexion of the proximal middle finger phalanx

• Extension/flexion of the two distal middle finger phalanges

• Extension/flexion of all the ring and little finger phalanges

To simplify the learning of the grasp, all the finger joints are actuated through
only three DOF. This is enough to ensure a good grasp of a spherical object.
The actuated DOF are:

• Opposing the thumb to the other fingers

• Extension/flexion of the all the thumb phalanges

• Extension/flexion of the phalanges of the other fingers

The DOF for the abduction/adduction of the fingers is not used and fixed at
maximum abduction.

In total, the robot that is used for the experiments has twelve actuated DOF.
All of the arm and hand joints are allowed to move in the full range of motion
possible by the physical iCub.8 The two torso joints are both limited to a range
of [−10, 40] instead of [−50, 50] (yaw) and [−22, 70] (pitch). This simplifies the
learning process because it eliminates a lot of undesirable positions.

To visualise the different movements of the human body, we recommend the
animations on http://davisplus.fadavis.com/dillon/animations.cfm.

2.3 The Robot’s Neural Network

The artificial neural networks used as the controller of the robot during the
first two stages of the experiment is represented in Figure 2.2. The design is

8Defined in these files: https://robotcub.svn.sourceforge.net/svnroot/robotcub/

trunk/iCub/main/app/robots/iCubRome01/conf/

2.3. THE ROBOT’S NEURAL NETWORK 11

Figure 2.2: Neural network architecture used in the simple-prim and main-prim
stage.

based on the network used by Massera et al. in[7]. The neurons are grouped
into clusters. An arrow between two clusters indicates that the neurons of these
clusters are fully connected. The architecture of this network can be divided
into an input layer, a hidden layer and an output layer. All of the input neurons
are connected with all of the hidden neurons, and these are in turn connected
with all the output neurons. Additionally, there are two direct connection from
the input layer to the output layer that are explained later in this section. The
network is a pure feedforward network. All of the neurons in the hidden layer
have a bias whose value is decided by the evolutionary algorithm along with
all the connection weights. Both the biases and the connection weights take
values in the range of [−1, 1]. The neurons have a sigmoid activation function:
this means that the output value of a neuron is calculated with the help of the
following formula:

O(t) = σ

−β +

J∑
j=1

wjIj(t)

σ(x) =

1

1 + e−λx
(2.1)

Where β is the bias (0 for the neurons in the output layer), Ij(t) is the output at
time step t of the jth connected neuron with wj the weight of that connection,
J is the total number of incoming connections and σ(x) is the logistic function
with λ set to 1.5.

The output layer has a total of 13 neurons that can be divided into the
following four clusters:

Torso Actuator 2 neurons. The desired position of the torso.

Arm Actuator 7 neurons. The desired position of the left arm.

Finger Actuator 3 neurons. The desired position of the fingers.

12 CHAPTER 2. EXPERIMENTAL SETUP

Focus Output 1 neuron. Binary output that determines whether the robot
focuses its attention on the object or on the target area.

The input layer consists of 25 neurons in four distinct clusters:

Proprioception 12 neurons. Represent the current positions of all the used
joints.

Tactile Sensors 6 neurons. Six binary inputs specifying which of the tactile
sensors on the hand are in contact with an object.

Focus Position 3 neurons. Coordinates relative to the palm of the current
focus (either the object or the target area).

Linguistic Input 4 neurons. Binary input neurons that encode whether the
caretaker is producing the word reach, grasp, open or move.

The hidden layer consists of one cluster of 15 biased neurons.
In the integrated stage the neural network is expanded in different ways

depending on the condition. This will be explained in Section (2.9). In the
following sections, the use of the input and output clusters of the base network
is described in more detail.

2.3.1 Torso, Arm and Finger Actuators

The joints are controlled by setting a velocity based on the difference between
the current and the desired joint angle. There is one output neuron per actuated
DOF. The output takes a value between 0 and 1 and is taken as the desired
joint position. The current angle is then linearly mapped to the same range (0
meaning the minimum possible angle, 1 the maximum). The velocity is then
calculated as α× (desiredV alue− currentV alue) [degrees/s] and the absolute
value is not allowed to exceed 40 degrees/s. The parameter α has a value of
100 when in dynamic mode and 37 in kinematic mode. The value in kinematic
mode was found empirically and chosen such that the resulting movement is as
similar as possible to the simulation with the physics engine.9

2.3.2 Focus Output

This single neuron determines which of the possible positions is given as the
focus position input. The output is between 0 and 1 but it is interpreted as a
binary output: when the value is smaller than 0.5 the focus is on the object and
otherwise on the target area.

The focus output can be conceptualised as moving the head to face towards
an area and focusing the eyes on it. As this is not a central aspect of these
experiments, the described simplification is used instead.

2.3.3 Proprioception Sensors

For every of the twelve actuated DOF of the robot, the neural controller has
an input neuron that senses the current position of the corresponding DOF. All
the values are linearly mapped between 0 and 1. For the DOF of the hand that

9Movement tends to be slower in dynamic mode because of inertia.

2.3. THE ROBOT’S NEURAL NETWORK 13

Figure 2.3: The green areas represent the locations of the six touch sensors

take together multiple actual DOF of the robot, the average of all the underlying
positions is taken. Note that these in any case have almost the same value as
long as there is no external force applied to the fingers. Brief tests have shown
that the performance of the network is not improved if the individual positions
of all DOF of the hand are given separately (results not shown).

2.3.4 Tactile Sensors

The physical iCub has six groups of tactile sensors: one on the inner tip of
every finger and one distributed over the surface of the palm. The sensors on
the fingertips respond to pressure, whereas the one on the palm detects contacts
with electrical conductors. The tactile sensors are modelled as binary inputs in
the simulation. The sensors on the physical robot have a higher resolution
than that but the sensitivity is fairly low. Instead of modelling these sensors
accurately, the simpler solution of binary sensors is chosen. This information is
sufficient to carry out the grasping task. It would also make it more possible
to use the controller on the physical robot as it would be easy to convert the
actual output to something binary. To sum up, there are six neurons that take
a value of either 0 or 1 if the corresponding part of the hand is in contact with
another object. The exact locations of the touch sensors are shown in Figure
2.3.

2.3.5 Focus Position

These three neurons give the network the coordinates of the position it is cur-
rently focusing on relative to the position of the palm. This means that the
input is (0, 0, 0) if the centre of the palm is exactly at the focus position. The
coordinates are given in metres scaled by a factor of 20. So a distance of 5
centimetres results in an input of 1. For most parts of the experiment, this
distance is usually not more than 30 centimetres. But in the beginning of the
evolutionary process it can be more than twice that when the hand moves away
from the focus position. The larger possible magnitude compared to the propri-
oception and tactile sensors was chosen to increase the impact of these neurons.
The focus position is a very crucial input and the number of neurons is fewer
compared to the proprioception and tactile sensors.

14 CHAPTER 2. EXPERIMENTAL SETUP

There are two possible positions that the robot can focus on: the object or
the target area. Where the focus lies is decided by the Focus Output neuron
described above (Section 2.3.2). When the object position is given as input it
is the actual position of the object at that time step. If the object is moved,
the input changes accordingly. The target area is a location that is fixed during
the trial. The different target areas and object starting positions are explained
in Section 2.5. There is no meaningful Focus Output at the first step of every
trial and therefore (0, 0, 0) is given as input.

The Focus Position cluster has a direct connection to the Torso and Arm
Actuator clusters. These connections make it easier to find a mapping between
the position that the palm should be at (which is always near the Focus Position)
and the position that the hand is moving towards (which is defined by the motor
neurons of the torso and arm).

2.3.6 Linguistic Input

These neurons encode which of the instructions the caretaker is currently giving.
There is one neuron for every of the four instructions reach, open, grasp and
move corresponding to the primitives. The input is binary and scaled by a
factor of 10 for the same reasons as the Focus Position input. When the reach
instruction is given, for example, the input of the four linguistic input neurons
is set to (10, 0, 0, 0).

2.4 Training Algorithm

From the point of view of the evolutionary algorithm, a robot individual is
represented as a sequence of bits. This sequence is called a genotype and it
is divided into genes of 16 bits. Every gene represents one free parameter of
the neural network and is decoded to a value in the range [−1, 1]. A group of
genotypes is called a genome. In every cycle of the algorithm, all the genotypes
are evaluated in a series of trials. The genotypes are assigned a fitness based
on how well the robot controlled by the neural network achieves the desired
behaviour. The genotypes with the highest fitness are allowed to continue to
the next cycle and to generate offspring. A cycle of the algorithm is also referred
to as a generation. The algorithm can be summarised as follows:

1. Initialise genome with 100 random genotypes (decided value of every bit
with a fair coin flip)

2. Evaluate all genotypes to get their fitness

3. Stop if desired generation or termination condition reached

4. Take the 10 best individuals and insert them unchanged into the genome
of the next generation

5. Generate mutated offspring of the 20 best individuals until the genome of
the next generation contains 100 genotypes

6. Go to step 2.

2.5. THE ENVIRONMENT 15

Mutated offspring is created by taking the genotype of the parent and flipping
every bit with a certain probability. This probability, the mutation rate, is set
to 0.005 in the simple-prim and main-prim stage and to 0.04 in the integrated
stage. A higher mutation rate is chosen for the last stage because the number
of genes which are mutated is much smaller.

The termination condition in the simple-prim and main-prim stage is that
five of the genotypes of the genome yield individuals that are successful in all of
the trials. The evolution is also stopped when the two stages do not terminate
within a total of 1500 generations. The integrated stage is always run for 100
generations.

