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� Abstract

Gianluca Massera — Evolution of Grasping Behaviour in Anthropomorphic

Robotic Arms with Embodied Neural Controllers

The works reported in this thesis focus upon synthesising neural controllers for

anthropomorphic robots that are able to manipulate objects through an automatic

design process based on artificial evolution. The use of Evolutionary Robotics makes

it possible to reduce the characteristics and parameters specified by the designer to

a minimum, and the robot’s skills evolve as it interacts with the environment. The

primary objective of these experiments is to investigate whether neural controllers

that are regulating the state of the motors on the basis of the current and previously

experienced sensors (i.e. without relying on an inverse model) can enable the robots

to solve such complex tasks. Another objective of these experiments is to investigate

whether the Evolutionary Robotics approach can be successfully applied to scenarios

that are significantly more complex than those to which it is typically applied (in

terms of the complexity of the robot’s morphology, the size of the neural controller,

and the complexity of the task). The obtained results indicate that skills such as

reaching, grasping, and discriminating among objects can be accomplished without

the need to learn precise inverse internal models of the arm/hand structure. This

would also support the hypothesis that the human central nervous system (cns) does

necessarily have internal models of the limbs (not excluding the fact that it might

possess such models for other purposes), but can act by shifting the equilibrium

points/cycles of the underlying musculoskeletal system. Consequently, the resulting

controllers of such fundamental skills would be less complex. Thus, the learning of

more complex behaviours will be easier to design because the underlying controller

of the arm/hand structure is less complex. Moreover, the obtained results also show

how evolved robots exploit sensory-motor coordination in order to accomplish their

tasks.
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1 Introduction

Humans use their hands in practically every moment of their lives to explore, per-

ceive, and recognise surfaces and objects. Aside from receiving tactile information,

hands are also used for physically manipulating the environment, e.g. to manipu-

late tools and objects, to perform actions such as grasping, manoeuvring, lifting,

carrying, etc. In order to achieve a complete and complex variety of movements,

it is important to consider the entire system involved, which consists of the hands

and the support given by the arms, forearms and shoulders. This system allows

the organism to correctly place, reach for, and manipulate objects or tools. Un-

doubtedly, the dexterity in humans is related to the complexity of their arm and

hand structures.

The arm control and hand movements of human and non-human primates are a

fascinating research topic in cognitive science, and especially so in the domain of

robotics. Despite the many attempts that have been made, the controllers of robotic

manipulators do not show the same dexterity as humans. Indeed, the task of model-

ling in detail the mechanisms underlying arm and hand movement control in humans

and primates, and the task of building robots that are able to perform human-like

arm/hand movements still represents an extremely challenging goal (Schaal, 2003).

Moreover, despite the progress achieved in robotics through the use of traditional

control methods (Gienger et al., 2008), the attempt to develop robots with the

dexterity and robustness of humans remains a long-term goal.

In robotics, the design of adaptive robotic systems that are able to perform com-

plex object-manipulation tasks is one of the most important research issues (Schaal,

2003). In cognitive science, the relationship between action control and other cognit-

ive functions has been shown to be important in the study of cognition (Pulvermuller,

2005; Cangelosi et al., 2005). For example, various theories of language evolution

have focused on the relationship between the use of the hands, tool–making, and
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language evolution (Corballis, 2003).

In neuroscience, research on the cortical areas devoted to arm and hand control

have revealed the existence of a group of special neurons (mirror neurons) that give

the brain’s motor-control areas an important role in our cognitive abilities. This

corroborates the idea that these areas are not used only to control our limbs, but

they also participate in other cognitive skills, such as understanding the actions,

goals, and emotions of other people (Rizzolatti & Craighero, 2004; Gallese & Lakoff,

2005; Rizzolatti & Arbib, 1998).

Within the realm of arm control, reaching and grasping behaviours represent key

abilities, since they constitute a prerequisite for any object manipulation. Despite

the importance of this topic, and despite the large body of available behavioural

and neuro-psychological data, as well as the vast number of studies that have been

carried out, the issues of how primates and humans learn to display reaching and

grasping behaviour still remain under debate, and the findings are often controversial

(Schaal, 2003; Shadmehr, 2003). Similarly, while many of the critical aspects that

make reaching and grasping behaviours difficult to implement have been identified,

experimental research based on different methodologies does not seem to converge

toward the identification of a general methodology for robotic arm design.

One of the most controversial areas of contention regards optimal computational

models (Wolpert & Flanagan, 2003; Kawato, 2003) and equilibrium point approaches

(Shadmehr, 2003). Optimal computation models are based on the assumption that

our brain has areas devoted to encoding our limbs and the external world/objects in

what are called internal models. These models are used for forecasting the results of

our actions and future states of the external world. These provisions are the ’input’

of areas that are devoted to planning and deciding actions.

On the other hand, the equilibrium point hypothesis, which is based upon observa-

tions of the musculoskeletal system and the spinal cord neurocircuits, states that as

regards the control of our limbs, it is not necessary to assume the existence of such
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internal models. Human muscles act like a set of non-linear spring-like actuators

(Sandercock et al., 2003; Shadmehr & Wise, 2005a) and their passive properties

define their positions of rest. When muscles are stimulated, the arm will assume

a posture (which is considered to be an equilibrium point of a dynamical system

composed of muscles and spinal cord neurocircuits) that depends upon muscle ac-

tivation, regardless of the initial posture, and perturbations are damped and correc-

ted by spinal cord neurocircuits that do not need to explicitly involve the central

nervous system (cns). This implies that the cns does not need an internal model

of the limbs in order to control them, but just a method that enables it to shift the

equilibrium points of the underlying dynamical systems that act upon our limbs.

This thesis supports the dynamic systems approach and equilibrium point hypo-

thesis. This thesis proposes the use of evolutionary robotics methodology to de-

velop neural controllers that act like dynamical systems that are able to exploit the

non-linear interaction between the robot and its environment. In this model, beha-

viours are determined by trajectories toward the equilibrium points of the systems.

Robustness and adaptivity are considered to be properties of evolved dynamical sys-

tems in which the equilibrium point changes in response to changing environments

or unseen situations, without an explicit need for complex internal models, and by

employing very simple neural network structures (Nolfi, 2005a).

1.1 Organisation of the Content

The content of this thesis is divided into 9 chapters and 4 appendices. Chapters 1,

2, and 3 are introductory. They address anatomical issues and general aspects of the

human arm and hand. They also provide an overview of problems related to reach-

ing for and grasping objects, from the control engineering point of view. Chapter 4

concerns the methodology used in the experiments and compares it with the meth-

odologies presented in the introductory chapters. It also discusses the state of the

art with regard to related research that employs the same methodology, focusing on
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the differences with the methodologies described in Chapter 3. The four experiments

presented in this thesis are reported in Chapters 5, 6, 7, and 8, respectively. The

experiments are presented in the order in which they were performed by the author

during his research. The first experiment concerns the realisation of only a reaching

behaviour with a simple robotic arm. The second experiment is the first one that

addresses the act of grasping by a fully anthropomorphic robotic arm. Following

the successful results achieved in this experiment, the third experiment shows how

grasping behaviour is exploited by evolved agents that categorise the shapes of two

objects. Finally, the fourth experiment investigates the role of linguistic instruc-

tions in evolving the ability to perform specific actions with grasped objects. This

experiment reveals the facilitation of evolving such behaviour when the controller

is supported by linguistic instructions with respect to a condition in which the con-

troller does not have such support. Chapter 9 summarises and discusses the results

achieved thus far. In particular, the author presents what he considers to be the

contributions to knowledge offered by this thesis. The appendices present details

of the models of simulated robotic arms, and a list of publications that are directly

related to the results presented here by the author.
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2 The Human Arm and Hand

The human arm has three main articulations: the shoulder, elbow, and the radio-

ulnar joints (Shadmehr & Wise, 2005b). It has a total of five degrees of freedom

(dofs). Three dofs are located in the shoulder joint, which act like a ball-and-socket

joint that moves the upper arm (via the humerus bone). These dofs allow for

pronation/supination, abduction/adduction, and flexion/extension of the humerus

(see Figure 2.1). The fourth dof is located at the elbow, which acts like a hinge and

provides flexion/extension of the forearm (radius and ulna bones). The fifth dof

rotates the radius and ulna bones as a single unit, providing pronation/supination

of the hand. In robotic manipulators, the latter dof is typically associated with the

wrist. Hence, they are likely to consider the arm as a body with only four dofs,

and the wrist as a ball-and-socket joint with the last three dofs (Bekey, 2006).

The human hand is composed of 27 bones: eight carpal bones that compose the

wrist, five metacarpals in the palm, and fourteen phalanges that make up the digits

(two in the thumb, and three in each finger) (Page, 1998). There are several joints in

the hand, and these are grouped as the carpometacarpal, metacarpophalangeal (mp),

proximal interphalangeal (pip), and distal interphalangeal (dip) joints. The carpo-

metacarpal joints provide the wrist with two dofs that allow for flexion/extension

and abduction/adduction of the palm. The four fingers (index, middle, ring, and

little finger) each have a two-dof joint in the mp (abduction/adduction and flex-

ion/extension) and hinge joints in pip and dip (flexion/extension). The thumb

does not have a dip joint because it is composed of only two phalanges, and the mp

joint has a considerable axial rotation that could be considered a third dof, which

provides pronation/supination of the thumb. This axial rotation allows the thumb

to oppose itself to the other digits. This is not considered a true dof, however,

because its movement is highly constrained and it cannot be actively controlled by

the muscles. In total, the hand has 21 dofs: 2 metacarpal (wrist), 10 metacar-
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Figure 2.1: Arm and hand bones

pophalangeal (knuckles), and 9 interphalangeal (Jones & Lederman, 2006; Page,

1998).

It is evident that the human arm/hand system is highly redundant in terms of the

degrees of freedom provided by the skeleton, and the number of muscles per dof

is also disproportionately large. Due to the non-linearity and redundancy of this

system, during the act of reaching to grasp an object there is an infinite number of

possible trajectories, arm/hand postures, and force-velocity profiles. Hence, it seems

quite unlikely that any two individuals would use the same strategies to achieve the

same goal. At the same time, there are strong similarities in approach, not just across

individuals, but also across different primate species. These similarities suggest some

common organisation of the central nervous system (cns) among primates that

controls the acts of pointing, reaching and grasping (Schaal, 2003). Some pertinent

findings in this regard, which can be found in (Jones & Lederman, 2006; Shadmehr

& Wise, 2005b; Arbib, 2003), are as follows.

Bell-Shaped Velocity Profile and Trajectory Curvature: When humans per-

form point-to-point movements, the hand path’s Cartesian space (external to

the subject) is approximately straight, and the tangential velocity can be rep-
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resented as a symmetric bell shape. However, a more detailed examination

of trajectories and velocity profiles reveals that the path of the hand makes

curved trajectories, depending upon the location of the starting and ending

points in the three-dimensional space in which the action takes place, and

asymmetric bell shapes, depending upon the accuracy and speed required by

the task.

Speed-Accuracy Trade-off: During reaching movements, the amount of time spent

approaching the target has been empirically found to depend upon the target

distance D from the start point, and the target width W (or equivalently,

upon the accuracy required for the task):

MT = a+ b · log2
(
2D

W

)

where a and b are constants. This relationship, which is called Fitts’ law,

(Meyer et al., 1990) is a robust characteristic of human arm/hand movements.

Fitts’ law is too generic, however, and does not express useful constraints for

help in modelling and understanding the mechanism of cns control. That said,

it remains strongly descriptive of the behavioural phenomenon of primate arm

movements in reaching and grasping.

Reaching to Grasp: During a reaching movement, the posture of the hand is

being adjusted, showing a tight coupling and overlapping in space and time

of the hand’s preparation for reaching for and grasping an object (Jones &

Lederman, 2006). The bell-shaped velocity profile is also valid for changes

in the hand posture during the movements involved in reaching to grasp an

object. In addition, it has been shown that there is a speed-accuracy trade-off

concerning the time required to adjust the hand position and the precision

required by the manipulation task (Jones & Lederman, 2006).

Grip Aperture: the amplitude of the maximum grip aperture is highly correlated
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with the size of the object to grasp. It has been shown that the hand aperture

varies between different objects even when these differences are not consciously

perceived. The tactile and proprioceptive sensations of the arm play an im-

portant role on modulating the grip aperture. Organisms are able to adjust

the hand posture and the reach-to-grasp movements also when the visual in-

formation remains the same, regardless of the size of the object to be grasped

(Jones & Lederman, 2006).

Continuous Adaptation: Due to continuous changes in body size and proper-

ties during development, the cns has to continuously adapt itself in exerting

control over arm/hand movements. Also, the ability to learn new skills is fun-

damental in biological systems. Primates and human infants show an excellent

ability to learn new motor skills to solve novel tasks.
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3 An Outline of Reaching and
Grasping Solutions in Robotics

Reaching and grasping are the two basic behaviours involved in manipulating an

object. In robotics, reaching means moving the arm to create a particular config-

uration of the joints with which the end-effector of the robot arm is in a desired

position. Typically, the end-effector is the palm or a finger of the hand. Grasp-

ing means touching an object in a such way that all forces produced at the contact

points between the fingers and the object are distributed in such a way as to prevent

the object from slipping from the hand.

Industrial and commercial robotic arms and hands are typically designed in such a

way as to simplify the reaching and grasping behaviours (Siciliano & Khatib, 2008;

Salisbury, 1982). In this regard, the design of anthropomorphic arms and hands is

very far from providing the special structures needed to satisfy the principles that

would simplify the reaching and grasping behaviours. The main reasons for this

difficulty are:

Redundancy: The number of dofs is redundant, and hence there is an infinite

number of trajectories and final postures involved in reaching any given target

point. This redundancy potentially allows anthropomorphic arms to reach a

target point by circumventing obstacles or by overcoming problems caused by

the limits of the dofs. However, the redundancy of dofs also implies that the

space to be searched during learning is rather large, and a policy for choosing

one of all possible postures has to be determined.

Non-Linearity: Anthropomorphic arms are highly non-linear systems. First, small

variations in some of the joints could have a great impact on the end-position

of the arm, while significant variations of other joints might not have any im-

pact. Second, due to the limits on the joints’ dofs and due to the interactions
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between joints, similar target positions might require rather different traject-

ories and final postures. In conjunction with this, different target positions

might require similar trajectories and final postures.

Dynamics: Anthropomorphic arms are articulated structures that are suspended

in space. Hence, gravity and inertia play a major role in their dynamics. In

the arms of primates, the muscles and associated spinal reflex circuitry seem

to confer upon the arm the ability to passively settle into a stable position (i.e.

an equilibrium point) independent of its previous position. If this hypothesis

were true, the contribution of the central nervous system would simply consist

in the modification of the current equilibrium point (Shadmehr, 2003).

Noise and Uncertainty: Sensors and actuators can be slow and noisy. In hu-

mans, visual information and proprioceptive information that encodes changes

in joint positions are available with a delay of up to 100ms. It may take up

to 50ms for motor commands issued by the central nervous system to initiate

muscle contraction (Mial, 2003). Moreover, sensors might provide only incom-

plete information (e.g. the target point might be partially or totally occluded

by obstacles and/or by the arm).

Furthermore, as regards grasping behaviour, the structure of the fingers and the

arrangement of the robotic hand’s dofs play an important role in determining the

capability of the hand, the possible finger positions, and the possible grasp config-

urations. In fact, the complexity of grasping behaviour comes from the contacts

among the fingers and the object to be grasped.

The most famous robotic hand was constructed by Salisbury (1982). The design of

Salisbury’s hand was not anthropomorphic, but was the result of Salisbury’s proof

regarding the minimum number of dofs necessary to produce a dexterous hand.

He established that only 9 dofs are necessary, and the hand he constructed is an

example of a 9-dof hand that is dexterous (Salisbury, 1982).
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In the last ten years there has been an increase in the number of designs and devel-

opments of anthropomorphic hand structures, some of which are shown in Figure

3.1. The importance of having a five-fingered hand that is similar to a human hand

lies in its redundancy and compliance; however, this criterion also adds complexity

to the problem. In contexts in which the controller does not have fully detailed in-

formation about the object to be grasped and there is noise and uncertainty about

the object and hand displacements, the redundancy and compliance of dofs makes

it possible to damp errors more easily. With only three fingers, if one fails to touch

the object properly, the grasp fails, while with five fingers, it is more likely that

the object will be grasped, even if some of the fingers are incorrectly positioned.

The joint’s compliance allows for the adjustment of incorrectly positioned fingers by

exploiting the passive effect of compliance and its feedback.

Salisbury hand (Salisbury, 1982) Barrett hand (Townsend, 2010)

DLR hand II (Butterfass et al., 2001) Shadow hand (Greenhill, 2010)

Figure 3.1: Robotic hands
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With an anthropomorphic hand, it is possible to study all the grasp configurations

displayed by humans and primates. Due to the dexterity of primates and humans, a

grasp taxonomy based upon the position of the fingers is very large, and is dependent

upon how the grasp is considered (Feix et al., 2009). In terms of the scope of this

thesis, only power grasps are taken into account. Power grasps, as the term suggests,

are those in which all five fingers are used to firmly grasp an object, e.g. when a

glass or bottle is grasped. In Figure 3.1, the Salisbury hand and DLR-II hand are

engaged in a power grasp, while the Shadow hand is not. There are two broad

classifications of such grasps (Siciliano & Khatib, 2008), which are described below.

Form-Closure (enveloping grasp) occurs when the fingers are arranged to form a

cage around the object. leaving no space for it to escape. In this condition, as

long as the fingers remain fixed, no external perturbations are able to wrest

the object free. An example of this is the Salisbury hand in Figure 3.1, which

displays a form-closure grasp.

Force-Closure occurs when the finger positions are not completely wrapped around

the object, but are only partially wrapped around it. In this case, some of the

object’s possible movements can only be blocked by applying a proper force

to the object at its contact points. An example of this is the DLR-II hand in

Figure 3.1, which is shown grasping a bottle using a force-closure posture. In

this case, a proper pressure has to be applied to the bottle to prevent it from

slipping out of the hand.

Form-closure and force-closure classify the grasp on the basis of the geometry of the

finger positions and contact points. As regards the dynamic aspect of power grasps,

the following are the main properties that are desired (Suárez et al., 2006).

Stability: A stable grasp is achieved when all perturbations of the object within a

given threshold are automatically damped by the configuration of the contacts.

If the form-closure condition is satisfied, then the grasp can withstand all pos-

sible perturbations, due the finger positions. In a force-closure grasp, the force
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applied by the fingers allows the immobility of the object to be maintained.

In this case, the perturbations are dealt with by appropriately controlling the

force exerted by the fingers at the contact points.

Equilibrium: This is achieved when the resultant of all forces and torques applied

to the object by the fingers and external forces is zero. Or, in simple words,

when the object is firmly held in the hand.

Dexterity: This regards the ability to move the grasped object. The definition of

dexterity varies depending upon the task to be accomplished after the object

is grasped. In general, a grasp is considered dexterous if the object can be

moved anywhere that is within reach of the robotic manipulator.

The controllers of a robotic arm have to deal with all the aforementioned problems,

and their behaviours must demonstrate the aforementioned properties. To better

identify the responsibility of the controllers, and thus, the properties to be achieved

and the problems to be overcome, four spaces in which the controllers operate have

been distinguished: the task, work, joint, and actuator spaces (Torras, 2003). Almost

all methods and attempts to control robotic arms can be classified on the basis of the

mapping among these spaces. As regards the objective of this thesis, two particular

inter-space maps are important: that from the work space to the joint space (i.e.

inverse kinematics), and that from the work space to the actuator space (i.e. inverse

dynamics).

The task space encodes tasks in such a way as to give appropriate inputs to the

planning module of the controller. Typically, the task space explicitly requires the

subdivision of the controller in a planner, which maps the task space input into

another space, and a number of other modules that actually perform the task. This

further refinement, however, is beyond the scope of this thesis.

The work space represents all locations that can be reached by the end-effector of

the arm. This is the 3d Cartesian space in which the robotic arm is able to move.
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An input from the work space usually encodes the desired point to be reached, the

positions of the objects, and the obstacles.

The joint space represents the posture of the robotic arm, and the actuator space

represents the state of the motors acting on the joint. Their interaction depends

upon velocities, forces, accelerations, and other parameters, depending upon what

types of actuators are used.

Typically, neuroscience models of reaching and grasping address the problem from

the task space to the work space. For example, Oztop et al. (2004) developed a

neural network that models how infants learn to grasp. The neural network, which

is based on the grasping schema proposed in (Arbib et al., 1985; Iberall & Arbib,

1990), is divided into four interconnected layers of encoding: the target location (o),

the hand position (h), the wrist rotation (r), and the virtual fingers (v). These four

vectors in the work space describe the variables that theMovement Generation (mg)

module needs in order to move a simulated arm. The mg module is not part of the

learning process, but is based upon the ad-hoc inverse kinematics of the simulated

arm designed for the experiment. In order to simplify the implementation of mg,

there is no simulation of rigid-body dynamics. The object is considered to be in a

fixed position in the world, and any contact with the object does not cause it to

move. In this way, none of the dynamic aspects of the problem is taken into account.

Also, in (Iossifidis & Schoner, 2006; Schoner & Santos, 2001; Thelen et al., 2001),

various models are proposed for reaching and grasping, based upon neuroscientific

data about infant learning. In this case, however, the models are implemented using

the attractor dynamics approach instead of neural networks. As in the previous

example, the task here also consists in the generation of appropriate trajectories

in the work space. For this reason, the problem of how the trajectories in the

work space are transformed/mapped into joint movements of the arm is not taken

into account, but is instead delegated to external routines that implement inverse

kinematics.
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The works presented in this thesis propose the use of evolved neural networks in order

to transform a command in the work space to a command in the joint space. Hence,

they are not comparable with above example, but instead, they apply to the lower

level acting upon the joints of the robotic arm. More precisely, the aforementioned

models generate trajectories in the work space, and the neural networks proposed

in this thesis can use those trajectories as inputs that they can then generate as

output for the joint movements that put the robotic arm in a specified position in

the work space. In this thesis, the neural networks have to control the robotic arm

in a dynamic environment in which collisions, inertia, gravity, and other dynamic

forces are simulated realistically. This represents an improvement over the mg used

in Oztop et al. (2004) as well as the external routines used in (Iossifidis & Schoner,

2006; Schoner & Santos, 2001; Thelen et al., 2001), in which the dynamic aspects of

object manipulation are neglected.

3.1 Inverse Kinematics

The problem of finding an arrangement of all the arm’s joints, given a desired point

x to be reached by the end-effector, is called inverse kinematics (hereafter, ik). In

the case of the grasp, instead of a single point x, there is a vector of points consisting

of the target contact points for grasping the object. This can be considered as a

process of mapping from the work space (all the points reachable by the robotic arm

in a given 3d Cartesian frame) to the joint space (all possible configurable positions

of the robotic arm).

In general terms, ik consists of the inversion of the forward kinematics equation of

the robotic arm ẋ = J (θ)θ̇:

θ̇ = J−1 (θ)ẋ

where x is the position of the end-effector (or a more general vector that includes
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all fingertip positions), θ is a vector < θ1, θ2, . . . , θn > of the current joint angles,

and J is a Jacobian matrix that describes the relationship between the work space

and joint space. In other words, the forward kinematics computes how much the

position of the end-effector, ẋ, would change if a given modification to the joint’s

arm, θ̇, is applied. Inverse kinematics, on the other hand, finds out how much the

joint’s arm would change, θ̇, if the position of the end-effector must be displaced by

a given amount ẋ.

While the forward kinematics is easy to derive even for complex and redundant

robotic manipulators, the ik is more difficult to calculate due to the J−1 (θ) term, in

that there is no straightforward and closed-form solution for any type of manipulator.

In fact, the inverse kinematics for redundant arms (when there are more than 3 dofs)

does not have a unique solution, and approximations are often required in order to

calculate J (Angeles, 2003; Siciliano & Khatib, 2008). For a 6 dof robotic arm with

a special kinematic structure, a closed-form solution for ik can be obtained. Most

industrial robotic arms have a kinematic structure that satisfies the requirements

for solving the problem of ik (Siciliano & Khatib, 2008) by means of the following

design features.

1. Three consecutive revolute joint axes intersect at a common point (as in a

spherical wrist).

2. Three consecutive revolute joint axes are parallel.

When a closed-form solution exists, there are two basic approaches to finding it.

Algebraic: These methods involve algebraic manipulation of the equations of the

forward kinematics. A common strategy is to find the relevant joint variables,

reduce them to a transcendental equation, and then invert them into single

variable equations.

Geometric: By analysing the geometric structure of the robotic arms, it is pos-

sible to ascertain the points on the manipulator at which the problem can be
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decomposed. For example, the two conditions for the existence of a closed-

form solution make it possible to divide the problem into inverse orientation

kinematics (first condition), and inverse position kinematics (second condi-

tion). Following this division, an algebraic method is commonly applied to

each sub-problem.

Even when the two conditions for the existence of a closed-form solution are met,

if the joint structure of the manipulator is quite complex, it can be a very time-

consuming process to find a solution to the inverse kinematics using the above

methods (Angeles, 2003; Siciliano & Khatib, 2008).

If the structure of the robotic arms does not satisfy the conditions required for

there to be a closed-form solution, as in the case of anthropomorphic structures,

numerical methods must be used in order to find out solutions to an ik problem.

These methods do not depend on a particular configuration of the robotic arms, and

they can be applied to any kind of kinematic structure. Unfortunately, numerical

methods are typically slower and they only approximate a solution; hence, they do

not compute all possible positions of the arm.

There are various techniques for resolving an ik problem numerically (Siciliano &

Khatib, 2008). Iterative methods are an example of this. In such methods, an initial

sub-optimal solution is created using an empiric (and very fast) algorithm, and then

it is iteratively refined in order to converge to an optimal solution. The performance

of iterative methods is strongly affected by the quality of the initial sub-optimal

solution, and they also converge to only one solution, depending upon the starting

point.

As regards the aims of this thesis, it is important to note that neural networks have

also been used to find a solution to ik problems (Kokera et al., 2004; Manocha

& Zhu, 1994; Toal & Flanagan, 2002; Williamson, 1998; Li & Leong, 2003; Oyama

et al., 2001; Martìn & del R Del Milla, 1998; Rathbone & Sharkey, 1999; Krose & der

smagt, 1993a; Bekey, 2006). One of the crucial points here is that neural networks
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have been used as an arbitrary function approximation mechanism to directly derive

an approximation of the ik equation. For example, in (Kokera et al., 2004; Manocha

& Zhu, 1994; Toal & Flanagan, 2002; Williamson, 1998; Li & Leong, 2003; Oyama

et al., 2001; Martìn & del R Del Milla, 1998; Rathbone & Sharkey, 1999; Krose &

der smagt, 1993a; Bekey, 2006), a neural network is taught to submit output for the

final position of the arm in order for it to reach a given point, and then a procedure

was developed by the authors in order to actually move the arm. In this way, the

neural network does not directly control the trajectory, and it also cannot receive

feedback regarding what is happening as the arm moves. As proposed in this thesis,

the neural networks directly control all the movements of the arm, and they have the

capacity to adjust its trajectory as the arm moves, by means of sensor feedbacks. In

some ways this can be considered a neural implementation of an iterative method,

but with the difference that neural networks are non-linear, while iterative methods

are linear.

As regards the use of ik for solving the process of grasping, in addition to the

problems involved in resolving ik equations, there is also the problem of finding

the optimal finger positions for a power grasp. This challenge consists in finding the

positions of the contact points on the object’s surface that satisfy the aforementioned

grasp properties. This challenge entails two problems: how to define the contact

points, and how to define a mathematical formulation of the desired grasp properties.

The first problem has already been solved, and various definitions have been ad-

vanced, that depend on the properties of the fingertips (Bicchi & Kumar, 2000; Si-

ciliano & Khatib, 2008). As for defining a mathematical formulation of the desired

grasp, many attempts have been made, but they have not produced convergence to

a common framework. While it is easy to visually judge whether or not a robot hand

grasps an object well, it is difficult to find out how to formulate it with a function

of contact points that is usable in an optimisation algorithm in order to control the

robot. However, depending upon the context and the information available about

the object, engineers have developed many functions for measuring the quality of a
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grasp, and hence can constrain all possible solutions in order to find the best grasp

configuration for a given task (Suárez et al., 2006).

From a review of such functions (Suárez et al., 2006), it seems unlikely that primate

or human brains use some of these functions in order to plan, learn, or simply

understand if they have grasped an object appropriately. The reason for this is that

all the grasping-quality metrics that are used to develop controllers in industrial

manipulators need precise information about the geometry of the contact points

and of the object’s shape — information that is unlikely to be derived from visual-

tactile sensory information alone.

The main objective of grasping quality functions is to obtain a very good grasp.

However, when some of these metrics are used to evaluate the quality of human

grasps (Veber et al., 2005), the humans do not perform as well as one would expect.

Hence, it seems that there are some peculiarities in how humans choose a grasp

configuration that are not ’grasped’ by the quality functions that have thus far been

proposed.

The above analysis demonstrates the complexity of the task. In fact, for a given

object there are infinite possible contact point configurations, and in addition, in

reaching for an object, there are infinite trajectories. Hence, the solution must be

searched for in a very huge space. For this reason, it is unlikely that there exists an

analytic or closed-form solution for general cases or for non-engineered environments.

3.2 Inverse Dynamics

Inverse kinematics takes into account only the geometric structure of the arm’s

joints. In real-world situations and when an adaptive robotic controller is required,

however, this is not enough. In fact, when a manipulator moves the joints quickly,

or when it is attached to a moving platform or in other similar situations, it is

not possible to ignore inertial effects, frictions, and gravitational forces. In inverse
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dynamics, then, the controller also takes into account the velocities, acceleration,

and other forces that are applied to the joint’s actuators (Angeles, 2003; Torras,

2003).

This approach can be viewed as a process of mapping that involves the actuators’

space. Given a desired point in the work space, the controller generates a sequence

of motor commands (forces, velocities) that drive the arm to a final position in which

the position of the end-effector coincides with the desired point in the work space.

Hence, in addition to the previous equation, the following has to be considered (and

inverted, in order to find a solution using analytic approaches):

τ = I (θ) θ̈ +V
(
θ, θ̇
)
+B

(
θ, θ̇
)
+G (θ)

where τ is the torque vector, I is the n × n inertia matrix of the arm, n is the

number of dofs, V represents the centrifugal and Coriolis acceleration terms, B is

the friction terms, and G is the vector of the gravity terms.

This equation is very complex to invert because the inertia, centrifugal, and gravity

terms also depend on time due to the arm movements, and they are also influenced

by the controller’s commands. Thus, closed-form solutions that use algebraic or

geometric methods might not exist even for simple robotic structures, and numer-

ical approaches are often the only way to obtain an approximation of the inverse

dynamics (Angeles, 2003; Siciliano & Khatib, 2008).

Using the inverse dynamics for grasping is often quite complex, even in a simple

case. Hence, a typical constraint that is used to simplify the solution for grasping

is to avoid any movements of the object from the moment of first contact to the

completion of the grasp. In addition, in situations in which the manipulator is

not provided with detailed information about the object, it is important to exploit

the interactions with the object and to use sensory feedback in order to adjust the

fingers. The rationale behind this is that the hand has to adjust itself in order to

grasp the object. This approach does not consider the possibility that the hand can

42



rotate and move the object to orient it with the palm, which adds a lot of complexity

to the problem.

Felip & Morales (2009), for example, have proposed an algorithm that can govern

interaction with the object to be grasped. The algorithm is based on three phases,

or procedures, which are controlled by sensory feedback. The main aim of the

algorithm is to produce stable grasps of unknown objects without having detailed

information about them. Briefly, the three phases are as follows.

Alignment: The palm is systematically rotated ±2◦ until a straight movement of

the palm, when one or more fingers are in contact with the object, will not

produce axial torques of the palm.

Parallel Face Detection: The hand is moved up and down about 5mm. The

variations in the grip aperture that are needed to keep the fingers in contact

with the object are used to rotate the palm in order to align it with the object’s

lateral faces.

Force Adaptation: The fingers begin to close and the object is lifted. If any

slippage of the object is perceived, the force applied to the object is increased

until the slippage stops.

It has been demonstrated that this algorithm works with a variety of objects, with

a 40 s average time for grasping an object. Compared with the time needed by

humans to grasp the same objects, this is a very long time. Most of this time is

taken up by the first and second phases, because the movements that align the palm

and the fingers are very slow, to avoid moving the object.
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4 Background to Experiments

All the experiments reported in this thesis concern the synthesis of a neural con-

troller for anthropomorphic robots that are able to manipulate objects through an

automatic design process based upon artificial evolution. The scenarios of the exper-

iments presented here are of significant complexity, due to the difficulty of controlling

a system with many degrees of freedom, the need to master the effects produced by

gravity, inertia, collisions, etc. (the role of gravity, inertia, collision, and noise are

taken into account by accurately simulating the physical laws of motion and the

effect of collisions). In the experiment on “Reaching and Grasping” (Chapter 6), the

task is further complicated by the need to grasp two objects that differ in shape,

mass, and inertia, while in the experiment on “Manipulation and Object Discrimina-

tion” (Chapter 7), the task is complicated by the great similarity among the objects

to be distinguished from one another.

The thesis has been structured in order to correspond with the relevant lines of

research that the author has pursued, which began in 2005 and ended in 2010. The

chapters are thus presented in both the chronological and logical order that was

followed by the author during his research. It is important to note that during the

course of these Ph.D. studies, most of the results were published for conferences and

in journals, and that the chapters largely follow the order of the author’s publications

(copies of which are bound in the thesis). Hence, the relevance of the discussion and

the contributions of the knowledge presented here should be evaluated with respect

to the year in which the work was done and was published. The following table

presents that order of publication, and summarises the main characteristics and

differences between the experiments conducted and the corresponding publications.
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Task Robot Controller
Chapter 5
(Massera

et al., 2006)
Reaching a target

position
Arm controlled in
terms of velocity
without hand

(App.A)

Neural network
without internal

neurons

à

Chapter 6
(Massera

et al., 2007)
Reaching for and
grasping two

different objects: a
sphere and a

cylinder

Arm controlled by
muscle actuators
and five-fingered
hand (App.B)

Neural network
with recurrent
internal neurons
and some direct
input-output
connectionsà

In Parallel

à

Chapter 7(Tuci et al., 2010) Chapter 8(Massera et al., 2010)
Task Categorisation and

discrimination between two
similar objects: a sphere and

an ellipsoid

Performing a sequence of
actions (reach, grasp and

lift) on the basis of incoming
’linguistic’ instructions

Robot Arm controlled by muscle
actuators and five-fingered

hand (App.B)

Arm controlled by muscle
actuators and five-fingered

hand (App.C)
Controller Continuous time recurrent

neural network
Neural network with

recurrent internal neurons

For each experiment, the neural network architecture was chosen based upon the

particular setup of the experiment, in an effort to keep it as simple as possible. In the

extreme case of the experiment in Chapter 5, the neural network is so simple that it

does not have any hidden neurons. For the other experiments, various characteristics

were added when called for by the experimental setup. In the case of the experiment

regarding distinguishing between two objects, Elio Tuci (the first author of the

corresponding publication) selected and designed the neural network and part of

the experimental setup, and the author of this thesis designed the way in which the

controller categorises objects, which is one of the most important results of thate

experiment.

In this thesis, the attempt to design robots that develop their skills autonomously by

evolutionary robotics makes it possible, at least in principle, to delegate the solutions
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to some of these aspects to the adaptive process itself, and to apply the empirical

evidence that indicates that the manipulation skills learned early on by infants are

acquired through self-learning mechanisms, rather than by imitation (Oztop et al.,

2004). In fact, the evolutionary algorithm applied in this thesis uses only a mutation

operator and elitism, which allows it be viewed as a kind of self-learning mechanism.

To explain this point of view, let us suppose that n generations are done. Due to

elitism, it is always possible to trace back from the best individual of generation n to

an individual of the first generation, thus obtaining a single sequence of mutations

that produced the last individual. This sequence of mutation can be viewed as being

similar to how a robot acquires its skills through a process of trial and error, during

which random variations in the free parameters of the robots’ neural controller

(which are initially assigned randomly) are retained or discarded on the basis of their

effect at the level of the overall behaviour exhibited by the robot in its interaction

with the environment. More precisely, the effect of variations is evaluated using a

set of utility functions that determine the extent to which the robot manages to

manipulate a target object. The use of this adaptive algorithm and utility functions

leaves the robot free to discover, during the adaptive process, its own strategy to

achieve the goals set by the experimenter. This in turn allows the robot to exploit

sensory-motor coordination (i.e. the possibility of acting in a certain way in order

to later experience useful sensory states), as well as the properties arising from the

physical interactions between the robot and the environment.

One of the main characteristics of the models presented in this thesis is that the

robot controller adjusts its output on the basis of the available sensory feedback by

directly updating the forces exerted on the joints (see Schaal et al., 2005 for related

approaches). The importance of the sensory feedback loop has been emphasised in

other works in the literature. For example, in Felip & Morales (2009), the authors

describe an experiment in which a three-fingered robotic arm displays a reliable

grasping behaviour through a series of routines that continually modify the relative

positions of the hand and fingers on the basis of the current sensory feedback. These
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movements tend to optimise a series of properties such as hand-object alignment,

contact surface, finger position symmetry, etc.

The robot controllers that process sensory and propriosensory information and con-

trol the state of the arm/hand actuators are modelled through the use of dynamical

recurrent neural networks. The architectures of the artificial neural networks cur-

rently employed are not inspired by the characteristics of the neuroanatomical path-

ways of the human brain. Also, many of the features of the neurons and synapses are

not taken into account (see Oztop et al., 2004, for an example of works that do emu-

late some of the anatomical characteristics of the human brain). The use of artificial

neural networks as a robot controller provides several advantages with respect to

alternative formalism, such as robustness, graceful degradation, generalisation, and

the possibility of processing sensory-motor information in a way that is quantitative

both in state and time (Bar-Yam, 1997a; Haykin, 1999). These characteristics also

make neural networks particularly suitable for use with evolutionary robotics, in

which a suitable configuration of the free parameters is obtained through a process

that operates through the accumulation of small variations.

Most of the characteristics of the simulated robots that have been implemented

are the same as those in all the experiments reported here, but some are different.

Appendices A, B, andC report the complete details of the models of the anthro-

pomorphic robotic arms that are implemented, highlighting their differences and

improvements with respect to the others. More specifically, the morphological char-

acteristics of the human arm and hand are taken into account by using a robot

that approximately reproduces the morphological characteristics of a 3.5 year-old in

terms of size, shape, articulations, degrees of freedom, and relative limits (Shadmehr

& Wise, 2005b; Sandini et al., 2004; Jones & Lederman, 2006). In all the robotic

arms implemented, some of the properties of the human musculoskeletal system have

been incorporated into the model by using muscle-like actuators that are controlled

by antagonistic motor neurons (Shadmehr, 2004; Shadmehr & Wise, 2005c; Gialias

& Matsuoka, 2004). For the sake of simplicity, the segments forming the arm, the
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palm, and the fingers are simulated as completely rigid bodies. However, the way in

which the fingers are controlled endows the hand with a certain level of compliance.

In the experiments reported in this thesis, the robots are equipped with proprio-

ceptive and tactile sensors (when necessary), and with a vision system that only

provides information concerning the position of the object, and not information

about its shape and orientation. The vision system has been simplified to a greater

degree than the proprioceptive and tactile sensors, because the experimental evid-

ence on young infants indicates that they rely heavily on somatosensory and tactile

information to carry out reaching and grasping actions, and that they use vision to

elicit these actions (Rochat, 1998). While visual information about the shape and

orientation of an object (which is employed to prepare the grasping behaviour or to

adjust the position of the hand) only starts to play a role 9 months following birth

(McCarty et al., 2001), the capacity for precision grasping is developed after 12–18

months (Hofsten, 1982, 1984, 1991). In this thesis, the focus is upon the power

grasp and the experiments presented here show that it is possible to successfully de-

velop strategies for grasping different objects without the use of a more sophisticated

vision system.

4.1 Evolutionary Robotics

In the experiments presented here, the Evolutionary Robotics methodology has been

employed to develop neural networks that are able to control an anthropomorphic

robotic arm to reach, grasp, and distinguish one object from another. Evolutionary

Robotics (hereafter, er) is inspired by Darwin’s theory of evolution (Darwin, 1859),

in its development of autonomous agents. Robotic agents compete with each other

for survival, and only the best individuals are allowed to reproduce in the next gen-

eration. Indeed, the basic idea is quite simple: the robots with the best performance

are selected, and through a simulated reproduction process, they generate offspring

that are largely similar to themselves, but slightly different, having incorporated a
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number of random variations. Although the majority of random variations lead to

robots with a lower level of performance, some of them lead to robots that perform

better than their parents. These positive variations are retained in the selection

process, while the negative ones are discarded, and the cyclic repetition of this se-

lection and reproduction process tends to produce a population of robots that are

able to perform the task that is required. Although Darwin’s theory of evolution is

more than a century old, the idea of using an evolutionary approach in the design

of autonomous robots is more recent. In 1984, Braitenberg imaged the experiments

reported in (Braitenberg, 1984), and the term Evolutionary Robotics was coined at

the beginning of 1990 (Cliff et al., 1993). In this period, various researchers began

to use evolutionary techniques in robotics research (Cliff et al., 1993; Floreano &

Mondada. . . , 1994; Nolfi et al., 1994; Nolfi & Floreano, 2000; Harvey et al., 2005;

Floreano et al., 2008).

One of the peculiarities of er is its generative paradigm. The evolutionary process

produces many possible solutions, generation after generation. When the evolution-

ary process ends, many good solutions are generated that represent agents that are

able to accomplish the task in an efficient manner. In er, the behaviour of these

agents becomes the object of post-evolution analysis, whose goal is to understand

the different solutions, the characteristics they have in common, and the solutions

that have been discovered. These analyses are then likely lead to new ideas for fur-

ther evolution and increased understanding of how adaptive solutions emerge (Nolfi,

2005a).

Another important characteristic of er is the possibility it offers to evolve complex

dynamical systems in which the strategy for solving the required task is an emergent

property of such dynamical systems. The strength of a complex dynamical system

lies in the non-linearity of the interactions among its components and the external

environment. These interactions have the potential to produce very powerful and

reliable solutions for complex task, starting from simple components (Bar-Yam,

1997b). The er paradigm simplifies the design of complex systems, because the
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fitness rewards the overall global behaviour of a complex system, which can be easily

evaluated, while there is no constraint on the possible underlying interactions.

Furthermore, with the er paradigm there is no need to precisely specify the desired

output, as is required in error-minimising learning. This is what makes it possible

to tackle the inverse dynamic problem for a redundant anthropomorphic arm, as

was done in the experiments reported in Chapters 6, 7, and 8 of this thesis (Massera

et al., 2007, 2010; Tuci et al., 2010). In fact, in supervised approaches for a given

input, the controller has to generate a sequence of forces to apply that are difficult

to calculate a priori, and difficult to learn using error-minimising procedures or

reinforcement learning.

4.2 Reaching and Grasping

The main difference among the approaches reported in Chapter 3 and the er ap-

proach used in this thesis regard how a neural network is considered. In the stud-

ies referenced in Chapter 3, a neural network is used to generate correct mapping

between two different spaces; i.e. in inverse dynamics, from the work space to the

joint space. From this point of view, neural networks are likely to be considered

as an arbitrary function approximation mechanism. In the er approach, on the

other hand, the neural controller is seen as an internal dynamical system (Bar-Yam,

1997c,a) that interacts with environments via the agent’s body. There is no explicit

mapping between spaces, but such mapping emerges from the continuous, minute

interactions among the controller, the body, and the environment. From this point

of view, the agent’s behaviour is an emergent property of these minute interactions.

The evolutionary process is able to exploit the potential of simple architectures via

dynamical interaction, and is likely to lead to complex adaptive behaviour starting

from minimal agents. Hence, some of the weaknesses of other approaches can be

resolved by the use of er.

In particular, it has been shown that due to the global effect of weights, an accurate
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mapping of inverse kinematics using feed-forward neural networks is extremely diffi-

cult to obtain (Krose & der smagt, 1993b; Torras, 2003). That said, the experiment

reported in Chapter 5 was designed using an er approach, keeping in mind that the

controller is a dynamical system that is directly and continuously acting upon the

dynamics of agent-environment interactions. In this way, it is possible to exploit

a simple architecture, such as a multi-layer perceptron, to learn inverse kinemat-

ics/dynamics solutions in order to solve the problems involved in reaching (Massera

et al., 2006, 2005; Bianco & Nolfi, 2004).

Remaining within the field of er, there have been a few previous attempts to use

an er approach to develop a controller for a robotic arm.

Nolfi & Marocco (2002) studied the case of a simulated robotic “finger”, which was

evolved to distinguish between the shapes of spherical versus cubic objects (anchored

to a fixed point) of different sizes and orientations. The robotic finger consists of

an articulated structure made of three segments that are connected via motorised

joints with six dofs, six corresponding actuators, six proprioceptive sensors that

encode the current position of the joints, and three tactile sensors placed on the

three corresponding segments of the finger. The authors observed that the adapted

robots solve their problems through the use of simple control rules that cause the

robot to scan for an object by moving horizontally from the left to the right side,

and by moving slightly upward as a result of collisions between the finger and the

object. These simple control rules cause two different behaviours to be displayed:

• With spherical objects, the robotic finger fully extends itself on the left side

of the object after following the object’s surface.

• With cubic objects, the robotic finger remains fully bent, close to one of the

corners of the cube.

These two behaviours correspond to well differentiated activation of the propriocept-

ive sensors. These differences are used by the finger to distinguish between the two

52



types of objects. We would note that although the discrimination cue that is ne-

cessary in order to categorise is available in each single sensory pattern experienced

after the display of the appropriate behaviour, this cue results from a dynamical

process that arises as a result of several robot/environment interactions.

Bianco & Nolfi (2004) also used an er approach in the autonomous design of a

neural controller for a simulated robotic arm with a two-fingered hand and nine

dofs that give it the ability to grasp objects with different shapes. The arm was

provided only with tactile sensors. The evolved robots displayed the ability to grasp

objects with different shapes and different orientations that were located in a limited

number of various positions within a limited area. These robots, however, were not

able to deal with larger variations of the objects’ positions.

Buehrmann & Paolo (2004) evolved a control system for a simulated robotic arm

with three dofs that has the ability to reach a fixed object placed on a plane and

to track moving objects. The arm was equipped with two pan-tilt cameras, each

consisting of a two-dimensional array of laser range sensors that were placed above

the robot arm and on the end-point of the robotic arm. The controller consisted

of several separate neural modules that receive different sensory information and

control different motor joints. The networks are evolved separately to create the

ability to produce distinct elementary behaviours (e.g. change the orientation of

the camera so it will focus on the object; move the first joint, which determines

the orientation of the arm in order to orient it towards the object; approach the

object by controlling the second and third joints, etc.). The authors show that the

evolved neural controller can exploit its own actions in order to self-select stimuli

that facilitate the accomplishment of spatial and temporal coordination.

Marocco et al. (2003) used an arm model with 6 dofs to evolve the ability to

touch or avoid objects depending upon their shape. In addition to the capability of

distinguishing among objects, the robots were also evolved for their ability to “name”

the object (or the action) with which they are interacting. This permitted the

analysis of different social interaction protocols, which was then used to investigate
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the social and cognitive factors that support the evolutionary emergence of shared

lexicons. Although this model used a very simplified arm model and a limited object

set and location, it was the first attempt to use a neurorobotic model to study the

links between action and linguistic representations from an evolutionary perspective.

Bongard (2010) co-evolved both a neural controller and certain aspects of a robot’s

morphology to manipulate objects, using multi-objective optimisation based upon

evolutionary algorithms (Deb, 2001). In this case, the task consisted of the optim-

isation of various abilities: grasping, lifting, and distinguishing among objects. The

neural controllers had to be able to enact all these capacities simultaneously, and

seven different evolutionary setups were compared. In one of these, only the neural

network’s parameters were evolved, while in the others, an increasing number of the

robot’s morphological characteristics were co-evolved using the parameters of the

neural network. The goal of Bongard (2010) was not to demonstrate that a robot

could accomplish these tasks, but rather, to show that there is a positive correlation

between the likelihood of successfully performing the tasks, and the extent of the

robot’s morphology that was placed under evolutionary control.

4.3 Active Categorical Perception

The scenario of the experiment in Chapter 7 was designed in order to investigate

the perceptual skills of an autonomous agent that are required in order to actively

categorise un-anchored spherical and ellipsoid objects that are placed in different

positions and orientations on a planar surface.

Categorical perception can be considered as the ability to divide continuous signals

received by the sense organs into discrete categories whose members resemble one

another more than they do the members of other categories. Categorical perception

represents one of the most fundamental cognitive capacities displayed by natural or-

ganisms, and it is an important prerequisite for the display of several other cognitive

skills, as discussed in (Harnad, 1987). Not surprisingly, categorical perception has
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been extensively studied both in natural sciences such as Psychology, Philosophy,

Ethology, Linguistics, and Neuroscience, and in artificial sciences such as Artificial

Intelligence, Neural Networks, and Robotics; see (Cohen & Lefebvre, 2005) for a

comprehensive review of this research field. In the great majority of cases, however,

researchers have focused their attention on categorisation processes that are pass-

ive and instantaneous. Passive categorisation processes take place in experimental

setups in which the agents cannot influence the experienced sensory states through

their actions. In instantaneous categorisation processes, the agents are required to

categorise the current experienced sensory state, rather than a sequence of sensory

states distributed over a certain time period.

The experiment in Chapter 7 focuses upon categorisation processes that are active

and that are eventually distributed over time (Beer, 2000; Nolfi, 2009). This task is

achieved by exploiting the properties of autonomous embodied and situated agents.

An important consequence of being situated in an environment consists in the fact

that the sensory stimuli experienced by an agent are co-determined by the action

performed by the agent itself. That is, the actions and the behaviour exhibited by

the agent later influence the stimuli that it senses, their duration in time, and the

sequence in which they are experienced. This implies that:

1. categorical perception is strongly influenced by an agent’s action; see also(Gibson,

1977; Noe, 2004) as regards this issue; and

2. sensory-motor coordination (i.e. the ability to act in order to sense stimuli

or sequences of stimuli that allow an agent to perform its task) is a crucial

aspect of perception and more generally of situated intelligence, see (Pfeifer &

Scheier, 1999).

A growing body of literature in robotics is increasingly devoted to the effort to

obtain discrimination among material properties (e.g. hardness, texture) and object

shapes using the sense of touch in artificial arms. Many of these works, such as
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the one described in (Takamuku et al., 2007), draw their inspiration from human

perceptual capability in order to develop highly elaborated touch sensors.

In (Takamuku et al., 2007), the authors describe a tendon-driven robotic hand

covered with artificial skin made of strain gauges sensors and polyvinylidene films.

The strain gauge sensors mimic the functional properties of Merkel cells in human

skin in detecting strain. Polyvinylidene films mimic the functional properties of the

Meissner corpuscles in detecting the velocity of strain. The artificial hand, through

the execution of squeezing and tapping procedures, manages to discriminate among

objects based on their hardness.

In a similar vein, a research group at Lund University developed three progressively

more complex versions of a robotic hand (LUCS Haptic Hand I, II, and III) that was

designed for tasks involving haptic perception (Johnsson et al., 2005; Johnsson &

Balkenius, 2006, 2007a). The perceptual capabilities of the three versions of LUCS,

which differ in both their morphology and sensory capabilities, were tested during

the execution of a grasping procedure using objects made of different materials (e.g.

plastic and wood). The authors showed that the sensory patterns generated in the

hands’ interactions with objects are rich enough to be used as a basis for haptic

object categorisation (Johnsson & Balkenius, 2007b).

Other robotics systems have combined visual and tactile perception to carry out

fairly complex object discrimination tasks (Dario et al., 2000; Natale & Torres-Jara,

2006; Stansfield, 1991).

Generally speaking, in spite of the heterogeneity of hardware and control design,

the abovementioned research works focus upon the characteristics of the tactile

sensory apparatus and/or categorisation algorithms. In these works, the way in

which the sensory feedback affects the movement of the hand is determined by the

experimenter on the basis of his/her intuition. Moreover, the discrimination phase

follows the exploration phase, and is performed by elaborating sensory data gathered

during the manipulation of objects (i.e. the data collected during the exploration
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phase cannot influence the agent’s behaviour during that phase).

The work described in Chapter 7 differs from the abovementioned literature in two

significant ways:

• The way in which the agent interacts with the environment is not designed by

the experimenter, but is adapted in order to facilitate the categorisation task,

and

• The agent is left free to generate its motor behaviour on the basis of previously

experienced sensory states.

Rather than studying the performance of particularly effective tactile sensors or of

specific categorisation algorithms, the focus is on the development of autonomous

actions for distinguishing the shapes of objects via coarse-grained binary tactile

sensors and proprioceptive sensors.

The issue of how a robot can actively develop categorisation skills has been already

investigated in a few recent research works. In general terms, these works demon-

strate how adapted robots exploit their actions in order to self-select stimuli that

facilitate and/or simplify the categorisation process, and show how this leads to solu-

tions that are parsimonious and robust (Scheier & Lambrinos, 1996; Scheier et al.,

1998; Nolfi, 2002; Beer, 2003).

Unlike in the case of the experiments described in (Nolfi & Marocco, 2002; Bianco

& Nolfi, 2004; Buehrmann & Paolo, 2004; Marocco et al., 2003), sensory-motor co-

ordination does not always guarantee the perception of well-differentiated sensory

states in different contexts corresponding to different categories. In these circum-

stances, the agents can actively categorise their perceptual experiences by integ-

rating ambiguous sensory information over time. A few studies have already shown

that evolved wheeled robots compensate for sensory patterns that are unreliable due

to their coarse sensory apparatus by acting and reacting to temporally distributed

sensory experiences in such a way as to bring forth the necessary regularities that
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enable them to associate a stimulus with its category (Tuci et al., 2004; Gigliotta &

Nolfi, 2008).

In the case of the task of discrimination (Chapter 7), the evolved robots act in

such a way that they experience the regularities that enable them to appropriately

categorise the shapes of objects. However, sensory-motor coordination does not seem

to guarantee the perception of fully differentiated sensory states that correspond to

different categories. The problem caused by the lack of clear categorical evidence is

solved through the development of the ability to integrate ambiguous information

over time through a process of accumulation of evidence.

4.4 Language and Action

The aim of the study presented in Chapter 8 is to investigate whether the use of

linguistic instructions facilitates the acquisition of a sequence of complex behaviours.

Neural networks are evolved to produce the ability to manipulate spherical objects

located on a table by reaching for, grasping, and lifting them under two different

conditions:

• While receiving as input a linguistic instruction that specifies the type of

behaviour to be exhibited during the current phase, and

• Without receiving such input.

The obtained results shown that the linguistic instructions facilitate the development

of the required behavioural skills.

One assumption behind the research presented in Chapter 8 is that the activity of

developing robots that display complex cognitive and behavioural skills should be

carried out by taking into account the empirical findings in psychology and neuros-

cience that show that there are close links between the mechanisms of action and

those of language. As shown in (Cappa & Perani, 2003; Glenberg & Kaschak, 2002;
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Hauk et al., 2004; Pulvermuller, 2002; Rizzolatti & Arbib, 1998), action and lan-

guage develop in parallel, influence each other, and are based upon each other. If

applied to the world of robotics, the co-development of action and language skills

might make it possible to transfer the properties of the knowledge represented by

action to linguistic representations, and vice versa, thus making possible the syn-

thesis of robots with complex behavioural and cognitive skills (Cangelosi et al., 2007,

2010).

Another assumption is that the behavioural and cognitive skills of embodied agents

are emergent dynamical properties that have a multi-level and multi-scale organ-

isation. Behavioural and cognitive skills arise from a large number of fine-grained

interactions that take place within the robot’s body, its control system, and the

environment, as well as among these three realms (Nolfi, 2005a). Handcrafting the

mechanisms underlying these skills can be a difficult task. This is due to the in-

herent difficulty in figuring out, from the point of view of an external observer, the

detailed characteristics of the agent that, as a result of the interactions between the

elementary parts of the agent and of the environment, lead to the exhibition of the

desired behaviour. The synthesis of robots that can display complex behavioural

and cognitive skills can instead be obtained through an adaptive process. In such a

process, the detailed characteristics of the agent are subjected to variations which

are then retained or discarded on the basis of their effects at the level of the overall

behaviour exhibited by the robot in its environment (Nolfi, 2005a). Therefore, the

role of the designer should be limited to the specification of the utility function,

which determines whether variations should be preserved or discarded, and even-

tually to the design of the environmental conditions in which the adaptive process

takes place (Weng et al., 2001; Weng, 2004; Nolfi, 2005b).
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5 Reaching

The first experiment presented in this chapter is a preliminary study of the develop-

ment of the control system for an anthropomorphic robotic arm with 4 dofs using

an evolutionary robotic technique (Nolfi & Floreano, 2000). The control system con-

sists of a simple neural network that directly controls the direction and the intensity

of the velocities that are applied to the motorised joints. The neural controllers

are selected for their ability to reach the desired target positions, and are left free

to determine the way in which the problem is solved (i.e. the trajectory and the

posture of the arm).

An analysis of the evolved robots indicates that they are able to solve the assigned

task and that they then generalise their skill in applying it to different target po-

sitions and to moving targets. Overall, the obtained results demonstrate that an

effective reaching behaviour can be developed without relying upon internal models

that perform direct and inverse mapping.

5.1 The Robot

The simulated robot consists of cylindrical segments articulated by revolute joints, as

illustrated in Figure 5.1. More details about the robotic arm used in this experiment

can be found in Appendix A.

5.2 The Neural Controller

In this model, the neural network controls the 4 dofs in order for the arm to reach a

given point in the given space. The neural controller consists of a feed-forward neural

network with 3 sensory neurons that are directly connected to 4 motor neurons, as

shown in Figure 5.2.
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Figure 5.1: Robot structure for the reaching experiment. The four dofs of the sim-
ulated robotic arm. The two diagrams at the top illustrate the abduction/adduction
(left) and extension/flexion (right) of the shoulder joint. The two bottom figures
illustrate the rotation of the shoulder (left) and the extension/flexion of the elbow
(right). In all the diagrams, the arrows indicate the frontal direction of the robot.

Figure 5.2: The Neural Network controlling the robotic arm. The bottom three
circles represent the input neurons, and the blue arrow is the distance vector that is
fed into the input neurons. The top four circles are the output neurons, which set
the velocity of the associated joint, as shown by the bold black arrows.
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The 3 Sensory Neurons can be seen as the output of a vision system (which

has not been simulated) that computes the relative distance of an object from the

hand up to a distance of 80 cm, and normalised in the range of [−1,+1] over three

orthogonal axes.

The 4 Motor Neurons encode the angular velocity of the four corresponding mo-

torised joints. Each motor neuron receives one incoming synapse from each internal

neuron, and their output is updated every 0.015 s on the basis of the following

equation:

Ai =
3∑

j=1

wjiσ1.0 (xj)

yi =





−890 if Ai < −890

Ai otherwise

+890 if Ai > +890

where yi is the output of the i -th motor neuron, and also the velocity expressed

in rpm (revolutions-per-minute) to set on the corresponding joint. Ai is the net

activation of motor neuron i, and it is clamped into [−890,+890] in order to prevent

overly rapid movement of the joint’s arm. xj is the output of sensory neuron j. wji

is the synaptic weight that connects the sensory neuron j to the motor neuron i,

and σλ(x) = (1 + e−x)−λ is the standard logistic function.

5.3 The Evolutionary Process

The connection weights of the neural controller were evolved as reported in (Nolfi

& Floreano, 2000). The genotype of evolving individuals encodes the connection

weights of the neural controller. Each connection weight is encoded with 16 bits and

is normalised in the range of [−10,+10], making a total of 12 · 16 = 192 bits for
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each genotype. The size of the evolved population is 100. The 20 best individuals in

each generation were allowed to reproduce by generating 5 copies, with 1.5% of their

bits replaced with a new randomly-selected value (the reproduction is asexual). The

evolutionary process lasted for 1,000 generations. The experiment was replicated 10

times, starting from different, randomly generated genotypes.

In this simulation, the evolving controller was evolved to produce the ability to reach

the target as fast as possible and stay on it. In order to obtain neural networks

that are able to arrive at targets that are distributed anywhere in the reachable arm

space, each individual was tested for 16 trials that differed in terms of the initial arm

posture. In detail, the joint space of the arm was divided into 16 non-overlapping

sub-spaces, and in each trial, the joint’s initial configuration was taken from one of

these sub-spaces. In all 16 trials, the target was positioned in front of the robot,

and each trial lasted 4.5 s (i.e. 300 steps of simulation).

An incremental fitness function was developed in order to avoid local-optima in the

reaching ability:

F =
1

16 · 300
16∑

i=1

300∑

t=0

dist (x, r) (5.1)

Expressed in words, the fitness function is the average of all steps of all trials of the

following function:

dist (x, r) =





100 if x < r

100 · e−0.5(x−r) if x ≥ r

where x is the Euclidean distance between the end-effector of the arm and the target

point, and r is a threshold that is initially set to 10 cm. The fitness function ranges

from 0 to 100. During the evolutionary process, the threshold r is progressively

reduced every time the average fitness of the individuals exceeds 78. The threshold

r represents the requested precision of reaching. Hence, if the threshold is high (i.e.
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Figure 5.3: Scenario used to explain what local-optima are avoided by the fitness
function in equation 5.1. The four points represent four different target positions
that the robot should reach. See the text for details.

10 cm) the task is quite easy, and when the threshold becomes increasingly smaller,

the task becomes increasingly more complex. Thus, the incremental fitness is about

increasing the difficulty of reaching (reducing the threshold r) when almost all the

individuals become good enough (with an average fitness above 78).

This particular fitness formulation also helps to avoid local-optima. To explain what

kinds of local-optima are avoided, let us suppose the evaluation of two individuals,

A and B, during four trials in which the initial posture is fixed and the target point

displacement changes, as shown in Figure 5.3. Let us further suppose that agent

A reaches targets 1 and 3 with 1 cm of error, and targets 2 and 4 with 9 cm of

error, while agent B reaches all the targets with 4 cm of error. A non-incremental

error-minimising function (i.e. dist(x, 0) in equation 5.1) will assign a fitness value

of 30.88 to A and 15.53 to B. On the other hand, the proposed fitness function in

which r equals 3 will assign a value of 52.49 to A and 60.65 to B. In the first stage of

evolution, the selection of B against A makes it possible to evolve individuals that

are not focused upon specific areas (target points 1 & 3), but that are able to arrive

roughly at every target displaced in the reachable space. The gradual reduction

in r increases the pressure on the agents to perform reaching with more and more

precision.
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The agent A is a local-optima, because the majority of paths that lead to better

individuals pass through agents whose performance on targets 1 and 3 is a bit worse,

while its performance improves on targets 2 and 4. For instance, if we suppose that

an offspring of A reaches targets 1 and 3 with 1.5 cm of error, and 2 and 4 with

6 cm of error, it nonetheless seems that a good improvement in the non-incremental

function will assign 26.10, less than A.

5.4 Results

Ten different replications of the evolutionary set-up were run, starting from different

randomly generated populations of genotypes. In all of the above, the evolved

agents displayed the ability to reach the target object with precision, even with the

randomness of the initial arm posture.
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Figure 5.4: Performance on reaching a fixed target. a) Percentage of trials in which
the distance between the endpoint of the arm and the target was less than 1 cm at
the end of the trial. b) Average distance between the endpoint of the arm and the
target at the end of the trials. Each column represents the performance obtained by
testing the best evolved individual in each replication for 100 trials. The bold lines,
grey histograms, and bars indicate the average performance, variance, and minimum
and maximum values, respectively.

For each replication, the best individual was tested in over 100 trials in which the

target was placed in a fixed position and the initial arm posture varied. Figure 5.4-a

shows, for each replication, the percentage of trials in which the distance between

the target and the endpoint of the arm was less than 1 cm (which is considered

successful reaching). The best performance rate was 92.1% of reaches that were
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Figure 5.5: Performance on reaching a randomly positioned target. a) Percentage of
trials in which the distance between the endpoint of the arm and the target was less
than 1 cm at the end of the trial. b) Average distance between the endpoint of the
arm and the target at the end of the trials. Each column represents the performance
obtained by testing the best evolved individual in each replication for 100 trials. The
bold lines, grey histograms, and bars indicate the average performance, variance, and
minimum and maximum values, respectively.

successful. Figure 5.4-b shows, for each replication, the average distance between

the target and the endpoint of the arm at the end of the trials. In the figure, the

bold lines, grey histograms, and bars indicate the average performance, variance,

and minimum and maximum values registered, respectively.

The evolved ability also generalises to different positions of the target and to moving

targets. Figure 5.5 shows the performance of evolved robots tested with the target

placed in randomly selected locations (within 200 cm of the fixed location of the tar-

get used during the evolutionary process). As shown in Figure 5.5, the performance

varied significantly in different replications of the evolutionary process. In the case

of the best replication, however, the performance is only slightly worse, at 84%, with

respect to the normal condition. Indeed, the average performance was still good,

with a 64.1% rate of successful reaching of randomly distributed targets within the

reachable space.

The performance of the best individuals was also measured on 125 target points that

were evenly distributed in front of the robot on a 5× 5× 5 grid. Figure 5.6 presents

the results obtained for two individuals; all the other individuals are not shown

due to their similarity to these two cases. For each target point, the individuals

were tested for 5 trials, starting from different randomly assigned initial positions.
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The filled area of each bullet in Figure 5.6 indicates the average distance between

the target area and the endpoint of the arm in the following intervals: < 1 cm ,

[1, 10] cm , [10, 50] cm , and > 50 cm ; thus, the greater the degree to which a

bullet is filled, the worse is the performance at that point.

The individual whose performances are shown in Figure 5.6-a behaved slightly better

in the central and distant areas than in the near area. At the same time, the

individual whose performances are shown in Figure 5.6-b had a close-to-optimal

reaching ability in the left area, and significantly worse performance in the right

area.

a) Best Individual of Seed 2 b) Best Individual of Seed 8

Figure 5.6: Performance obtained by testing with 125 targets points evenly distrib-
uted in front of the robot on a 5 × 5 × 5 grid area. Graphs a) and b) present
the results obtained testing two typical evolved individuals. The filled area of each
bullet indicates the average distance between the target area and the endpoint of
the arm in the following intervals: < 1 cm , [1, 10] cm , [10, 50] cm , > 50 cm .
The axes indicate the position of the target points along the vertical and horizontal
dimensions in meters.

These qualitatively different performances can be explained by considering that the

four dofs are strongly interdependent. This clearly means that strategies that

treat each joint as an independent entity (that must be moved so to reduce its

distance from the target independent of the current position of the other joints)

are inadequate. Evolving robots should select control strategies that minimise the

problems resulting from the high interdependence among the dofs.

Although evolving robots were selected for their ability to reach a static target,

the controller generalises its ability to follow mobile targets quite well. Figure 5.7

shows the behaviour produced by one of the best evolved individuals that tries to
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Figure 5.7: Performance on following a mobile target. Trajectory produced by the
endpoint of the arm and by a moving target (solid and dotted lines, respectively).
The results were obtained in two tests in which the target moved by displaying a
circular and a figure-eight-shaped trajectory (a), and b) picture, respectively). The
vertical and horizontal axes indicate the respective positions of the target and of the
end-point of the arm, in meters.

reach a moving target by following a circular and a figure-eight-shaped trajectory.

In Figure 5.7 the dotted lines represent the trajectories of the mobile target, and

the solid lines, the trajectories of the endpoint of the arm.

Furthermore, evolved agents were tested under the condition in which the updating

of the sensory neurons was delayed. The performance in this situation decreased

gradually as the delay increased from 60 to 150ms. The percentages of successful

trials for different lengths of delays are shown in Figure 5.8-a. The delays are

expressed in multiples of 15ms; for example, 2 indicates a delay of 30ms with

respect to the normal condition. Surprisingly, the level of performance increased

with a delay of 30ms and remained almost constant with a delay of 15ms. Figure

5.8-b shows a box-plot of the distances between the endpoint of the arm and the

target point, at the end of the trials. The median values are near 1 cm for all lengths

of delay, which demonstrates that with a long delay of the sensor neurons, the best

individuals performed quite well.

Finally, ten additional replications of the evolutionary process were carried out in

which the update of the sensory neurons was delayed 7 ·15 = 105ms. The results of
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Figure 5.8: Performance obtained by testing robots evolved in a normal condition
in a test condition in which the updating of the sensory neurons was delayed. a)
Percentage of trials in which the distance between the endpoint of the arm and
the target was less than 1 cm at the end of the trial. b) Average distance between
the endpoint of the arm and the target at the end of the trials. Each column
represents the performance obtained by testing the best evolved individual in each
replication for 100 trials. The bold lines, grey histograms, and bars indicate the
average performance, variance, and minimum and maximum values, respectively.
The x axis indicates the sensory delay (in multiples of 15ms) in both graphs.

these new evolutions showed levels of performance that were quite similar to those

obtained without a delay. In fact, the percentage of trials in which the distance

between the endpoint of the arm and the target was less than 1 cm is 91.2%, and

the average distance between the target and the endpoint of the arm was 1.34 cm.

Without sensory delay, the results are 92.1% and 1.34 cm, respectively. In addition,

evolved robots generalise their ability to reach targets that are randomly located in

the reachable space. The average percentage of successful reaching behaviours was

62.7%, and the average distance between the endpoint of the arm and the target

was 6.56 cm. These results are similar to the performance obtained without sensory

delay, which gave values of 64.1% and 9.81 cm, respectively.