In the simple-prim and main-prim stage, every robot individual has a geno-
type that is made up of 612 genes; 25 × 15 for the weights of the connections
from input to hidden layer, 15 × 13 for the connections from hidden to output
layer, 3× 9 for the direct links from input to output layer and 15 for the biases
of the hidden layer. This results in a total of 9792 bits per genotype. Because
of the changing neural network in the integrated stage, new genes are added to
the genotype before that stage is started. The details are explained in Section
2.9.2.

The experiment up to the end of the main-prim stage is repeated 10 times;
each run with a different random starting genome and a new seed for the random
number generator. In the integrated stage only the newly added parts of the
network are evolved. This means that individuals that have not learned the
primitives at the end of the main-prim stage will never learn them. In order
to have as many individuals as possible that have learned the primitives when
starting the integrated stage, a new genome is created consisting of the top 10
genotypes of all the runs. The experiment is then continued 10 times for each
of the four conditions. The difference between these runs is the new random
initialisation of the added genes of the genotypes.

2.5 The Environment

The environment consists of a table with an spherical object on it. The tabletop
measures 50 x 80 cm and is placed on the height of the pelvis of the robot.
Additionally, there is a designated target area where the object has to be moved
to. The position of the object on the table, the target location and the posture
of the robot varies from trial to trial. All the starting positions are changed in
a round-robin manner. This means that the combination of the positions of the
different elements is the same for every individual in every evaluation.

2.5.1 The Object and Its Initial Positions

The object is a sphere with a mass of 200 grams and a diameter of 7 cm with
a flattened base to prevent it from rolling away easily. The base is a cylinder
with a diameter of 3.5 cm whose bottom side is flush with the lowest point of
the sphere. Every primitive is tested with four different object positions. The
four positions are 10 cm to the front, back, left and right respectively of a point
30 cm in front and 10 cm to the left of the robot. During trials that start with
the reach primitive there is an additional uniform random offset between -2 and
2 cm added to the x and y dimension (left/right and forward/backward). This

16 CHAPTER 2. EXPERIMENTAL SETUP

is not done for the other trials because the hand of the robot has to be in a well
defined relative position to the object. The object position can be seen on the
first row of Figure 2.4.

2.5.2 Target Area

There are two different target positions. Both are used twice for every primitive.
They are 25 cm above the table and 25 cm in front of the robot. The height
corresponds about to the height of the shoulder of the robot. One position is 10
cm to the left, the other to the right of the central axis of the robot. Additionally
there is an offset between -2 and 2 cm added to all three dimensions that is
determined uniform randomly for every trial. The target is considered reached
if the object is within 6 cm of this point. The bright green circles in the last
row of Figure 2.4 show the two target areas in context.

2.5.3 iCub Initial Postures

Every primitive requires different types of starting postures of the robot. There
are four postures for every of the four primitives, one for every of the 16 trials
of the simple-prim and main-prim stage.

Reach Four different arm postures away from the object, torso always com-
pletely centred and fingers always completely stretched out

Open In two of the trials the hand is almost grasping the object, in the other
two the hand is a few centimetres above the object with almost completely
closed hand. In all of the trials the hand is already above the object

Grasp The hand is a few centimetres above the object. In two of the trials the
fingers are completely stretched out in the other two they are a bit less
stretched out. In all of the trials the hand is already above the object

Move The hand has a good grasp of the object such that it does not fall out if
the fingers are not moved.

The initial postures for the reach trials are also used for the trials of the inte-
grated stage. Images of the starting postures are shown in Figure 2.4.

2.6 Fitness Calculation

As explained in Section 2.4, every individual is evaluated in a series of trials.
These trials serve to establish the fitness based on which the selection of the best
individuals of a generation is done. The calculation changes for the different ex-
periment conditions, experiment stages, and trials. All of the fitness calculations
are based on three components: the step fitness S(t), the penalty P (t) and the
bonus B, where t is the time step indicating that this components is calculated
and awarded in every time step of the simulation. S(t) takes values between 0
and 1 depending on how close the robot is to the goal of that particular trial or
how “correct” the current outputs of the neural network are. The function is
mostly continuous, has only small discontinuities and it is almost impossible for
the robot to be awarded the maximum or minimum value. That nature of the

2.6. FITNESS CALCULATION 17

Figure 2.4: The 16 starting postures, each column corresponds to one of the
primitives (reach, open, grasp, move).

18 CHAPTER 2. EXPERIMENTAL SETUP

step fitness function is important because it makes it difficult for two individuals
to receive the same final fitness which is needed to make a sensible selection of
the best individuals.

The penalty P (t) takes values between 0 and 4, although the maximum
possible penalty depends on the trial type. The penalty is subtracted from the
fitness received in that time step. A penalty is given if the robot does something
that it is not supposed to do in that trial but that does not necessarily have a
direct effect on the outcome of the trial. The penalty function is discontinuous
and its value is mostly 0.

The last component B is a bonus that is given based on the the overall be-
haviour in a trial. Fixed amounts of bonus are awarded if the robot fulfils certain
conditions during the trial. The bonus is substantially higher than the fitness
that can be received every time step to clearly distinguish between individuals
that were successful in a trial from the ones that were not. It also makes sure
that individuals that achieved the goal are selected even if their approach to do
so was considered worse than the one of other individuals.

How these components are calculated exactly and how they are taken to-
gether for the total fitness is explained in Section 2.7 to 2.9.

2.7 The Simple-Prim Stage

In the simple-prim stage, the robot has to learn simplified forms of the actual
primitives. These are primitives in which some of the constraints have been
dropped to get the robot to learn roughly what it will be expected to do later.

This stage was introduced due to the lack of satisfactory results in prelimi-
nary experiments where the primitives were learned directly. The inspiration for
this incremental learning process with changing constraints came from the dis-
cussed principles of ontogenetic development. The grasp and move behaviours
were the primitives that seemed the most difficult in the preliminary experi-
ments. That is why these were simplified by ignoring the interaction with the
object. This is done by running the experiment in kinematic mode, meaning
that there is no actual simulation of the physics and therefore of collisions. The
only interaction between the robot and the environment that is already learned,
is to avoid touching the table and the object during certain primitives. An ad-
ditional advantage that the introduction of the simple-prim stage brought, was
the reduction of the simulation time due to the faster kinematic calculations.

The fitness of the individuals is evaluated in 16 trials: four for each of the
primitives. The trials differ in the starting posture of the robot, the position
of the object, the location of the target area, the linguistic instruction given
and of course the fitness function. Every trial lasts three simulated seconds
(corresponding to 60 time steps). This was found to be enough time to complete
any of the primitives from all of the starting positions.

The rest of this section explains the exact circumstances of every trial and
gives the details on the fitness calculation.

2.7.1 Fitness Calculation

The fitness has four components, one for each of the four primitives. These
values, denoted Fp, p ∈ {r̂, ô, ĝ, m̂} (simplified reach, open, grasp and move),

2.7. THE SIMPLE-PRIM STAGE 19

represent how successful an individual has executed the individuals primitives.
The final fitness is the harmonic mean of these four values:

F =

 ∑
p∈{r̂,ô,ĝ,m̂}

1

Fp

−1 (2.2)

The harmonic mean is used rather than the normal arithmetic mean to make
sure that the four primitives are learned in parallel. Tests comparing the two
mean types showed that with the arithmetic mean it can happen that individuals
get quickly very good at some of the primitives and are then too specialised
to learn the other primitives. The harmonic mean gives more emphasis on the
lowest component; a small improvement of the lowest value increases the average
fitness to a greater extent than a bigger improvement of the higher values.

The components S(t), P (t) and B introduced in Section 2.6 are now written
with a subscript p with p ∈ {r̂, ô, ĝ, m̂} to indicate that their value depends
on the primitive being examined. The total primitive fitness values are then
calculated with the following formula:

Fp = Bp +
100

Np

Np∑
t=1

(Sp(t)− Pp(t)) (2.3)

Where Np is the total number of time steps spent evaluating the given prim-
itive. Described in word, the above formula means that the sum of the step
fitness values is normalised by the number of steps that has been spent in this
primitive and the bonus is added to this. For every primitive there is a success
condition. If this condition is met, a bonus of 10 points is awarded. As every
primitive is evaluated four times, there is a maximum of 40 bonus points. The
success conditions are explained in the following section.

The theoretical maximum of Fp is therefore 140 (100 for receiving maximum
step fitness in every step and no penalty as well as 40 for the maximum bonus).
This value can however not be achieved in practice as the robot would have to
be at the goal state from the beginning and stay there for the whole duration
of all the trials.

In the following paragraphs, the different fitness components are explained
in more detail.

2.7.1.1 Penalty Fitness Pp(t)

During all stages of the experiment there can also be a penalty at every time
step. The penalty is a value that is subtracted from the fitness received in that
step. In the simple-prim stage there are the following two kinds of penalties:

Table Touching 1 penalty point if any part of the left arm of the robot is in
touch with the table.

Object Touching 1 penalty point if the robot touches the object.

The Object Touching penalty is not given during all the primitives. Which
penalties are given and when they are applied is explained in the next section.

20 CHAPTER 2. EXPERIMENTAL SETUP

2.7.1.2 Trial Types and Step Fitness Sp(t)

The following values are used for the calculation of the fitness values (also in
later stages):

dr(t) Distance in metres between the palm of the hand and a point 6 centimetres
above the object.

dg(t) Distance in metres between the centre of the object and the centroid of
the tip of the thumb, the tip of the pinkie and the centre of the palm.

dm̂(t) Distance in metres between the palm and the centre of the target area.

dm(t) Distance in metres between the object and the centre of the target area.

h(t) A measure of how open the hand is, 0 for completely closed and 1 for
completely open.

p(t) 1 when the palm is facing towards the table and 0 when it is facing away
from it.

ff (t) A value expressing how correct the current focus is. It is bigger than 0.5
if it is correct and smaller if not.