5.4.1 Analysing Evolved Trajectories

The fitness function rewards the individual that shows rapid and precise trajector-

ies. Once the individuals are evolved, it is possible to analyse to what degree the

trajectories are good from this point of view. In fact, by taking one of the best indi-

viduals, it is possible to create a handcrafted trajectory that moves all joints at the

maximum speed possible (890 rpm). The procedure to generate such a handcrafted
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Figure 5.9: Comparison between trajectories produced by neural network and hand-
crafted ones. Average distance in cm between the trajectories produced by an
evolved neural controller and the trajectories produced by manually setting the
desired position of the joints on the basis of the final postures produced by the
evolved neural controller. Each column indicates the results obtained for the best
individual in a corresponding replication of the experiment. The bold line, grey
boxes, and dotted lines indicate the average the variance, and the minimum and
maximum values, respectively.

trajectory is as follows:

1. A starting posture of the arm is randomly selected and recorded.

2. The neural controller moves the arm until it reaches the target point.

3. The final posture of the arm is recorded.

4. Starting from the same starting posture as in point 1, the joints are moved at

the maximum speed until they reach the same final posture as in point 3.

Figure 5.9 shows box-plots of the differences in cm between the trajectories produced

by the ten best evolved individuals and the corresponding trajectories produced

by the handcrafted procedure given above. Each box-plot in the Figure 5.9 is a

summary of the data from 16 repetitions of the procedure, starting from different

and random initial postures.

The fact that the differences are rather small (Figure 5.9) indicates that the tra-

jectories produced by evolved robots are quantitatively similar to those that can be

obtained by minimising the movement of the joints.
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5.5 Discussions

Notwithstanding their simple architecture, evolved controllers display the ability to

effectively produce a reaching behaviour. However, due to the minimal information

provided by the sensory neurons, the neural controller cannot develop the ability

to select different trajectories. Indeed, the global system is like a dynamical one in

which the equilibrium-point is the target position (Shadmehr, 2003).

In a context in which reaching is executed without any obstacles, there is no need

to generate and select different trajectories. Such problems arise, and the traject-

ories are determined when grasping behaviour is studied. In fact, even if there are

no obstacles in the environment, robots need to reach for objects in different ways,

depending upon the kind of object to be handled and the purpose of the manipula-

tions.

In the model described, all the arm joints were actuated by a velocity-based control-

ler, in which the desired velocity is set in the input and a pid1 controls the stability.

Muscles, however, which more closely resemble the actual structure of the human

arm, provide a more stable and efficient way to actuate robotic arms. Controlling a

joint via two antagonist muscles provides a number of useful features: greater stabil-

ity, independent control of position and stiffness/compliance, perturbation damping,

greater robustness, faster movements, and faster reactions to external perturbations

(Shadmehr & Wise, 2005a,c; Buehrmann & Paolo, 2006).

The problem of controlling a robotic arm is often approached by assuming that the

robot should possess, or should acquire through learning, an internal model that:

(a) predicts how the arm will move and the sensations that will arise, given a specific

motor command (direct mapping), and (b) transforms a desired sensory consequence

into the motor command that will achieve this (inverse mapping) — for a review of

this, see (Torras, 2003).

The aim of this experiment is not to deny that primates rely upon internal models of
1Proportional–Integral–Derivative controller, see http://en.wikipedia.org/wiki/PID_controller
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this kind to control their motor behaviour. However, this does not necessarily imply

that elementary movements are learned on the basis of a detailed description of the

sensory-motor effects of any given motor command, or of a detailed specification of

the desired sensory states. Direct and inverse mapping might operate at a higher

level of organisation; it might, for example, play a role in the determination of the

specific elementary behaviour to be triggered in a specific circumstance.

Assuming that natural organisms act on the basis of detailed direct and inverse map-

ping at the level of micro-actions (i.e. at the level of those elements that constitute

elementary behaviours). this is implausible for at least two reasons.

The first reason is that sensors provide only incomplete and noisy information about

the external environment, and moreover, muscles have uncertain effects. The former

aspect makes the task of producing detailed direct mapping impossible, given that

this would require a detailed description of the actual state of the environment.

The latter aspect makes the task of producing accurate inverse mapping impossible,

given that the sensory-motor effects of actions cannot be fully predicted.

The second reason is that the environment might have its own dynamic, which

can typically be predicted only to a certain extent. For these reasons, the role of

internal models is probably limited to the specification of macro-actions or simple

behaviours, rather than to micro-actions that indicate the state of the actuators and

the predicted sensory state in any given moment.

This leaves open the question of how simple elementary behaviours might be learned,

i.e. how individuals might learn to produce the right micro-actions that lead to a de-

sired elementary behaviour. One possible hypothesis is that elementary behaviours

(e.g. reaching a certain class of target points in a certain class of environmental

conditions) are produced through simple control mechanisms that exploit the emer-

gent results of fine-grained interactions among the control system of the organism,

its body, and the environment. From this point of view, simple behaviours might

be described more effectively through dynamical system methods that identify limit
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cycle attractors and the effects of parameter variations on the agent/environment

dynamics (Sternad & Schaal, 1999).
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6 Reaching and Grasping

The second experiment presented in this chapter concerns the evolution of a neural

network that is required to control a robot that performs the acts of reaching for and

grasping objects placed on a table. The robot is a full anthropomorphic manipulator

with a five-fingered hand attached to a 7-dof arm. The actuation of the arm’s

joints is performed by muscle-like actuators. The fingers are controlled collectively

in order to reduce the number of actuators, and consequently, the size of the neural

controllers.

The obtained results demonstrate how the evolved robots manage to solve problems

using solutions that are rather parsimonious, from the point of view of the robot’s

neural controller. The post-evaluation of the robot’s performance under new condi-

tions not experienced during the evolutionary process indicates that evolved robots

generalise rather well with respect to the shape of an object, and relatively well

with respect to the position of the object on a table. Overall, the obtained results

demonstrate that effective reaching and grasping skills can be developed without

relying upon internal models that perform direct and inverse mapping.

An analysis of the behaviour exhibited by evolved robots indicates that the chosen

approach allows for the synthesis of solutions that exploit the morphological prop-

erties of the robot’s body (i.e. its anthropomorphic shape, the elastic properties of

its muscle-like actuators, and the compliance of its actuated joints) as well as the

physical interaction between the robot and the environment, in ways that are not

easy to derive using analytic methods.

6.1 The Robot

All the details of the robot’s structure are presented in Appendix B. In the following

sections, only a broad overview of the arm and hand structure is given.
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6.1.1 Arm Structure

The arm (Figure 6.1) consists mainly of three elements (the arm, the forearm,

and the wrist) that are connected through articulations that are distributed in the

shoulder, the arm, the elbow, the forearm, and wrist. It is an enhancement of

a previous 4-dof model that included a wrist comprised of another 3-dof joint.

The wrist adds the ability to produce pitch, yaw and roll of the five-fingered hand.

In Figure 6.1, the cylinders graphically represent the rotational dofs. The axes of

the cylinders indicate the corresponding axis of rotation, and the links among the

cylinders represent the rigid connections that make up the arm structure.

Figure 6.1: The kinematic chain of the arm. The cylinders represent rotational
dofs. The axes of the cylinders indicate the corresponding axis of rotation. The
links among the cylinders represent the rigid connections that make up the arm
structure.
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6.1.2 Arm Actuators

The joints of the arm are actuated by two simulated antagonist muscles that are

implemented accordingly to Hill’s muscle model (Sandercock et al., 2003; Shadmehr

& Wise, 2005b). More precisely, the total force exerted by a muscle is the sum

of three forces TA (α, x) + TP (x) + TV (ẋ) which depend upon the activity of the

corresponding motor neuron (α), the current elongation of muscle (x) and the muscle

contraction/elongation speed (ẋ) which are calculated on the basis of the equations

B.1 (for details see Appendix B).

The active force TA depends on the activation of muscle α and on the current elonga-

tion/compression of the muscle. When the muscle is completely elongated/compressed,

the active force is zero regardless of the activation α. When the muscle is at its rest-

ing length, the active force reaches its maximum, which depends on the activation

α.

The passive force TP depends only on the current elongation/compression of the

muscle. TP tends to elongate the muscle when it is compressed less than it does

when it is at its resting length, and also tends to compress the muscle when it is

elongated beyond its resting length. TP differs from a linear spring by virtue of

its exponential trend, which produces a strong opposition to muscle elongation and

little opposition to muscle compression.

TV is the viscosity force. It produces a force proportional to the velocity of the

elongation/compression of the muscle.

6.1.3 Hand Structure

The hand was added to the robotic arm just below the wrist (at joint G in Figure

6.1). The robotic hand (Figure 6.2) is composed of a palm and 14 phalange segments

that make up the digits, which are connected through 15 joints, making a total of

20 dofs (see Appendix B for details).
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a) b)

Figure 6.2: The hand structure. The cylinders represent rotational dofs. The axes
of the cylinders indicate the corresponding axis of rotation, and the labels on the
cylinders in a) are the names of the joints. The links among the cylinders represent
the rigid connections that make up the hand structure. The white labels on the
links in b) are the names of the tactile sensors.

6.1.4 Hand Actuators

The joints can be controlled independent of one another by specifying the desired

position. One of the most important features of the hand’s joints is their compli-

ance in order to facilitate the grasping of objects. For all the details of this, see

Appendix B.

6.1.5 Hand Tactile Sensors

The hand is equipped with tactile sensors that are distributed over the wrist, palm,

and all five fingers. Figure 6.2-b show where the tactile sensors are placed. The

white labels indicate the names of the tactile sensors. Each tactile sensor simply

counts the number of contacts that take place on the corresponding part on which

it is placed. The contacts that result from the humanoid touching itself are not

counted. For example, in the case of TP , it reports all contacts between the palm

and another object, but not the contacts between the palm and fingers.
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Figure 6.3: Architecture of the neural controllers. The arrows indicate blocks of
fully connected neurons.

6.2 The Neural Controller

The robot is equipped with neural controllers, as shown in Figure 6.3 which in-

clude 21 sensory neurons (x1, . . . x21), 5 internal neurons (h1, . . . , h5) with recurrent

connections, and 16 motor neurons (o1, . . . o16).

The neurons are divided into seven blocks in order to facilitate the description of

their functionality and connectivity:

• Object Position (x1, x2, x3): This layer can be seen as the output of a vision

system (which has not been simulated) that computes the relative distance of

the object with respect to the hand up to a distance of 80 cm normalised in

the range of [−1,+1] over three orthogonal axes.

• Arm Propriosensors (x4, . . . , x10): These encode the current angles of the

7 corresponding dofs located on the arm and on the wrist normalised in the

range of [−1,+1].

• Tactile Sensors (x11, . . . , x16): These measure whether the 5 fingers and the

unit constituted by the palm and wrist are in physical contact with another

object. More precisely, the output of each tactile sensor is calculated with the
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following equation:

x11 (t) = δ11 (σ0.2 (TP + TW )) + (1− δ11)x11 (t− 1)

xi (t) = δi

(
σ0.2

(
3∑

s=1

Ts+3(i−12)

))
+ (1− δi)xi (t− 1) for i = 12, . . . , 16

where Ti is the value of the corresponding tactile sensor as described above.

σλ(x) = (1 + e−x)−λ, and δi is a coefficient that range in the interval [0, 1].

The value of δi represents the dependence of the output of the tactile sensors

on the previous one. These equations are similar to those for leaky integrators

(Nolfi & Marocco, 2001; Beer, 1995), and the idea behind them is quite simple:

the total activation is the sum of the δi values for all the tactile sensors on

a finger and the 1 − δi values for the tactile sensations of the previous step.

In this way, when there are no further contacts, the activation of the neuron

leaks a small amount over time, starting from the value of the previous step,

instead of going to zero instantaneously as do normal sensory neurons. The

time needed to reach zero is proportional to the δi value, and for this reason,

δi is considered a time constant.

• Hand Propriosensors (x17, . . . , x21): These encode the current extension/flexion

state of the five corresponding fingers in the range of [0, 1] where 0 means fully

extended and 1 means fully flexed. More precisely, the output of each hand’s

propriosensors is calculated with the following equation:

x17 = map[0,1]

(
ang (J10) + ang (J11)

2

)

xi = map[0,1]

(∑15
s=13 ang

(
Js+3(i−18)

)

3

)
for i = 18, . . . , 21

where ang (Ji) is the angular position expressed in radians of the joint Ji, and

map[0,1] maps the possible angle values of joints into the interval [0, 1] . Due
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to the compliance of the finger’s joints when the hand collides hits with an

object and due to the fact that the state of the three corresponding dofs is

summarised in a single variable, the same sensory state might correspond to

a different states of the mp and dip joints.

• Internal Neurons (h1, . . . h5): Each internal neuron has a bias

• Arm Actuators (o1, . . . , o14): The values of oi directly indicate the state of

activation of the 14 motor neurons that control the corresponding muscles of

the arm.

• Hand Actuators (o15, o16): The value of o15 is the desired extension/flexion

angle of the thumb; where 0 means fully extended and 1 means fully flexed.

Also the value of o16 is the desired extension/flexion angle of all the other

four fingers. It is important to note that in this experiment setup, not all the

dofs of the fingers are controlled by the neural network. In fact, the positions

of the joints are controlled by a limited number of variables via a velocity-

proportional controller (with the maximum joint velocity set to 0.30 rad/s).

More precisely, the force exerted by the mp, pip and dip joints (mp-a, mp-

b, and pip in the case of the thumb), which determine the extension/flexion

of the corresponding finger, are controlled by a single variable θ that ranges

from [−90°,+0°]. The desired position of the three joints was set to θ, θ and

2/3 · θ, respectively. In the case of the thumb, the supination/pronation is

also controlled by θ, by setting the desired angle to −2/3 · θ. The dof that

determines the abduction/adduction of the first phalanx of each finger is con-

trolled by a second variable, which was set to a constant value of 0 rad for this

experiment. This simplification of the control of the fingers is justified by the

fact humans also have a very limited control of each phalanx of fingers during

power grasps. Except for very fine movements, humans make use of all 3 dofs

of their fingers at the same time, while maintaining the fingers in a natural

posture (Jones & Lederman, 2006; Page, 1998). Hence, the activation of the
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motor neurons mapped into the θ variable is then mapped into a natural pos-

ture that corresponds to the natural constraints of human fingers (Yasumuro

et al., 1999).

The state of the sensors, the desired state of the actuators, and the internal neurons

were updated every 10ms, using the following equation:

hi =
21∑

j=1

wjiσ0.5 (xj) + βi

oi =
10∑

j=1

wjiσ1.0 (xj) +
5∑

j=1

wjiσ1.0 (hi) for i = 1, . . . , 14

oi (t) = δi

(
21∑

j=11

wjiσ1.0 (xj) +
5∑

j=1

wjiσ1.0 (hi) + βi

)
+ (1− δi) oi (t− 1) for i = 15, 16

where xi are the output of the sensory neurons as described above. hi and oi are

the output of the internal and actuator neurons, respectively. wji is the synaptic

weight from neuron j to neuron i. βi is the bias of the i -th neuron, and δi is the

coefficient for implementing leaky neurons as proposed in (Nolfi & Marocco, 2001)

for the hand actuators.

This particular sensory system configuration was chosen in order to be able to study

situations in which the vision and tactile sensory channels need to be integrated. In

isolation, each of the two types of sensors does not provide enough information to

perform the task.

The proprioceptive neurons, in addition to the sensory neurons described in the

previous experiment in Section 5.1, play an essential role. In the case in which the

robot arm almost reaches the object, the lack of these proprioceptive neurons results

in the sensory neurons shifting to zero, and furthermore, due to the perceptron ar-

chitecture, the output neurons also tend to zero. This behaviour would not permit

the evolution of the neural network for muscle-actuated joints, because in order to

maintain a configuration, the muscle’s activation must stay at a value other than
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zero. In fact, with muscle-actuated joints, the arm postures are encoded with differ-

ent activation of antagonistic muscles. and when the activation tends to zero, the

arm tends to assume a position of rest, depending upon the muscle’s passive/length

properties.

This neural control model is a step forward in control systems that is consistent

with the equilibrium point hypothesis (Shadmehr, 2003). The governing concept is

that the controller’s inputs are parameters of the dynamical system represented by

the controller that modifies its equilibrium points. Hence, the inputs of the neural

network that are dedicated to reaching do not encode an output motor sequence,

but rather, an equilibrium point of the system that leads to the correct posture

that is required in order to reach the desired point. In more detail, the neural

network produces a dynamical system that depends upon the incoming inputs, and

the dynamics of the system produce a behaviour that ends up in a configuration at

the equilibrium at which the robot grasps the object.

This approach offers the advantage of having a high robustness to perturbation. be-

cause if some variation or perturbation occurs, the equilibrium point will not change

and the dynamical system will tend to the same final position, regardless.

6.3 The Evolutionary Process

The free parameters of the neural controller, i.e. the connection weights (wji), the

biases (βi) of the internal neurons and hand actuators, and the time constant (δi) of

the leaky-integrator neurons, were adapted using an evolutionary robotics method

(Nolfi & Floreano, 2000).

The initial population consisted of 100 randomly generated genotypes, which encode

the free parameters of 100 corresponding neural controllers. Each parameter was

encoded with 16 bits. Each genotype contained 6,096 bits corresponding to 381 free

parameters: 366 connection weights, 7 biases normalised in the range of [−10,+10]

83



Figure 6.4: The 18 predefined initial postures of the arm. The postures were ob-
tained by systematically setting the elbow joint at three different angles, and one
joint of the shoulder in six different positions; all others joints were set to 0.

and 8 time constants normalised in the range [0.0, 1.0].

The 20 best genotypes of each generation were allowed to reproduce by generating

five copies each. Four out of the five copies were subjected to mutations and one copy

was left intact. During mutation, each bit of the genotype had a 1.5% probability

of being replaced by a new, randomly selected value. The evolutionary process was

continued for 400 generations (i.e. the process of testing, selecting and reproducing

robots was iterated 400 times).

The experiment was replicated 10 times. The robot was adapted in order to possess

the ability to grasp spherical and cylindrical objects on a table that was placed in

front of it. The objects could move freely and could even fall off the table (Figure

6.1). During the adaptive process, each genotype was translated into a corresponding

neural controller, which was embodied in the simulated robot and tested for 18 trials.

Each trial lasted 4 s, which corresponds to 400 steps. At the beginning of each trial,

the arm was set in the i -th posture of the 18 corresponding predefined postures

shown in Figure 6.4. The target object was placed in a fixed position in the central
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Figure 6.5: The two objects to be grasped. The sphere has a radius of 2.5 cm and
a weight of 32.72 g; the cylinder has a radius of 2.0 cm, a height of 6.0 cm. and a
weight of 37.70 g.

area of the table-top. The spherical objects had a radius of 2.5 cm and a weight of

32.72 g, and the cylindrical objects had a radius of 2.0 cm, a height of 6.0 cm, and a

weight of 37.70 g (see Figure 6.5).

The evolving robots were evaluated on the basis of the following fitness function,

which rewards successful reaching and grasping behaviours:

F =
1

1803600

18∑

t=1

400∑

s=200

(
1

1 + 0.25 · dist + 500 · grasp
)

where dist encodes the distance between the barycentre of the hand and the object.

The term grasp encodes whether an object has been successfully grasped (i.e. grasp

is 1 when the target object is elevated with respect to the table and is in physical

contact with the robot hand, and is 0 otherwise). t is the current trial, and s is

the current time step. To allow the robot to reach for and grasp the object, the

fitness is calculated only in the second-half of each trial (i.e. from time step 200 to

time step 400). The constant at the beginning of the function, which corresponds

to the maximum fitness that can be gathered by grasping each object during the

first phase of each trial and by holding the object above the plane for the rest of the

trial, was used to normalise the fitness value in the range of [0, 1].
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Figure 6.6: Fitness of the best individuals throughout generations for the 10 replic-
ations of the experiment.

6.4 Results

By analysing the behaviour of the evolved robots throughout multiple generations,

8 out of 10 replications of the experiment developed robots with the ability to reach

and grasp objects. As can be clearly seen in Figure 6.6, the best evolved robots

displayed close to optimal performance.

The best individual from one of the most successful replications successfully grasped

the two types of objects using all of the 18 initial postures shown in Figure 6.4. As

shown in Figure 6.7, the behaviour displayed by this individual can be divided into

three phases:

1. An initial phase in which the arm moves towards the object with increasing

speed. When the hand is near the object, the robot begins to slow down the

speed of the arm and initiates flexion of the hand.

2. A second phase, in which the tactile sensors begin to be activated. The arm

stays almost still. The robot flexes the fingers and the wrist to encircle the

object.
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a) Robot grasping a sphere b) Robot grasping a cylinder

Figure 6.7: Snapshots of the grasping behaviour. Five superimposed snapshots of
the grasping behaviour displayed by one of the best evolved robots.

3. A final phase, in which the arm and the wrist rotate so that the palm is face-

up. The robot moves the arm to lift the object from the table. The rotation of

the palm reduces the risk of the object falling from the hand while it is being

lifted.

A set of videos showing the behaviour of evolved robots can be accessed on the web

page http://laral.istc.cnr.it/esm/arm-grasping/.

The best individuals displayed remarkable generalisation abilities when tested in

conditions that were different from those experienced during evolution. As regards

the position of the object, Figure 6.8 shows the average performance of the best

evolved robots from three of the best replications in the experiment, in which the

positions of the objects on the table were systematically varied. Each robot was

tested in 120 different conditions corresponding to 60 different positions of the object

on the table, and to the two types of objects (spherical and cylindrical objects). For

each testing condition, the robot was tested for 18 trials corresponding to the 18

different starting positions of the arm. In the figure, the colours of the rectangles

indicate the average performance for the corresponding location. In each picture,

the left and right areas correspond to the left and right areas of the table with

respect to the robot. The top and bottom areas correspond to the proximal and

distant areas of the table with respect to the robot.

Although different individuals varied with respect to their generalisation capabilities,
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Figure 6.8: Performance of the best evolved robots from the three best replications
of the experiment. The coloured areas in the map graphs represent the average
performance of the robot, indicated by the row, upon grasping the object indicated
by the column. The average represents over 18 trials corresponding to the 18 different
starting positions of the arm. For each map graph, the left and right positions
correspond to the left and right areas of the table with respect to the robot, and the
top and bottom positions correspond to the proximal and distant areas of the table
with respect to the robot.

they all displayed rather good performance on the central diagonal area, which

corresponds to the preferential trajectory followed by the arm in normal conditions

(i.e. when the objects were placed in the central area of the table-top). The decrease

in performance on the top-right and bottom-left parts of the table can be explained

by considering that the grasping of objects located in these areas requires postures

that differ significantly from those that the robots assume to grasp objects in the

central area of the table-top.

The best individuals also displayed a remarkable ability to grasp objects that differ

in shape and size, and that are placed in locations different from those experienced

during evolution. The objects used in these tests are shown in Figure 6.9.

The results of these tests are summarised in Figure 6.10. In the figure, the bars

represent the average performance over all 60 different positions for all 18 initial

postures of the arm, as described for the previous test. Figure 6.11 reports the
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Figure 6.9: Objects used for testing robots’ generalisation ability with respect to
object shape and size. The dimensions of the objects are specified in the figure, and
the bold numbers on the left identify the objects as referenced in Figures 6.10 and
6.11.

average performance for each position of an object for each of the best individuals.

The differences in performance among the individual robots from different replica-

tions of the experiment are due to the different behavioural strategies displayed by

evolved individuals, with particular reference to the second and third phases of their

behaviour in which the robots grasp and lift the objects (for more information, see

the video available from the web page http://laral.istc.cnr.it/esm/arm-grasping/).

For example, the fact that the best individual from replication 1 displayed poor

performance with objects 2, 4, 6, and 7 as compared to the other evolved individuals

is due to the fact that it flexes its fingers very quickly. This type of strategy actually

denies this robot the possibility of exploiting the adjustment of the relative position

of the fingers with respect to the objects, which arises spontaneously in time as a

result of the effects of the forces exerted by the hand, collisions between the fingers

and the object, and the compliance of the hand.

The poor performance of the best individuals from replication 7 on objects 2, 3 and

4 can be explained by considering that the way in which this individual lifts objects

after the grasping phase tends to produce collisions with the plane in the case of

large objects, which might cause the object to fall from the hand.
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Figure 6.10: Performance for grasping eight different objects. Performance of the
evolved robots from the seven best replications of the experiment, as observed by
testing them with the eight objects shown in figure 6.9. The bars represent the
average performance over all 60 different positions for all 18 initial postures of the
arm. The positions are located as shown in the map graphs in Figure 6.8.

Figure 6.11: Performances for grasping eight different objects. The coloured areas
in the map graphs represent the average performance of the best robot from the
replication, as indicated by the column, upon grasping the object indicated by the
row. The number of the row identifies the object, as in Figure 6.9. The average
represents 18 trials corresponding to the 18 different starting positions of the arm.
For each map graph, the left and right positions correspond to the left and right
areas of the table with respect to the robot, and the top and bottom positions
correspond to the proximal and distant areas of the table with respect to the robot.
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Finally, the good performance of replication 8 can be explained by this robot’s ability

to control the thumb, which is crucial for grasping difficult, slippery objects. Also,

this robot produces little rotation of the arm and wrist during the lifting phase,

which minimises the risk of collisions with the plane after the objects have been

grasped.

Overall, these results suggest that certain behavioural strategies might be effective

for a large variety of objects, and that the limited differences in the shapes and sizes

of the objects to be grasped does not necessarily have an impact on the rules that

regulate robot/environmental interactions.

An important role that contributes to the generalisation ability is played by the

muscle-like properties of the actuators of the arm and by the compliance of the

actuators of the fingers, both of which are exploited in the evolution process. In

fact, the compliance of the fingers simplifies the problem of adapting the postures

of the fingers to the shape of the object. Another important role that contributes

to the ability to grasp an object in different positions is the choice to encode the

object position extracted by the vision system with respect to the hand position,

instead of to the fixed frame of the robot.

6.5 Discussion

The work presented in this chapter shows how effective reaching and grasping be-

haviours exhibited by an anthropomorphic robotic arm can be developed through a

process of evolution. Evolution is like a trial–and-error process in which the variants

of the free parameters are retained or discarded on the basis of their effects upon

the level of global behaviour. However, the free parameters encode the control rules

that regulate the fine-grained interaction between the robot and the environment.

Hence, the robots are left free to choose the way in which the problem is solved

during the adaptation process, since they are rewarded only with respect to their

ability to approach and lift objects. The particular trajectory used to approach
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objects, the postures of the arm and hand, and the ways in which different motor

actions produced by the robot interact with the environment, are all irrelevant from

the point of view of the fitness function employed for rewarding the robots.

The experimental setup presented is significantly more advanced than that of previ-

ous works based on similar adaptive techniques (Bianco & Nolfi, 2004; Buehrmann

& Paolo, 2004; Gomez et al., 2005; Massera et al., 2006; Bongard, 2010). The

morphology of the anthropomorphic arm and hand with 27 dofs is rather more

complex than the arm models cited. Hence, the size of the neural controller and the

dimensions of the corresponding search space are greater. Also, the task involves

the ability to reach for and grasp freely moving objects with different shapes placed

on a table.

The obtained results demonstrate how the proposed methodology and the exploit-

ation of the properties that arise from the physical interaction between the robot

and the environment allow effective behaviours to be produced on the basis of a

parsimonious control system. For example, the effects of the collisions between the

fingers of the robotic hand and the objects being grasped, combined with the com-

pliance of all the finger joints, enable the robot hand to spontaneously conform to

the shape of an object, which in turn allows the robot to effectively grasp objects

with different shapes and orientations without the need for control mechanisms to

regulate the movement of the arm and hand on the basis of the characteristics of

the objects.

This line of research is also consistent with recent cognitive robotics approaches,

such as those in the field of developmental robotics (Lungarella & Metta, 2003).

Developmental robotics, also known as epigenetic robotics, is an interdisciplinary

approach to robot design. Developmental robots are characterised by a prolonged

develop- mental process in which varied and complex cognitive and perceptual struc-

tures emerge as a result of the interaction of an embodied system with a physical

and social environment. Lungarella & Metta (2003) show that although most cur-

rent investigations of developmental robotics have focused on sensorimotor control
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(e.g. reaching) and social interaction (e.g. gaze control), future cognitive robotics

research needs to go beyond the limited sphere of behaviours such as these. In order

to design truly autonomous behaviour, future robotics research needs to integrate

motor control with improved sensory and motor apparatus, more refined value-based

learning mechanisms, and means of exploiting neural and body dynamics.

This approach also has a potential relevance to computational neuroscientific re-

search on motor control (Shadmehr & Wise, 2005b). The current architecture of the

robot’s neural controller has not been restricted to any specific brain region known

to be involved in limb control. Therefore, the current model and simulation results

cannot be used to speculate upon its relevance to neuroscientific research. However,

the development of future extensions of the model might specifically focus on invest-

igating the role of the structure of the neural network controller and its mapping

onto brain regions and circuits (e.g. the cerebellum, motor areas) that are known

to be involved in prehension ability (Jones & Lederman, 2006; Kawato, 2003). This

would also make it possible to test current theories of minimisation criteria, such

as energy minimum, jerk minimum, and stability maximisation for the generation

of voluntary movements, and a comparison between robotic model results and the

results in the literature of limb neurophysiology (Shadmehr, 2003).
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7 Manipulation and Object
Discrimination

The experiment in this chapter investigates the perceptual skills of an anthropo-

morphic robotic arm with a five-fingered hand controlled by an artificial neural

network that is given the task of actively categorising un-anchored spherical and

ellipsoid objects placed in different positions and orientations over a planar surface.

The task requires that the agent produce different categorisation outputs for objects

with different shapes, and similar categorisation outputs for objects with the same

shape.

The aim of this study is to prove that, in spite of the complexity of the experimental

scenario, the er approach can be successfully employed to design neural mechanisms

that allow the robotic arm to perform such a perceptual categorisation task. Indeed,

the best individuals synthesised by artificial evolution techniques develop a close-to-

optimal ability to discriminate among the shapes of objects, as well as an ability to

generalise their skill in new circumstances. Moreover, specific analysis was carried

out on the best neural controllers in order to discover:

• how the robot acts in order to bring forth the sensory stimuli that provide

the regularities necessary for categorising objects, in spite of the fact that

sensations themselves may be extremely ambiguous, incomplete, partial, and

noisy;

• the dynamical nature of sensory flow (i.e., how sensory stimulation varies over

time and the time rate at which significant variations occur);

• the dynamical nature of the categorisation process (i.e., whether the categor-

isation process occurs over time, as the robot interacts with the environment);

and
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Figure 7.1: The kinematic chain of the arm. The cylinders represent rotational
dofs. The axes of the cylinders indicate the corresponding axis of rotation. The
links among the cylinders represent the rigid connections that make up the arm
structure.

• the role of qualitatively different sensations originating from different sensory

channels in the accomplishment of the categorisation task.

7.1 The Robot

The robot that is the subject of the experiment presented in this chapter is the same

as the one used in the previous experiment, and all the details of its structure are

given in Appendix B. In the following sections, only a broad view of the arm and

hand structure is given.

7.1.1 Arm Structure

The arm (Figure 7.1) consists mainly of three elements (the arm, the forearm and

the wrist) that are connected through articulations distributed in the shoulder, the
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arm, the elbow, the forearm and wrist. It is an enhancement of a previous 4-dof

model to which has been added a wrist comprised of another 3-dof joint. The wrist

adds the ability to produce pitch, yaw and roll of the five-fingered hand. In Figure

7.1, the cylinders represent rotational dofs. The axes of the cylinders indicate the

corresponding axis of rotation, and the links among the cylinders represent the rigid

connections that make up the arm structure.

7.1.2 Arm Actuators

The joints of the arm are actuated by two simulated antagonist muscles that are

implemented accordingly to Hill’s muscle model (Sandercock et al., 2003; Shadmehr

& Wise, 2005b). More precisely, the total force exerted by a muscle is the sum of

three forces TA (α, x) + TP (x) + TV (ẋ) which depend on the activity of the corres-

ponding motor neuron (α), the current elongation of the muscle (x) and the muscle

contraction/elongation speed (ẋ), which are calculated on the basis of the equations

B.1 (for details see the appendix B).

The active force TA depends upon the activation of muscle α and on the cur-

rent elongation/compression of the muscle. When the muscle is completely elong-

ated/compressed, the active force is zero, regardless of the activation α. At the

resting length of the muscle, the active force reaches its maximum, which depends

upon the activation α.

The passive force TP depends only on the current elongation/compression of the

muscle. TP tends to elongate the muscle when it is compressedto less than its

resting length, and tends to compress the muscle when it is elongated beyond its

resting length. TP differs from a linear spring in that its exponential trend produces

a strong opposition to muscle elongation and little opposition to muscle compression.

TV is the viscosity force. It produces a force that is proportional to the velocity of

the elongation/compression of the muscle.
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a) b)

Figure 7.2: The hand structure. The cylinders represent rotational dofs. The axes
of the cylinders indicate the corresponding axis of rotation, and the labels on the
cylinders in a) are the names of the joints. The links among the cylinders represent
the rigid connections that make up the hand structure. The white labels on the
links in b) are the names of the tactile sensors.

7.1.3 Hand Structure

The hand was added to the robotic arm just below the wrist (at joint G, shown in

Figure 7.1). The robotic hand (Figure 7.2) is composed of a palm and 14 phalange

segments that make up the digits, which are connected through 15 joints, making a

total of 20 dofs (see Appendix B for details).

7.1.4 Hand Actuators

The joints can be controlled independent of one another by specifying the desired

position. One of the most important features of the hand’s joints is their compliance

in order to facilitate the grasping of objects. For all details, see Appendix B.

7.1.5 Hand Tactile Sensors

The hand is provided with tactile sensors that are distributed over the wrist, the

palm, and all five fingers. Figure 7.2-b shows where the tactile sensors are placed.

The white labels indicate the names of the tactile sensors. Each tactile sensor simply

counts the number of contacts that take place on the corresponding part it is placed

on. Contacts made by the humanoid parts are not counted. For example, in the case
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Figure 7.3: The architecture of the neural controllers. The arrows indicate blocks
of fully connected neurons.

of TP , it reports all contacts between the palm and other objects, but not contacts

between the palm and the fingers.

7.2 The Neural Controller

The robot is equipped with the neural controllers shown in Figure 7.3 which in-

clude 22 sensory neurons (x1, . . . x22), 8 internal neurons (h1, . . . , h8) with recurrent

connections and 18 motor neurons (o1, . . . o18). The neurons are divided into the

following seven blocks in order to facilitate the description of their functionality and

connectivity:

• Arm Propriosensors (x1, . . . , x7): The activation values xi of the arm’s

propriosensory neurons encodes the current angles of the 7 corresponding dofs

located on the arm and the wrist normalised in the range of [−1, 1].