In all of the trials the most crucial part is to select the correct focus for that
primitive. If the focus is wrong, the goal of all the trials can only be achieved
by chance. This is why Sp(t) is calculated in the following way:

Sp(t) =
1

5
ff (t) +

{
4
5sp(t) focusCorrect

0 ¬focusCorrect
(2.4)

Where sp(t) is the part of the step fitness that is variable between the dif-
ferent primitives. In the next paragraphs this and other details of the different
trial types are explained.

Simplified Reach Trials

Goal Move the hand 6 cm above the object (meaning 9.5 cm above the object
position because the sphere has a radius of 3.5 cm).

Correct Focus Object position

Linguistic Input Reach: (10, 0, 0, 0)

Step Fitness

sr̂(t) = e−10dr(t) (2.5)

Penalty Table Touching, Object Touching

Success Condition dr(t) < 0.03 at any time during the trial

2.7. THE SIMPLE-PRIM STAGE 21

Simplified Open Trials

Goal Keep the hand 6 cm above the object while stretching out all the fingers
and aligning the hand to face downwards.

Correct Focus Object position

Linguistic Input Open: (0, 10, 0, 0)

Step Fitness

sô(t) =
1

2

((
1− |h(t)− 0.7|

0.7

)
+ p(t)

)
e−10dr(t) (2.6)

Penalty Table Touching, Object Touching

Success Condition dr(t) < 0.03 ∧ h(t) > 0.7 ∧ p(t) > 0.9 at any time during
the trial

Simplified Grasp Trials

Goal Close the hand around the position where the object is.

Correct Focus Object position

Linguistic Input Grasp: (0, 0, 10, 0)

Step Fitness

sĝ(t) =
1

2

((
1− |h(t)− 0.4|

(1− 0.4)

)
+ p(t)

)
e−10dg(t) (2.7)

Penalty Table Touching

Success Condition dg(t) < 0.03 ∧ h(t) < 0.4 ∧ p(t) > 0.9 at any time during
the trial

Simplified Move Trials

Goal Move the hand to the target position.

Correct Focus Target position

Linguistic Input Move: (0, 0, 0, 10)

Step Fitness

sm̂(t) = e−10dm(t) (2.8)

Penalty Table Touching

Success Condition dm̂(t) < 0.03 at any time during the trial

22 CHAPTER 2. EXPERIMENTAL SETUP

2.8 The Main-Prim Stage

In the main-prim stage, the learned simplified primitives are refined to the
actual primitives. For the grasp and move primitives the changes are quite
substantial, whereas the reach and open primitives stay basically the same. But
because the simulation is now done in dynamic mode, adaptations are necessary
for all of the primitives.

The trials in this stage are very similar to the ones in the simple-prim stage.
The trial duration is chosen more carefully however, because of the slower sim-
ulation speed in the dynamic mode. The duration now depends on which prim-
itive is evaluated. It is as short as possible while still allowing the primitive
at hand to be completed. To reduce the simulation time further, some trials
are terminated before the full duration if the behaviour either clearly failed or
succeeded. Details on when trials are terminated prematurely are given further
on in this section.

2.8.1 Fitness Calculation

The fitness is calculated according to the same formulas (2.2) and (2.3) as in the
simple-prim stage except that the subscript p now stands for the non-simplified
primitives, i.e. p ∈ {r, o, g,m}.

2.8.1.1 Penalty Fitness Pp(t)

Apart from the two components already explained in the simple-prim stage
(Section 2.7.1.1), there is one new type of penalty:

Object Moving Up to 2 penalty points for moving the object from its starting
position. The current distance in decimetres from the starting position is
given as penalty, although movement by less than 2 cm is not punished.

This penalty is not used for the simplified primitives as the object can not be
moved because collisions between objects have no effect.

2.8.1.2 Trial Types and Step Fitness Sp(t)

Sp(t) is calculated with the same formula (2.4) as in the simple-prim stage. In
the following paragraphs sp(t) for p ∈ {r, o, g,m} and all the other differences
to the corresponding simplified trials of the simple-prim stage are explained.

Reach Trials

Trial Duration 5 seconds

Premature Trial Termination If the object falls off the table (maximum
penalty of -4 given for all remaining steps) or if the point above the object
has been reached more than 20 steps (1 second) ago (maximum fitness of
1 given for all remaining steps).

Step Fitness
sr(t) = sr̂(t) defined in (2.5) (2.9)

Penalty Table Touching, Object Touching, Object Moving

2.8. THE MAIN-PRIM STAGE 23

Open Trials

Trial Duration 3 seconds

Premature Trial Termination If object falls of the table (maximum penalty
of -4 given for all remaining steps).

Step Fitness
so(t) = sô(t) defined in (2.6) (2.10)

Penalty Table Touching, Object Touching, Object Moving

Grasp Trials To test for a successful grasp, the collision between the object
and the table is turned off after 40 steps (2 seconds). The trial lasts for another
2 seconds after that to make sure the robot is holding the object in a stable way.

Goal Grasp the object and hold it in place.

Trial Duration 4 seconds

Premature Trial Termination If object falls under the table surface (maxi-
mum penalty of -4 given for all remaining steps if this happens in the first
40 steps, otherwise no penalty given).

Step Fitness
sg(t) = sĝ(t) defined in (2.7) (2.11)

Penalty Table Touching, Object Moving (only for the first 40 steps)

Success Condition If the centre of the object is still above the table at the
end of the trial.

Move Trials After 10 steps the collision between the object and the table is
turned off to make sure that the individuals that keep holding the object are
clearly better than others.

Goal Move the object to the target location.

Trial Duration 3.5 seconds

Premature Trial Termination If object falls of the table (maximum penalty
of -4 given for remaining steps).

Step Fitness

sm(t) =

{
1
10 touching

0 ¬touching
+

{
1
10 + 8

10e
−10dm(t) lifted

0 ¬lifted
(2.12)

Where touching is true if if one of the fingertips or the palm of the robot
is in contact with the object and lifted is true if the object is touching the
robot but not the table.

Penalty Table Touching

Success Condition dm(t) < 0.06 at any time during the trial and the object
is still lifted at the end of the trial

24 CHAPTER 2. EXPERIMENTAL SETUP

2.9 The Integrated Stage

The goal of the integrated stage is to produce individuals that respond to the
new instruction move-object-to-target by completing the whole task of reaching
for, grasping and moving the object to the target location without any external
help. The experiment at this point is continued in four different conditions. In
all of the conditions, new parts are added to the neural network and the part
that was evolved so far is no longer changed.

In the simplest experimental condition, the NI condition (No Instructions),
the robot is trained to perform the integrated behaviour without receiving any
linguistic input (except for the mentioned move-object-to-target instruction). In
this condition, the robot can rely on previously learned capabilities but does not
receive any indication from the caretaker on how this capabilities should be used.
An additional set of internal neurons with recurrent connection is added to the
neural network. This can be seen as a form of memory unit that should provide
the necessary computational resources to learn how to produce the integrated
behaviour. The architecture of the network is represented in Figure 2.5b.

In half of the trials of the CT (Caretaker Instructions) condition, the robot
perceives the language labels produced by the caretaker that indicate the action
that should be performed in any particular moment and consequently also the
conditions in which to switch from the execution of one action to the execution of
the next action. The other half of the trials are the same as in the NI condition,
as is the architecture of the neural controller.

In the ST condition (Self-Talk Instructions) the robot is provided with a
different neural architecture shown in Figure 2.5a. There are four linguistic
output units that can be used to self-generate the labels used by the caretaker.
At every time step t a label is generated and it is given to the linguistic input
unit at time t + 1. The robot can therefore learn to give itself the instructions
that lead to a successful integrated behaviour.

In the fourth and last condition, the ST-CT condition (Self-Talk and Care-
taker Instructions), the neural architecture is the same as in the ST condition.
The self-generated labels are however only used in half of the trials. In the
other half of the trials, the caretaker provides the instructions as in the CT
condition. In these latter trials, the robot is not rewarded for producing the
integrated behaviour, but for producing the linguistic label that corresponds to
the next label given by the caretaker. The robot therefore learns the sequence of
linguistic instructions and learns to predict an upcoming switch from one label
to another.

Note how in all conditions the robot should be able to produce the integrated
behaviour without the help of the caretaker during the second set of trials, or
in all the trials in the NI and ST-CT conditions. In other words, the robot can
in some conditions exploit the input of the caretaker to learn to generate the
integrated behaviour. But it always also has to be able to act autonomously,
without any support from the caretaker.

In this stage, individuals are evaluated in eight trials. Each of the four object
positions are used twice, every time with a new random offset. The two target
area locations are each used four times, also every time with a random offset.
The robot starts the trials twice in each of the four reach starting postures
described in Section 2.5.3. The Integrated Behaviour Fitness function is used
in all trials of the ST, CT and NI conditions as well as in the odd trials of the

2.9. THE INTEGRATED STAGE 25

Condition Neural Fitness Function Linguistic Input
Network Even Trials Odd Trials Even Trials Odd Trials

ST-CT Type A Prediction Integrated Caretaker Self Talk
ST Type A Integrated Integrated Self Talk Self Talk
CT Type B Integrated Integrated Caretaker None
NI Type B Integrated Integrated None None

Table 2.1: Experiment conditions

ST-CT condition. The Prediction Fitness function is used in the even trials of
the ST-CT condition.

All trials last for a maximum of twelve seconds. A trial is terminated before
that if the object has been moved to the target more than 20 steps (1 second)
ago and the object is still held in the hand. In this case, the maximum fitness
is given for all the remaining steps in that trial.