• Tactile Sensors (x8, . . . , x17): The activation values xi of the tactile sensory

neurons are updated on the basis of the state of the tactile sensors distributed

over the hand. Each tactile sensor is associated with only one of all available

sensors. Hence, not all tactile sensors shown in Figure 7.2-b are used. The
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tactile sensors used are TP , T3, T4, T6, T7, T9, T10, T12, T13 and T15, which

are associated, respectively, to neurons x8, . . . , x17. The activation of xi is 1 if

the corresponding tactile sensor T reports any contacts, and 0 if there are no

contacts.

• Hand Propriosensors (x18, . . . , x22): The activation values xi of the hand’s

sensory neurons encodes the current extension/flexion of the 5 corresponding

finger’s joints (see joints J8, J9, J10, J11, and J12 in Figure 7.2-a), normalised

in the range of [0, 1] (with 0 for a fully extended, and 1 for a fully flexed joint).

• Internal Neurons (h1, . . . , h8): Each internal neuron has a bias.

• Arm Actuators (o1, . . . , o14): The firing rate σ1.0(oi+βi) of the motor neurons

determines the state of the simulated muscles of the arm (see eq. 7.1).

• Hand Actuators (o15, o16): the firing rate σ1.0(o15 + β15) is the desired

extension/flexion angle of the thumb, where 0 means fully extended and 1

means fully flexed. Further, the firing rate σ1.0(o16 + β16) is the desired exten-

sion/flexion angle of the other four fingers. It is important to note that in this

experiment setup not all the dofs of the fingers are controlled by the neural

network. In fact, the positions of the joints are controlled by a limited number

of variables through a velocity-proportional controller (the joints’ maximum

velocity is set to 0.30 rad/s). More precisely, the force exerted by the mp,

pip and dip joints (mp-a, mp-b and pip in the case of the thumb), which

determines the extension/flexion of the corresponding fingers, are controlled

by a single variable θ that ranges between [−90°,+0°]. The desired position

of the three joints is set to θ, θ and 2/3 · θ, respectively. In the case of the

thumb, the supination/pronation is also controlled by θ by setting the desired

angle to −2/3 · θ. The dof that govern the abduction/adduction of the first

phalanx of each finger is controlled by a second variable, which was set to a

constant value of 0 rad in this experiment.

This simplification of the control of the fingers is justified by the fact humans
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also have a very limited control of each phalanx of fingers during power grasps.

Except when making very fine movements, humans make use of all 3 dofs of

the fingers at the same time, while maintaining the fingers in a natural pos-

ture (Jones & Lederman, 2006; Page, 1998). Hence, the activation of motor

neurons mapped into the θ variable is then mapped into a natural posture in

accordance with the constraints of human fingers (Yasumuro et al., 1999).

• Categories (o17, o18): Their firing rates are used to categorise the shape of

the object; i.e. to produce different output patterns for different object types.

The internal neurons are fully connected. In addition, each internal neuron receives

one incoming synapse from each sensory neuron. Each motor neuron receives one in-

coming synapse from each internal neuron. There are no direct connections between

the sensory and motor neurons.

To take into account the fact that sensors are noisy, tactile sensors xi return, with

a 5% probability, a value different from the computed value, and 5% uniform noise

was added to proprioceptive sensors xi.

The values of the neurons were updated using the following equation:

0.01 · Ṡi = −Si + g · xi

τiḣi = −hi +
22∑

j=1

wjiσ1.0 (Sj + βj) +
8∑

j=1

wjiσ1.0 (hj + βj) (7.1)

0.01 · ȯi = −oi +
8∑

j=1

wjiσ1.0 (oj + βj)

with σλ(x) = (1 + e−x)−λ.

In these equations, using terms derived from an analogy with real neurons, Si, hi, oi

represents the cell potential, τi the decay constant, g is a gain factor, xi the intensity

of the sensory neuron i, ωji the strength of the synaptic connection from neuron j to

neuron i, βj the bias term, fr (yj) = σ(yj + βj) the firing rate. All decay constants
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τi, all the network connection weights ωij, all biases βj, and g are the genetically

specified parameters of the networks. The biases βj of the sensory neurons are all

equal and are genetically determined.

7.3 The Evolutionary Process

A simple generational genetic algorithm was employed to set the parameters of the

networks (Mitchell, 1996). The initial population contained 100 genotypes. Genera-

tions following the first one are produced by a combination of selection with elitism

and with mutation. For each new generation, the 20 highest-scoring individuals

from the previous generation, the elite, are retained unchanged. The remainder

of the new population is generated by making 4 mutated copies of each of the 20

highest-scoring individuals. Each genotype is a vector comprising 420 parameters.

Each parameter is encoded with 16 bits. Initially, a random population of vectors is

generated. In the process of mutation, there is a 1.5% probability that each bit of

the genotype can be flipped. The genotype parameters are linearly mapped to pro-

duce network parameters with the following ranges: biases βi ∈ [−4,−2], weights

ωij ∈ [−6, 6], gain factor g ∈ [1, 10]; decay constants τi of the hidden layer are

exponentially mapped into [10−2, 100.3] with the lower bound corresponding to the

integration step-size used to update the controller and the upper bound, arbitrarily

chosen, corresponding to about half of a trial length (i.e., 2 s). The cell potentials

are set to 0 when the network is initialised or reset, and equations 7.1 are integrated

using the forward Euler method1.

During evolution, each genotype is translated into an arm controller and then eval-

uated 8 times starting from position A, and 8 times starting from position B, for a

total of K = 16 trials (see figure 7.4). In position A, the angular positions of joints

〈J1, .., J7〉 are 〈−50◦,−20◦,−20◦,−100◦,−30◦, 0◦,−10◦〉, and for position B they are

〈−100◦, 0◦, 10◦,−30◦, 0◦, 0◦,−10◦〉. For each position, the arm experiences the el-

1http://en.wikipedia.org/wiki/Euler_method
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a) b)

c) d)

Figure 7.4: Initial positions of the arm and the objects. a) Position A for the arm, in
which the angles of joints 〈J1, .., J7〉 are 〈−50◦,−20◦,−20◦,−100◦,−30◦, 0◦,−10◦〉.
b) Position B for the arm, in which the angle of joints 〈J1, .., J7〉 are
〈−100◦, 0◦, 10◦,−30◦, 0◦, 0◦,−10◦〉. c) The sphere and the ellipsoid viewed from
above. d) The sphere and the ellipsoid viewed from the side. The radius of the
sphere is 2.5 cm. The radii of the ellipsoid are 2.5, 3.0 and 2.5 cm. In c) the arrows
indicate the intervals within which the initial rotation of the ellipsoid is set.

lipsoid 4 times and the sphere 4 times. The radius of the sphere is 2.5 cm. The radii

of the ellipsoid are 2.5, 3.0 and 2.5 cm. Moreover, the rotation of the ellipsoid with

respect to the z-axis is randomly set in the range of [350◦, 10◦] in the first presenta-

tion, [35◦, 55◦] in the second presentation, [80◦, 100◦] in the third presentation, and

[125◦, 145◦] in the fourth presentation (see also Figure 7.4-c: the arrows indicate the

intervals within which the initial rotation of the ellipsoid is set).

At the beginning of each trial, the arm is located in the corresponding initial position

(i.e., A or B), and the state of the neural controller is reset. A trial lasts 4 simulated

seconds (T = 400 time step). A trial is terminated earlier in the case that an object
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falls off the table.

In each trial k, an agent is rewarded by an evaluation function that seeks to assess

its ability to recognise and distinguish the ellipsoid from the sphere. We would note

that, rather than imposing a representation scheme in which different categories are

associated with an a priori determined state/s of the categorisation neurons, the ro-

bot is left free to determine how to communicate the results of its decisions. That is,

the agents can develop whatever representation scheme they might choose, as long

as each object category is clearly identified by a unique state/s of the categorisation

neurons. This system also has an advantage in that it scales up to categorisation

tasks with objects of more than two categories, without having to introduce struc-

tural modifications to the agent’s controller. More precisely, the agents are rewarded

on the basis of the extent to which the categorisation outputs produced for objects

of different categories are located in non-overlapping regions of a two-dimensional

categorisation space C ∈ [0, 1]× [0, 1]. The categorisation and the evaluation of the

agent’s discrimination capabilities is performed in the following way:

• In each trial k, the agent represents the experienced object (i.e., the sphere S

or the ellipsoid E) by associating to it a rectangle RS
k or RE

k whose vertexes are:

the bottom left vertex:

(min0.95T<t<T fr(o17),min0.95T<t<T fr(o18))

the top right vertex:

(max0.95T<t<T fr(o17),max0.95T<t<T fr(y18))

• The sphere category, referred to as CS, corresponds to the minimum bounding

box of all RS
k .

• The ellipsoid category, referred to as CE, corresponds to the minimum bound-

ing box of all RE
k .

The final fitness FF attributed to an agent is the sum of two fitness components F1

and F2:
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• F1 rewards the robots for touching the objects, and corresponds to the aver-

age distance over a set of 16 trials between the centre of the palm and the

experienced objects

F1 =
1

16

16∑

k=1

(
1− dk

dmax

)

where dk is the Euclidean distance between the object and the centre of the

palm at the end of trial k; dmax is the maximum distance that can be achieved

between the centre of the palm and the object when located on the table.

• F2 rewards the robots for developing an unambiguous category representation

scheme on the basis of the position in a two-dimensional space of CS and CE:

F2 =





0 if F1 6= 1

1− area(CS∩CE)
min{area(CS), area(CE)} otherwise

note that F2 = 1 if CS and CE do not overlap (i.e., if CS ∩ CE = ∅).

The fact that, for each individual, F1 must be 1 to be rewarded with F2, constrains

the evolution process to work on strategies in which the palm is in continuous contact

with the object. This condition was introduced on the assumption that it represents

a prerequisite for the ability to perceptually distinguish between the shapes of ob-

jects. However, alternative formalism, which encodes different evolutionary selective

pressures, may work as well.

7.4 Results

Ten evolutionary simulations, each using a different random initialisation, were run

for 500 generations.

Figure 7.5 shows the fitness of the best agent of each generation for the five evol-

utionary runs that managed to generate the highest-scoring individuals for at least

10 consecutive generations. The other five runs failed to achieve this first objective.
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Figure 7.5: Fitness curves of the best agents. Graph showing the fitness of the best
agents of each generation of the five evolutionary runs that managed to generate
the highest-scoring individuals for at least 10 consecutive generations: run1, run2,
run3, run4, and run5

A quick glance at the curves in the figure shows that run1 reaches very quickly (in

about 100 generations) a plateau of the highest fitness score, and that it keeps on

generating highest-scoring agents until the end of the evolution. run2, run3, run4,

and run5 also generate highest-scoring agents but they need more generations, and

the solutions seem to be more sensitive to the effect produced by those parameters

of the task that were randomly initialised and/or by noise. Although all the agents

with the highest fitness are potentially capable of accomplishing the task, the effect-

iveness and the robustness of their collective strategies need to be further estimated

based upon more severe post-evaluation tests.

The next section presents the results of a series of post-evaluation tests whose aim

was to estimate the robustness of the best-evolved discrimination strategies chosen

from run1, run2, run3, run4, and run5. Following these results, Section 7.4.2

presents the results of post-evaluation tests whose aim is to estimate the role of

different sensory channels in categorisation. Finally, Section 7.4.3 presents analyses

of the dynamics of the categorisation strategies of the best evolved agents.

It is important to note that although all the post-evaluation analyses were carried out

on all the best evolved agents, for the sake of space, for several tests only the results

concerning the performance of one of these agents are reported in the thesis. An ex-
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haustive description of the analyses carried out on all the best evolved agents, the res-

ults of the tests that are not shown here, further simulations, as well as videos of the

best evolved strategies, can be found at http://laral.istc.cnr.it/esm/active_perception

7.4.1 Robustness

To verify to what extent the robots were able to distinguish between two types of

objects, regardless of the initial orientation of the ellipsoid object, specific post-

evaluation tests were conducted (referred to as test P ), in which the ellipsoid’s

initial orientation was systematically changed. More precisely, in test P , an agent

was required to distinguish between the two objects placed in position A 360 times,

and those placed in position B 360 times. In each position, the agent experienced

the sphere half of the times (i.e. for 180 trials), and the ellipsoid half of the times

(i.e. for 180 trials). Moreover, trial after trial, the initial orientation of the ellipsoid

around the z-axis was changed by 1◦, from 0◦ in the first trial, to 179◦ in the last trial.

For each run, 10 agents chosen from among those with the highest fitness were post-

evaluated. It is important to recall that these agents were selected from evolutionary

phases in which the run managed to generate the highest-scoring individuals for at

least 10 consecutive generations. Table 7.1 shows the results for the best agent Aj

chosen from runi, with j, i = 1, ..., 5.

Note that, compared to the evolutionary conditions in which the agents were al-

lowed to perceive the ellipsoid only 4 times in 4 different initial orientations, P is a

severe test. The results thus unambiguously tell us whether or not the five selected

highest-fitness agents are capable of distinguishing the ellipsoid from the sphere and

categorising them in a much wider range of initial orientations of the former object.

For each selected agent, test P was repeated 5 times (i.e. Pi with i = 1, .., 5), with

each repetition seeded differently in order to guarantee random variations in the

noise added to the sensor readings.

The performance of agent Aj in test Pi was quantitatively established by considering
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A1 A2 A3 A4 A5

RE
k RS

k RE
k RS

k RE
k RS

k RE
k RS

k RE
k RS

k

P1 357 360 310 351 340 358 347 356 355 354
P2 359 360 311 347 342 358 356 358 356 355
P3 356 360 312 349 343 356 348 355 356 354
P4 357 360 304 353 341 355 342 354 354 355
P5 358 360 303 348 349 356 349 355 353 353

Tot. (%) 3587 (99) 3288 (91) 3498 (97) 3520 (98) 3545 (98)

Table 7.1: Results of post-evaluation tests Pi.

all the responses given by Aj over 3600 trials (i.e., 720 trials per test Pi, repeated

5 times, with i, j = 1, ..., 5). In each post-evaluation trial, the response of the agent

was based on the firing rates of the categorisation neurons (o17 and o18) during

the last 20 time steps (i.e., 0.95T < t < T ) of each trail k. In particular, the

lowest and the highest firing rates recorded by both neurons were used to define

the bottom left and the top right vertexes of a rectangle, as illustrated in Section

7.3. At the end of each test Pi, this process generated 360 rectangles associated

with the trials in which the agent experienced the sphere (i.e., rectangles RS
k with

k = 1, .., 360), and 360 rectangles associated with the trials in which the agent

experienced the ellipsoid (i.e., rectangles RE
k with k = 1, .., 360). At the end of

the five post-evaluation tests Pi, from all the rectangles collected to that point, we

calculated the highest number of RS
k and RE

k rectangles that could be included in

two non-overlapping minimal bounding boxes CS
i and CE

i . These two rectangles

then represent the sphere category (CS
i ) and the ellipsoid category (CE

i ) of agent

Ai for all successive tests reported. The quantitative estimation of the robustness

of an agent categorisation strategy is expressed as the percentage of the included

rectangles RS
i and RE

i with respect to the excluded ones (which are considered as

errors in categorisation).

The last row in Table 7.1 reports, for each agent Ai, the total number of rectangles

that can be included in the minimal bounding-boxes without breaking the non-

overlapping rule. These numbers are extremely high, showing an over 97% rate of

success. These five agents are quite good at discriminating between and categorising
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the sphere and the ellipsoid, with a much wider range of initial orientations of the

ellipsoid. Only agent A2 displayed slightly worse performance, and it was excluded

from all further post-evaluation tests. The agents that performed higher than 95%

on the first test P (i.e. A1, A3, A4, and A5) underwent a further series of tests in

circumstances in which:

• the length of the longest radius of the ellipsoid progressively increased/decreased

(see figure 7.6);

• the length of the radius of the sphere progressively increased/decreased (see

figure 7.7);

• the initial position of the object and of the hand varied (see figure 7.8).

In these tests as well as all the other post-evaluation tests described from this point

forward concerning A1, A3, A4, and A5, a trial k is considered:

• Successful: if, at the end, the rectangle containing the last 20 responses of

neurons o17 and o18 falls completely within the corresponding bounding-box

for the object experienced during the test; i.e. if it falls in CS
i for the sphere

and if it falls in CE
i for the ellipsoid;

• Unsuccessful with a wrong response: if at the end the rectangle containing

the last 20 responses of neurons o17 and o18 falss completely within the wrong

bounding box during the test; i.e., if it falls in CE
i for the sphere and if it falls

in CS
i for the ellipsoid;

• Unsuccessful with no response: if at the end the rectangle containing the last

20 responses of neurons o17 and o18 falls completely outside the bounding-boxes

CS
i and CE

i .

As far as it concerns tests in which the length of the longest radius of the ellipsoid

progressively increased/decreased, the distortions that further increased the longest
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ellipsoid radius up to 1 cm were rather well tolerated by the agents; both A1 and A5

managed to reliably differentiate between the two objects with a success rate higher

than 90%. Distortions that tend to reduce the longest radius of the ellipsoid were

clearly disruptive for all the agents, producing an expected 50% success rate when

the ellipsoid was reduced to a sphere. In tests in which the ellipsoids had a radius

that became progressively shorter that the radius of the sphere, the performance of

all the agents was quite disrupted (see Figure 7.6).
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Figure 7.6: Performance on changing the radius of ellipsoid object. Graph showing
the percentage of success in post-evaluation tests in which the length of the longest
radius of the ellipsoid progressively increased/decreased

As far as it concerns tests in which the length of the radius of the sphere progressively

increased/decreased, these distortions were particularly disruptive for all the agents

except for A5. This agent was also not disrupted to as great a degree as the other

agents in tests in which the sphere became progressively smaller, and was very

successful in tests in which the radius of the sphere was at least 7mm longer than

the longest radius of the ellipsoid (see Figure 7.7).
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Figure 7.7: Performance with different radii of the sphere object. Graph showing
the percentage of success in post-evaluation tests in which the length of the radius
of the sphere progressively increased/decreased.

A further series of post-evaluation tests was performed in order to estimate the

robustness of the best evolved strategies, in which the initial positions of the object

and of the arm were changed. To simplify the analysis, the test focused upon only

those circumstances in which the movements of the arm with respect to the initial

positions experienced during evolution are produced by displacements of only one

joint at a time (see Figure 7.8; the heights of the black and grey areas correspond

to the percentage of success of the agent tested, upon changing the initial position

of the joint indicated on the left; black represents position A, and grey position B).

Although the results are quite heterogeneous, a number of features are shared by all

the agents. First, displacements of joint J1 for position A were tolerated quite well.

Second, the wider the displacement, the greater the drop in performance, with the

exception of J4 for agents A1, A3, and A4, in which displacements that tend to bring

the hand/object progressively closer to the body resulted in better performance for

both positions. It is important to note that A4 is particularly sensitive to disruptions

to joint J1 and J2 for position B, and to joint J6 for position A.
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Figure 7.8: Performance of the agents with changes in the initial position of the
arm, in which just one joint at a time was moved with respect to the initial positions
used during evolution. The heights of the black and grey areas correspond to the
percentage of success of agent Ai tested with changes in the initial position of joint
Ji by the number of degrees indicated on the x axis; black represents position A,
and grey position B.

7.4.2 The Role of Different Sensory Channels for Categorisation

To understand the mechanisms that enable agents A1, A3, A4, and A5 to solve

their tasks, we first established the relative importance of the different types of

sensory information that were available through the arm propriosensors, tactile

sensors, and hand propriosensors. This was accomplished by measuring the

performance displayed by the agents in a series of substitution tests, in which one

type of sensory information experienced by each agent during its interaction with an

ellipsoid was replaced with the corresponding type of sensory information that was

previously recorded in trials in which the agent was interacting with a sphere. In

these tests, each agent experienced the ellipsoid in all its initial rotations (i.e. from

0◦ to 179◦), excluding those for which, given the randomly chosen seed for the tests,

its responses turned out to be wrong in the absence of any type of substitution (i.e.

the rectangle RE
k did not fall within any of the five bounding-boxes CE

i in the results

of test Pi described above). For each ellipsoid’s initial orientation, each substitution

test was repeated 180 times. The rationale behind these tests is that any drop in

performance caused by the substitution of a different type of sensory information

provides an indication of the relative importance of that sensory channel in the
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Figure 7.9: Results of substitution tests. Graphs showing, for agents A1, A2, A3,
A4 and A5, the results of substitution tests regarding the readings of the arm’s
proprioceptive sensors, tactile sensors, and the hand’s proprioceptive sensors for
position A (black columns) and for position B (grey columns).

categorisation process.

The results of this first series of substitution tests indicate that, for all the agents,

the replacement of the sensory information originating from the arm’s propriocept-

ive sensors and the hand’s proprioceptive sensors in position A, only marginally

interfered with their performance. That is, for position A, the agents underwent a

substantial drop in performance only due to the replacement of tactile sensations

(in Figure 7.9, see the black columns in correspondence with the tactile sensors).

The clear drop in performance in these substitution tests concerning tactile sen-

sation clearly indicates that for position A, the agents heavily relied upon tactile

sensation to distinguish the ellipsoid from the sphere, and to correctly perform the

categorisation task.

For position B, the results are slightly more heterogeneous. For agent A1, the results

of the substitution tests indicate that the replacement of both tactile sensations and

of the hand’s proprioceptive sensors produced about a 20% drop in performance
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(In Figure 7.9, see the white columns in correspondence with the tactile and hand

sensors). For the other agents, tactile sensation continued to be extremely important

for the correct categorisation of the objects (In Figure 7.9, see the white columns

in correspondence with the tactile sensors). However, for agent A4, the replacement

of the arm’s and the hand’s proprioceptive sensors produced a drop in performance

of about 40% in the case of the arm, and 20% in the case of the hand sensors (In

Figure 7.9, see the white columns in correspondence with the arm and the hand

sensors). Hence, for agent A1, the categorisation of the ellipsoid in position B was

performed by exploiting information distributed over two sensory channels, that is,

the tactile and the hand sensors. The information provided by these two sensory

channels seems to be fused together in such a way that, for several orientations, the

lack or the unreliability of information from one channel can be compensated for

by the availability of reliable information from the other channel. The other agents

seem to strongly rely upon tactile sensation, along with agent A4, which also makes

use of arm and hand sensations to discriminate among objects.

Given the above, we see that tactile sensation is the major source of discrimina-

tion cues in distinguishing spheres from ellipsoids in position A, for all the selected

agents, and in position B for A3 and A5. Further investigations were then per-

formed to see whether among the tactile sensors, there are any whose activation

plays a predominant role in the categorisation task. In a series of further tests in

which the substitution described above was applied only to single tactile sensors, the

performance of all agents remained largely above 90%. Hence, the categorisation

ability of the agents was not compromised by replacements that selectively affected

the functioning of single tactile sensors.

Next, a different series of substitution tests was developed, in which all possible

combinations of the two elements of the tactile sensors were replaced. Although this

analysis was carried out for all the agents for position A, and for agents A3, and

A5 for position B, this chapter reports only the results for agent A1 (i.e. the best

performing agent, see Table 7.1) for position A. The results are shown in Figure 7.10,
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Figure 7.10: Result of substitution tests for combinations of two tactile sensors.
Graph showing the results of substitution tests concerning the readings Xi with
i = 8, · · · , 17 of all the possible combinations of two elements of the tactile sensors for
position A. Each square is coloured in a shade of grey. The grey scale is proportional
to the percentage of success, with white indicating combinations in which the agent
is 100% successful, and black combinations in which the agent is 100% unsuccessful.

in which each square is coloured in a shade of grey proportional to the percentage

of success. The colour white indicates a combination in which the agent was 100%

successful, and black a combination in which the agent was 100% unsuccessful.

These substitution tests did not produce clear-cut results. However, in Figure 7.10

we can note that there are specific sensors which, when disrupted in combination

with any other sensor, produce a clear drop in performance. In particular, disrup-

tions applied to the reading of the tactile sensors placed on the third phalanx of the

middle finger (x12), and in more minor terms, disruption applied to the reading of

the tactile sensors placed on the first phalanx of the ring finger (x15), caused the

agent to mistake the ellipsoid for the sphere. Hence, agent A1 heavily relied on the

patterns of activation of the tactile sensors, in which the readings of x12 and x15

were particularly important in distinguishing the ellipsoid from the sphere.

With regard to the other agents, the performance of agent A3 drops in position

A when substitutions concerned the reading of x10 in combination with any other

tactile sensor. In position B, a drop in performance was recorded when substitutions
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concerned the reading of x8 or x12 in combination with any other sensor. Agent A4 in

position A was particularly disrupted by substitutions concerning the reading of x11

or x12 in combination with any other sensor. Agent A5 in position A was disrupted

by substitutions concerning the reading of x12 with any other sensor, and of x12

or x17 with any other sensor in position B. In conclusion, in these circumstances,

the agents tended to rely upon a combination of tactile sensors, with the tactile

sensor on the third phalanx of the middle finger being more significant than the

other sensors for all agents.

7.4.3 On the Dynamics of the Categorisation Process

This section presents a series of analyses whose aim is to reveal the dynamics of the

categorisation process. More specifically, the analyses concern:

• to what extent the sensory stimuli experienced while the agents interact with

the objects provide the regularities required to categorise the objects;

• to what extent the agents succeed in self-selecting discriminating stimuli (i.e.

stimuli that can be unambiguously associated with either category);

• how long the agents need to interact with the object before being able to

recognize whether they are touching a sphere or an ellipsoid;

• whether the categorisation process occurs instantaneously by exploiting the

regularities provided by single unambiguous sensory patterns or whether it

occurs over time by integrating the regularities provided by multiple stimuli.

Qualitative and quantitative tests were specifically designed to answer these ques-

tions. The former are simply composed of observations of the trajectories of the

categorisation outputs in the two-dimensional categorisation space C ∈ [0, 1]× [0, 1],

in single trials. The latter tests further explore the dynamics of the categorisation

processes by taking advantage of the fact that in both positions, almost all the
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best evolved agents exploit tactile sensation to carry out the task. The quantitative

tests were carried out on all the agents for position A, and on agents A3 and A5

for position B. Here, we report only the details for the analysis of A1 (i.e. the best

performing agent, see Table 7.1) for position A. It turned out, however, that suc-

cessful categorisation strategies are very similar from a behavioural point of view,

as well as in terms of the mechanisms exploited to perform the task. Therefore, the

operational description of A1 is also representative of the categorisation strategies

of A3, A4, and A5 in position A, and of A3 and A5 in position B.

The aim of the first two tests was to establish to what extent the stimuli experienced

by A1 during its interactions with the objects provide the regularities required to

categorise them. The analysis begins by computing a slightly modified version of

the Geometric Separability Index (hereafter, referred to as gsi). The gsi, which

was originally proposed by Thornton (1997), is an estimate of the degree to which

tactile sensor readings associated with a sphere or with an ellipsoid are geometrically

separated in sensory space. It is also related to the complexity of the categorisation

task. In fact, if all tactile the sensors can be separated geometrically by means of

a linear equation, the gsi reaches its maximum and the categorisation task is quite

easy (i.e. there is no need for non-linear neurons and/or hidden neurons and/or

recurrences). The test generates 800 data sets in total. 400 data sets concern each

time step while the agent interacts with the ellipsoid, {X̃E
k }180k=1, and 400 data sets

concerning each time step while agent interacts with the sphere, {X̃S
k }180k=1. Where,

X̃E
k is the tactile sensors reading (X = 〈x8, . . . , x17〉) experienced by the agent while

interacting with the ellipsoid at time step t of trial k; and X̃S
k is the tactile sensor

reading experienced by the agent while interacting with the sphere at time step t of

trial k. Here, we should recall that trial after trial, the initial rotation of the ellipsoid

around the z-axis was changed by 1◦, from 0◦ in the first trial to 179◦ in the last

trial. Each trial was differently seeded in order to guarantee random variations in

the noise added to the sensor readings. At each time step t, the gsi was computed

as follows:
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∣∣∣∣

where H(x, y) is the Hamming distance between tactile sensors readings. |A| denote

the cardinality of the set A. mEE is the minimum distance from the tactile pattern

k for the data set concerning the ellipsoid. mES is the minimum distance from the

tactile pattern k for the data set concerning the sphere. The terms u and v count

the number of tactile patterns at distance mEE and mES, respectively. GSI(t) is

equal to 1 indicates that at time step t, the closest neighbourhood of each X̃E
k is

one or more elements of the set X̃E
k . GSI(t) equal to 0 indicates that at time step

t, the closest neighbourhood of each X̃E
k is one or more elements from the set X̃S

k .

As shown in Figure 7.11, for agent A1 and position A, the GSI(t) tends to increase

from about 0.5 at time step 1 to about 0.9 at time step 200, and it remains around

0.9 until time step 400. This trend suggests that during the first 200 time steps, the

agent acts in such a way as to bring forth those tactile sensor readings that facilitate

the object identification and classification tasks. In other words, the behaviour

exhibited by the agent allows it to experience two classes of sensory states that tend

to become progressively more separated in the sensory space. However, the fact that

the gsi does not reach a value of 1 indicates that the two groups of sensory patterns
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belonging to the two objects are not fully separated in the sensory space. In other

words, some of the sensory patterns experienced during the interactions with an

ellipsoid are very similar or identical to those experienced during interactions with

the sphere and vice versa.
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Figure 7.11: GSI(t) for agent A1. The values of GSI(t) calculated for each time
step for the 800 data sets generated.

To analyse in more detail to what extent the stimuli experienced by the agent

could be associated with the correct or the wrong category, an index called E-

representativeness (E-repr) was designed. The E-repr is computed from a set of

32,400 trials, which are produced by repeating 180 times each of the 180 trials

corresponding to different ellipsoid initial orientations, from 0◦ to 179◦. During these

trials, for each single tactile sensor pattern, the number of times each pattern appears

during interactions with the ellipsoid (N) and during interactions with the sphere

(M) is recorded The E-repr of a single pattern is given by N
N+M

. It is important to

note that an E-repr of 1.0 or 0.0 corresponds to fully discriminating stimuli that can

be unambiguously associated with the ellipsoid or the sphere category, respectively,

while 0.5 corresponds to completely ambiguous stimuli.

The graph in Figure 7.12 presents the E-repr of the last 20 patterns (i.e. the patterns

recorded from time step 380 to time step 400) of single successful trials of test Pi,

which was described in Section 7.4.1. Each trial refers to a different initial orientation
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Figure 7.12: E-representativeness of the tactile sensors patterns. The graph shows
the value of the E-representativeness of the tactile sensors patterns recorded in the
last 20 time steps of 180 different trials with the ellipsoid. The x axis indicate
the initial rotation of the ellipsoid in degrees. For each rotation, the corresponding
boxplot on the graph shows the minimum, median, and maximum observation of
E-representativeness over the 180 trials.

of the ellipsoid. A quick glance at Figure 7.12 shows that there are trials in which

the agent had to deal with tactile sensor patterns that had a very low E-repr. That

is, they were very weakly associated with the ellipsoid. Patterns with a very low

E-repr tend to appear in trials in which the initial orientation of the ellipsoid is

chosen in the interval [75◦, 175◦]. These patterns may have at least two origins that

are not mutually exclusive:

1. They may be due to the fact that the agent is not able to effectively position

the object in such a way as to unequivocally recognize whether there is a sphere

or an ellipsoid; and

2. they may be determined by the noise injected into the system.

The fact that agent A1 succeeds in correctly distinguishing the category of the ob-

jects, even during trials in which it does not experience fully discriminating stimuli,

indicates that the problem was solved by integrating over time the partially con-

flicting evidence provided by sequences of stimuli. In fact, if the agent employed a

reactive strategy (i.e. with no need for a memory structure), it would be deceived
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Figure 7.13: Performance on pre-substitution and post-substitution tests. The
graph shows the percentage of success in pre-substitution tests (triangles) and post-
substitution tests (circles). The points are at intervals of 10 time steps starting from
0.

by those sensor patterns that are quite strongly associated with the sphere, that

appear in interactions with the ellipsoid. Under this circumstance, an agent that

employs a reactive strategy would mistake the ellipsoid for a sphere. Since, in spite

of the deceptive patterns, the agent was 100% successful, it appears that the agent

employed a discrimination strategy that uses the dynamic properties of its controller

(time-dependent neuron states and recurrent connections).

Other evidence that supports the integration-over-time hypothesis comes from ad-

ditional analyses that were performed employing additional types of substitution

tests. In one test in particular, for a certain time interval, the tactile sensor pat-

terns experienced by A1 in interactions with the ellipsoid were replaced by those

experienced in interactions with the sphere. In a first series of tests, referred to as

pre-substitution tests, substitutions were applied from the beginning of each trial up

to time step t, where t = 1, . . . , 400. In a second series of tests, referred to as post-

substitution tests, substitutions were applied from time step t, where t = 1, . . . , 400,

to the end of a trial. Each test was repeated at intervals of 10 time steps. For agent

A1 and position A, the results of the pre-substitution and post-substitution tests

are illustrated in Figure 7.13.
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This graph shows that, regardless of the rotation of the ellipsoid, pre-substitutions

that did not affect the last 100 time steps did not cause any drop in performance.

For pre-substitution tests that involved more than 300 time steps, the degree to

which the performance dropped was higher for longer substitution periods (see the

triangles in Figure 7.13). Similarly, the agent did not incur any drop in performance

if the post-substitutions affected less than 100 time steps. For post-substitution tests

that affected more than the last 100 time steps, the degree to which the performance

dropped was higher for longer substitution periods (see the empty circles in Figure

7.13).

The results of these pre/post-substitution tests suggest that the agent was integrat-

ing sensory states over time for a certain amount of time around time step 310. In

particular, the results shown in Figure 7.13 seem to indicate that, as regards agent

A1 position A, the interactions between the agent and the objects can be divided

into the following three temporal phases, which are qualitatively different, from the

point of view of the categorisation process:

• an initial phase whose upper bound can be approximately fixed at time step

250, in which the categorisation process begins, but in which the categorisation

answer produced by the agent is still reversible;

• an intermediate phase whose upper bound can be approximately fixed at time

step 350, in which a categorisation decision is quite often taken on the basis

of all previously experienced evidence; and

• a final phase, in which the previous decision (which is now irreversible) is

maintained.

The fact that the categorisation decision formed by A1 during the initial phase

is not yet definitive is demonstrated by the fact that substitutions of the critical

sensory stimuli performed during this phase did not cause any drop in performance

(see Figure 7.13, triangles). The fact that the intermediate phase corresponds to a
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critical period is demonstrated by the fact that the pre/post-substitution tests that

affect this phase produced a significant drop in performance (see Figure 7.13). The

fact that A1 makes its ultimate decision during the intermediate phase is demon-

strated by the fact that the post-substitution tests that affect the last 80 time steps,

approximately, did not produce any drop in performance (see Figure 7.13, empty

circles).

Further tests, namely window-substitution tests, were employed in order to estimate

the existence and the dimensions of the hypothesised temporal phase in which it is

supposed that the agent integrates tactile sensor states. In these tests, substitutions

were applied before and after a temporal window centred around time step 310.