A summary of the differences between the condition is given in Table 2.1.

2.9.1 Neural Network Architecture

The structure of the the two types of network architectures are shown in Figure
2.5. In both of the networks there is one new input neuron called Secondary
Linguistic Input. It works like the other linguistic input neurons and its activa-
tion indicates that the caretaker is giving the move-object-to-target instruction.
Whether or not this input is set does not change the experiment in a mean-
ingful way. It was nevertheless included to show how one might have multiple
integrated behaviours.

There is another new cluster of four neurons that serves a different purpose
in the two types of networks. In architecture A, used in the ST and ST-CT
conditions, these are neurons in the output layer called Linguistic Output. Each
neuron corresponds to one of the linguistic labels for the primitives. The neuron
with the highest output determines the label that is currently produced by the
robot. This means the robot is producing exactly one label at every time step.
In architecture B, used in the NI and CT conditions, these neurons represent
a memory unit called Hidden Linguistic cluster, that has direct connections
to and from the main Hidden cluster. In both types of networks this cluster
has recurrent connections and there is an incoming connection from the Hidden
cluster. Also, these neurons have a form of memory that is implemented by the
following activation function:

Om(t) = γ (δO(t) + (1− δ)O(t− 1)) (2.13)

Where O(t) is the function described in formula (2.1) and δ is a decay factor
in the range [0, 1] whose value is found through the evolutionary algorithm. The
factor γ is 1 in the type A network and 10 in type B. The factor γ is used to give
the Hidden Linguistic cluster the same weight as the Linguistic Input cluster.

2.9.2 Expanded Genotype

The genotypes are expanded in this stage because of the new parts in the neural
network. In the ST-CT and ST conditions there are 84 new genes (1344 bits):

26 CHAPTER 2. EXPERIMENTAL SETUP

(a) Type A neural network architecture used in the ST-CT and ST conditions.

(b) Type B neural network architecture used in the CT and NI conditions.

Figure 2.5: The two neural network architectures in the integrated stage.

2.9. THE INTEGRATED STAGE 27

15×4 for the connections between the Hidden cluster and the Linguistic Output
4 × 4 for the recurrent connections of the Linguistic Output, 4 for the decay
factor in the Linguistic Output neurons and 1 × 4 for the connections between
the Secondary Linguistic Input and the Linguistic Output. In the CT and NI
conditions, 144 new genes are added (2304 bits): the same as for the ST-CT
and ST conditions plus another 15× 4 for the connections between the Hidden
Linguistic cluster and the Hidden cluster. Together with the 612 genes from the
rest of the network, the genotype now consists of 696 or 756 genes respectively.

The newly added genes are initialised to a different random value in every
individual of every run of the experiment. The genes encoding the weights from
the Hidden Linguistic cluster to the main Hidden cluster in the network of the
CT and NI conditions are initially set to zero (otherwise these connections
would interfere with the learned primitives).

2.9.3 Linguistic Instructions

In all of the trials the new instruction move-object-to-target is given by the
caretaker. In some of the trials of the ST-CT, ST and CT conditions the robot
also gets the instructions from the previous stages. This can either be from the
caretaker or by the robot itself through the explained self talk mechanism.

In even trials of the ST-CT and CT conditions, the caretaker gives a se-
quence of linguistic instructions that should lead to the successful completion
of the integrated behaviour. The sequence of instructions given is reach, open,
grasp, move. The label is switched to the next one as soon as the success con-
dition used in the main-prim stage holds for the current primitive. The grasp
success condition is changed because the above defined condition does not make
sense here (the collision between the object and the table is never turned off).
The grasp is now considered successful if three or more of the touch sensors are
in contact with the object.

The caretaker can jump a label if the success condition is already fulfilled the
first time that this label would have been given. In practice this only happens
with the open instruction. Further, note that the caretaker never gives an
instruction in the very first step of a trial. This is necessary to let the robot in
the ST-CT condition learn that the correct self talking output in the beginning
of a trial is reach.

2.9.4 Fitness Calculation

2.9.4.1 Integrated Behaviour Fitness

The integrated behaviour fitness is made up of components used in the main-
prim stage to calculate the different primitive fitness values. The fitness function
is built in a way that all individuals always receive some fitness and that makes
minimal assumptions about how the goal of moving the object to the target
location should be achieved. As in the previous stages, the most important
thing for the network to learn is to focus on the right location at the right time.
This is why the step fitness is again calculated with formula (2.4). The focus
must be on the target if the object is lifted and on the object otherwise. sp(t) is
the same in every trial and it is therefore written as si(t). Its value is calculated
with the following formula:

28 CHAPTER 2. EXPERIMENTAL SETUP

si(t) =
1

2
sm(t) +

1

4

so(t) ¬opened ∧ ¬lifted
1 + sg(t) opened ∧ ¬lifted
2 lifted

(2.14)

Where so(t), sg(t) and sm(t) are defined in equations (2.10), (2.11) and (2.12)
respectively. Opened is true if at any time during that trial the success condition
of the open trial was fulfilled.

Penalty Fitness The Table Touching penalty is given during the whole trial.
The Object Moving penalty is given as long as the object is not lifted. The total
penalty received in a trial can not exceed the summed step fitness in that trial.
That means it is not possible to get negative total fitness.

Bonus Fitness There are two types of bonus given in the integrated be-
haviour fitness. The first bonus is given if the object is lifted and the focus
has been on the target area for at least three time steps. The second bonus
is awarded when the object has been successfully moved to the target loca-
tion (same condition as for the move primitive of the main-prim stage). Both
bonuses are worth 10 points, resulting in a total possible bonus of 20 per trial.

No bonus is given for reaching to the object or opening the hand because
this is not strictly necessary to achieve the goal. The object could be reached
from the side with the hand only just as opened as it is needed to fit the object
in the hand. In this situation, the hand might never cross the point above the
object that was defined as a successful reach in the simple-prim and main-prim
stage. Also no bonus is given for touching or grasping the object because it is
difficult to define a success condition for the grasp that is always fulfilled on the
way to achieving the goal.

First Generation Fitness A slightly modified version of the the Integrated
Behaviour Fitness is used in the very first generation in all conditions but NI.
The bonus fitness is increased by a factor of 10 and all the trials are done with the
caretaker instructions. This small optimisation helps to select the individuals for
which the combination of the primitives works best before starting to evaluate
the capability of the individuals to perform the integrated behaviour on their
own. In the NI conditions, this is not necessary as the individuals are never
given any primitive linguistic instructions.

2.9.4.2 Prediction Fitness

The prediction fitness is of completely different nature than any of the other
fitness functions. Instead of judging the robot based on the results of its actions,
the output of the neural network is scrutinised more directly. Specifically, the
values of the Linguistic Output neurons is analysed. The prediction fitness is
used when the caretaker provides the instructions in the ST-CT condition. The
goal of this fitness is to get the robot to correctly predict the next linguistic
instruction that it will be given. An instruction is considered correctly pre-
dicted if the corresponding linguistic output neuron has the highest value in the
previous time step. The linguistic instruction only changes a few times; most
of the time the next instruction will be the same as the current one. This is

2.9. THE INTEGRATED STAGE 29

why the prediction fitness emphasises the time before an instruction switch the
most. The three components that take part in the calculation are explained
in the following paragraphs. For easier understanding, note that all functions
called f are normalised in the range [0, 1].

Step Prediction This part of the fitness is awarded at every time step. It
rewards the correct prediction of the instruction of the next step. To get the
maximum fitness in a step, the correct neuron must not only have the highest
value but also be at least 0.25 higher than all the other outputs (all the outputs
are between 0 and 1). This helps to make the dominant output more robust.
Additionally, there is some fitness given to reward individuals that do not predict
the correct instruction but that are close to it. The amount depends on the
difference between the value of the neuron with the highest output and the
value of the neuron that should have the highest output. The exact formula
evaluated at every time step is the following:

fstep(t) =

{
3
4 +min

(
1
4 , o(pc(t), t)− h2(t)

)
c(t)

1
4d1(pc(t), t) ¬c(t)

(2.15)

d1(p, t) = 1− (h1(t)− o(p, t))

Where t is the time step, c(t) indicates whether the prediction is correct at time
step t, pc(t) is the primitive that should be predicted at that step, o(p, t) is
the output of the neuron corresponding to primitive p, h1(t) is the value of the
highest output and h2(t) of the second highest output. d1(p, t) is a measure on
how close the output corresponding to primitive p ∈ {r, o, g,m} is to being the
highest output. The step prediction fitness for a trial is the average over all
steps:

Fstep =
100

N

N∑
t=1

fstep(t) (2.16)

Switch Prediction If only the step prediction fitness would be used, the
robot would not learn to predict the switches from one instruction to another.
The switch prediction fitness is responsible to change this. It analyses the
linguistic outputs in the 20 steps (1 second) before an instruction switch and
rewards the robot for anticipating an upcoming switch. In the very first step
of a trial the only linguistic input that is given is move-object-to-position. The
robot needs to learn that the first self talk instruction of a trial is reach. The
first part of the switch prediction rewards the correct prediction of this first
instruction.

fswitch(p|p = r) =

{
1 c(1)
1
2d1(r, 0) ¬c(1)

(2.17)

For all the other switches, fitness is given if the output of the neuron that
corresponds to the upcoming instruction gets closer to being the highest output.
As the output of the linguistic neurons before a switch does not usually change
a lot, this change will be close to zero often. A sigmoid function is used to
distinguish more between small changes:

f iswitch(p) = (1 + exp (d1(p, ts(p))− d1(p, ts(p)− 20)))
−1

(2.18)

30 CHAPTER 2. EXPERIMENTAL SETUP

Where ts(p) is the time step just before the switch to primitive p happens. It
is not enough however to increase the correct output relative to the highest
output, but the prediction has to be correct at the switch step:

f iiswitch(p) =

{
1 c(ts(p))

d1(ts(p)) ¬c(ts(p))
(2.19)

Finally, the prediction should switch as close as possible to the actual switch
step:

f iiiswitch(p) =

{
max

(
0, 1− 1

20 (ts(p)− tpr(p))
)

c(ts(p))

0 ¬c(ts(p))
(2.20)

Where tpr(p) is the time step in which the prediction switched to the correct
one before ts(p). These three parts are taken together (for p ∈ {o, g,m}):

fswitch(p|p ∈ {o, g,m}) = 0.5f iswitch(p) + 0.1f iiswitch(p) + 0.4f iiiswitch(p) (2.21)

If a linguistic instruction is never given because that primitive was jumped,
fswitch(p) takes the maximum value of 1 for that primitive. This favours indi-
viduals that jump primitives, but is necessary to keep the maximum achievable
fitness the same across individuals.