The length of the temporal window with no substitutions could vary from 1 time

step (i.e. no substitution at time step 310) to 69 time steps (i.e. no substitution

from time step 276 to 344). As shown in Figure 7.14, the wider the window with

no substitutions, the higher the performance of the agent, with a 100% success rate

when no substitutions were applied to a temporal phase of about 50 time steps or

longer. Although the graph in Figure 7.14 does not exclude the possibility that the

agent employed an instantaneous categorisation process, it seems to suggest that

the performance of the agent is in some way correlated to the amount of empirical

evidence it manages to gather over time, starting from about time step 270, until

time step 340.

Finally, additional evidence that supports the hypothesis of a dynamic categor-

isation process based on the integration of tactile sensation over time comes from

a qualitative analysis of the trajectories of the categorisation outputs in the two-

dimensional categorisation space C ∈ [0, 1] × [0, 1], in single trials. Figure 7.15-a

shows the trajectory recorded by A1 in a trial in which the initial orientation of the

ellipsoid was 115◦. As we can see, A1 moves rather smoothly in the categorisation

space by reaching the corresponding bounding-box in slightly less than 2 s (200 time

steps). If we then look at Figure 7.15-b, we see that during the interaction with the

ellipsoid, A1 experienced:
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Figure 7.14: Performance on window-substitution tests. The graph shows the per-
centage of success of window-substitution tests. The x axis is the length of the
temporal window with no substitutions, centred around time step 310.

• few stimuli with a high percentage of E-repr (i.e., stimuli that are experienced

in interactions with an ellipsoid object most of the times);

• several stimuli with an intermediate level of E-repr (i.e., stimuli that are ex-

perienced in interactions with the ellipsoid and the sphere in about 3/4 and

1/4 of the cases, respectively); and

• few stimuli with a low percentage of E-repr (i.e., stimuli that are experienced

in interaction with a spherical object most of the times).

If we visually compare Figure 7.15-a with 7.15-b, it is possible to note that the

experienced sensory patterns with a different percentage of E-repr appear to drive

the categorisation output in different regions of the categorisation space, which

correspond to the ellipsoid and the sphere bounding-boxes, respectively. Therefore,

the final position of the categorisation output (i.e. the categorisation decision) is

not determined by a single or by a few selected patterns. Rather, it is the result

of a process extended over time, in which partially conflicting evidence provided

by the experienced tactile sensation is integrated over time. Similar dynamics were

observed by inspecting all other trials. Given this evidence, it is likely that the

performance of all the best evolved agents in position A, and of agent A3 and A5 in
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Figure 7.15: Comparison of categorisation outputs and E-representativeness of tact-
ile patterns over time for the same trial. a) Trajectory of categorisation outputs
from t = 50 to end of trial; the large and small rectangles at 100, 200, 300, and 400
time steps indicate the bounding box of the ellipsoid and sphere category, respect-
ively. b) E-representativeness of the tactile sensory patterns recorded in the same
trial as a) with the ellipsoid initially orientated at 115◦

position B, is the result of a dynamic categorisation process based on the integration

of tactile sensation over time.

7.5 Discussion

This chapter describes an experiment in which a simulated anthropomorphic robotic

arm acquires the ability to categorise un-anchored spherical and ellipsoid objects

placed in different positions and orientations over a planar surface. The agents’

neural controller was trained through an evolutionary process in which the free

parameters of the neural networks were varied randomly, and in which variations

were retained or discarded on the basis of their impact on the overall ability of

the robots to carry out their task. This implies that the robots were left free to

determine:

• how to interact with the external environment (by eventually modifying the

environment itself);

• how the experienced sensory stimuli are used to distinguish between the two

categories; and

• how to represent each object category in the categorisation space.
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The analysis of the obtained results indicates that the agents were indeed capable

of developing the ability to effectively categorise the shapes of the two types of

objects despite the high degree of similarity between them, the difficulty of effectively

controlling a body with many dofs, and the need to master the effects produced

by gravity, inertia, collisions, etc. More specifically, the best individuals displayed

an ability to correctly categorise the objects when they were located in different

positions and orientations from those already experienced during evolution, as well

as an ability to generalise their skill to objects, positions, and orientations they

had never experienced during evolution. Moreover, the agents were robust enough

to deal with categorisation tasks in which the longest radius of the ellipsoid was

progressively increased. Other distortions of the dimensions of the original objects

resulted in a greater degree of disruption. These results prove that the proposed

method can be successfully applied to scenarios that appear to be more complex

than those investigated in previous works based on similar methodologies.

The analysis of the best evolved agents indicates that one fundamental skill that

enables them to solve the categorisation problem consists in the ability to interact

with the external environment and to modify the environment itself, so as to ex-

perience sensory states that are progressively more different for different categorical

contexts. This result represents a confirmation of the importance of sensory-motor

coordination, and more specifically, of the active nature of situated categorisation,

which has already been highlighted in previous studies (Scheier et al., 1998; Nolfi &

Marocco, 2002).

On the other hand, the fact that sensory-motor coordination does not allow the

agents to experience fully discriminating stimuli demonstrates how in some cases,

sensory-motor coordination needs to be complemented by additional mechanisms.

Such a mechanism, in the case of the best evolved individuals, consists in an abil-

ity to integrate the information provided by sequences of sensory stimuli over time.

More specifically, the analyses performed suggest that agent A1 categorised the cur-

rent object as soon as it experienced useful regularities, and that the categorisation
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process was realised during a significant period of time (i.e. about 50 time steps),

during which the agent kept using the experienced evidence to either confirm and

reinforce its current tentative decision, or to change it. Similar strategies were also

observed in the other three best evolved agents. In this regard, see also (Townsend

& Busemeyer, 1995; Platt, 2002; Beer, 2003).

The importance of the ability to integrate the regularities provided by sequences of

stimuli was also confirmed by the results obtained in a control experiment, which

was replicated 10 times, in which the agents were provided with reactive neural

controllers (i.e. neural networks without recurrent connections, with simple logistic

internal neurons, and in which all other parameters were kept the same as those

described in this chapter). Indeed, the performance displayed by the best evolved

individuals in this control experiment was significantly worse than that observed in

the basic experiment, in which the agents were allowed to keep information about

previously experienced sensory states. Although this does not exclude the possibility

that different experimental scenarios (e.g. scenarios involving agents provided with

different neural architectures and/or physical characteristics different from those of

the agents) could lead to qualitatively different results, the analysis of the results

obtained in this specific scenario, taken overall, indicate that the task does not

admit of pure reactive solutions, or alternatively, that such solutions are hard to

synthesise through an evolutionary process. This mixed conclusion may also be due

to the functional constraints the limit the movement of the robotic arm (e.g. the

fact that the fingers could not be extended/flexed separately, or that there was no

adduction/abduction of the fingers), as well as other implementation details (e.g.

the dimensions of the objects with respect to the hand).

The analysis of the role played by different sensory channels indicates that the

categorisation process in the best evolved individuals is primarily based on tactile

sensors, and secondarily, on the hand and arm proprioceptive sensors (with the arm

proprioceptive sensors playing a role only for agent A4 position B; see Figure 7.9).

It is interesting to note that at least one of the best evolved agents (i.e. A1) not
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only displayed the ability to exploit all relevant information, but also the ability to

combine information coming from different sensory modalities in order to maximise

the chance that it would make the appropriate categorisation decision (Waxman,

2003). More specifically, the ability to combine the information provided by the

tactile and hand proprioceptive sensors, for objects located in position B, enables

the robot to correctly categorise the shape of the object in the majority of cases,

even when one of the two sources of information has been corrupted (see Figure 7.9).
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8 Reaching, Grasping, Lifting: On the
facilitatory role of ‘linguistic’ input

This chapter presents an anthropomorphic robotic arm with a five-fingered hand

controlled by an artificial neural network that is evolved to have the ability to

manipulate spherical objects located on a table by reaching for, grasping, and lifting

them. The robot develops the sensory-motor coordination required to carry out

this task in two different conditions, one in which it receives as input linguistic

instructions (binary input vectors) that specify the type of elementary behaviour to

be exhibited during a certain period of the task, and the other in which it receives no

such instructions. The obtained results shown that linguistic instructions facilitate

the development of the required behavioural skills. These instructions are binary

input vectors associated with elementary behaviours that need to be displayed by

the robot during the task. They are referred to as linguistic instructions because

they are not related to any measurable property of or entity in the environment (i.e.

distances, angles, positions, etc.), and also because they are not perceived in the

same way as other inputs, but instead represent symbolic entities (the behaviour to

be displayed) that resemble a very simple language.

The main objective of the study presented in this chapter is to investigate whether

the use of linguistic instructions facilitates the acquisition of a sequence of complex

behaviours. The long-term goal of this research is to verify whether the acquisition

of elementary skills guided by linguistic instructions provides a scaffolding for more

complex behaviours.
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(a) (b)

Figure 8.1: The kinematic chain of the arm and the hand. The cylinders represent
rotational dofs. The axes of the cylinders indicate the corresponding axis of rota-
tion. The links among the cylinders represent the rigid connections that make up
the arm structure. The joints are named as indicated in b).

8.1 The Robot

The robot that is the subject of the experiment presented in this chapter is a variant

of the full anthropomorphic manipulator used in the previous experiments. The

details of the differences in the robot’s structure are presented in Appendix C. In

the following sections, only a broad view of the arm and hand structure is given.

8.1.1 Arm Structure

The arm (Figure 8.1) consists mainly of three elements (the arm, the forearm and

the wrist) that are connected through articulations distributed in the shoulder, arm,

elbow, forearm, and wrist. It is an enhancement of a previous 4-dof model, to which

is added a wrist that comprises another 3-dof joint. The wrist adds the ability to

produce pitch, yaw and roll of the five-fingered hand. In Figure 8.1, the cylinders

represent rotational dofs. The axes of the cylinders indicate the corresponding axis

of rotation, and the links among the cylinders represent the rigid connections that

make up the arm structure.
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8.1.2 Arm Actuators

The joints of the arm are actuated by two simulated antagonist muscles that are

implemented accordingly to Hill’s muscle model (Sandercock et al., 2003; Shadmehr

& Wise, 2005b). More precisely, the total force exerted by a muscle is the sum of

three forces TA (α, x) + TP (x) + TV (ẋ) which depend on the activity of the corres-

ponding motor neuron (α), the current elongation of the muscle (x) and the muscle

contraction/elongation speed (ẋ), which are calculated on the basis of equations B.1

(for details see the appendix C).

The active force TA depends on the activation of muscle α and on the current elonga-

tion/compression of the muscle. When the muscle is completely elongated/compressed,

the active force is zero regardless of the activation α. When the muscle is at its t

resting length, the active force reaches its maximum, which depends upon the ac-

tivation α.

The passive force TP depends only on the current elongation/compression of the

muscle. TP tends to elongate the muscle when it is compressed to less than its

resting length, and tends to compress the muscle when it is elongated beyond its

resting length. TP differs from a linear spring in that it has an exponential trend that

produces a strong opposition to muscle elongation and little opposition to muscle

compression.

TV is the viscosity force. It produces a force that is proportional to the velocity of

the elongation/compression of the muscle.

8.1.3 Hand Structure

The hand is attached to the robotic arm just below the wrist (at joint J7, as shown

in Figure 8.1). One of the most important features of the hand is its compliance. In

detail, this compliance was obtained by setting a maximum threshold of 300N to

the force exerted by each joint. When an external force acting on a joint exceeds this
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threshold, the joint either cannot move further, or it moves backward in response to

the external force.

The robotic hand is composed of a palm and 15 phalanges that make up the digits

(three phalanges for each finger) that are connected through 20 dofs, J8, . . . , J27

(see Figure 8.1 and Appendix C for details).

8.1.4 Hand Actuators

The joints are not controllable independent of each other, but rather, they are

grouped. The same grouping principle that was used in developing the iCub hand

(Sandini et al., 2004) was used here. Essentially, there are only 9 actuators that

move all the joints of the hand. For details on which joints are moved by these 9

actuators, see Appendix C. These actuators are simple motors that are control joints

in terms of their positions.

8.1.5 Hand Tactile Sensors

The hand is equipped with tactile sensors that are distributed over the wrist, the

palm, and all five fingers. The tactile sensors are placed and that behave exactly as

in the previous experiment; see Figure 6.2-b and Section 7.1.5 for details.

8.2 The Neural Controller

The architecture of the neural controllers varies slightly, depending upon the ecolo-

gical conditions in which the robot develops its skills. In the case of the development

supported by linguistic instructions, the robot is controlled by a neural network, as

shown in Figure 8.2 which includes 29 sensory neurons (x1, . . . , x29), 12 internal neur-

ons (h1, . . . , h12) with recurrent connections and 23 motor neurons (o1, . . . , o23). In

the case that no support is given by linguistic instructions, the neural network lacks
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Figure 8.2: The architecture of the neural controllers. The arrows indicate blocks
of fully connected neurons.

the sensory neurons that are dedicated to the linguistic instructions (x27, x28, x29).

Thus, it is then composed of 26 sensory neurons instead of 29. The neurons are

divided into height blocks in order to facilitate the description of their functionality

and connectivity:

• Arm Propriosensors (x1, . . . , x7): The activation values xi of the arm’s

propriosensory neurons encode the current angles of the 7 corresponding dofs

located on the arm and wrist normalised in the range of [0, 1].

• Hand Propriosensors (x8, . . . , x17): The vector of the activation values

〈x8, . . . , x17〉 of the hand’s propriosensor neurons correspond to the follow-

ing vector, which is computed on the basis of current angles of the hand’s

joints: 〈
a (J8) , a (J9) ,

a(J10)+a(J11)
2 , a (J13) ,

a(J14)+a(J15)
2 ,

a (J17) ,
a(J18)+a(J19)

2 , a (J21) ,
a(J22)+a(J23)

2 , a (J12)
〉

where a (Ji) is the angle of joint Ji normalised in the range of [0, 1] with 0

meaning fully extended, and 1 fully flexed. This way of representing the hand

posture mirrors the way in which the hand joints are actuated (see Section

8.1.4).

• Tactile Sensors (x18, . . . , x23): These measure whether the 5 fingers and the

unit constituted by the palm and wrist are in physical contact with another
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object. More precisely, the output of each tactile sensor is calculated with the

following equation:

x18 (t) = map[0,1] (TP + TW )

xi (t) = map[0,1]

(
3∑

s=1

Ts+3(i−19)

)
for i = 19, . . . , 23

where Ti is the value of the corresponding tactile sensor, and map[0,1] normal-

ises the number of contacts in the range of [0, 1]. Normalisation is performed

using a map function that becomes saturated to 1 when more than 20 contacts

take place.

• Target Position (x24, x25, x26): These neurons receive the output of a vision

system (which was not simulated) that computes the relative distance in cm

of the object with respect to the hand over three orthogonal axes. These

values are fed into the networks, since they are without any normalisation. In

detail, if Ptarget = 〈x, y, z〉 are the Cartesian coordinates of the target object

with respect to a common fixed frame, and Phand = 〈x, y, z〉 are the Cartesian

coordinates of the centre of the palm with respect to the same fixed frame, then

the values of the target position neurons are: 〈x24, x25, x26〉 = Phand − Ptarget.

• Linguistic Input (x27,x28, x29): This is a block of three neurons, each of which

represents one of the three commands: reach, grasp and lift. Specifically,

the vector 〈50, 0, 0〉 corresponds to the linguistic instruction “reach for the

object”, 〈0, 50, 0〉 corresponds to the linguistic instruction “grasp the object”

and 〈0, 0, 50〉 corresponds to the linguistic instruction “ lift the object”. The

way in which the state of these sensors is set is determined by equation 8.1,

as explained below.

• Internal Neurons (h1, . . . , h12): They are fully recurrent

• Arm Actuators (o1, . . . , o14): The values oi directly indicate the activation
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status of the 14 motor neurons that control the corresponding muscles of the

arm.

• Hand Actuators (o15, . . . , o23): The values oi correspond to the desired ex-

tension/flexion positions of the nine hand actuators, as described in Section

8.1.4. For more details, also see Appendix C.

Note that the state of the Linguistic Input and Target Position varies at a

larger interval than the other sensors in order to increase the relative impact of these

neurons. Indeed, control experiments in which all sensory neurons were normalised

within a [0, 1] interval led to significantly lower performance (results not shown).

The state of the sensors, the desired state of the actuators, and the internal neurons

are updated every 10ms, accordingly to the following equations:

hi (t) = δi

(
29∑

j=1

wjiσ0.2 (xj (t)) + βi

)
+ (1− δi)hi (t− 1)

oi =
12∑

j=1

wjiσ0.2 (hj)

where σλ(x) = (1+e−x)−λ. xi are the output of sensory neurons as described above.

hi and oi are the output of the internal and actuator neurons, respectively. wji is

the synaptic weight from neuron j to neuron i. βi is the bias of the i -th neuron.

Also, δi is the coefficient for implementing leaky neurons. as proposed in (Nolfi &

Marocco, 2001) for the internal neurons. With respect to the hidden neurons, the

output neurons do not have any bias or decay-factor.

This particular type of neural network architecture was chosen in order to minimise

the number of assumptions and to reduce, as much as possible, the number of free

parameters. Also, this particular sensory system was chosen in order to be able

to study situations in which the visual and tactile sensory channels need to be

integrated.
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8.3 The Evolutionary Process

The free parameters of the neural controller (i.e. the connection weights, the biases

of the internal neurons, and the time-constant of leaky-integrator neurons) were set

using an evolutionary algorithm (Nolfi & Floreano, 2000; Yao & Islam, 2008).

The initial population consisted of 100 randomly generated genotypes, which encode

the free parameters of 100 corresponding neural controllers. In the conditions in

which Linguistic Inputs are employed (hereafter, referred to as Exp. A), the neural

controller has 792 free parameters. In the other condition, without Linguistic

Inputs (hereafter, referred to as Exp. B), there are 756 free parameters. Each

parameter is encoded into a binary string (i.e. a gene) of 16 bits. In total, a

genotype is composed of 792 · 16 = 12672 bits in Exp. A, and 756 · 16 = 12096

bits in Exp. B. In both experiments, each gene encodes a real value in the range of

[−6,+6], but for genes encoding the decay-factors δi, the encoded value is mapped

in the range of [0, 1].

The 20 best genotypes of each generation were allowed to reproduce by generating

five copies each. Four out of five copies were subject to mutation, and one copy did

not mutate. During mutation, each bit of the genotype had a 1.5% probability of

being replaced by a new, randomly selected value. The evolutionary process was

repeated for 1,000 generations.

The agents were rewarded for reaching, grasping and lifting a spherical object with

a radius of 2.5 cm that was placed on the table in exactly the same way as in both

Exp. A and Exp. B. Each agent of the population was tested 4 times, and each

time, the initial position of the arm and the sphere were changed. Figure 8.3 shows

the four initial positions of the arm and of the sphere superimposed on one another.

The four initial postures of the arm corresponded to the following angles of joints

J1, . . . J4: 〈−73,−30,−40,−56〉, 〈−73,−30,−40,−113〉, 〈−6,+30,−10,−56〉 and

〈−73,−30,+45,−113〉. In addition, the initial sphere positions were: 〈−18,+10〉,

〈−26,+18〉, 〈−18,+26〉 and 〈−10,+18〉. Also, for each initial arm/object config-
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Figure 8.3: Initial positions of the arm and the sphere superimposed on one an-
other. The four initial postures of the arm correspond to the following angles,
given in degrees of joints J1, J2, J3,J4: 〈−73,−30,−40,−56〉, 〈−73,−30,−40,−113〉,
〈−6,+30,−10,−56〉 and 〈−73,−30,+45,−113〉. Also, the initial sphere positions,
in cm, are 〈−18,+10〉, 〈−26,+18〉, 〈−18,+26〉 and 〈−10,+18〉.

uration, a random displacement of ±1o was added to each joint of the arm, and a

random displacement of ±1.5 cm was added to the x and the y coordinates of the

sphere position. Each trial lasted 6 s, which corresponds to 600 simulation steps.

The sphere was able to move freely and could eventually fall off the table, in which

case the trial was stopped prematurely.

The fitness function was made up of three components: FR for reaching, FG for

grasping, and FL for lifting the object. Each trial was divided into 3 phases, in

each of which only a single fitness component was updated. The conditions that

defined the current phase at each time-step, and consequently, determined which

component had to be updated, were as follows:
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r(t) = 1− e(−0.1·ds(t))

g(t) = e(−0.2·graspQ(t))

l(t) = 1− e(−0.3·contacts(t))

Phase(t) =





reach r(t) > g(t) ∨ g(t) < 0.5

grasp otherwise

lift g(t) > 0.7 ∧ l(t) > 0.6

(8.1)

where ds(t) is the distance from the centre of the palm to a point located 5 cm above

the centre of the sphere. The term graspQ(t) is the distance between the centroid

of the fingertips-palm polygon and the centre of the sphere. The term contacts(t)

is the number of contacts between the fingers and the sphere.

The shifts between the three phases were irreversible (i.e. the reach phase was always

followed by the reach or grasp phases, and the grasp phase was always followed by

the grasp or lift phases).

Essentially, the current phase is determined by the values r(t), g(t) and l(t). When

r(t) is high (i.e. when the hand is far from the object), the robot must reach for the

object. When r(t) decreases and g(t) increases (i.e. when the hand approaches the

object from above), the robot needs to grasp the object. Finally, when l(t) increases

(i.e. when the number of activated contact sensors is large enough) the robot is able

to lift the object. The rules and the thresholds included in equation 8.1 were set

manually on the basis of our intuition and were adjusted through a trial-and-error

process. In Exp. A, the phases were used to define which linguistic instruction the

robot perceives.
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The three fitness components were calculated in the following way:

FR =
∑

t∈TReach

(
0.5

1 + ds(t)/4
+

0.25

1 + ds(t)
(fingersOpen(t) + palmRot(t))

)

FG =
∑

t∈TWrap

(
0.4

1 + graspQ(t)
+

0.2

1 + contacts(t)/4

)

FL =
∑

t∈TLift

objLifted(t)

where TReach, TWrap and TLift are the time ranges determined by equation 8.1.

fingersOpen(t) corresponds to the average degree of extension of the fingers, where

1 denote that all fingers are extended and 0 that all fingers are closed. palmRot(t) is

the dot product between the normal of the palm and the table, with 1 denoting the

condition in which the palm is parallel to the table, and 0 to the condition in which

it is orthogonal to the table. objLifted(t) is 1 only if the sphere is not touching the

table and is in contact with the fingers, otherwise it is 0.

The total fitness was calculated at the end of four trials as: F = min (500, FR) +

min (720, FW ) + min (1600, FL) + bonus, where bonus adds 300 for each trial in

which the agent switches from the reach phase to the grasp phase only, and 600 for

each trial in which the agent switches from the reach to grasp phase and from the

grasp to lift phase.

During the reach phase the agent is rewarded for approaching a point located 5 cm

above the centre of the object with the palm parallel to the table and the hand

open. Note that the rewards for the hand opening and the rotation of the palm are

relevant only when the hand is near the object (due to 0.25/(1 + ds(t)) factor). In

this way, the agent is free to rotate the palm when the hand is away from the sphere,

thus allowing any reaching trajectory.

During the grasp phase, the centroid of the fingertips-palm polygon can reach the

centre of the sphere only when the hand wraps the sphere within the fingers, pro-

ducing a potential power grasp.

During the lift phase, the reward is given when the agent effectively moves the sphere
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Figure 8.4: Fitness curves of the best agents at each generation of a) run 2, run 7,
and run 9 of Exp. A, and b) run 0 of Exp. B.

up, off the table.

8.4 Results

For both Exp. A (with linguistic instructions) and Exp. B (without linguistic

instructions), 10 evolutionary simulations for 1,000 generations were run, each using

a different random initialisation. Looking at the fitness curves of the best agents of

each generation of each evolutionary run, we noticed that for Exp. A, there are three

distinct evolutionary paths (see Figure 8.4-a). The most promising is run 7, in which

the last generation’s agents have the highest fitness. The curve corresponding to run

2 is representative of a group of seven evolutionary paths which, after a short phase

of fitness growth, reach a plateau at F = 2000. The curve corresponding to run 9 is

representative of a group of two evolutionary paths that are characterised by a long

plateau slightly above F = 1000. Generally speaking, these curves progressively

increase by going through short evolutionary intervals in which the fitness grows

quite rapidly, and is then followed by a long plateau.

In Exp. B, all the runs show a very similar trend, reaching and constantly remaining

on a plateau at about F = 3000 (see Figure 8.4-b).

Due to the nature of the task and of the fitness function, it is quite hard to infer

from these fitness curves what the behaviour of the agents might be during each

evolutionary phase. However, based on the characteristics of the task, and by visual
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inspection of the behaviour exhibited by the agents, it is possible to figure out how

the agents behaved in different generations of each evolutionary run. In Exp. A,

the phases of rapid fitness growth are determined by the bonus factor, which sub-

stantially rewards those agents that successfully accomplish single parts of the task.

The first jump in fitness is due to the bonus factor associated with the execution

of a successful reaching behaviour. This jump corresponds to the phase of fitness

growth observed in run 7 in correspondence with label R in Figure 8.4-a, and in

run 2 in correspondence with label V in Figure 8.4-a. The agents generated after

these jumps in fitness jumps are able to systematically reach the object. Run 9 does

not produce this first jump in fitness, and the agents of this run lack the ability to

systematically carry out a successful reaching behaviour.

The second jump in fitness is due to the bonus factor associated with the execution

of a successful grasping behaviour. Only in run 7 is it possible to observe a phase

of rapid fitness growth corresponding to a second jump in fitness (see label S in

Figure 8.4-a). The agents generated after this jump are able to successfully carry

out reaching and grasping. Note also that in run 7, the fitness curve keeps on growing

until the end of the evolution. This growth is determined by the evolution of the

capability to lift the object. Thus, in run 7, the best agents following generation 400

are capable of reaching, grasping, and lifting the object. The constant increment of

fitness is determined by the fact that the agents become progressively more effective

in lifting the object. Run 2 does not produce a second jump in fitness jump. The

agents of this run lack the ability to systematically carry out a successful grasping

behaviour.

In summary, only run 7 generated agents (i.e. those best agents generated after

generation 400) capable of successfully accomplishing reaching, grasping, and lifting.

The best agents of run 2, and of the other six runs that show a similar evolutionary

trend, are able to systematically reach but not grasp the object, and completely lack

the ability to lift it. The best agents of run 9, and of the other runs that show a

similar evolutionary trend, are not even able to systematically reach the object. In
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Exp. B, they are able to successfully reach and grasp the object, but not lift it.

8.4.1 Robustness & Generalisation

The effectiveness and robustness of the best agents’ behavioural strategies was eval-

uated in a series of post-evaluation tests. In these tests, the agents, from generation

900 to generation 1,000 of each run, were subjected to a series of trials in which the

position of the object as well as the initial position of the arm were systematically

varied. For the position of the object, a rectangular area (28 cm × 21 cm) divided

into 11× 11 cells defined the possible displacements of the object. The agents were

evaluated for reaching, grasping and lifting the object, which was positioned in the

centre of each cell of the rectangular area. From the four initial positions employed

during evolution (see Figure 8.3), 100 slightly different initial positions were gener-

ated with the addition of a ±10◦ random displacement to joints J1, J2, J3, and J4.

Thus, this test was comprised of 48,400 trials, given by 400 initial positions (4 · 100)

for each cell, which were repeated for 121 cells corresponding to the different initial

positions of the object during the test. In each trial, reaching was considered suc-

cessful if an agent met the conditions and was able to switch from the reach phase to

the grasp phase (see equation 8.1). Grasping was considered successful if an agent

met the conditions and was able to switch from the grasp phase to the lift phase

(see equation 8.1). Lifting was considered successful if an agent managed to keep

the object more than 1 cm above the table until the end of the trial.

The results shown here concern a single agent for each run. However, agents belong-

ing to the same run produced very similar performance. Thus, the reader should

consider the results of each agent as being representative of all the other agents in

the same evolutionary run.

All the graphs in Figure 8.5 show the relative positions of the rectangular area and

the cells with respect to the agent/table system. Moreover, each cell in this area

is coloured in a shade of grey, with black indicating a 0% success rate, and white
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indicating a 100% success rate. As expected from the results in the previous section,

the agent chosen from run 7 Exp. A proved to be the only one capable of successfully

accomplishing all three phases of the task. This agent proved capable of successfully

reaching the object when it was placed almost anywhere within the rectangular area.

reach grasp lift

run 7
Exp.A

run 2
Exp.A

run 9
Exp.A

run 2
Exp.B

Figure 8.5: Performance on robustness tests. Performance of the best agent at
generation 1,000, indicated by the row on post-evaluation tests regarding the ro-
bustness of reaching, grasping and lifting behaviours. The coloured cells indicate
the initial positions of the object, and the background shows the positions of the
cells with respect to the table and the robotic arm. Each cell is coloured depending
upon the average performance obtained when testing the robot over 400 trials in
which the initial posture of the arm was varied. A white cell corresponds to a 100%
rate of success, and black to a 0% rate of success. (See the text for details as to how
success/failure was computed).

Its grasping and lifting behaviour were less robust than its reaching behaviour.
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Indeed, its grasping and lifting performance was quite good everywhere, except in

two small zones located in the top-left and bottom-right of the rectangular area in

which the cells are coloured black. The agent chosen from run 2 Exp. A proved

to be capable of successfully performing reaching behaviour for a broad range of

initial positions of objects, but was completely unable to perform grasping and

lifting behaviours. The agent chosen from run 9 Exp. A did not even manage to

systematically bring the hand close to the object, regardless of the object’s initial

position. The agent chosen from run 0 Exp. B proved capable of successfully

performing reaching and grasping behaviours, but not lifting behaviour.

8.5 Discussion

This chapter has shown how a simulated humanoid robot controlled by an artificial

neural network can acquire the ability to manipulate spherical objects set out on a

table by reaching for, grasping, and lifting them. The agent was trained through

an adaptive process in which the free parameters encoded the control rules that

regulate the fine-grained interaction between the agent and the environment, and

the variations of these free parameters were retained or discarded on the basis of

their effects at the level of the behaviour exhibited by the agent. This means that

the agents developed their skills autonomously through interaction with the envir-

onment. This further means that the agents are left free to determine the ways in

which they solve the task, within the limits imposed by i) their body/control archi-

tecture, ii) the characteristics of the environment, and iii) the constraints imposed

by the utility function, which rewards the agents for their ability to reach an area

located above the object, wrap the fingers around the object, and lift the object.

An analysis of the best individuals generated by the adaptive process shows that the

agents of a single evolutionary run managed to reach for, grasp, and lift the object

reliably and effectively. Moreover, when tested in new conditions with respect to

those experienced during the adaptive process, these agents proved capable of gen-

144



eralising their skills with respect to new object positions they had never experienced

before.

A comparison of two experimental conditions (i.e. with and without the use of

linguistic instructions that specify the behaviours that the agents are required to

exhibit during the task) indicates that the agents succeeded in solving the entire

problem only with the support of linguistic instructions (i.e. in Exp. A). This res-

ult confirms the hypothesis that access to linguistic instructions that represent the

category of the behaviour to be exhibited in the current phase of the task, might be

a crucial pre-requisite for the development of the corresponding behavioural skills,

and for the ability to trigger the right behaviour at the right time. More specifically,

the fact that the best agents in Exp. B succeeded in exhibiting reaching and then

grasping behaviour, but not lifting behaviour, suggests that linguistic instructions

represent a crucial pre-requisite in situations in which the agent has to develop the

ability to produce different behaviours in similar sensory-motor circumstances. The

transitions from reaching to grasping were marked by well differentiated sensory-

motor states, which were probably sufficient to induce the agents to stop the reach-

ing phase and to start the grasping phase, even without the support of a linguistic

instruction. The grasping-to-lifting transition was not characterised by well differ-

entiated sensory-motor states. Thus, in Exp. A, it is likely that it was the valuable

support of the linguistic instruction that induced the successful agents to move on

to the lifting phase.
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9 Conclusions

The main research aim of this PhD thesis was to use evolutionary robotics methodo-

logies to synthesise neural controllers for anthropomorphic robots in order for them

to be able to manipulate objects. Looking at this problem, we find that various

abilities are necessary in order for an anthropomorphic robot to manipulate objects.

The skill of reaching enables the hand to approach the object. The skill of grasping

enables it to take and hold the object. The ability to discriminate among different

objects allows the robot to trigger different actions.

During the author’s PhD studies, these aspects were studied using er and by us-

ing neural networks as controllers. The first experiment, presented in Chapter 5,

concerns the development of reaching behaviour for a simple robotic arm without

a hand. Next, a full model of an anthropomorphic robotic arm with a five-fingered

hand was implemented, and the second experiment, reported in Chapter 6, em-

ployed this robotic arm in order to develop a grasping behaviour. The experiments

that followed, in Chapters 7 and8, addressed two different problems beyond that

of grasping ability: the discrimination among different objects on the basis of tact-

ile information, and the ability to perform a sequence of actions that consists of

reaching, grasping, and lifting behaviours.

Overall, an analysis of the obtained results indicates that robots equipped with

neural network controllers can successfully achieve these tasks and can demonstrate

good performance in two ways:

• with respect to the fitness function used and the robustness tests that were

performed, and

• by generalising their skills when tested in new conditions (with different initial

positions of the arm/hand, and with objects located in different positions

and/or orientations, with objects of different shapes).
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An analysis of the behaviours displayed by evolved individuals and a comparison

of the different experimental conditions indicate that the methodology used tends

to produce solutions that are parsimonious from the point of view of the control

system, due to the fact that they exploit properties emerging from the interaction

between the robot and the environment. In fact, the agents solve their adaptive

tasks while also evolving an ability to interact with the external environment and

to modify the environment itself in order to self-select favourable conditions.

The obtained results also demonstrate how the robots can successfully develop the

ability to display multiple behaviours (i.e. reaching, grasping, and lifting) and to

arbitrate among them. The co-development of different behaviours leads to strongly

integrated solutions in which behaviours are realised in a way that maximises the

chances of success of the other behaviours. For example, reaching is realised in a way

that maximises the chances that the successive execution of the grasping behaviour

will be successful. In the case of the evolved behaviours reported in Chapter 6,

the robots reach for and make contact with objects on one side, and then move

the arm and the palm in a way that ensures that the objects will move toward the

inner part of the hand, thus facilitating the grasp behaviour. Hence, the ability to

exploit the interactions between behaviours leads to solutions that are effective and

parsimonious, from the point of view of the control system.

This tight integration, however, also tends to prevent the robot from having the pos-

sibility to develop relatively independent behavioural skills that can be recombined

in different sequences and reused to achieve different functions. The experiment

reported in Chapter 8, in which the robots were rewarded both for the ability to

display each elementary behaviour in isolation, and to combine different elementary

behaviours in sequence, represents a way to overcome the disadvantages of the tight

integration of behaviours.
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9.1 Contribution to Knowledge

From the point of view of the author, the results of the experiments reported in this

thesis make a number of contributions to knowledge. Following the order in which

the experiments were reported, these contributions are as follows.