The total switch prediction fitness in every trial is a value in the range
[0, 100]:

Fswitch = 100
∑
p

1

4
fswitch(p) (2.22)

Switch Prediction Bonus There is also a bonus in the prediction fitness. A
bonus of 10 is given for every switch that is considered successful and for the
correct prediction in the first step.

Bpred =

{
10 c(0)

0 ¬c(0)
+

∑
p∈{o,g,m}

{
10 c(ts(p)) ∧ ts(p)− tpr(p) < 5

0 otherwise
(2.23)

Total Prediction Fitness Taking it all together, the total prediction fitness
over all trials is (T being the total number of trials):

Fpred = Bpred +
1

T

∑
trials

(
1

3
Fstep +

2

3
Fswitch

)
(2.24)

It it possible that the instructions given by the caretaker do not result in a
successful integrated behaviour. In trials where the object is not successfully
lifted to the target, no prediction fitness is given as the robot did not see a
sequence of instructions that it should learn.

2.9.4.3 Maximum Fitness Values

In the ST-CT condition, the Prediction Fitness is used for the even trials and
the Integrated Behaviour Fitness for the odd trials. For the final fitness, the two
fitness values are simply added up. This means the maximum possible fitness

2.10. POST EVALUATION 31

is 440 (100 for each of the two fitness types plus 4× 20 = 80 bonus points from
four trials with the Integrated Behaviour Fitness and 4×40 = 160 bonus points
from four trials with the Prediction Fitness). In all the other conditions, the
maximum fitness is 260 (100 plus 8× 20 = 160 bonus points).

2.10 Post Evaluation

Several tests are run on the individuals resulting from the training process. The
tests are described in the following sections.

2.10.1 Integration Test

After the main-prim stage a test is run to verify that the developed primitives
can be combined to the desired integrated behaviour. The top 10 individuals
of the final generation of every run are tested. This test consists of forty trials
in which the caretaker produces the sequence of linguistic trials, as described in
Section 2.9.3, that should result in the robot reaching above the object, opening
its hand, grasping the object and then moving it to the target. The starting
positions of the object, the robot and the location of the target are the same
as in the integrated stage trials; each of the four types of positions are used
10 times. Trials are considered successful if the object is moved to the targets
within twelve seconds.

2.10.2 Robustness Test

To compare the performance of the best individual of the last generation of every
experiment run after the integrated stage, a test was performed with 40 trials.
Each of the four types of object positions and initial postures of the robot was
tested 10 times to also account for the fact that some individuals might be able
to perform the behaviour more robustly. No support was given by the caretaker
in any of the trials as the autonomous behaviour should be tested. This test
serves to compare the performance of the individuals of the different conditions.

2.10.3 Generalisation Test

To test whether the learned integrated behaviour is not only working in the
training conditions but is more general, the following post evaluation is run.
The best individual in the last generation of every run is subjected to this test.
Individuals that are not successful in any of the trials without the caretaker dur-
ing training are excluded. The post evaluation tests the autonomous behaviour,
meaning that there is no support by the caretaker. The generalisation of the
behaviour with respect to the object position is the main focus and the robot’s
initial posture the secondary focus of the test. A rectangular area centred in the
middle of the previous object positions of the size 35× 35 cm is divided into a
grid of 7×7 cells. The object is placed in the centre of every cell with a uniform
random offset of ±0.5 cm in both dimensions. The same four starting postures
of the robot are used as in the integrated stage trials, only that every object
position is now tested with every posture. The target area is always kept the
same at a position in between the two trained ones. This results in 196 types

32 CHAPTER 2. EXPERIMENTAL SETUP

of starting situations. Each of those is tested 10 times with a different random
offset for the object. The trial duration is increased to 15 seconds, to make
sure the there is enough time to move the object for the new positions that are
further away. The percentage of successful trials of an individual is taken as a
measure of the quality of its integrated behaviour. A success rate of 0 is given
to the individuals that were excluded from the post evaluation.

The results of this test help to compare the different conditions and show if
any of the conditions yield individuals that are better at applying their learned
skills to new situations. This same test is also run separately on all the fi-
nal individuals of the ST-CT and ST conditions with the caretaker giving the
instructions. These results (labelled as ST-CT0 and ST0) allow to test the hy-
pothesis that self talking individuals can generalise better to new situations than
if a caretaker gives the instructions. Further, the time that is needed to move
the object to the target will also be compared between these two situations.

Chapter 3

Results

3.1 The Simple-Prim and Main-Prim Stage

The 10 repetitions of the experiment in the simple-prim and main-prim stage
are referred to as run 0 to 9. All but run 0 terminated successfully before the
limit of 1500 generations. The fastest run terminated at generation 246 (run
7) and the slowest of the successful runs at generation 711 (run 8). Run 0
was successful in 15 of the 16 trials and the fitness of the best individual did
almost not improve between generations 900 and 1500. The median number
of generations needed to converge is 581 (lower and upper quartile at 426 and
700 generations). The simple-prim stage was completed by all of the runs, the
fastest run got there at generation 177 (run 7), the slowest at generation 876
(run 0). The median for completing the simple-prim stage is 484 generations
(lower and upper quartile: 363 and 630). The fitness values of the best genotype
in every generation of run 2 and 7 are shown in Figure 3.1 . Apart from the
total fitness, the summed up bonus fitness is also shown; every 10 points of
bonus fitness corresponds to one successful trial. The shape of the fitness curve
of run 2 is characteristic for most of the other runs: there is a fast increase
in the beginning followed by a plateau and one or two more phases of faster
growth when new trials are finished successfully. Then, there is a drop when
proceeding to the main-prim stage. The fitness reaches almost zero because of
the new kind of penalty Object Moving that is given in some of the trials of
the main-prim stage. This penalty can be so big that is cancels all the received
fitness.

Figure 3.2 depicts the best final individual of run 2 at the moment it com-
pletes the primitives in the 16 trials. A video of the robot executing the different
primitives can be found on the website (Video 1, see Appendix A.2).

Additionally to these 10 incremental runs, where the primitives are learned in
the two different stages, the experiment was also run five times starting directly
in the main-prim stage (non-incremental runs). Four of the five runs com-
pleted in between 250 and 1146 generations (median 531, lower/upper quartile
454/1146), the other run is very similar to the incremental run 0 above, com-
pleting all but one trial. The shape of the development of the fitness of the top
individual in every generation is very similar to the ones described above. A
comparison of the number of generations needed to converge between the incre-

33

34 CHAPTER 3. RESULTS

0 100 200 300 400 500 600 700
Generation

0

50

100

150

200

Fi
tn

es
s

Simple-Prim and Main-Prim Stage Fitness Run 2
Total Summed Bonus Average

0 100 200 300 400 500 600 700
Generation

0

50

100

150

200

Fi
tn

es
s

Simple-Prim and Main-Prim Stage Fitness Run 7
Total Summed Bonus Average

Figure 3.1: Main, bonus and average fitness during the simple-prim and main-
prim stage of run 2 and 7 (top and bottom figures). Every 10 bonus points
represent one successful trial. The dotted line shows the maximum possible
bonus.

3.1. THE SIMPLE-PRIM AND MAIN-PRIM STAGE 35

Figure 3.2: Positions when completing the primitives, every row corresponds to
a primitive (reach, open, grasp, move).

36 CHAPTER 3. RESULTS

10 15 20 25 30 35 40
Successful Trials

0.00

0.02

0.04

0.06

0.08

0.10

Pr
op

or
tio

n
of

 In
di

vi
du

al
s

Successful Integration of Primitives
Incremental
Non-Incremental

Figure 3.3: Comparison between the incremental (simple-prim and main-prim
stage) and non-incremental (only main-prim stage) approach regarding the suc-
cess of the primitive integration.

mental and non-incremental approach with a two-tailed Mann-Whitney U Test
yielded a non-significant difference (p = 0.90).

The non-incremental runs show that the elementary behaviours can be learned
in a single stage and therefore that the simple-prim stage is not necessary. How-
ever, to run the algorithm for 100 generations (with four parallel threads) takes
about 2.5 hours in the simple-prim stage and 18.5 hours in the main-prim stage.
This is due to the difference in simulation time between the kinematic and dy-
namic mode. It is also the reason why only five non-incremental experiment
runs could be afforded.

3.1.1 Integration Test

The integration test described in Section 2.10.1 were run for the individuals
from the incremental and from the non-incremental training process. Figure
3.3 shows how many individuals succeeded in how many trials. As we can see,
the integration is possible in all off the examined individuals, although for most
it is not reliably reproducible or not successful for all starting positions. The
individuals that did better at the primitives do not have a clear advantage for
the integrated behaviour (not shown in figure). Indeed, individuals that can
not execute all the primitives perfectly, outperformed others that can in many
cases.