• In chapter 5, it was demonstrated that it is possible to develop a reliable and

efficient solution of the inverse kinematic problem using a simple neural net-

work topology and with a simple neuron model, with respect to (Kokera et al.,

2004; Manocha & Zhu, 1994; Toal & Flanagan, 2002; Williamson, 1998; Li &

Leong, 2003; Oyama et al., 2001; Martìn & del R Del Milla, 1998; Rathbone

& Sharkey, 1999; Krose & der smagt, 1993a; Bekey, 2006), and that this could

be achieved without constraining the kinematic structure of the robotic arm in

order to satisfy the requirements for a solution to the ik problem (Siciliano &

Khatib, 2008). This approach to solving the ik problem, which was also used

in all successive experiments, makes it possible to evolve reliable and efficient

solutions for reaching with a full anthropomorphic arm, which are essential to

the achievements of all the other experiments.

• Chapter 6 demonstrated the feasibility of applying the er approach to complex

robots in order to evolve complex behaviours, such as grasping objects. In

fact, the experimental setup presented is significantly more advanced than

that of previous works that are based on similar adaptive techniques (Bianco

& Nolfi, 2004; Buehrmann & Paolo, 2004; Gomez et al., 2005; Massera et al.,

2006; Bongard, 2010). The morphology of the anthropomorphic arm and hand

with 27 dofs is rather more complex than that of the arm models cited.

Hence, the size of the neural controller and the dimensions of the corresponding

search space are greater. Also, the task involves the ability to reach and grasp

freely moving objects with different shapes placed on a table. The results

of the experiments presented not only in this chapter, but also in 7 and 8,

demonstrate that the er approach can be scaled up to this level of complexity.
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• Chapter 7 presents a new mechanism to categorise objects that was designed

by the author of this thesis. In the large majority of cases, researchers have

focused their attention on categorisation processes that are passive and in-

stantaneous (see (Cohen & Lefebvre, 2005) for a comprehensive review), in

which the neural networks usually must represent categories in a such way

as to (i) form areas related to a certain category that are as concentrated as

possible around a centre (which is often used to represent the prototype of

that category), and (ii) to keep these areas as far as possible from one an-

other. Taking a different approach, the experiment in Chapter 7 focuses upon

categorisation processes that are active and that are eventually distributed

over time (Beer, 2000; Nolfi, 2009). Hence, the actions and behaviours ex-

hibited by the agent later influence the stimuli that it senses, which results

in evolved robots acting so as to experience the regularities that enable them

to categorise appropriately. In addition, the relaxation of the two aforemen-

tioned constraints and the use of er make it possible to avoid the imposition

of a representation scheme in which different categories are associated with

a state/s of the categorisation neurons that is/are determined a priori. This

results in at least two advantages of the proposed categorisation mechanism:

(i) the points inside a category’s area can be structured in such a way as to

represent some feature of the category itself, and (ii) the category’s area can

be arranged in a way that facilitates the discrimination task.

• Chapter 8 highlighted the facilitatory role of external inputs in the develop-

ment of the skill of manipulating objects. In the particular setup presented

in Chapter 8, neural networks are evolved to produce the ability to manip-

ulate spherical objects distributed on a table by reaching for, grasping, and

lifting them under two different conditions: one in which they receive as input

a linguistic instruction that specifies the type of behaviour to be exhibited

during the current phase, and the other in which they receive no such instruc-

tion. The obtained results show that the linguistic instructions facilitated the
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development of the required behavioural skills. The results suggest that the

acquisition of elementary skills with the guidance of linguistic instructions may

provide a scaffolding for more complex behaviours. Although the experimental

setup is quite simplified as compared to real social interactions, the linguistic

instructions may seen as a very simple form of interaction between a robot and

a teacher. The results can thus be considered supportive of existing evidence

about the importance of social interactions in the development of complex

manipulation behaviours (Cangelosi et al., 2010, 2007; Cappa & Perani, 2003;

Glenberg & Kaschak, 2002; Hauk et al., 2004; Pulvermuller, 2002; Rizzolatti

& Arbib, 1998).

9.2 Future Ideas

A variety of future works are planned that have the following aims:

• port some of the results obtained through simulations of real robots;

• integrate aspects of this research that have thus far been studied in isolation;

and

• carry on additional research by combining the development of behavioural and

linguistic skills.

As regards the first point, future research will focus on porting the most significant

results on the iCub robot by exploiting the compliant system recently developed by

Mohan et al. (2009). Such a compliant system, which consists of force sensors placed

on the arm and a software library, makes possible the implementation of muscle-like

actuators on the iCub.

As regards the integration of the experiments described in this thesis, new experi-

ments will be designed in which the robots use their ability to categorise the shapes
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of objects in order to appropriately modify the way in which the objects are manip-

ulated (i.e. in order to trigger force or precision grasping behaviour, depending on

the type of object).

Finally, as regards the third point, the experiment presented in Chapter 8 will be

extended by training the robot to also self-generate linguistic instructions and use

them to trigger the corresponding behaviours autonomously (i.e. without the need to

rely on external instructions), and by verifying whether the role played by linguistic

instructions can later be internalised in the agents’ cognitive abilities (Vygotsky,

1962, 1978; Mirolli & Parisi, 2009).
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A Robotic Arm Version A

The first version of the anthropomorphic robotic arm is provided with only 4 dofs.

The arm and the arm/environmental interaction were simulated using ode (Open

Dynamics Engine, Smith, 2004), a library for the accurate simulation of rigid body

dynamics and collisions.

Figure A.1: Structure of the 4-dof robotic arm. The four dofs of the simulated
robotic arm. The two illustrations at the top of the figure indicate the abduc-
tion/adduction (left) and extension/flexion of the shoulder joint (right). The bot-
tom figures indicate the rotation of the shoulder (left) and the extension/flexion of
the elbow (right). In all illustrations, the arrows indicate the frontal direction of the
robot.

A.1 Arm Structure and Actuators

The simulated robot consists of cylindrical segments articulated by revolute joints,

as illustrated in Figure A.1. More specifically, the arm consists of two segments
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(the arm and the forearm) that are attached to the previous segments (the shoulder

and the arm) through two joints (the shoulder and elbow joints). The arm and

the forearm have lengths of 100 cm and 80 cm, diameters of 8 cm and 7 cm, and

weights of 13 kg and 8 kg respectively. The shoulder has three dofs that allow

abduction/adduction of [−45°,+45°], extension/flexion of [−150°,+45°] and rotation

of [−90°,+90°]. The elbow has one dof that allows extension/flexion of [−126°,+0°].

Since the robot is only asked to reach a given target position with the endpoint of

its arm, we did not model the wrist and the wrist joints. Therefore the arm has four

motorised joints and four dofs, see Figure A.1. The joints are moved by directly

setting the desired angular velocity specified by the neural network. The maximum

velocity at which each joint of the arm can be set is 890 rpm. The acceleration of

gravity was set to 9.8m/s2.

A.2 The Issue of Physics Engines

This section explains the reasons behind the move from Open Dynamics Engine to

Newton Game Dynamics. In fact, the latter was employed to implement the full

anthropomorphic robotic arms described in appendices B and C.

One of the most important issues in being able to obtain results relevant to robotics,

is being able to develop an accurate model of the rigid-body dynamics. In this regard

there are many commercial libraries that work quite well and serve most needs, but

the high cost of these products makes them quite difficult to use in academic research.

The alternative is to use open-source or free libraries, or commercial packages such

as MatLab.

The most important factor in the evolution of agents in a physical environment

using the er approach is the speed of the engine. In fact, rigid-body dynamics lib-

raries such as yade (Yade, 2004) or MatLab simulate interactions quite accurately,

but using them, it is practically impossible to evolve agents due to the long time

required to complete an evolutionary process. Hence, the engine must have the ca-
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pacity to simulate the world at a rate that is faster than real-time. This feature is

accomplished by an engine fitted for video games.

At the beginning of the author’s Ph.D. studies, the ode library was chosen due

to its free gpl license. Although the ode project began in 2004, it is still at the

stage of beta release. The results presented in Chapter 5 were achieved using ode.

This was possible because the simulation was simple enough that no problem arose

on account of the library. In the implementation of muscle actuators, however,

numerous problems arose that were related to the bugs and the lack of features in

the available version of ode.

Hence, another physical engine, Newton Game Dynamics (ngd), was chosen, and

the simulator was adapted to this new library (Jerez & Suero, 2004). All the new

models developed to that point were replicated, and all evolutionary processes were

re-run in order to verify the correct porting of the simulator to ngd.

The choice of ngd was made taking into account the simulation of grasping. When

the hand touches an object in order to grasp it, numerous forces are generated, and

the correct simulation of these forces is fundamental to obtaining valid results after

the evolutionary process. Friction and gravity are critical from the point of view of

grasping, and neither of these forces are not simulated as well in ode as they are in

ngd.
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B Robotic Arm Version B

The second version of the robot arm that was implemented is a full anthropomorphic

manipulator with a five-fingered hand attached to a 7-dof arm. The actuation of the

arm’s joints is performed by muscle-like actuators, while the fingers are controlled by

their velocity, which is performed by a simple position controller, in order to simplify

the complexity. The arm and the arm/environmental interaction were simulated

using ngd (Newton Game Dynamics, Jerez & Suero, 2004), a library for the accurate

simulation of rigid body dynamics and collisions.

B.1 Arm Structure

The arm (Figure B.1) consists mainly of three elements (the arm, the forearm and

the wrist) that are connected through articulations displaced into the shoulder, the

arm, the elbow, the forearm and wrist. It is an enhancement of a previous 4-dof

model to which a wrist comprised of another 3-dof joint was added. The wrist adds

the ability to produce pitch, yaw and roll of the end-effector of the arm (i.e. the

hand that will be added in a further step). This is the first step toward the addition

of a hand for the purpose of studying grasping behaviours.

The shoulder is composed of a sphere with a radius 2.8 cm. The lengths of the arm

and forearm are 23 and 18 cm, respectively. The wrist consists of an ellipsoid with

a radius of 1.45, 1.2 and 1.45 cm along the x-, y- and z-axis, respectively.

The joints J1, J2 and J3 (Figure B.1) provide abduction/adduction, extension/flexion

and supination/pronation of the arm in the range of [−140°,+60°], [−90°,+90°] and

[−60°,+90°], respectively. These three dofs act like a ball-and-socket joint moving

the arm in a way analogous to the human shoulder joint. Joint J4, which is located

in the elbow, consists of a hinge joint that provides extension/flexion within a range
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Figure B.1: The kinematic chain of the arm. The cylinders represent rotational
dofs. The axes of the cylinders indicate the corresponding axis of rotation. The
links among the cylinders represent the rigid connections that make up the arm
structure.

of [−170°,+0°] (the radius and ulna bones). Joint J5 rotate the forearm providing

pronation/supination of the wrist (and the palm) within a range of [−90°,+90°].

Joints J6 and J7 on the wrist provide flexion/extension and abduction/adduction of

the hand within a range of [−30°,+30°] and [−90°,+90°], respectively.

B.2 Arm Actuators

The arm joints (J1, . . . , J7) are actuated by two simulated antagonist muscles that

were implemented accordingly to Hill’s muscle model (Sandercock et al., 2003; Shad-

mehr & Wise, 2005b). More precisely, the total force exerted by a muscle (Figure

B.2) is the sum of three forces TA (α, x)+TP (x)+TV (ẋ) which depend on the activ-

ity of the corresponding motor neuron (α) on the current elongation of the muscle
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Figure B.2: An example of the force exerted by a muscle. The graph shows how the
force exerted by a muscle varies as a function of the activity of the corresponding
motor neuron and of the elongation of the muscle for a joint in which Tmax is set to
300N .

(x) and on the muscle contraction/elongation speed (ẋ) which are calculated on the

basis of the following equations:

TA = α
(
−AshTmax(x−RL)

2

R2
L

+ Tmax

)

Ash =
R2

L

(Lmax−RL)
2

TP = Tmax
exp
{
Ksh

(
x−RL

Lmax−RL

)}
−1

exp{Ksh}−1

TV = b · ẋ

(B.1)

where Lmax and RL are the maximum and the resting length of the muscle, Tmax is

the maximum force that can be generated, Ksh is the passive shape factor, and b is

the viscosity coefficient.

The active force TA depends on the activation of muscle α and on the current elonga-

tion/compression of the muscle. When the muscle is completely elongated/compressed,

the active force is zero, regardless of activation α. At the resting length RL, the

active force reaches its maximum, which depends on activation α. The red curves

in Figure B.2 show how the active force TA changes with respect to the elongation
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of the muscle for some possible values of α. The passive force TP depends only

on the current elongation/compression of the muscle (see the blue curve in figure

B.2). TP tends to elongate the muscle when it is compressed to a degree less than

RL, and tends to compress the muscle when it is elongated beyond RL. TP differs

from a linear spring in that it has an exponential trend that produces a strong op-

position to muscle elongation and little opposition to muscle compression. TV is

the viscosity force. It produces a force that is proportional to the velocity of the

elongation/compression of the muscle.

The parameters of the equation are identical for all 14 muscles that control the seven

dofs of the arm, and they were set to the following values: Ksh = 3.0, RL = 2.5,

Lmax = 3.7, b = 0.9, Ash = 4.34 with the exception of parameter Tmax which was

set to 3000N for joint J2, 300N for joints J1, J3, J4, and J5, and 200N for J6 and

J7.

Muscle elongation is simulated on the basis of the actual angular position of each

dof, which is mapped linearly within the allowable angular range of each dof. For

instance, in the case of the elbow where the limits are [−170o,+0o], this range is

mapped onto [+1.3,+3.7] for the agonist muscle, and inversely, onto [+3.7,+1.3]

for the antagonist muscle. Hence, when elbow is completely extended (angle 0),

the agonist muscle is completely elongated (3.7) and the antagonist is completely

compressed (1.3), and vice versa when the elbow is flexed.

B.3 Hand Structure

The hand was added to the robotic arm just below the wrist (at joint J7, as shown

in Figure B.1).

The robotic hand (Figure B.3) is composed of a palm and 14 phalange segments

(Table B.1) that make up the digits (two for the thumb, and three for each of the

other four fingers), which are connected through 15 joints with 20 dofs. The palm
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Figure B.3: The kinematic chain of the hand. The cylinders represent rotational
dofs. The axes of the cylinders indicate the corresponding axis of rotation, and the
labels on the cylinders are the names of the joints. The links among the cylinders
represent the rigid connections that make up the hand structure.

consists of a box with dimensions of 4.6× 1.2× 4.2 cm. The thumb is composed of

four connected objects:

1. an ellipsoid with a radius of 1.5× 0.6× 0.8 cm that is half-sunk into the palm;

2. a box with dimensions of 2.4 × 0.8 × 0.9 cm, which corresponds to the meta-

carpal bones of the human thumb;

3. a box with dimensions of 1.6× 0.75× 0.85 cm, which corresponds to the first

phalanx; and

4. a box with dimensions of 1.12×0.75×0.8 cm, which corresponds to the second

phalanx.

The other fingers are connected to the palm through the knuckles, which are rep-

resented by an ellipsoid with radius dimensions of 0.65 × 0.65 × 0.5 cm. The three

phalanges that compose each finger are boxes that are jointed serially.
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Finger First phalanx Second phalanx Third phalanx
Index 2.40×0.80×0.80 1.50×0.75×0.75 1.12×0.70×0.70
Middle 2.62×0.80×0.80 1.50×0.75×0.75 1.12×0.70×0.70
Ring 2.40×0.80×0.80 1.50×0.75×0.75 1.12×0.70×0.70
Pinky 2.25×0.80×0.80 1.50×0.75×0.75 1.12×0.70×0.70

Table B.1: Size of the segments forming the hand (in cm).

The joints in the hand are grouped intometacarpophalangeal (MP = {J12, J13, J16, J17,

J20, J21, J24, J25}, MP -A = {J8, J9} and MP -B = {J10}), proximal interphalangeal

(PIP = {J11, J14, J18, J22, J26}), and distal interphalangeal (DIP = {J15, J19, J23, J27})

types. Each finger has two hinge joints, pip and dip (see Figure B.3), that ex-

tend/flex the phalanges within the range of [−90°,+0°]. The mp group is composed

of two joints that allow both extension/flexion and abduction/adduction of the first

phalanx of each finger. The extension/flexion of mp is in the range of [−90°,+0°]

for all fingers, but the range of abduction/adduction varies for different fingers, and

corresponds to [−7°,+0°], [−2°,+2°], [−2°,+5°] and [+0°,+7°] for the index, the

middle, the ring and the little fingers, respectively. The thumb does not have a dip

joint, and the mp provides three dofs, which are located in the mp-a and mp-b

joints. The former joint has two dofs, which provide supination/pronation and

abduction/adduction of the metacarpal part of the thumb in ranges of[−120°,+0°]

and [−15°,+90°], respectively, which allows for good opposition of the thumb to the

fingers. The mp-b and pip joints consists of hinge joints that extend/flex the first

and second phalanx of the thumb in the same range [−90°,+0°] as the pip and dip

joints of the other four fingers.

B.4 Hand Actuators

The joints are controllable independent of one another by specifying the desired

position. One of the most important features of the hand’s joints is their compliance,

which facilitates the grasping of objects. This was obtained using elastic actuators.

In detail, the compliance was obtained by setting a maximum threshold of 300N
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Figure B.4: Distribution of tactile sensors on the hand. The links among the cyl-
inders represents the rigid connections that constitute the hand structure, and the
white labels on the links indicate the names and the positions of the tactile sensors.

for the force exerted by each joint. When an external force acting on a joint exceeds

this threshold, the joint either cannot move further, or it moves backward due to

the external force. The joints are moved by a proportional controller that sets the

angular velocity of a joint in order for it to reach the position specified by the neural

network.

B.5 Hand Tactile Sensors

The hand is equipped with tactile sensors that are distributed over the wrist, the

palm, and all five fingers. Figure B.4 shows where the tactile sensors are placed.

The white labels indicate the names of the tactile sensors. Each tactile sensor simply

counts the number of contacts that take place on the part corresponding to the one

it is placed on. The contacts coming from the humanoid parts are not counted. For

example, in the case of TP , the sensor reports all contacts between the palm and

another object(s), but not the contacts between the palm and the fingers.
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C Robotic Arm Version C

The third version of the robot arm that was implemented is a modified version of

the previous one. It is a full anthropomorphic manipulator with a five-fingered hand

attached to a 7-dof arm. The actuation of the arm’s joints is performed by muscle-

like actuators (as in Version B), while the fingers are controlled as a unit, using

the same grouping principle that was used in the development of the iCub hand.

The arm and the arm/environmental interactions were simulated using ngd (Newton

Game Dynamics, Jerez & Suero, 2004), a library for the accurate simulation of rigid

body dynamics and collisions.

C.1 Arm Structure

The arm consists mainly of three elements (the arm, the forearm, and the wrist),

which are connected through articulations placed in the shoulder, the arm, the

elbow, the forearm, and wrist (see Figure C.1-a). The dimensions of the elements

and the distribution of the joints are the same as in Version B; see Appendix B for

details. However, the angles of the joints vary, and move in slightly different ranges

than they do in Version B. The angles of joints J1, . . . J7 vary, respectively, having

ranges of [−140°,+100°], [−110°,+90°], [−110°,+90°], [−170°,+0°], [−100°,+100°],

[−40°,+40°] and [−100°,+100°] (see Figure C.1-b).

C.2 Arm Actuators

Arm joints (J1, . . . , J7) are actuated by two simulated antagonist muscles, exactly

as in version B. For details on how the muscles are implemented, see Section B.2 of

Appendix B.
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(a) (b)

Figure C.1: The kinematic chain of the arm and the hand. Cylinders represent
rotational dofs. The axes of cylinders indicate the corresponding axis of rotation.
The links amongst cylinders represents the rigid connections that make up the arm
structure. The joints are named as indicated in b)

C.3 Hand Structure

The robotic hand of version C differs from that of version B in terms of the distribu-

tion and the angle limits of the thumb joints. Joint J8 allows the opposition of the

thumb to the other fingers, and it varies within the range of [−120°,+0°], where the

lower limit corresponds to the thumb-little finger opposition. All the other thumb

joints (J9, J10 and J11) are for the extension/flexion of the phalanges, and vary

within a range of [−90°,+0°]. where the lower limit corresponds to complete flexion

of the phalanx (i.e. the thumb closed). For all others details, see Section B.3 of

Appendix B.

C.4 Hand Actuators

The joints cannot be controlled independent of each other, but rather, they are

grouped according to the same grouping principle as was used in the development of

the iCub hand (Sandini et al., 2004). More precisely, the two distal phalanges of the

thumb move together, as do the two distal phalanges of the index and the middle

fingers. Also, all the extension/flexion joints of the ring and little fingers are linked,

as are all the joints of abduction/adduction of the fingers. Hence, only 9 actuators
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move all the joints of the hand, with one actuator for each of the following groups of

joints: 〈J8〉, 〈J9〉, 〈J10, J11〉, 〈J13〉, 〈J14, J15〉, 〈J17〉, 〈J18, J19〉, 〈J12, J16, J20, J24〉 and

〈J21, J22, J23, J25, J26, J27〉. These actuators are simple motors that control the joints

according to their positions.

C.5 Hand Tactile Sensors

The hand is equipped with tactile sensors exactly as in version B; see Section B.5

of Appendix B.
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Abstract

In this article we present an evolutionary technique for
developing a neural network based controller for an an-
thropomorphic robotic arm with 4 DOF able to exhibit a
reaching behaviour. Evolved neural controllers display an
ability to reach targets accurately and generalize their ability
to moving targets. This study demonstrates that it is possible
to obtain solutions that are extremely parsimonious from the
point of view of the control system. Evolutionary training
techniques allow us to evolve parameters of the control
system on the basis of the global effects that they produce
on the dynamics arising from the interaction between the
control system, the robot’s body and the environment.

1. Introduction
The control of arm and hand movements in human and non-
human primates is a fascinating research topic in robotics
and cognitive science.

In robotics, the design of adaptive robotic systems able
to perform complex object manipulation tasks is one of the
most important research issues (Schaal, 2002).

In cognitive science, the relationship between action con-
trol and other cognitive functions has been demostrated to
be important in the study of cognition (Pulvermuller, 2005;
Cangelosi et al., 2005). For example, variour theories of lan-
guage evolution have focused on the relationship between
hand use, tool making and language evolution (Corballis,
2003).

Within arm control, reaching and grasping behaviours
represent key abilities since they constitute a prerequisite
for any object manipulation. Despite the importance of the
topic, the large body of available behavioural and neuropsy-
chological data, and the vast number of studies based a vari-
ety of AI and neural network techniques, the issues of how
primates and humans learn to display reaching and grasping
behaviour still remains highly controversial (Schaal, 2002;
Shadmehr, 2002). Similarly, while many of the aspects that
makes these problems difficult have been identified, exper-
imental research based on different AI and neural networks

techniques does not seem to converge toward the identifica-
tion of a single general methodology.

In this article we present an evolutionary technique for de-
veloping a neural-network based controller for a simulated
anthropomorphic robotic arm able to exhibit a reaching be-
haviour.

In section 2, we define what we mean by reaching
behaviour in the context of arm control and we discuss the
aspects that make this problem hard to solve. In section
3, we point out the relation of our approach with the other
related models. In section 4, we describe our experimental
set-up and the method used to develop the control system
of a simulated anthropomorphic robotic arm. In section 5,
we describe the simulation experiments and results. Finally,
in section 6, we will present our conclusions and our future
plans.

2. Reaching
Primate arms consist of three segments (the arm, the fore-
arm, and the hand) attached to previous segments (the shoul-
der, the arm, and the forearm) through three actuated joints
(the shoulder, elbow, and wrist joints). Roughly speaking,
human arms have seven limited degrees of freedom (DOFs):
three in the shoulder, one at the elbow, and three at the
wrist. Anthropomorphic robotic arms typically consist of
three segments connected through motorized joints. Some
models use all the seven DOFs listed above, others may in-
clude only part of them.

From the point of view of the control system, reaching
consists in producing the appropriate sequence of motor ac-
tions (i.e. setting the appropriate torque force for each actu-
ated joint) that, given the current state of the arm and given
the current desired target point, will bring the endpoint of
the arm in the current desired target position.

Some of the most important issues in the study of reaching
behaviour are:

• When the number of DOFs is redundant (as in the case
of primate arms), there is an infinite number of trajec-
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tories and of final postures for reaching any given target
point. This redundancy potentially allows anthropomor-
phic arms to reach a target point by circumventing obsta-
cles or by overcoming problems due to the limits of the
DOFs. However, the redundancy of DOFs, also, implies
that the space to be searched during learning is rather vast.

• Anthropomorphic arms are highly non-linear systems.
First, small variations in some of the joints might have
a huge impact on the end-position of the arm. At the
same time, significant variations of other joints might not
have any impact. Secondly, due to the limits on the joints’
DOFs and due to the interactions between joints, similar
target positions might require rather different trajectories
and final postures. At the same time, rather different tar-
get positions might require similar trajectories and final
postures.

• In articulated and suspended structures such as anthropo-
morphic arms, gravity and inertia play a key role. In pri-
mate arms, muscles and associated spinal reflex circuitry
seems to confer to the arm the ability to passively set-
tle into a stable position (i.e. an equilibrium point) inde-
pendently from its previous position. If this hypothesis is
true, the contribution of the central nervous system would
simply consists in the modification of the current equilib-
rium point (Shadmehr, 2002).

• Sensors and actuators might be slow and noisy. For in-
stance in humans visual information and proprioceptive
information encoding changes of joints positions is avail-
able with a delay up to 100ms. Motor commands issued
by the central nervous system may take up to 50ms to
initiate muscle contraction (Mial, 2002). Moreover, sen-
sors might provide only incomplete information (e.g. the
target point might be partially or totally occluded by ob-
stacles and by the arm).

3. The State of the Art
There have been few previous attempts to use evolutionary
techniques to develop the controller for a robotic arm.

Bianco and Nolfi (2004) used a similar approach to
that described in this paper to develop the controller for a
simulated robotic arm with a two-fingered hand and nine
DOFs for the ability to grasp objects with different shapes.
The arm was only provided with tactile sensors. Evolved
robots displayed an ability to grasp objects with different
shapes, different orientations, and located in varying posi-
tions within a limited area. Evolving robots, however, were
not able to deal with larger variations of the objects posi-
tions. Indeed, in this paper we used a similar method to
solve the reaching problem and we plan to combine the two

approaches in future research to develop robotic arms that
can effectively reach and grasp objects in a large variety of
circumstances.

Buehrmann and Di Paolo (2004) evolved the control sys-
tem for simulated robotic arm with three DOFs for the abil-
ity to reach a fixed object placed on a plane and to track
moving objects. The arm was provided with two pan-tilt
”cameras” consisting of a two-dimensional array of ”laser
range sensors” placed above the robot arm and on the end-
point of the robotic arm. The controller consisted of several
separate neural modules. These receive different sensory in-
formation and control different motor joints. The networks
are separately evolved for the ability to produce different
elementary behaviours (e.g. change the orientation of the
above camera so to focus on the object, move the first joint
that determines the orientation of the arm so to orient toward
the object, approaching the object by controlling the second
and the third joint, etc.).

In the work described in this paper, we do not focus on
the vision system. Indeed, we assume that a pre-existing vi-
sion system can provide to the evolved controller the offset
between the target point and the endpoint of the arm. More-
over, rather than on an standard industrial type robotic arm
with three DOFs, we study the case of a realistic anthro-
pomorphic arm with four DOFs. This is quite a different
system in which each target point can be reached through
an infinite number of postures and in which the relation be-
tween the joint reference system and the Cartesian reference
system are much more complex and indirect.

Finally, rather than relying on an incremental approach in
which elementary components of the required behaviour are
identified by the experimenter, we select individuals only
on the basis of their ability to reach the desired target point
by letting them free to develop their own strategy to solve
the problem.

4. Experimental set-up

The aim of this study is to develop the control system for
an anthropomorphic robotic arm through an evolutionary
robotic technique (Nolfi and Floreano, 2000). The arm and
the arm/environmental interaction have been simulated us-
ing ODE (Open Dynamics Engine www.ode.org), a library
for accurately simulating rigid body dynamics and colli-
sions.

The control system consists of a simple neural network
that controls directly the direction and the intensity of the
forces that are applied to the motorized joints. Neural con-
trollers are selected for their ability to reach the desired tar-
get positions and are left free to determine the way in which
the problem is solved (i.e. the trajectory and the posture of
the arm).
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Figure 1: The four DOF of the simulated robotic arm. The
two pictures on the top part of the figure indicate the abduc-
tion/adduction, extension/flexion of the shoulder joint, respectively
from left to right. The bottom figure indicates the rotation of shoul-
der and the extension/flexion DOF of the elbow. The arrows indi-
cates the frontal direction of robot.

The simulated robotic arm
The simulated robot consists of cylindrical segments artic-
ulated by revolute joints, as illustrated in Figure 1. More
specifically, the arm consists of two segments (the arm and
the forearm) that are attached to the previous segments (the
shoulder and the arm) through two joints (the shoulder and
the elbow joints). The arm and the forearm have a length
of 100cm and 80cm, a diameter of 8cm and 7cm, and a
weight of 13kg and 8kg respectively. The shoulder has three
DOF that allow abduction/adduction of [−45o,+45o], exten-
sion/flexion of [−150o,+45o] and rotation of [−90o,+90o].
The elbow has one DOF that allow extension/flexion of
[−126o,+0o]. Since the robot is only asked to reach a given
target position with the endpoint of its arm, we did not mod-
elled the wrist and the wrist joints. Therefore the arm has
four motorized joints and four DOF (Figure 1). The acceler-
ation of gravity has been set to 9.8m/s2. The robot sensory
system includes a simulated vision system that detect the an-
gle and the distance between endpoint of arm (hand) and the
target point.

The neural controller
The neural controller consists of a feedforward neural net-
work with 3 sensory neurons directly connected to 4 motor
neurons. The four motor neurons are updated on the basis of
a standard logistic function. The activation of the sensory
and motor neurons is updated every 0.015sec. The three
sensory neurons encode the distance, along the three axes,
between the endpoint of the arm and the target point normal-
ized in the range [−1,+1] and up to a maximum distance of
80cm. The four motor neurons, that are updated on the basis
of a standard logistic function, encode the angular velocity
of the four corresponding motorized joints. The activation

of the output neurons is normalized in the [−890,+890]rpm
range. The power of motors is set to 326W .

The evolutionary algorithm

The connection weights of the neural controller have been
evolved (Nolfi and Floreano, 2000). The genotype of evolv-
ing individuals encodes the connections weights of the neu-
ral controller (each connection weights is encoded with 16
bits and normalized in the range [−10,10]). Population size
is 100. The 20 best individuals of each generation were al-
lowed to reproduce by generating 5 copies with 1.5% of their
bits replaced with a new randomly selected value (reproduc-
tion is asexual). The evolutionary process lasted 1000 gen-
erations. The experiment was replicated 10 times starting
from different, randomly generated, genotypes.

Each individual of the population was tested for 16 tri-
als, with each trial consisting of 300 steps corresponding to
4.5sec. At the beginning of each trial the arm is set in a
random position (i.e. the area of possible angles in the joint-
space is divided in 16 non-overlapping sub-areas; for each
trials a random joint configuration is picked up from one
of that sub-areas) and the target is positioned in front of the
robot Figure 1 (at a distance 1m and 85cm from ”head” along
the horizontal and vertical planes, respectively). Evolving
robots are selected on the basis of their capacity to reach the
target point as fast as possible and stay on it. In details, the
fitness function selects robots that minimize the cumulative
sums over 300 steps of the follow function:

dist(x,r) =
{

100 if x < r
100 · e(−0.5∗(x−r)) if x ≥ r

(1)

where x is the euclidean distance between endeffector of
the arm and the target point, and r is a threshold (initially
set to 10cm and progressively reduced of 10% during the
evolutionary process, each time the average fitness of the
individuals overcome 78 units).

5. Results
By running the experiments we observed that, in all replica-
tions, evolved agents display an ability to reach the target
independently from their initial posture and to produce
rather accurate reaching behaviour.

copy of publication bounded to PhD Thesis of Gianluca Massera - ©2006 MIT Press. Reprinted, with
permission, from Massera G., Cangelosi A., and Nolfi S., Developing a reaching behaviour in a simulated
anthropomorphic robotic arm through an evolutionary technique, Artificial Life X: Proceeding of the Tenth
International Conference on the simulation and synthesis of living systems edited by Rocha L.M., et. al,
2006

189



1 2 3 4 5 6 7 8 9 10

0
20

40
60

80

1 2 3 4 5 6 7 8 9 10

0.
1

0.
5

2.
0

10
.0

Figure 2: Performance on reaching a fixed target; Top: Percent-
age of trials in which the distance between the endpoint of the arm
and the target is below 1cm, at the end of the trial. Bottom: Aver-
age distance between the endpoint of the arm and the target at the
end of trials. Each column represents the performance obtained by
testing the best evolved individual of each replication for 100 tri-
als. Bold lines, grey hystograms and bars indicate average perfor-
mance, variance, and mininum and maximum values, respectively
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Figure 3: Performance on reaching a random positioned target;
Top: Percentage of trials in which the distance between the end-
point of the arm and the target is below 1cm, at the end of the trial.
Bottom: Average distance between the endpoint of the arm and
the target at the end of trials. Columns, hystograms, bars have the
same meanings of Figure 2.

Figure 2 shows, for each replication, the percentage of
successful reaching behaviour and the average distance be-
tween the endpoint of the arm and the target, at the end of
each trial. Reaching behaviour are considered successful
when the distance between the target and the endpoint of
the arm is less than 1cm.

Generalization
The evolved ability also generalize to different positions of
the target and to moving targets. Figure 3 shows the per-
formance of evolved robots tested with target placed in ran-
domly selected locations (within a distance of 200cm with
respect to the fixed location of the target used during the
evolutionary process). As shown in the Figure performance
significantly vary in different replications. In the case of
the best replication, however, performance are only slightly
worse with respect to the normal condition (see Figure 2).

Figure 4 shows the results obtained by testing evolved in-
dividuals with 125 targets points evenly distributed in front
of the robot on a 5×5×5 grid (for space reason we only re-
port the data for two typical evolved individuals). For each
target point individuals have been tested for 5 trials starting
from differently, randomly assigned, initial positions. As
can be seen performance qualitatively vary in different indi-
viduals.

Indeed, the individual represented in the top graph shows
slightly better performance in the central and distant areas
than in the near area. The individual represented on the bot-
tom graph, instead, shows close to optimal performance in
the left area and significantly worse performance in the right
area.

This qualitatively different performance can be explained
by considering that the four DOF are strongly interdepen-
dent. This clearly indicates that strategies that treat each
joint as an independent entity (that should be moved so to
reduce the distance with respect to the target independently
from the current position of the other joints) are insufficient.
Evolving robots should select control strategies that mini-
mize the problems resulting from the high interdependence
between the DOF.