The median of the amount of successful trials of all the individuals from the
incremental approach is 25, the one of the non-incremental approach 23.5. This
difference however is not statistically significant (p = 0.10, two-tailed Mann-
Whitney U Test).

3.2. THE INTEGRATED STAGE 37

ST-CT ST CT NI
Condition

0

20

40

60

80

100

Pe
rc

en
t S

uc
ce

ss

Total Success in Trained Positions

Figure 3.4: Comparison of the percentage of successful trials in the trained
positions between the individuals coming from different conditions (the whiskers
expand to the minimum and maximum with outliers marked as +).

An analysis of the caretaker instructions shows that the open primitive was
jumped more often than not. The median over all the individuals of the number
of trials in which it was jumped is 30 of the possible 40 trials (lower quartile at
20.25 and upper at 35).

Note that the way the caretaker decides to switch from one primitive to
another is only one example of sensible guidelines. The results of this integration
test might look quite different if other rules were chosen.

3.2 The Integrated Stage

In all of the conditions the algorithm produces individuals that learned the
integrated behaviour at least in some cases. The results of the robustness test
described in Section 2.10.2 are shown in Figure 3.4 (the data is also summarised
in the Appendix in Table A.1. The figure depicts the percentage of successful
trials of the tested individuals taken together by condition. The statistical
significance of the difference between the groups is evaluated with a two-tailed
Mann-Whitney U Test. The results of the test are shown in Table 3.1. The
best performance is obtained in the ST-CT and ST conditions. There is no
significant difference between the CT and NI conditions, but the best individual
of the CT conditions is clearly better than the one of the NI condition.

The development of the fitness in the course of the algorithm and more
detailed description of the results of the different conditions are explained in

38 CHAPTER 3. RESULTS

ST-CT ST CT NI
ST-CT - 24 9.5** 8.5**

ST 76 - 20* 16.5*
CT 90.5** 80* - 51
NI 91.5** 83.5* 49 -

Table 3.1: Two-tailed Mann-Whitney U Test values of the results of the ro-
bustness test. The smaller the value the more likely the condition of that row
is better than the one of that column. * indicates the value is significant for
α = 0.05 (critical U-value: 23) and ** for α = 0.01 (critical U-value: 16).

the next sections.

3.2.1 Condition ST-CT

Nine of the runs yielded individuals that perform the integrated behaviour au-
tonomously in all the four types of positions. Figure 3.5 show the fitness of the
best agent in every generation for three of the experiment runs. The solid lines
are the total fitness values, the dotted the total bonus and the dashed the total
bonus received in self-talk trials. The curve of run three is representative of five
runs that have a rapid increase in the beginning, corresponding to the learning
of a self-talking strategy that results in a successful integrated behaviour, fol-
lowed by a long slightly jagged plateau. Another four runs have fitness curve
similar to the one of run 1 where the self-talk strategy is only learned sometime
in the middle of the process. Run 8 is the only run where the fitness stays more
or less flat the whole time and the integrated behaviour is not learned.

3.2.2 Condition ST

The best individual at the end of eight of the runs learned the integrated be-
haviour in almost all of the trials. For seven of these, the maximum bonus
fitness was achieved. A representative fitness curve of this is the one of run 0
in Figure 3.6. The self-talking strategy is learned in the first half of the evolu-
tionary process. In some runs, the strategy works in all trials within just three
generations, in others it takes up to forty generations for the strategy to mature.
The bonus fitness of run 6 indicates that no strategy was found that works in
all of the trials. In the remaining two runs the fitness stays completely constant
at a very low value and no integrated behaviour is learned. This is illustrated
with the fitness curve of run 1.

3.2.3 Condition CT

Four of the runs of this condition resulted in individuals that are able to perform
the integrated behaviour autonomously at least in some trials. Run 9, whose
fitness progression is show in Figure 3.7, is one of the two runs that resulted in
an individual that executes the integrated behaviour reliably in all trials. Two
other runs, illustrated with run 8 in the figure, learned the integrated behaviour
in most of the trials, but the behaviour is not very reliable. This can be seen by
the strongly fluctuating fitness. In the other six runs the integrated behaviour

3.2. THE INTEGRATED STAGE 39

0 20 40 60 80 100
Generation

0

100

200

300

400

Fi
tn

es
s

Condition ST-CT Fitness
Total r1
Tot Bon r1
ST Bon r1

Total r3
Tot Bon r3
ST Bon r3

Total r8
Tot Bon r8
ST Bon r8

Figure 3.5: Fitness of the best individual in every generation of the integrated
stage, ST-CT condition, runs 1, 3 and 8.

0 20 40 60 80 100
Generation

0

50

100

150

200

250

300

Fi
tn

es
s

Condition ST Fitness
Total r0
Tot Bon r0

Total r1
Tot Bon r1

Total r6
Tot Bon r6

Figure 3.6: Fitness of the best individual in every generation of the integrated
stage, ST condition, runs 0, 1 and 6.

40 CHAPTER 3. RESULTS

0 20 40 60 80 100
Generation

100

150

200

250

Fi
tn

es
s

Condition CT Fitness
Total r0
Tot Bon r0

Total r8
Tot Bon r8

Total r9
Tot Bon r9

Figure 3.7: Fitness of the best individual in every generation of the integrated
stage, CT condition, runs 0, 8 and 9.

is not learned at all and the fitness stays flat as in run 0. In some of these runs
there are some spikes where the integrated behaviour was successful. But such
individuals were only able to do the behaviour in very specific circumstances
and were lost in later generations when they failed to perform.

Note how the best individual in every generation always had at least a bonus
of 80. This is due to the successful integrated behaviour in the trials where the
caretaker is giving instructions.

3.2.4 Condition NI

Five runs produced individuals that are able to do the behaviour in some of
the trials. There are however no individuals that are able to reliably perform
the integrated behaviour in all trials. The most promising run is run 8 shown
in Figure 3.8. The fitness curve is jagged and continuously increasing over the
100 generations. In some generations the behaviour was successful in all trials.
Three additional runs have a similar fitness curve but the highest bonus achieved
is between 110 and 150. The only other run in which the behaviour is learned
at least partially is run 2. In the other five runs nothing is learned except for
a few lucky successes as in the CT condition. Run 0 is the run with the most
such spikes.

3.2. THE INTEGRATED STAGE 41

0 20 40 60 80 100
Generation

0

50

100

150

200

250

Fi
tn

es
s

Condition NI Fitness
Total r0
Tot Bon r0

Total r2
Tot Bon r2

Total r8
Tot Bon r8

Figure 3.8: Fitness of the best individual in every generation of the integrated
stage, NI condition, runs 0, 2 and 8.

3.2.5 Generalisation

Figure 3.9 shows a box plot comparing results of the different conditions of the
generalisation test described in Section 2.9.3 (see Table A.2 for exact values).
The data for ST-CT0 and ST0 comes from taking the same individuals as for
the ST-CT and ST conditions respectively but instead of allowing the robot to
self-talk, the instructions are given by the caretaker.

Table 3.2 shows the results of comparing the results of the conditions with
a Mann-Whitney U Test. The ST-CT condition is significantly better than the
ST, CT and NI condition and the ST condition than NI.

Figure 3.10 compares the results of the generalisation post evaluation of the
best individual of every of the four conditions. For the ST-CT and ST condition,
the results of the best individual when using the caretaker instructions (ST-CT0,
ST0) are also shown.

The performance of the individuals from the ST-CT and ST conditions
when they are using self talk instructions and when the caretaker provides the
instructions are compared in Figure 3.11. A two-tailed Mann-Whitney U Test
was used to compare the performance of the 10 repetitions of the 196 trials.
It shows that for six of the individuals of the ST-CT condition and 3 of the
ST condition, the performance is significantly better when they are following
their own instructions. Furthermore, the time that it takes from the start of the
trial until the object reaches the target is compared in the individuals that are
significantly better when self talking. The durations in Table 3.3 show that for
all of the individuals of the ST-CT condition and for two of the ST, this time

42 CHAPTER 3. RESULTS

ST-CT ST CT NI ST-CT0 ST0
Condition

0

20

40

60

80

100

Pe
rc

en
t S

uc
ce

ss
Total Success

Figure 3.9: Comparison of the percentage of successful trials in the generalisa-
tion post evaluation test between the individuals coming from different condi-
tions.

ST-CT ST CT NI ST-CT0 ST0
ST-CT - 22* 11** 7.5** 35 -

ST 78* - 32 16** - 63.5
CT 89** 68 - 45 - -
NI 92.5** 84** 55 - - -

ST-CT0 65 - - - - -
ST0 - 36.5 - - - -

Table 3.2: Two-tailed Mann-Whitney U Test values of the results of the post
evaluation. The smaller the value the more likely the condition of that row
is better than the one of that column. * indicates the value is significant for
α = 0.05 (critical U-value: 23) and ** for α = 0.01 (critical U-value: 16).

3.2. THE INTEGRATED STAGE 43

Figure 3.10: Percentage of successfully executed integrated behaviours when the
object is located in each of the 49 cells of the generalisation test. The white
dots represent the positions of the object during training.

Condition ST-CT ST
Run 1 2 4 6 7 9 3 5 9

Self Talk 8.77 7.40 7.06 8.51 8.87 7.87 8.18 7.95 8.12
Caretaker 8.99 8.75 9.00 8.97 9.05 8.94 8.80 7.89 9.12

Table 3.3: Average time in seconds needed to move the object to the target
location when using self talk or caretaker instructions. The average is taken
over all the successful trials.

is lower.

3.2.6 Strategies

In this section the strategies of some individuals to complete the integrated be-
haviour are examined. Figure 3.12 shows the self talk and caretaker instructions
in the four trial types of the integrated stage. The individuals were selected to
show the important differences in the strategies. For the individual from the
ST-CT condition run 7 and ST run 5 the self talk instructions are very similar
to the caretaker instructions. There is some variation in the length of the prim-
itives, but the sequence of primitives is the same. This is especially interesting
for the ST condition as these individuals have not been given the caretaker
instruction during training.

In the self talk instructions of the individual from the ST-CT condition run 7,
there is rapid fluctuation between two instructions before the new instruction is
established continuously. This behaviour can be seen in a few of the individuals
from both conditions.

44 CHAPTER 3. RESULTS

Figure 3.11: Comparison between self talk (ST-CT, ST) and caretaker (ST-
CT0, ST0) instructions of the final best individual of every run. Big dots and
plus markers indicate that the difference is statistically significant (p > 0.01).

Another interesting strategy is only seen in the CT condition. It is shown
with the best individual from run 2: the reach instruction is shortened to almost
nothing and the grasp starts much earlier. Just as all the other individuals, it
never uses the open instruction, although the caretaker uses it in some cases.
Both of these changes allow the individual to finish the behaviour faster, but
reduce its ability to generalise with respect to the object position.

3.2. THE INTEGRATED STAGE 45

0 50 100 150 200 250
Time Step

Caretaker
Self Talk

Caretaker
Self Talk

Caretaker
Self Talk

Caretaker
Self Talk

Trial 0

Trial 1

Trial 2

Trial 3

Instructions in Condition ST-CT run 7
reach
open
grasp
move

0 50 100 150 200 250
Time Step

Caretaker
Self Talk

Caretaker
Self Talk

Caretaker
Self Talk

Caretaker
Self Talk

Trial 0

Trial 1

Trial 2

Trial 3

Instructions in Condition ST-CT run 9
reach
open
grasp
move

0 50 100 150 200 250
Time Step

Caretaker
Self Talk

Caretaker
Self Talk

Caretaker
Self Talk

Caretaker
Self Talk

Trial 0

Trial 1

Trial 2

Trial 3

Instructions in Condition ST run 2
reach
open
grasp
move

0 50 100 150 200 250
Time Step

Caretaker
Self Talk

Caretaker
Self Talk

Caretaker
Self Talk

Caretaker
Self Talk

Trial 0

Trial 1

Trial 2

Trial 3

Instructions in Condition ST run 5
reach
open
grasp
move

Figure 3.12: Self talk and caretaker instructions in the best individual of the
ST-CT condition run 7 and 9 and ST run 2 and 5 during the four types of trials
used in the integrated stage.

Chapter 4

Discussion

In this chapter, the motor primitives that were learned in the experiments are
discussed first. Then, the different ways in which the integrated behaviour was
learned is analysed. The last section concludes the discussion and presents
possible future work that could expand and improve these experiments.

4.1 Motor Primitives

The results of the experiments show that the availability of linguistic instruc-
tions corresponding to goal-directed behaviour promotes the emergence of ba-
sic behavioural units, the motor primitives, that can be combined to produce
higher-level behaviour. The emerging motor primitives possess several of the
properties of organic compositionality presented in the introduction. The first
is the already mentioned possibility to combine them to new behaviour. The in-
tegration tests after the main-prim stage demonstrate how well the individuals
handle the transitions between the primitives without the need to learn them.
Visual inspection of the integrated behaviour shows that the change from one
primitive to another is often quite smooth (see Video 2, Appendix A.2). We
attribute this capability to the fact that all the primitives are controlled by the
same neural network and that the primitives were learned in similar circum-
stances as they are later needed.

The proposed mechanism to internalise the integrated behaviour through
self talk is able to exploit the fact that the primitives fit together well and
improve the smoothness of the movement. This is achieved through changes in
the timing of the instructions. This can be seen by the fact that the total time
needed to complete the behaviour is usually lower when using self talk and by
visually inspecting the behaviour (see Video 3, Appendix A.2).

Other properties of organic compositionality are shown by the generalisation
post evaluation: the primitives are to a good extent able to deal with variability
in the location of the object and the initial posture of the robot. More detailed
analysis of a similar control system used in a similar task in [24] suggests that
the primitives would also be able to deal with different object sizes and shapes.

47

48 CHAPTER 4. DISCUSSION

4.1.1 Incremental Primitive Learning

Whether the primitives are learned in one stage or incrementally by first learning
simplified primitives and only then the actual primitives, does not seem to
produce significantly different individuals. There is also no apparent difference
in the number of generations needed for the acquisition of the skills nor in the
chance that the algorithm ends in a local minimum. The only obvious advantage
of one approach over the other is the reduced running time of the incremental
algorithm.

As mentioned in Section 2.7, the incremental learning process was intro-
duced because of the unsatisfactory results with the direct approach. Several
other changes to the experiment setup were applied after the switch to incre-
mental learning. The exact success conditions of the primitives were for example
modified and the number of individuals in a genome was doubled. These modi-
fications must have enabled the non-incremental approach to work as well. This
was not noticed however until the final experiment was performed. There was
little incentive to switch back because of the obvious practical advantages of the
reduced simulation time.

We can deduce from the comparison with these previous experiments that
the incremental approach might be necessary when the primitives are more
complex or the parameters of the algorithm are less optimised.

4.2 Integrated Behaviour

All of the experimental conditions of the integrated stage produce individuals
that are able to autonomously produce the integrated behaviour. The conditions
in which there is no self talk (CT and NI) show that robots that have acquired
the elementary behaviours are capable to learn a more complex skill that is
composed of these behaviours. Massera et al. used very similar methods and
an almost identical task in [7]. Their individuals did not learn the task with
a network that was evolved without having learned any primitives beforehand
and without linguistic support. This suggests that the learned motor primitives
represent a prerequisite for the development of integrated behaviour of the level
of complexity considered in this thesis. The difference in performance between
the individuals with support from the caretaker (CT) and the ones without
(NI) is not significant. However, if we ignore the runs in which the algorithm
did not find a working solution, we can see that all of the individuals of the CT
condition show a much better ability to generalise than any of the individuals
from the NI condition. This means that the presence of the caretaker improves
the resulting autonomous behaviour.

But we have found a better method to integrate the motor primitives. The
self talk mechanism has been shown to significantly improve the robustness of
the resulting behaviour and its ability to deal with new situations. Not only
the quality of the behaviour is better, but also the chance of finding successful
individuals is higher with the algorithm operating on self talking individuals.
From a theoretical point of view, this result confirms the theory elaborated by
Vygotsky. From a engineering point of view, it suggests that language medi-
ated learning can enable the acquisition of robust and adaptable behavioural
capabilities.

4.3. FUTURE WORK AND CONCLUSIONS 49

From visual comparisons between individuals that self talk and others that
do not, we get an intuitive reason why the former have a behaviour that gen-
eralises better: individuals without self talk start closing their hand while they
are reaching for the object. By the time the object is reached, it just fits in
between the fingers. The activation of the tactile sensors then seems to trigger
the switch of the focus to the target location and the further closing of the
hand. The fact that the hand is closing from the beginning of the movement
makes the behaviour more dependant on the initial position of the arm and the
object. For example, if the object is further away than usual, the closing fingers
might touch the object during the approach and make it roll away (see Video
4, Appendix A.2). In contrast to that, most self talking individuals first have a
reaching phase, where the hand is kept fairly open until it is close to the object.
Then, either triggered by the proximity to the object or the passing of time,
they switch to the grasp primitive (see Video 5, Appendix A.2). We infer from
this, that the self talking mechanism improves the individual’s ability to choose
the appropriate behaviour in situations where multiple actions are possible in
similar sensory circumstances.

The self talking condition (condition ST) shows that the algorithm can find a
working combination of primitives without any external help. This is remarkable
as it does not only show that the self talking mechanism serves to internalise
a sequence of instructions, but also, that the trial and error learning process
can find such a sequence on its own. Of course the number of primitives that
are available is very small and it is not obvious how this would work out for a
larger set of primitives or for more complex integrated behaviours. In fact we
have run preliminary experiments (with only a few runs per condition) where the
integrated behaviour had to be executed starting with a closed hand. This made
it necessary to use the open primitive before the object could be grasped, and
therefore to use all four primitives. This was only learned in the condition where
the caretaker helped with the acquisition of the self talking strategy (condition
ST-CT).

Our experiments further show that the presence of the caretaker instructions
during training improves the resulting behaviour in terms of stability and how
well it generalises. In the ST-CT condition, the robot learns a mapping of the
internal representation of the sensory input to the linguistic output correspond-
ing to the next instruction given by the caretaker. This mapping is learned in
parallel to letting the robot use its linguistic output to guide its actions, and
verifying whether the desired behaviour is achieved. This is important as it does
not force the robot to learn the exact caretaker instructions, but instead focuses
on the extraction of the relevant aspects that allow the integrated behaviour
to be completed. As is illustrated in Figure 3.5, none of the individuals ever
learn to perfectly predict all the changes in the caretaker instructions, but are
nevertheless able to perform the behaviour correctly. Furthermore, the parallel
learning also makes it possible for the individuals to not only extract the essence
of the instructions, but to optimise them to achieve the goal in a shorter time.

4.3 Future Work and Conclusions

For future work we propose to verify the results on the physical iCub robot. A
lot of the necessary work has already been done as the EvoICub software was

50 CHAPTER 4. DISCUSSION

built to control the physical robot in the same way as the simulated one. A vision
module that finds the two-dimensional coordinate of a coloured object already
exists. However, it would have to be expanded to get the third dimension by
either assuming the object stays on the table or by using the two eyes of the
iCub. Additionally, the multi-dimensional and continuous tactile sensor signal
from the robot would have to be converted to a suitable binary signal.