Figure 5 shows the behaviour produced by one of the
best evolved individual that try to reach a target that moves
by following a circular and a eight-shaped trajectory. Also
in this case, although evolving robots were selected for the
ability to reach a fixed target, the robot generalizes their
ability to moving targets quite well (Figure 5).
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Figure 4: Performance obtained by testing with 125 targets points
evenly distributed in front of robot on a 5×5×5 grid area. The top
and bottom graphs report the result obtained by testing two typical
evolved individuals. The filled area of each bullet indicates the
average distance between the target area and the endpoint of the
arm in the following intervals: < 1cm , [1,10]cm , [10,50]cm

, > 50 . The two axis indicate the position of the target points
along the vertical and horizontal dimensions in meters.
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Figure 5: Top: trajectory produced by the endpoint of the arm
and by a moving target (solid and dotted lines, respectively). Re-
sults obtained in two tests in which the target move by displaying
a circular and an eight-shape trajectory (left and right picture, re-
spectively). The vertical and horizontal axis indicate the positions
of the target and of the end-point of the arm in meters. Bottom:
average distance between the target point and the end-point of the
arm during the tests for target moving at different speed (ranging
from 0.65 to 2.0m/s).

Finally, by testing evolved individuals in a control condi-
tion in which the update of the sensory neurons is delayed,
we observed that performance decreases gracefully with de-
lays from 60 to 150ms (see Figure 6).

Surprisingly, performance increases with a delay of 30ms
and remains almost constant with a delay of 15ms. By
replicating the evolutionary process in a condition in which
the update of the sensory neurons is delayed of 105ms,
we observed that obtained performance are very similar to
those obtained in the first evolutionary experiment without
delay. In fact, the percentage of trials in which the distance
between the endpoint of the arm and the target is below
1cm is 91.2% and the average distance between the target
at the endpoint of the arm is 1.34cm. Without sensory
delay these data are 92.2% and 1.31cm, respectively (see
Figure 2). Also in the condition in which the update of the
sensory neurons is delayed, evolved robots generalize their
ability to target located in varying positions (within limits).
In this test condition, the average number of successful
reaching behaviour and the average distance between the
endpoint of the arm and the target are 62.7% and 6.56cm,
respectively. Performance without sensory delay are 64.1%
and 9.81cm, respectively (see Figure 3). All these data refer
to the average performance of the best individuals of the 10
replications of the experiment.
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Figure 6: Performances obtained by testing robots evolved in a
normal condition in a test condition in which the update of the sen-
sory neurons is delayed. Top: Percentage of trials in which the
distance between the endpoint of the arm and the target is below
1cm, at the end of the trial. Bottom: Average distance between the
endpoint of the arm and the target at the end of trials. Columns and
bars have the same meanings of Figure 2. The x axis indicate the
sensory delay (in multiples of 15ms)
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Analyzing evolved trajectories
To analyze how much the trajectories produced by evolved
individuals approximate hand-made trajetories produced by
moving the joints toward the values corresponding to the
final postures (produced by evolved individuals) we tested
evolved robots for 16 trials starting from randomly set ini-
tial position (i.e. arm postures). For each trial we:

1. allowed the arm to move on the basis of the evolved neural
controller. During this first phase, we recorded the initial
and the final posture and the vector of positions of the
endpoint of the arm during motion;

2. we placed the arm in the same initial posture of the previ-
ous phase and we manually set the desired position of the
joints on the basis of the final posture produced in the pre-
vious phase. The maximum velocity was sets to 890rpm,
i.e. the same value used for controlling the arm during
the first phase. During this second phase, we recorded
the vector of positions of the endpoint of the arm during
motion;

3. we measured the average difference between the positions
produced during the first and the second phase in each
time step.

The fact that differences are rather small (Figure 7) in-
dicates that the trajectories produced by evolved robots are
quantitatively similar to those that can be obtained by mini-
mizing the movements of the joints.

1 2 3 4 5 6 7 8 9 10

0
40

80
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Figure 7: Average distance in cm between the trajectories pro-
duced by an evolved neural controller and the trajectories produced
by manually setting the desired position of the joints on the ba-
sis of the final postures produced by the evolved neural controller.
Each column indicates the result obtained for the best individual
of a corresponding replication of the experiment. Bold line, grey
boxes, and dotted lines indicate the average the variance, and the
minimum and maximum values, respectively.

6. Discussion
The problem of controlling a robotic arm is often ap-
proached by assuming that the robot should posses, or
should acquire through learning, an internal model to: (a)
predict how the arm will move and the sensations that will
arise, given a specific motor command (direct mapping), and
(b) transform a desired sensory consequence into the motor
command that would achieve it (inverse mapping) - for a re-
view see Torras (2002).

We do not deny that primates rely on internal models of
this form to control their motor behaviour. However, this
does not necessarily implies that elementary movements are
learned on the basis on a detailed description of the sensory-
motor effects of any given motor command and of a detailed
specification of the desired sensory states. Direct and in-
verse mapping might operate at a higher level of organiza-
tion, for example might play a role in the determination of
the specific elementary behaviour to be triggered in a spe-
cific circumstance.

Assuming that natural organisms act on the basis of a
detailed direct and inverse mapping at the level of micro-
actions (i.e. at the level of the elements that constitute el-
ementary behaviours) is implausible for at least two rea-
sons. The first reason is that sensors provide only incom-
plete and noisy information about the external environment
and moreover, muscles have uncertain effects. The former
aspect makes the task of producing a detailed direct map-
ping impossible, given that this would require a detailed de-
scription of the actual state of the environment. The latter
aspect makes the task of producing an accurate inverse map-
ping impossible given that the sensory-motor effects of ac-
tions cannot be fully predicted. The second reason is that the
environment might have its own dynamic and typically this
dynamic can be predicted only to a certain extent. For these
reasons, the role of the internal models is probably limited
to the specification of macro-actions or simple behaviours,
rather than to micro-actions that indicate the state of the ac-
tuators and the predicted sensory state in any given instant.

This leaves open the question of how simple elementary
behaviour might be learned, i.e. how individuals might learn
to produce the right micro-actions that lead to a desired el-
ementary behaviour. One possible hypothesis is that ele-
mentary behaviours (e.g. reaching a certain class of target
points in a certain class of environmental conditions) are
produced through simple control mechanisms that exploit
the emergent result of fine grained interactions between the
control system of the organism, its body and the environ-
ment. From this point of view, simple behaviours might be
described more effectively through dynamical system meth-
ods that identify limit cycle attractors and the effects of pa-
rameters variation on the agent/environment dynamics (Ster-
nad and Schaal, 1999).

In this paper we demonstrated how effective reaching be-
haviours can be developed through a training procedure in
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which variations, in the parameters of the control system, are
retained or discarded on the basis of the global effects that
they produce on the dynamics arising from the interaction
between the control system, the robot’s body and the envi-
ronment (Nolfi and Floreano, 2000). Moreover, our results
indicate that the possibility to discover and retain characters
that lead to useful emergent properties (through a process
bases on random variation and selection), allow to find solu-
tion that are extremely parsimonious from the point of view
of the control system.

In future work we plan to: (a) introduce costs in the fitness
function which are analogous to well known optimization
principles like minimum variance or minimum jerk (Jordan
and Wolpert, 1999) by eventually providing the robots with
more complex neural controllers, (b) combine the reach-
ing abilities described in this paper with the grasping abil-
ity based on tactile information described in Bianco and
Nolfi (2004) and (c) extend this model into cognitive robotic
agents to investigate the relationship between motor and
other linguistic and cognitive capabilities (Marocco et al.,
2003; Cangelosi et al., 2005).

Indeed, we believe that the main reason that explain why
we obtained such robust and effective results on the basis of
extremely simple neural controllers resides in the methodol-
ogy that we used in which variation in the free parameters of
the control system (that regulate the interaction between the
agent and the environment at the micro-level) are retained or
discarded on the basis of their affects at the macro-level (i.e.
the level of behaviour). This methodology, in fact, allow
the discovery and the retention of useful properties emerg-
ing from the interaction between the robots’ controller, its
body, and the environment (Nolfi, in press).
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Evolution of prehension ability in an anthropomorphic
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In this paper, we show how a simulated anthropomorphic robotic arm controlled by an artificial neural network can develop effective
reaching and grasping behaviour through a trial and error process in which the free parameters encode the control rules which regulate the
fine-grained interaction between the robot and the environment and variations of the free parameters are retained or discarded on the basis
of their effects at the level of the global behaviour exhibited by the robot situated in the environment. The obtained results demonstrate how
the proposed methodology allows the robot to produce effective behaviours thanks to its ability to exploit the morphological properties
of the robot’s body (i.e. its anthropomorphic shape, the elastic properties of its muscle-like actuators and the compliance of its actuated
joints) and the properties which arise from the physical interaction between the robot and the environment mediated by appropriate
control rules.

Keywords: robotic arm, reaching and grasping, adaptation, evolutionary robotics

INTRODUCTION
The control of arm and hand movements in human and nonhuman
primates is a fundamental research topic in cognitive sciences, neuro-
sciences and robotics. Within arm and hand control, reaching and grasping
behaviours represent key abilities as they constitute a prerequisite for
complex object manipulation and use. In cognitive sciences, experimen-
tal and modelling studies have demonstrated the strict interdependence
between action control and other cognitive functions such as language
(Cangelosi et al., 2005; Pulvermuller, 2005). For example, some theories
of language evolution have focused on the relationship between hand use,
tool making and language evolution (Corballis, 2003). In neuroscience,
numerous studies have demonstrated the fundamental role of the mirror
neuron systems for motor control and in general for cognitive process-
ing (Gallese and Lakoff, 2005; Rizzolatti and Arbib, 1998). In robotics, the
motor control of arm and hand is a paradigmatic example of the difficulties
that arise in the reverse engineering problem and the use of bio-inspired
techniques in intelligent systems design (Schaal, 2002).

Despite the importance of the topic, the large body of available
behavioural and neuroscientific data, and the vast number of studies
done, the issues of how primates and humans learn to display reaching
and grasping behaviour still remains highly controversial (Schaal, 2002;
Shadmehr, 2002). Moreover, whilst many of the aspects that make these
problems difficult have been identified, experimental research based on
different techniques does not seem to converge towards the identification
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of a general methodology for developing robots able to display effective
reaching and grasping abilities.

In this respect, one of the most controversial contraposition is between
internal models (Kawato, 2002; Wolpert and Flanagan, 2002) and equilib-
rium point approaches (Shadmehr, 2002). The former approach is based
on the assumption that our brain possess an internal model which allow
us to: (a) predict how our limb will move and the sensations which will
arise given the current sensory state and given a certain motor com-
mand which is going to be executed (direct mapping, and (b) transform a
desired sensory state into the corresponding motor command which will
achieve it (inverse mapping). In contrast, the latter approach is based on
the assumption that muscles and associated spinal reflex circuitry confer
to our limbs the ability to passively settle into stable position (i.e. equilib-
rium points) independently from their previous position. According to this
hypothesis, the role of the central nervous system simply consists in the
modification of the current equilibrium point.

In this paper, we will show how a simulated anthropomorphic arm can
develop reaching and grasping skills through an adaptive evolutionary
process (Nolfi and Floreano, 2000a) in which the free parameters regulate
the fine-grained interactions between the robot and the environment and
in which variations of free parameters are retained or discarded on the
basis of their effects on the overall ability of the robot to reach and grasp
objects. The analysis of the obtained results confirms the importance of
dynamics resulting robot/environmental interactions and from the use of
muscle-like actuators. Moreover, the results obtained demonstrate that
effective reaching and grasping skills can be developed without relying
on internal models performing direct and inverse mappings.

We will first review current work on reaching, with a brief discussion
of the main research issues in this field and a review of current literature
on the adaptive design of arm control behaviour in cognitive robots. The
robotic model experimental setup will be described in section Materials
and Methods. Subsequently in section Results we describe the results
obtained. Finally, in Discussion the significance of the results obtained
and our plans for the future.

1
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Research issues in reaching and grasping in primates
and humans
The primate arms consist of three main segments: arm, forearm and hand.
These are attached to previous segments (the shoulder) through three
actuated joints: shoulder, elbow and wrist joints. Roughly speaking, human
arms have seven limited degrees of freedom (DOFs): three in the shoulder,
one at the elbow and three at the wrist (Jones and Lederman, 2006).

Anthropomorphic robotic arms typically consist of three segments con-
nected through motorized joints. Some models use all the seven DOFs
listed above, others may include only part of them. From the point of
view of the control system, reaching consists in producing the appropriate
sequence of motor actions (i.e. setting the appropriate torque force for
each actuated joint) that, given the current state of the arm and given
the current desired target point, will bring the endpoint of the arm in the
current desired target position.

Various issues have been identified in the study of reaching behaviour
in primates and humans. The main research questions related to robotics
research include (i) the role of the redundancy of DOFs; (ii) the nonlinear
relationship between joint movement and hand/target position; (iii) the
role of gravity and inertia in suspended arms; (iv) the effects of speed and
noise in motor control signals. First, we need to consider that when the
number of DOFs is redundant, as in the case of primate arms, there is
an infinite number of trajectories and of final postures for reaching any
given target point. This redundancy potentially allows anthropomorphic
arms to reach a target point by circumventing obstacles or by overcoming
problems due to the limits of the DOFs. However, the redundancy of DOFs
also implies that the space to be searched during learning is rather vast,
making learning very difficult.

The second issue regards the fact that anthropomorphic arms are
highly nonlinear systems. Small variations in some of the joints might have
a huge impact on the end-position of the arm. At the same time, significant
variations of other joints might not have any impact. In addition, due to
the limits on the joints DOFs and due to the interactions between joints,
similar target positions might require rather different trajectories and final
postures. At the same time, rather different target positions might require
similar trajectories and final postures.

Gravity and physics dynamics also have a fundamental role in arm
control. In articulated and suspended structures such as an anthropomor-
phic arm, gravity and inertia play a key role. In primate arms, muscles
and associated spinal reflex circuitry appear to confer to the arm the
ability to passively settle into a stable position (i.e. an equilibrium point)
independently from its previous position. If this hypothesis is correct, the
contribution of the central nervous system would simply consists in the
modification of the current equilibrium point (Shadmehr, 2002).

Finally, the fact that sensors and actuators might be slow and noisy
greatly affects the development of robotic arm. For instance, in humans the
visual and proprioceptive information encoding changes of joints positions
is available with a delay up to 100 ms. Motor commands issued by the
central nervous system may take up to 50 ms to initiate muscle contraction
(Mial, 2002). Moreover, sensors might provide only incomplete information
(e.g. the target point might be partially or totally occluded by obstacles
and by the arm).

Evolutionary robotics and neural network models of arm control
Evolutionary robotics consists on the autonomous design of the controller
of robots through the use of evolutionary computation methods such as
genetic algorithms (Nolfi and Floreano, 2000b). Typically in evolutionary
robotic experiments the researcher defines the body of a robot (joints,
limbs, sensors) and the surrounding environment (objects, obstacles,
physics dynamics) with which it will interact. The robot control system
consists of artificial neural network which has to learn to map input sig-
nals into motor responses. Learning is achieved through the evolution
of the neural network parameters (connection weights and/or network
topology).

Artificial neural networks have been typically used in robotics research
to learn the correct mapping between two different spaces (e.g. joints,
actuators, workspace; see (Torras, 2002)) as in inverse dynamics methods
based on internal model approaches. Instead in the evolutionary approach
the neural controller is seen as an internal dynamical system that inter-
acts with the environments via the agent’s body. There are not explicit
mappings between spaces, but this emerges from minute continuous
controller-body–environment interactions. From this point of view, the
agent’s behaviour is an emergent property of those tiny interactions. The
evolutionary process is able to exploit the potential of simple architec-
tures via dynamical interaction and is likely to lead to complex adaptive
behaviour starting from minimal agents.

Notwithstanding the fact that evolution process leads to the selection
and design of neural networks able to accomplish some task, this process
is not a correlation-learning procedure, neither error-miniziming learning,
nor a reinforcement-based procedure. Evolutionary robotics directly deals
with some of the weakness of inverse dynamics approaches. In particular,
it has been shown that an accurate mapping for inverse kinematics using
feed-forward neural networks, due to global effect of weights, is extremely
difficult to achieve (Krose and Van der smagt, 1993; Torras, 2002). In the
evolutionary approach, as the controller is a dynamical system that acts
directly and continuosly onto the dynamic of agent/environment inter-
action, it is possible to exploit simple architecture, such as multi-layer
perceptrons, to learn inverse kinematic-dinamic solutions (Bianco and
Nolfi, 2004; Massera et al., 2006). Furthermore, with the evolutionary
paradigm there is no need to specify exactly the desired output, as in error-
minimizing learning. This allows us to tackle the inverse dynamic problem
for redundant anthropomorphic arm. In fact, in supervised approach for a
given input the controller has to generate a sequence of forces to apply
that are difficult to calculate ‘a-priori’ and to learn by error-minimizing
procedures or reinforcement learning.

There are also situations where the same sensory pattern requires
different responses of the robotic agent such as sensory aliasing (Nolfi
and Marocco, 2001). This is a major issue in neural network correlation-
based learning such as Hebbian rule or self-organizing maps. Instead, in
evolutionary robotics the neural controller does not have to learn to follow
a predefined pathway and can explore different solutions to achieve the
same target points in space.

There have been few previous attempts to use evolutionary techniques
to develop the controller for a robotic arm. Bianco and Nolfi (2004) used
a standard evolutionary robotics approach for the autonomous design of
the neural controller for a simulated robotic arm with a two-fingered hand
and nine DOFs for the ability to grasp objects with different shapes. The
arm was only provided with tactile sensors. Evolved robots displayed an
ability to grasp objects with different shapes, different orientations and
located in varying positions within a limited area. These robots, however,
were not able to deal with larger variations of the objects positions.

Buehrmann and Di Paolo (2004) evolved the control system for a sim-
ulated robotic arm with three DOFs for the ability to reach a fixed object
placed on a plane and to track moving objects. The arm was provided with
two pan-tilt cameras consisting of a two-dimensional array of laser range
sensors placed above the robot arm and on the end-point of the robotic
arm. The controller consisted of several separate neural modules. These
receive different sensory information and control different motor joints.
The networks are evolved separately for the ability to produce distinct
elementary behaviours (e.g. change the orientation of the above camera
so to focus on the object, move the first joint that determines the orienta-
tion of the arm so to orient towards the object, approaching the object by
controlling the second and the third joint, etc.).

Marocco et al. (2003) use a 6 DOF arm model to evolve the abil-
ity to touch or avoid objects according to their shape. In addition to the
capability of discriminating objects, the robots are also evolved for their
ability to ‘name’ the object (or the action) with which they are interact-
ing. This permitted the analysis of different social interaction protocols
to investigate social and cognitive factors that support the evolutionary
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Figure 1. The kinematic chain of the arm and of the hand. Cylinders represent rotational DOFs. The axes of cylinders indicate the corresponding axis of
rotation. The links amongst cylinders represents the rigid connections that make up the arm structure.

emergence of shared lexicons. Although this model used a very simplified
arm model and limited object set and location, it provided a first attempt
to use a neurorobotic model to study the link between action and linguistic
representations from an evolutionary perspective.

Finally, in our previous evolutionary robotic model of reaching (Massera
et al., 2006) we developed a realistic anthropomorphic arm with four DOFs.
This is quite a different system from industrial arm robots in which each
target point can be reached through an infinite number of postures and in
which the relation between the joint reference system and the Cartesian
reference system are much more complex and indirect. We successfully
employed a method by which individuals were selected only on the basis
of their ability to reach the desired target point by letting them free to
develop their own strategy to solve the problem. This is in opposition to
incremental approaches in which elementary components of the required
final behaviour are identified by the experimenter and gradually included
in the fitness evolutionary criteria.

MATERIALS AND METHODS
In this section, we describe the simulated robot, the robots actuators and
sensors, the architecture of the neural controller and the adaptive process
used to train the robot to grasp objects of different shapes.

The robot
The robot used in the experiments reported in this paper is a simulated
humanoid robot provided with anthropomorphic robotic arm with 7 actu-
ated DOFs, a robotic hand with 20 actuated DOFs, proprioceptive and
touch sensors distributed within the arm and the hand and a vision system
located in the robot’s head.

The arm (Figure 1A) consists mainly of three elements (the arm, the
forearm and the wrist) connected through articulations displaced into the
shoulder, the arm, the elbow, the forearm and wrist. The shoulder is com-
posed of a sphere with a radius 2.8 cm. The length of arm and forearm
is 23 and 18 cm, respectively. The wrist consists of an ellipsoide with
a radius of 1.45, 1.2 and 1.45 cm along x-, y- and z-axis, respectively.
The joints A, B and C (Figure 1A) provide abduction/adduction, exten-
sion/flexion and supination/pronation of the arm in the range [−140◦,
+60◦], [−90◦, +90◦] and [−60◦, +90◦], respectively. These three DOFs
acts like a ball-and-socket joint moving the arm in a way analogous to the
human shoulder joint. The fourth DOF (D) located in the elbow is consti-
tuted by a hinge joint which provides extension/flexion within the [−170◦,
+0◦] range (radius–ulna bones). The fifth DOF (E) twists forearm providing

Table 1. The size (in cm) of the segments forming the hand.

Finger First phalanx Second phalanx Third phalanx

Index 2.40 × 0.80 × 0.80 1.50 × 0.75 × 0.75 1.12 × 0.70 × 0.70
Middle 2.62 × 0.80 × 0.80 1.50 × 0.75 × 0.75 1.12 × 0.70 × 0.70
Ring 2.40 × 0.80 × 0.80 1.50 × 0.75 × 0.75 1.12 × 0.70 × 0.70
Pinky 2.25 × 0.80 × 0.80 1.50 × 0.75 × 0.75 1.12 × 0.70 × 0.70

pronation/supination of the wrist–hand in the range [−90◦, +90◦]. The
sixth and seventh DOFs (F and G) on the wrist provide flexion/extension
and abduction/adduction of the hand within [−30◦, +30◦] and [−90◦,
+90◦] ranges, respectively.

The robotic hand (Figure 1B) is composed of a palm and 14 phalangeal
segments (see Table 1 ) that make up the digits (two for the thumb and
three for each of the other four fingers) connected through 15 joints with
20 DOFs. The palm consists of a box of 4.6 × 1.2 × 4.2 cm3. The thumb
is composed of four connected objects: (i) an ellipsoide with a radiuns
of 1.5 × 0.6 × 0.8 cm3 which is half-sunked into the palm, (ii) a box of
2.40 × 0.80 × 0.90 cm3 (corresponding to the metacarpal bones of the
human thumb), (iii) a box of 1.60 × 0.75 × 0.85 cm3 (corresponding to the
first phalanx) and (iv) a box of 1.12 × 0.75 × 0.80 cm3 (corresponding to
the second phalanx). The other fingers are connected to the palm through
knuckles represented by an ellipsoide of 0.65 × 0.65 × 0.5 cm3 of radius.
The three phalanges composing a finger are boxes jointed serially.

The joints in the hand are grouped in the metacarpophalangeal (MP),
proximal interphalangeal (PIP) and distal interphalangeal (DIP) types. Each
finger has two hinge joints, PIP and DIP (see Figure 1, right), that
extend/flex phalanges within the range [−90◦, +0◦]. The MP group is
composed of two joints that allow both extension/flexion and abduc-
tion/adduction of the first phalanx of each finger. The extension/flexion of
MP is in the range [−90◦, +0] for all fingers but the abduction/adduction
movement range varies for different fingers and corresponds to [−7◦,
+0◦], [−2◦, +2◦], [−2◦, +5◦] and [+0◦, +7◦] for the index, the middle,
the ring and the pinky fingers, respectively. The thumb does not have the
DIP joint, and the MP provides three DOF located in the MP-A and MP-B
joints. The former joint has two DOFs providing supination/pronation and
abduction/adduction of metacarpal part of the thumb in [−120◦, +0◦]
and [−15◦, +90◦] ranges, respectively, which allow a good opposition
of the thumb with the fingers. The MP-B and PIP joints consists of hinge
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Figure 2. An exemplification of how the force exhorted by a muscle. The graph shows how the force exhorted by a muscle varies as a function of the activity
of the corresponding motor neuron and of the elongation of the muscle for a joint in which T max is set to 300 N.

joints that extend/flex the first and second phalanx of thumb in the same
range of PIP and DIP joints of the other four fingers: [−90◦, +0◦].

The actuators
The joints of the arm are actuated by two simulated antagonist muscles
implemented accordingly to the Hill’s muscle model (Sandercock et al.,
2002; Shadmehr and Wise, 2005). More precisely, the total force exe-
rted by a muscle (Figure 2) is the sum of three forces TA(α, x) + TP(x) +
TV(x′) which depend on the activity of the corresponding motor neuron (α)
and on the current elongation of the muscle (x) and which are calculated
on the basis of the following equations:

TA = α

(
−AshTmax(x − RL)2

R2
L

+ Tmax

)

Ash = R2
L

(Lmax − RL)2

TP = Tmax

exp

{
Ksh

x − RL

Lmax − RL

}
− 1

exp {Ksh} − 1
TV = b · ẋ

(1)

where Lmax and RL are the maximum and the resting length of the muscle,
Tmax is the maximum force that could be generated, Ksh is the passive
shape factor, b is the viscosity coefficient. The parameters of the equation
are identical for all 14 muscles controlling the seven DOFs of the arm and
have been set to the following values: Ksh = 3.0, RL = 2.5, Lmax = 3.7,
b = 0.9, Ash = 4.34 with the exception of parameter Tmax which is set
to 3000 N for joint B, to 300 N for joints A, C, D and E, and to 200 N for
joints F and G.

Muscle elongation is simulated on the basis of actual angular position
of each DOF, which is mapped linearly within the allowable angular range
of each DOF. For instance, in the case of elbow where the limits are
[−170◦, +0◦], this range is mapped onto [+1.3, +3.7] for the agonist
muscle and inversely [+3.7, +1.3] for antagonist muscle. Hence, when

elbow is completely extended (angle 0), the agonist muscle is completely
elongated (3.7) and antagonist completely compressed (1.3), and vice
versa when elbow is flexed.

In the case of the hand, the positions of the joints are controlled by a
limited number of variables (i.e. they are interdependent as in the case of
human hands) through a velocity-proportional controller (joint maximum
velocity is set to 0.30 rad/second). More precisely, the force exerted by
the MP, PIP and DIP joints (MP-A, MP-B and PIP in the case of the thumb)
which determine the extension/flexion of the corresponding finger are
controlled by a single variable theta ranging between [−90◦, +0◦]. The
desired position of the three joints is set to theta, theta and (2.0/3.0)*theta,
respectively. In the case of the thumb, the supination/pronation is also
controlled by theta by setting the desired angle to −(2.0/3.0)/theta. The
DOF which determine the abduction/adduction of the first phalanx of each
finger is controlled by a second variable which has been set to the constant
value of 0.0 rad.

The total weight of the arm and of the hand is 520.47 g. The robot
and the robot/environmental interactions have been simulated by using
Newton Game Dynamics (NGD, see: www.newtongamedynamics.com), a
library for accurately simulating rigid body dynamics and collisions.

The sensors
The robot is provided with proprioceptive sensors which encode the current
position of the DOFs of the arm and the hand, tactile sensors distributed
over the hand, and of the vision system located on the robot head.

Seven arm propriosensors encode the current angles of the seven
corresponding DOFs located on the arm and on the wrist normalized in
the range [−1, +1]. Five hand propriosensors encode the current exten-
sion/flexion state of the five corresponding fingers in the range [0, 1] where
0 means fully extended and 1 means fully flexed. The hand propriosensors
report the actual value of the MP-B joint for the thumb and the PIP joints
of fingers. Due to compliance of finger’s joints when the hand hit with an
object and to the fact that the state of the three corresponding DOFs is
summarized in a single variable, the same sensory state might correspond
to a different states of the MP and DIP joints.
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Figure 3. The architecture of the neural controllers. Arrows indicated blocks
of fully connected neurons. Internal and hand actuators neurons are also
provided with a bias.

The six tactile sensors measure whether the five fingers and the part
constituted by the palm and wrist are in physical contact with another
object. More precisely, each sensor encodes the number of contacts occur-
ring in the corresponding body part normalized in the range [0, 1] through
a logistic function with 0.2 as slope coefficient. The three vision sensors
encode the output of a vision system (which has not been simulated) that
computes the relative distance of the object with respect to the hand
up to a distance of 80 cm normalized in the range [−1, +1] over three
orthogonal axes.

The reason behind the choice of this particular sensory system con-
figuration is that to study situations in which the vision and tactile sensory
channels need to be integrated. In isolation, each of the two types of
sensor does not provide enough information to perform the task.

The neural controller
The robot is provided with the neural controllers shown in Figure 3
which include 21 sensory neurons, five internal neurons with recurrent
connections and 16 motor neurons.

The object position sensors, arm and hand propriosensors and tactile
sensors encode the state of the corresponding sensors described above.
The actuators of the arm encode the activity of the 14 motor neurons
controlling the corresponding muscles of the arm. The two actuators of
the hand encode the desired extension/flexion state of the thumb and of
the other four fingers, respectively (i.e. the four fingers are not controlled
independently).

The state of the sensors, the desired state of the actuators and the
internal neurons are updated every 0.010 second. The activity of the
internal and motor neurons is calculated on the basis of a standard
logistic function (with a slope coefficient of 0.5 in the case of the
internal neurons and of 1.0 in the case of the motor neurons). In the
case of the arm actuators and of the internal neurons, the output of
the neuron corresponds to the neurons’ activity. In the case of the
hand actuators and the tactile sensors, instead, the output of the
neurons is also depends from the neurons previous activation. More
precisely, these neurons consist of leaky integrators in which the output
is calculated on the basis of the following equation (Nolfi and Marocco,
2001):

O (t) = δ · Act (t) + (1 − δ) · Act (t − 1) (2)

where Act is the activity of the neuron calculated on the basis of the
logistic function (with slope coefficient 0.2 for tactile sensors and 1.0
for hand actuators) and δ is a time constant parameter ranging between

Figure 4. The 18 initial postures of the arm and of the hand used during
the 18 corresponding trials.

[0, +1] (for alternative ways to implement leaky neurons see, for
example, Beer, 1995).

The main criteria behind the choice of this particular neural network
architecture have been to reduce the number of assumptions to the min-
imum and to reduce the number of free parameter as much as possible.
A systematic analysis of the role of the architecture will be made in future
work. For the moment, the analysis of the results obtained by varying
some of the aspects of the architecture (results not shown) did not lead
to qualitatively different results.

The adaptive process
The free parameters of the neural controller, i.e. the connection weights,
the biases of internal neurons and hand actuators and the time constant
of leaky-integrator neurons, have been adapted through an evolutionary
robotics method (Nolfi and Floreano, 2000a).

The initial population consisted of 100 randomly generated genotypes,
which encode the free parameters of 100 corresponding neural controllers.
Each parameter is encoded with 16 bits. Each genotype contains 6096
bits corresponding to 381 free parameters: 366 connection weights and
7 biases normalized in the range [−10, +10] and 8 time constant nor-
malized in the range [0.0, 1.0]. The 20 best genotypes of each generation
were allowed to reproduce by generating five copies each. Four out of
the five copies are subjected to mutations and one copy is left intact.
During mutation each bit of the genotype has a 1.5% probability to be
replaced with a new randomly selected value. The evolutionary process
is continued for 400 generations (i.e. the process of testing, selecting and
reproducing robots is iterated 400 times). The experiment was replicated
10 times.

The robot is adapted for the ability to grasp spherical and cylindrical
objects placed on a table located in front of the robot. The objects can
move freely by eventually falling off the table (Figure 1A). During the
adaptive process, each genotype is translated into a corresponding neural
controller, embodied in the simulated robot and tested for 18 trials. Each
trial lasts 4 second corresponding to 400 steps. At the beginning of each
trial the arm is set in the ith of the 18 corresponding predefined postures
shown in Figure 4. The target object is placed in a fixed position in the
central portion of the table. Spherical objects have a radius of 2.5 cm and
a weight of 32.72 g, cylindrical objects have a radius of 2.0 cm, a height
of 6.0 cm and a weight of 37.70 g.

Evolving robots are evaluated on the basis of the following two compo-
nents’ fitness function which reward reaching and grasping behaviours,
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respectively

1
1803600

t=1∑

18

s=200∑

400

(
1

1 + 0.25 · dist
+ 500 · grasp

)
(3)

where dist encodes the distance between the barycentre of the hand and
the object, grasp encode whether an object has been successfully grasped
(i.e. grasp is 1 when the target object is elevated with respect to the table
and is in physical contact with the robot hand and is 0 otherwise), t is the
current trial and s is the current time step. To allow the robot to reach
and grasp the object, the fitness is calculated only in the second-half of
each trial (i.e. from time step 200 to time step 400). The constant at the
beginning of the function, which corresponds to the maximum fitness that
can be gathered by grasping each object during the first phase of each
trial and by holding the object above the plane for the rest of the trial, is
used to normalize the fitness value in the range [0, 1].

RESULTS
By analysing the behaviour of the evolved robots throughout generations,
we observed that in 8 out of 10 replications of the experiment evolving
robots develop an ability to reach and grasp objects which allows them to
display optimal or close to optimal performance (see Figure 5).

Figure 5. The fitness of the best individual throughout generations for 10
replications of the experiment.

By analysing the behaviour of the best evolved individual of one of
the most successful replication, we observed that it successfully grasp
the two types of objects from any of the 18 initial postures described
above. As shown in Figure 6, the behaviour displayed by this individual

Figure 6. Five superimposed snapshots of the behaviour displayed by one of the best evolved robots. (A) The evolved robot grasping a sphere; (B) The
same evolved robot grasping a cylinder.

Figure 7. Performance of the best evolved robots of the three best replications of the experiment.
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Figure 8. Objects used for testing robots’ generalization ability with respect to object shape and size.

can be divided into three phases: (1) an initial phase in which the arm
moves towards the object by first increasing and then decreasing the
movement speed and in which the hand initiates to flex, (2) a second
phase in which the tactile sensors start to be activated, the arm stays
still or almost still and in which the wrist and the fingers flex around the
object, (3) a final phase in which the arm rotates and moves the wrist
so to lift the object from the table and so to reduce the risk that the
object fall down from the hand. A set of video showing the behaviour of
evolved robots in detail can be accessed from the following Web page:
http://laral.istc.cnr.it/esm/arm-grasping/.

By testing evolved robots in different conditions with respect to the
condition in which they have been evolved, we observed that they
display remarkable generalization abilities with respect to the posi-
tion of the object on the table and with respect to the shape of the
object.

Figure 7 shows the average performance of the best evolved robots of
three of the best replications of the experiment observed by systematically
varying the position of the objects on the table. As can be seen, although
different individuals vary with respect to their generalization capabilities,
they all display rather good performance on the central diagonal area
which corresponds to the preferential trajectory followed by the arm in
normal conditions (i.e. when the objects are placed on the central position
of the table). The decrease in performance on the top-right and bottom-left
part of the table can be explained by considering that grasping objects
located in these positions require postures which differ significantly from
those assumed by the robots to grasp objects in the central area of the
table.