Further, the quality and the amount of motor primitives should be increased
in future work. For example, the grasp should be able to handle objects that
need to be grasped from different directions and hold on to the objects more
securely. It might be a good idea to separate the control of the focus into a
separate network that is expanded to control the movement of the head and
eyes to look at the current point of interest. Separate instructions could then
be given to this focus network and the reach/grasp network which would make
it possible to use compositional instructions such as “reach ball” and “reach
cylinder”. In this example, the focus network would look at the correct object
and the reach/grasp network would reach that object.

Another interesting expansion of these experiments would be to let the self
talking mechanism learn to correct errors. If the robot has grasped the object for
example and starts moving it, but then the object is dropped, the self talk should
again switch to the reach instruction. Such a behaviour has indeed already been
observed in one of the preliminary experiments. It might be possible to achieve
this correcting behaviour by simply exposing the robot to training situation in
which the object is dropped, and rewarding it for starting to reach it again.

In this thesis we showed that adaptable and combinable motor primitives for a
humanoid robot can be developed through a trial and error process that finds
suitable values for the free parameters of the artificial neural network controlling
the robot. The fact that these lower-level motor primitives are associated to a
linguistic instruction that has been provided throughout the training process
by a caretaker, allows the robot to guide its higher-level actions by learning to
give itself these instructions. This self talking mechanism enables the robot to
complete tasks that need the combination of the learned primitives either by
loosely learning the sequence of instructions proposed by the caretaker or by
finding its own strategy.

The model proposed in this thesis represents an interesting and effective
way to combine goal-directed trial and error learning with supervised learning
(a learning process that requires and exploits information that provides indica-
tion on how a given action should be produced). These two learning methods
have complementary advantages and drawbacks that make them more or less
suitable depending on the circumstances. On the one hand, trial and error
learning is adequate in situations in which it is difficult from the point of view
of the designer to specify how an action should be produced. This is indeed the
case for the motor primitives of our experiments in which the robot has to de-
termine the desired angular position of each joint over time. On the other hand,
supervised learning techniques are suitable in situations in which the designer
can specify the way in which an action has to be produced. In the context of
our experiment, this is the case for the acquisition of the integrated behaviour
in robots that already posses the relevant elementary skills. The good results
obtained in the ST-CT condition indeed demonstrate that the combination of
a trial and error learning for the training of the primitives, and of a language

4.3. FUTURE WORK AND CONCLUSIONS 51

mediated supervised learning for the integrated action, represent an effective
learning method. This condition also shows that the combination of the two
types of learning is benefitial at the level of the integrated action. The robot can
exploit the supervision provided by the caretaker, but is also able to improve
the caretaker’s strategy thanks to a trial and error refinement of the timing of
the used primitives.

Appendix A

Supplementary Results

A.1 Post Evaluation Test Results

0 1 2 3 4 5 6 7 8 9

ST-CT 95 95 87.5 100 67.5 90 92.5 97.5 0 97.5
ST 67.5 0 95 90 0 90 75 80 87.5 82.5
CT 0 0 0 62.5 62.5 0 0 0 50 90
NI 0 0 32.5 0 0 32.5 62.5 60 75 0

Table A.1: Percent of successful trials of all individuals in the robustness test.

0 1 2 3 4 5 6 7 8 9

ST-CT 65.2 57.0 49.0 71.0 51.3 51 63.4 66.5 0.0 73.3
ST 39.2 0.0 43.5 64.9 0.0 67.7 32.9 43.2 42.6 50.4
CT 0.0 0.0 0.0 40.6 44.6 0.0 0.0 0.0 45.6 59.3
NI 0.0 0.0 3.7 0.0 0.0 0.0 16.6 18.1 34.3 0.0

ST-CT0 51.6 52.4 48.9 62.2 61.4 50.4 54.7 52.5 49.8 54.8
ST0 53.6 50.4 49.4 49.2 49.0 35.0 32.1 51.4 49.6 43.7

Table A.2: Percent of successful trials of all individuals in the generalisation
test.

A.2 Electronic Supplementary Material

Videos of various behaviours of the developed individuals can be found on the
website http://laral.istc.cnr.it/esm/selftalk-integration/.

53

Bibliography

[1] S. Schaal, “The new robotics — towards human-centered machines,” HFSP
Journal, vol. 1, no. 2, pp. 115–126, 2007.

[2] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini, “Developmental
robotics: a survey,” Connection Science, vol. 15, no. 4, pp. 151–190, 2003.

[3] R. Pfeifer, M. Lungarella, and F. Idia, “Self-organization, embodiment, and
biologically inspired robotics,” Science, vol. 318, no. 5853, pp. 1088–1093,
2007.

[4] V. Tikhanoff, J. Fontanari, A. Cangelosi, and L. Perlovsky, “Language
and cognition integration through modeling field theory: Category forma-
tion for symbol grounding,” in Artificial Neural Networks — ICANN 2006,
vol. 4131 of Lecture Notes in Computer Science, pp. 376–385, 2006.

[5] M. Mirolli and D. Parisi, “Towards a vygotskyan cognitive robotics: The
role of language as a cognitive tool,” New Ideas in Psychology, vol. 29,
no. 3, pp. 298–311, 2011.

[6] Y. Sugita and J. Tani, “Learning semantic combinatoriality from the in-
teraction between linguistic and behavioral processes,” Adaptive Behavior,
vol. 13, no. 1, pp. 33–52, 2005.

[7] G. Massera, E. Tuci, T. Ferrauto, and S. Nolfi, “The facilatory role of
linguistic instructions on developing manipulation skills,” IEEE Computa-
tional Intelligence Magazine, vol. 5, no. 3, pp. 33–42, 2010.

[8] M. Mirolli and D. Parisi, “Talking to oneself as a selective pressure for the
emergence of language,” in The Evolution of Language, pp. 214–221, World
Scientific Publishing, 2006.

[9] A. Cangelosi, G. Metta, G. Sagerer, S. Nolfi, C. Nehaniv, K. Fischer,
J. Tani, T. Belpaeme, G. Sandini, F. Nori, L. Fadiga, B. Wrede, K. Rohlf-
ing, E. Tuci, K. Dautenhahn, J. Saunders, and A. Zeschel, “Integration of
action and language knowledge: A roadmap for developmental robotics,”
IEEE Transactions on Autonomous Mental Development, vol. 2, no. 3,
pp. 167–195, 2010.

[10] M. Schlesinger, “Evolving agents as a metaphor for the developing child,”
Developmental Science, vol. 7, no. 2, pp. 158–164, 2004.

[11] S. Schaal, “Arm and hand movement control,” in The handbook of brain
theory and neural networks, pp. 110–113, MIT Press, second ed., 2003.

55

56 BIBLIOGRAPHY

[12] S. Flash and H. B., “Motor primitives in vertebrates and invertebrates,”
Current Opinion in Neurobiology, vol. 15, no. 6, pp. 1–7, 2005.

[13] M. A. Arbib, “Schema theory,” in The handbook of brain theory and neural
networks, pp. 993–998, MIT Press, second ed., 2003.

[14] K. A. Thoroughman and S. R., “Learning of action through adaptive com-
bination of motor primitives,” Nature, vol. 407, no. 6805, pp. 742–747,
2000.

[15] J. Konczak, “On the notion of motor primitives in humans and robots,”
vol. 123, pp. 47–53, Lund University Cognitive Studies, 2005.

[16] A. Billard, S. Calinon, R. Dillman, and S. Schaal, “Robot programming by
demonstration,” in Springer Handbook of Robotics, pp. 1371–1394, Springer
Berlin / Heidelberg, 2008.

[17] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning movement
primitives,” in Robotics Research, vol. 15 of Springer Tracts in Advanced
Robotics, pp. 561–572, Springer Berlin / Heidelberg, 2005.

[18] J. Tani, R. Nishimoto, and R. W. Paine, “Achieving organic composition-
ality through self-organization: Reviews on brain-inspired robotics experi-
ments,” Neural Networks, vol. 21, no. 4, pp. 584–603, 2008.

[19] J. Tani, R. Nishimoto, J. Namikawa, and M. Ito, “Codevelopmental learn-
ing between human and humanoid robot using a dynamic neural-network
model,” IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 38, no. 1, pp. 43–59, 2008.

[20] T. Inamura, I. Thosima, H. Tanie, and Y. Nakamura, “Embodied symbol
emergence based on mimesis theory,” The International Journal of Robotics
Research, vol. 23, no. 4–5, pp. 363–377, 2004.

[21] Y. Yamashita and J. Tani, “Emergence of functional hierarchy in a multiple
timescale neural network model: A humanoid robot experiment,” PLoS
Computational Biology, vol. 4, no. 11, pp. 1–18, 2008.

[22] A. Asada, K. F. MacDorman, H. Ishiguro, and Y. Kuniyoshi, “Cognitive de-
velopmental robotics as a new paradigm for the design of humanoid robots,”
Robotics and Autonomous Systems, vol. 37, no. 2–3, pp. 185–193, 2001.

[23] G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori, “The icub hu-
manoid robot: an open platform for research in embodied cognition,” in
Proceedings of the 8th Workshop on Performance Metrics for Intelligent
Systems, PerMIS ’08, pp. 50–56, ACM, 2008.

[24] G. Massera, A. Cangelosi, and S. Nolfi, “Evolution of prehension ability in
an anthropomorphic neurorobotic arm,” Frontiers in Neurorobotics, vol. 1,
no. 4, pp. 1–7, 2007.