Each robot has been tested in 120 different conditions corresponding
to 60 different position of the object on the table and to two types of objects
(spherical and cylindrical objects). For each testing condition, the robot has
been tested for 18 trials corresponding to the 18 different starting position
of the arm. The colours of the rectangles indicate the performance. For
each picture, the left and right areas correspond to the left and right area of
the table with respect to the robot, respectively. The top and bottom areas
correspond to the proximal and distant areas of the table with respect to
the robot, respectively.

By testing evolved robots in environment containing the objects shown
in Figure 8, we also observed that evolved robots display remarkable
generalization abilities with respect to the shape and size of the objects
(see Figure 9 ).

The difference in performance amongst the individual robots of dif-
ferent replications of the experiment are due to the different behavioural

Figure 9. Performances of the evolved robots of the seven best replica-
tions of the experiment observed by testing the robots with the eight
objects shown in Figure 8.

strategies displayed by evolved individuals with particular reference to
the second and third phases of the behaviour in which the robots grasp
and lift the objects (for more information, see the video available from
http://laral.istc.cnr.it/esm/arm-grasping/). For example, the fact that best
individual of replication 1 displays poor performance with objects 2, 4, 6
and 7 with respect to other evolved individuals is due to the fact that it
flexes its fingers very quickly. This type of strategy, in fact, prevents this
robot from the possibility of exploiting the adjustments of the relative posi-
tion of the fingers with respect to the objects which arise spontaneously
in time as a result of the effects of the forces exhorted by the hand, the
collisions between the fingers and the object and the compliance of the
hand The poor performance of the best individuals of replication 7 on
objects 2, 3 and 4 can be explained by considering that the way in which
this individual lifts the objects after the grasping phase tends to produce
collisions with the plane in the case of big objects which might cause the
falling down of the object from the hand. Finally, the good performance
of replication 8 can be explained by the ability of this robot in controlling
the thumb, which is crucial for grasping difficult slippery objects, and by
the fact that this robot produces a limited rotation of the arm and of the
wrist during the lifting phase which minimize the risk of collisions with the
plane after the objects have been grasped.

Overall these results suggest that certain behavioural strategies might
be effective for a large variety of objects and that the limited differences
in terms of shape and size of the objects to be grasped should not neces-
sarily have an impact on the rules that regulate the robot/environmental
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interactions.
Although a systematic analysis which can allow us to identify the fac-

tors that lead to such good generalization ability will be carried out in future
work, preliminary analysis (not shown) suggest that the muscle-like prop-
erties of the actuators of the arm and the compliance of the actuators of the
fingers combined with the adaptation process, which manages to exploit
these properties, play an important role. With respect to the compliance
of the fingers, in particular, it greatly simplifies the problem of adapting
the postures of the fingers to the shape of the object. Regarding the gen-
eralization ability with respect to the position of the object, an important
factor is constituted by the fact that the position of the object extracted by
the vision system is encoded in relation to the position of the hand.

DISCUSSION
In this paper, we showed how effective reaching and grasping behaviour
can be developed through a trial and error process in which the free param-
eters encode the control rules which regulate the fine-grained interaction
between the robot and the environment and variation of the free parame-
ters are retained or discarded on the basis of their effects at the level of the
global behaviour exhibited by an anthropomorphic robotic arm situated in
the environment and provided with muscle-like actuators. The robots are
let free to choose the way in which the problem can be solved during the
adaptation process, since they are rewarded only with respect to their abil-
ity to approach and lift objects irrespectively of the particular trajectory with
which they approach the objects, the posture of the arm and of the hand
that they assume, and the way in which different motor actions produced
by the robot in interaction with the environment are distributed over time.

The experimental setup presented in the paper is significantly more
advanced with respect to previous works based on similar adaptive tech-
niques (Bianco and Nolfi, 2004; Buehrmann and Di Paolo, 2004; Gomez
et al., 2005; Massera et al., 2006) with respect to the morphology of the
robot (which an anthropomorphic robotic arm and hand with 27 DOFs),
with respect to the size of the neural controller and to the dimensionality
of the corresponding search space and with respect to the task which
involved the ability to reach and grasp freely moving objects with different
shapes placed on a table which constraints the movements of the robot.

The obtained results demonstrate how the proposed methodology and
the exploitation of the properties which arise from the physical interaction
between the robot and the environment allow the robot to produce effective
behaviours on the basis of a parsimonious control system. For example,
the effects of the collisions between the fingers of the robotic hand and
the objects being grasped combined with the compliance of the finger’s
joints allow the spontaneous conformation of the robot hand to the shape
of the object which in turn allows the robot to effectively grasp objects with
different shapes and orientations without the need of control mechanisms
able to regulate the movement of the arm and of the hand on the basis of
the characteristics of the objects.

This line of research is also consistent with recent cognitive robotics
approaches such as in the field of developmental robotics (Lungarella
and Metta, 2003). Developmental robotics, also known as epigenetic
robotics, in an interdisciplinary approach to robot design. Developmental
robots are characterized by a prolonged developmental process through
which varied and complex cognitive and perceptual structures emerge
as a result of the interaction of an embodied system with a physical and
social environment. Lungarella and Metta show that although most of the
current developmental robotic investigations have focussed on sensori-
motor control (e.g. reaching) and social interaction (e.g. gaze control),
future cognitive robotics research should go beyond gazing, pointing and
reaching. In order to design truly autonomous behaviour, future robotics
research should integrated motor control with better sensory and motor
apparata, more refined value-based learning mechanisms and means of
exploiting neural and body dynamics.

This neurorobotic approach also has a potential relevance to
computational neuroscience research on motor control (Shadmehr and

Wise, 2005). The current architecture of the robot’s neural controller
has not been constrained on any specific brain region known to be
involved in limb control. Therefore, the current model and simulation
results cannot be used to make any speculation on the relevance to
neuroscience research. However, future extensions of the model might
focus specifically on investigating the role and structure of the neural
network controller and its mapping onto brain regions and circuitries
(e.g. cerebellum, motor areas) known to be involved in prehension
ability (Jones and Lederman, 2006; Kawato, 2002). This would also
make possible the testing of current theories of minimization criteria
such as energy minimum, jerk minimum and stability maximization, for
generating voluntary movements and the comparison between robotic
model results and limb neurophysiology literature (Shadmehr, 2002).
For example, recent evolutionary robotic models on the development
and integration of action and language capabilities have demonstrated
that neural network architectures can be constrained to reflect known
neurophysiological phenomena (Arbib et al., 2000; Cangelosi and Parisi,
2004). For example, Cangelosi and Parisi (2004) used synthetic brain
imaging techniques to demonstrate that the region of the robot’s neural
network that specializes for sensorimotor integration is also involved in
the processing of the names of actions (verbs), whilst the network region
specialized in the representation and categorization of visual information
only is also involved in the processing of the names of objects (nouns).

In future work, we plan to extend the variability of the objects to
be grasped in order to investigate problems which require an ability
to display a variety of qualitatively different approaching and grasping
strategies. Within this future research line, we would like to study
how neurocontrollers, developed through the methodology described in
this paper, can be complemented with additional mechanisms which,
on one hand might favour the development of different behavioural
strategies and, on the other hand might allow the robot to select the
approaching and grasping strategy which is appropriate to the current
robot/environmental circumstances. To achieve this goal, we plan to
implement and to compare different mechanisms such as continuous
time recurrent neural networks including neurons varying at tuneable
time scales (Beer, 2005; Nolfi and Marocco, 2001) and internal models
operating at the level of elementary behaviour rather than at the level
of the fine-grained robot/environmental interactions (i.e. which allow the
robot to select the behavioural strategy which produces a desired effect
by exploiting the ability of forecasting the global effects of the execution
of a given behavioural strategy in a given robot/environmental situation,
see (Tani et al., 2004) and Nishimoto et al., in press).

Moreover, to address the relevance of such a simulation model to
research with physical robotic platform, we are currently involved in a col-
laborative project to test the evolved controllers on the RobotCub physical
robot (Sandini et al., 2004 www.robotcub.org). This will allow us to verify
the accuracy of the simulator and to revise the experiments performed in
simulation so to progressively reduce the gap between the simulated and
the real robot/environmental systems.

SUPPLEMENTAL DATA
Supplemental data for this article including movies of the behaviours dis-
played by evolved robots of different replications of the experiment can be
found at the following address: http://laral.istc.cnr.it/esm/arm-grasping.
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Active categorical perception of object shapes in a
simulated anthropomorphic robotic arm

Elio Tuci, Gianluca Massera, and Stefano Nolfi

Abstract—Active perception refers to a theoretical approach
to the study of perception grounded on the idea that perceiving
is a way of acting, rather than a process whereby the brain
constructs an internal representation of the world. The opera-
tional principles of active perception can be effectively tested by
building robot-based models in which the relationship between
perceptual categories and the body-environment interactions can
be experimentally manipulated. In this paper, we study the
mechanisms of tactile perception in a task in which a neuro-
controlled anthropomorphic robotic arm, equipped with coarse-
grained tactile sensors, is required to perceptually categorise
spherical and ellipsoid objects. We show that best individuals,
synthesised by artificial evolution techniques, develop a close to
optimal ability to discriminate the shape of the objects as well
as an ability to generalise their skill in new circumstances. The
results prove that the agents solve the categorisation taskin an
effective and robust way by self-selecting the required informa-
tion through action and by integrating experienced sensory-motor
states over time.

Index Terms—Categorical perception, evolutionary robotics,
artificial neural networks.

I. I NTRODUCTION

Categorical perception can be considered the ability to di-
vide continuous signals received by sense organs into discrete
categories whose members resemble more one another than
members of other categories. Categorical perception represents
one of the most fundamental cognitive capacities displayed
by natural organisms, and it is an important prerequisite
for the exhibition of several other cognitive skills [see 1].
Not surprisingly, categorical perception has been extensively
studied both in natural sciences such as Psychology, Philoso-
phy, Ethology, Linguistics, and Neuroscience, and in artificial
sciences such as Artificial Intelligence, Neural Networks,and
Robotics [see 2, for a comprehensive review of this research
field]. However, in the large majority of the cases, researchers
have focused their attention on categorisation processes that
are passive and instantaneous. Passive categorisation processes
take place in those experimental setups in which the agents
can not influence the experienced sensory states through their
actions. Instantaneous categorisation processes are those in
which the agents are demanded to categorise the current
experienced sensory state rather than a sequence of sensory
states distributed over a certain time period.

In this paper, instead, we study categorisation processes that
are active and eventually distributed over time [3, 4]. This
task is achieved by exploiting the properties of autonomous
embodied and situated agents. An important consequence of

E. Tuci, G. Massera, and S. Nolfi are with the ISTC-CNR, Via SanMartino
della Battaglia, n. 44, 00185 Rome, Italy, e-mail:{elio.tuci, gianluca.massera,
stefano.nolfi}@istc.cnr.it (see http://laral.istc.cnr.it/elio.tuci/).

being situated in an environment consists in the fact that the
sensory stimuli experienced by an agent are co-determined by
the action performed by the agent itself. That is, the actions
and the behaviour exhibited by the agent later influence the
stimuli it senses, their duration in time, and the sequence with
which they are experienced. This implies that: (i) categorical
perception is strongly influenced by an agent’s action [see
also 5, 6, on this issue]; and (ii) sensory-motor coordination
(i.e., the ability to act in order to sense stimuli or sequence
of stimuli that allow an agent to perform its task) is a
crucial aspect of perception and more generally of situated
intelligence [see 7].

Although the significance of embodiment and situatedness
for the study of the underlying mechanisms of behaviour
and cognition is widely recognised, building artificial systems
that are able to actively perceive and categorise sensory
experiences is a challenging task. This can be explained by
considering that, from the point of view of the designer,
identifying the way in which an agent should interact with
the environment in order to sense the favourable sensory
states is extremely difficult. One promising approach, in this
respect, is constituted by evolutionary methods in which the
agents are left free to determine how they interact with the
environment (i.e., how they behave, in order to solve their
task). With these methods, free parameters (i.e., those that
are modified during the evolutionary process) encode features
that regulate the fine-grained interactions between the agent
and the environment. The evolutionary process consists in
retaining or discarding the free parameters on the basis of
their effects at the level of the overall behaviour exhibited
by the agent [see 8, 9, 10, for a detailed illustration of the
methodological approach employed].

In this paper, we describe an experiment in which evolu-
tionary methods are used to investigate the perceptual skills
of an autonomous agent demanded to actively categorise un-
anchored spherical and ellipsoid objects placed in different
positions and orientations over a planar surface. The agent
is a simulated anthropomorphic robotic arm with 27 actuated
Degrees of Freedom (hereafter, DoFs). The arm is equipped
with coarse-grained tactile sensors and with proprioceptive
sensors encoding the position of the joints of the arm and
of the hand. The task requires the agent to produce different
categorisation outputs for objects with different shapes and
similar categorisation outputs for objects with the same shape.
The aim of this study is to prove that, in spite of the complexity
of the experimental scenario, the evolutionary approach can be
successfully employed to design neural mechanisms to allow
the robotic arm to perform the perceptual categorisation task.
Moreover, we unveil the operational principles of successful
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agents. In particular, we look at (i) how the robot acts in
order to bring fourth the sensory stimuli which provide the
regularities necessary for categorising the objects in spite of
the fact that sensation itself may be extremely ambiguous,
incomplete, and noisy; (ii) the dynamical nature of sensory
flow (i.e., how sensory stimulation varies over time and
the time rate at which significant variations occur); (iii) the
dynamical nature of the categorisation process (i.e., whether
the categorisation process occur over time while the robot
interacts with the environment); (iv) the role of qualitatively
different sensation originated by different sensory channels in
the accomplishment of the categorisation task.

We prove that a further elaboration of evolutionary methods
proposed in related studies can be successfully applied to
problems that are non-trivial and significantly more complex
with respect to the state of the art reviewed in Section II.
In particular, we show that the best evolved robots develop
a close to optimal ability to discriminate the shape of the
objects as well as an ability to generalise their skill in
new circumstances. These results prove that the problem can
be solved in an effective and robust way by self-selecting
the required information through action and by integrating
experienced sensory-motor states over time.

II. STATE OF THE ART

There is a growing body of literature in robotics which is
devoting increasingly more efforts in obtaining discrimination
of material properties (e.g., hardness, texture) and object shape
using touch in artificial arms. Many of these works, like the
one described in [11], draw inspiration from human perceptual
capability to develop highly elaborated touch sensors. In [11],
the authors describe a tendon driven robotic hand covered with
artificial skin made of strain gauges sensors and polyvinyli-
dene films. The strain gauges sensors mimic the functional
properties of Merkel cells in human skin and detect the strain.
Polyvinylidene films mimic the functional properties of the
Meissner corpuscles and detect the velocity of the strain.
The artificial hand, through the execution of squeezing and
tapping procedures, manages to discriminate objects basedon
their hardness. In a similar vein, the research group at the
Lund University has developed three progressively complex
versions of a robotic hand (LUCS Haptic Hand I, II, and
III) designed for haptic perception tasks [12, 13, 14]. The
perceptual capabilities of the three version of LUCS, which
differ in their morphology and in their sensory capabilities,
have been tested during the execution of a grasping procedure
on objects made of different material (e.g., plastic and wood).
The authors showed that the sensory patterns generated in
interactions with the objects are rich enough to be used as
a basis for haptic object categorisation [15]. Other robotics
systems combine visual and tactile perception to carry out
fairly complex object discrimination tasks [see 16, 17, 18].

Generally speaking, we can say that, in spite of the hetero-
geneity in hardware and control design, the research works
mentioned above focus on the characteristics of the tactile
sensory apparatus and/or on the categorisation algorithms. In
these works, the way in which the sensory feedback affects

the movement of the hand is determined by the experimenter
on the basis of her intuition. Moreover, the discrimination
phase follows the exploration phase and it is performed by
elaborating sensory data gathered during manipulation of the
objects (i.e., the data collected during the exploration phase
cannot influence the agents successive behaviour).

The work described in this paper differs significantly from
the above mentioned literature since the way in which the
agent interacts with the environment is not designed by the
experimenter but is adapted in order to facilitate the categori-
sation task and since the agent is left free to shape its motor
behaviour on the basis of previously experienced sensory
states. Rather than studying the performances of particularly
effective tactile sensors or of specific categorisation algo-
rithms, we focus on the development of autonomous actions
for the discrimination of objects shape through coarse-grained
binary tactile sensors and proprioceptive sensors. The issue of
how a robot can actively develop categorisation skills has been
already investigated in few recent research works. In general
terms, these works demonstrate how adapted robots exploit
their action to self-select stimuli which enable and/or simplify
the categorisation process and how this leads to solutions
which are parsimonious and robust [see 19, 20, 21, 22].

Particularly relevant for this study is the work described
in [23]. The authors studied the case of a simulated robotic
“finger” which has been evolved for discriminating the shape
of spherical versus cubic objects (anchored to a fixed point)
of different sizes and orientations. The robotic finger is con-
stituted by an articulated structure made by three segments
connected through motorised joints with six DoFs, six cor-
responding actuators, six proprioceptive sensors encoding the
current position of the joints, and three tactile sensors placed
on the three corresponding segments of the finger. The authors
observed that the adapted robots solve their problem through
simple control rules that makes the robot scan for the object
by moving horizontally from the left to the right side and by
moving slightly up as a result of collisions between the finger
and the object. These simple control rules lead to the exhibition
of two different behaviours. With spherical objects, the robotic
finger fully extends itself on the left side of the object after
following the object surface. With cubic objects, the robotic
finger remains fully bended close to one of the corners of the
cube. These two behaviours corresponds to well differentiated
activations of the proprioceptive sensors. These differences are
used by the finger to distinguish the two types of object. Note
that, although the discriminating cue necessary to categorise
is available in each single sensory pattern experienced after
the exhibition of the appropriate behaviour, this cue results
from the dynamical process arising as a result of several
robot/environmental interactions. In [24], the authors show that
a visually guided robot arm whose neuro-controller is evolved
for reaching and tracking, can exploit its actions to self-select
stimuli which facilitates the accomplishment of spatial and
temporal coordination.

Unlike in the experiments described in [23, 24], sensory-
motor coordination does not always guarantee the perception
of well differentiated sensory states in different contexts cor-
responding to different categories. Under these circumstances,
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the agent can actively categorise their perceptual experiences
by integrating ambiguous sensory information over time. Few
studies have already shown that evolved wheeled robots com-
pensate for unreliable sensory patterns due to coarse sensory
apparatus by acting and re-acting to temporally distributed
sensory experiences, in a way to bring forth the necessary
regularities that allow them to associate a stimulus with its
category [see 25, 26].

The experiment presented in this paper focuses on a non-
trivial task that is significantly more complex to that investi-
gated in previous studies due to the high similarity between
the objects to be discriminated, the difficulty of controlling
a system with many degree of freedom, and the need to
master the effects produced by gravity, inertia, collisions,
etc. As shown in Section VII, the analysis of the strategy
displayed by best evolved robots demonstrates that, also in
this case, sensory-motor coordination plays a crucial role, as
in [23, 24]. Indeed, the best robots manipulate the objects so to
experience the regularities which allow them to appropriately
categorise the shape of the objects. However, sensory-motor
coordination does not seem to guarantee the perception of
fully differentiated sensory states corresponding to different
categories. The problem caused by the lack of clear categorical
evidences is solved through the development of an ability to
integrate ambiguous information over time through a process
of evidences accumulation.

III. T HE ROBOT’ S STRUCTURE

The simulated robot consists of an anthropomorphic robotic
arm with 7 actuated DoFs and a hand with 20 actuated DoFs.
Proprioceptive and tactile sensors are distributed on the arm
and the hand. The robot and the robot/environmental inter-
actions are simulated using Newton Game Dynamics (NGD),
a library for accurately simulating rigid body dynamics and
collisions (more details at www.newtondynamics.com). The
arm consists mainly of three elements: the arm, the fore-
arm, and the wrist. These elements are connected through
articulations displaced into the shoulder (jointJ1 for the
extension/flexion,J2 for the abduction/adduction, andJ3 for
the supination/pronation movements), the elbow (jointJ4 for
the extension/flexion movements), and the wrist (jointsJ5, J6,
J7 for the roll/pitch/yaw movements, see Figure 1a).

The robotic hand is composed of a palm and fourteen pha-
langeal segments that make up the digits (two for the thumb
and three for each of the other four fingers) connected through
15 joints with 20 DoFs (see Figure 1b). There are three differ-
ent types of hand joints: metacarpophalangeal (MP), proximal
interphalangeal (PIP), and distal interphalangeal (DIP).All
of them bring forth the extension/flexion movements of each
finger while only the metacarpophalangeal joints are for the
abduction/adduction movements. The thumb has an extra DoF
in metacarpophalangeal joints which is for the axial rotation.
This rotation makes possible to move the thumb towards the
other fingers [see 27, for a detailed description of the structural
properties of the arm]. The active joints of the robotic arm are
actuated by two simulated antagonist muscles implemented
accordingly to the Hill’s muscle model, as detailed in the next
Section.

(a)

(b)
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Fig. 1: The kinematic chain (a) of the arm, and (b) of the hand.
(c) The architecture of the arm neural controller. In (a) and
(b), cylinders represent rotational DoFs; the axes of cylinders
indicate the corresponding axis of rotation; the links among
cylinders represents the rigid connections that make up the
arm structure. In (c) the circles refer to the artificial neurons.
Continuous line arrows indicate the efferent connections for
the first neuron of each layer. Dashed line arrows indicate the
correspondences between joints and tactile sensors and input
neurons. The labels on the dashed line arrows refer to the
notation used in equation 1a to indicate the readings of the
corresponding sensors.
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IV. T HE ROBOT’ S SENSORS, CONTROLLER, AND

ACTUATORS

The agent controller consists of a continuous time recurrent
non-linear network (CTRNN) with 22 sensory neurons, 8
internal neurons, and 18 motor neurons [see Figure 1c and
also 28]. At each time step, the activation valuesyi of sensory
neuronsi = 1, .., 7 is updated on the basis of the state of
the proprioceptive sensors of the arm and of the wrist which
encode the current angles, linearly scaled in the range[−1, 1],
of the seven corresponding joints located on the arm and on the
wrist (see jointsJ1, J2, J3, J4, J5, J6, andJ7 in Figure 1a).
The activation valuesyi of sensory neuronsi = 8, .., 17 is
updated on the basis of the state of tactile sensors distributed
over the hand. These sensors are located on the palm (see label
T1 in Figure 1b), on the second phalange of the thumb (see
labelT2 in Figure 1b), and on the first phalange (see labelsT4,
T6, T8, T10 in Figure 1b) and the third phalange (see labelsT3,
T5, T7, T9 in Figure 1b) of each finger. These sensors return
1 if the corresponding part of the hand is in contact with
any another body (e.g., the table, the sphere, the ellipsoid, or
other parts of the arm), otherwise 0. The activation valuesyi
of sensory neuronsi = 18, .., 22 is updated on the basis of
the state of the hand proprioceptive sensors which encode the
current extension/flexion of the five corresponding fingers (see
joints J8, J9, J10, J11, andJ12 in Figure 1b). The readings
of the hand proprioceptive sensors are linearly scaled in the
range[0, 1] (with 0 for fully extended and 1 for fully flexed
finger). To take into account the fact that sensors are noisy,
tactile sensors return, with 5% probability, a value different
from the computed one, and 5% uniform noise is added to
proprioceptive sensors.

Internal neurons are fully connected. Additionally, each
internal neuron receives one incoming synapse from each
sensory neuron. Each motor neuron receives one incoming
synapse from each internal neuron. There are no direct con-
nections between sensory and motor neurons. The values of
sensory neurons are updated using equation 1a, the values of
internal neurons with equation 1b, and the values of motor
neurons with equation 1c.

τiẏi =





−yi + gIi; for i=1,..,22 (1a)

−yi +

30∑

j=1

ωjiσ(yj + βj); for i=23,..,30; (1b)

−yi +

30∑

j=23

ωjiσ(yj + βj); for i=31,..,48; (1c)

with σ(x) = (1 + e−x)−1. In these equations, using terms
derived from an analogy with real neurons,yi represents the
cell potential,τi the decay constant,g is a gain factor,Ii the in-
tensity of the perturbation on sensory neuroni, ωji the strength
of the synaptic connection from neuronj to neuroni, βj the
bias term,σ(yj + βj) the firing rate.τi with i = 23, .., 30,
βi with i = 1, .., 48, all the network connection weightsωij ,
andg are genetically specified networks’ parameters.τi with
i = 1, .., 22 and i = 31, .., 48 is equal to the integration time
step∆T = 0.01. There is one single bias for all the sensory
neurons.

The activation valuesyi of motor neurons determine the
state of the simulated muscles of the arm. In particular, the
total force exerted by a muscle is the sum of three forces
TA(σ(yi + βi), x) + TP (x) + TV (ẋ), which are calculated on
the basis of the following equations:

TA=σ(yi + βi)

(
−AshTmax (x−RL)

2

R2
L

+ Tmax

)
(2)

Ash=
R2

L

(Lmax −RL)
2

TP =Tmax

exp
{
Ksh

x−RL

Lmax−RL

}
− 1

exp {Ksh} − 1
TV = b · ẋ

where σ(yi + βi) is the firing rate of output neuronsi =
31, .., 46. x is the current elongation of the muscle;Lmax and
RL are the maximum and the resting length of the muscle;
Tmax is the maximum force that can be generated;Ksh is
the passive shape factor andb is the viscosity coefficient.
The parameters of the equation are identical for all fourteen
muscles controlling the seven DoFs of the arm and have
been set to the following values:Ksh = 3.0, RL = 2.5,
Lmax = 3.7, b = 0.9, Ash = 4.34 with the exception of
parameterTmax which is set to3000N for joint J2, to 300N
for joints J1, J3, J4, andJ5, and to200N for joints J6 and
J7. Muscle elongation is simulated by linearly mapping within
specific angular ranges the current angular position of each
DoF [see 27, for details].

The joints of the hand are actuated by a limited number
of independent variables through a velocity-proportionalcon-
troller. That is, for the extension/flexion, the force exerted by
the MP, PIP, and DIP joints (MP-A, MP-B, and PIP in the
case of the thumb) are controlled by a two step process: first,
θ is set equal to the firing rateσ(yi+βi) (with i = 45 for the
thumb movement, andi = 46 for the other finger movement),
linearly mapped into the range[−90◦, 0◦]; second, the desired
angular positions of the finger joints MP, PIP, DIP are set toθ,
θ, and(2.0/3.0) · θ respectively. For the thumb, its movement
towards the other fingers (i.e., the extra DoF in MP joints)
corresponds to the desired angle of−(2.0/3.0) · θ. The DoFs
that regulate the abduction/adduction movements of the fingers
are not actuated.

The activation valuesyi of output neuronsi = 47, 48 are
used to categorise the shape of the object (i.e., to produce
different output patterns for different object types, see also
Section VI).

V. THE EVOLUTIONARY ALGORITHM

A simple generational genetic algorithm is employed to set
the parameters of the networks [see 29]. The initial population
contains 100 genotypes. Generations following the first one
are produced by a combination of selection with elitism, and
mutation. For each new generation, the 20 highest scoring
individuals (“the elite”) from the previous generation are
retained unchanged. The remainder of the new population
is generated by making 4 mutated copies of each of the 20
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(a) (b)

(c) (d)

Fig. 2: (a) Position A; angle of joints J1, .., J7
are {−50◦,−20◦,−20◦,−100◦,−30◦, 0◦,−10◦}
(b) Position B; angle of joints J1, .., J7 are
{−100◦, 0◦, 10◦,−30◦, 0◦, 0◦,−10◦}; (c) the sphere and
the ellipsoid viewed from above; (d) the sphere and the
ellipsoid viewed from the side. The radius of the sphere is
2.5 cm. The radii of the ellipsoid are 2.5, 3.0 and 2.5 cm. In
(c) the arrows indicate the intervals within which the initial
rotation of the ellipsoid is set.

highest scoring individuals. Each genotype is a vector compris-
ing 420 parameters. Each parameter is encoded with 16 bits.
Initially, a random population of vectors is generated. Mutation
entails that each bit of the genotype can be flipped with a
1.5% probability. Genotype parameters are linearly mapped
to produce network parameters with the following ranges:
biasesβi ∈ [−4,−2], weights ωij ∈ [−6, 6], gain factor
g ∈ [1, 10] for all the sensory neurons; decay constantsτi
with i = 23, .., 30 are exponentially mapped into[10−2,100.3]
with the lower bound corresponding to the integration step-size
used to update the controller and the upper bound, arbitrarily
chosen, corresponds to about half of a trial length (i.e., 2 s).
Cell potentials are set to 0 when the network is initialised
or reset, and circuits are integrated using the forward Euler
method [see 30].

VI. T HE FITNESSFUNCTION

During evolution, each genotype is translated into an arm
controller and evaluated 8 times in position A and 8 times
in position B, for a total ofK = 16 trials (see Figure 2a
and 2b). For each position, the arm experiences 4 times the
ellipsoid and 4 times the sphere. Moreover, the rotation of
the ellipsoid with respect to the z-axis is randomly set in the
range [350◦, 10◦] in the first presentation,[35◦, 55◦] in the
second presentation,[80◦, 100◦] in the third presentation, and
[125◦, 145◦] in the fourth presentation (see also Figure 2c).

At the beginning of each trial, the arm is located in the
corresponding initial position (i.e., A or B), and the stateof
the neural controller is reset. A trial lasts 4 simulated seconds
(T = 400 time step). A trial is terminated earlier in case the
object falls off the table.

In each trial k, an agent is rewarded by an evaluation
function which seeks to assess its ability to recognise and
distinguish the ellipsoid from the sphere. Note that, rather
than imposing a representation scheme in which different
categories are associated witha priori determined state/s of the
categorisation neurons (i.e., neurons 47 and 48), we leave the
robot free to determine how to communicate the result of its
decision. That is, the agents can develop whatever representa-
tion scheme as long as each object category is clearly identified
by a unique state/s of the categorisation neurons. This system
has also the advantage that it scales up to categorisation tasks
with objects of more than two categories, without having to
introduce structural modifications to the agent’s controller.
More precisely, we score agents on the basis of the extent
to which the categorisation outputs produced for objects of
different categories are located in non-overlapping regions of
a two dimensional categorisation spaceC ∈ [0, 1]× [0, 1]. The
categorisation and the evaluation of the agent’s discrimination
capabilities is done in the following way:

• in each trialk, the agent represents the experienced object
(i.e., the sphereS or the ellipsoidE) by associating to it
a rectangleRS

k or RE
k whose vertices are:

the bottom left vertex:

( min
0.95T<t<T

σ(y47(t) + β47), min
0.95T<t<T

σ(y48(t) + β48))

the top right vertex:

( max
0.95T<t<T

σ(y47(t) + β47), max
0.95T<t<T

σ(y48(t) + β48))

• the sphere category, referred to asCS , corresponds to the
minimum bounding box of allRS

k ; the ellipsoid category,
referred to asCE , corresponds to the minimum bounding
box of all RE

k .

The final fitnessFF attributed to an agent is the sum of
two fitness componentsF1 andF2. F1 rewards the robots for
touching the objects, and corresponds to the average distance
over a set of 16 trials between the centre of the palm and the
experienced objects.F2 rewards the robots for developing an
unambiguous category representation scheme on the basis of
the position in a two-dimensional space ofCS andCE . F1

andF2 are computed as follows:

F1 =
1

K

K∑

k=1

(
1− dk

dmax

)
, with K = 16; (3)

F2 =

{
0 if F1 6= 1;

1− area(CS∩CE)
min{area(CS),area(CE)} otherwise;

(4)

with dk the euclidean distance between the object and the
centre of the palm at the end of the trialk; dmax the maximum
distance the centre of the palm can reach from the object when
located on the table.F2 = 1 if CS andCE do not overlap
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Fig. 3: Graph showing the fitness of the best agents at each
generation of the five evolutionary runs that managed to
generate highest score individuals for at least 10 consecutive
generations:run1, run2, run3, run4, run5.

(i.e., if CS ∩ CE = ∅). The fact that, for each individual,
F1 must be1 to be rewarded withF2, constrains evolution to
work on strategies in which the palm is constantly touching the
object. This condition has been introduced because we thought
it represents a pre-requisite for the ability to perceptually
discriminate the shape of the objects. However, alternative
formalisms which encode different evolutionary selectivepres-
sures may work as well.

VII. R ESULTS

Ten evolutionary simulations, each using a different random
initialisation, were run for 500 generations. Figure 3 shows
the fitness of the best agent at each generation for the five
evolutionary runs that managed to generate highest score
individuals for at least 10 consecutive generations. The other
five runs failed to achieve this first objective. A quick glace
at these curves indicates thatrun1 reaches very quickly (in
about 100 generations) a plateau on the highest fitness score
and keeps on generating highest score agents until the end of
evolution.run2 run3, run4, run5 also generate highest score
agents but they need more generations and the solutions seem
to be more sensitive to the effect produced by those parameters
of the task randomly initialised and/or by noise. Although all
the agents with the highest fitness are potentially capable of
accomplishing the task, the effectiveness and the robustness
of their collective strategies have to be further estimatedwith
more severe post-evaluation tests. In the next Section, we
show the results of a series of post-evaluation tests aimed at
estimating the robustness of the best evolved discrimination
strategies chosen fromrun1, run2, run3, run4, andrun5. In
Section VII-B, we show the results of post-evaluation tests
aimed at estimating the role of different sensory channels
for categorisation. Finally, in Section VII-C, we analyse the
dynamics of the best evolved agents categorisation strategy.
It is important to note that, although all the post-evaluation
analyses have been carried out on all the best evolved agents,
for the sake of space, for several tests we include only the
results concerning the performances of one of these agents1

1An exhaustive description of the analyses carried out on allthe best
evolved agents, results of tests not shown in the paper, further simulations
as well as movies of the bests evolved strategies can be foundat http:
//laral.istc.cnr.it/esm/activeperception.

A. Robustness

To verify to what extent the robots are able to discrim-
inate between the two types of object regardless the initial
orientation of the ellipsoid object, we run post-evaluation tests
(referred to as test P) in which we systematically vary the
ellipsoid initial orientation. More precisely in testP , an agent
is demanded to distinguish for 360 times the two objects
placed in position A, and for 360 times placed in position
B. In each position, the agent experiences half of the times
the sphere (i.e., for 180 trials) and half of the times the
ellipsoid (i.e., for 180 trials). Moreover, trial after trial, the
initial orientation of the ellipsoid around the z-axis changes of
1◦, from 0◦ in the first trial to179◦ in the last trial. For each
run, we selected and post-evaluated 10 agents chosen among
those with the highest fitness. It is important to note that these
agents are selected from evolutionary phases in which the run
managed to generate highest score individuals for at least 10
consecutive generations. Table I shows the results of the best
agentAj chosen fromruni, with j, i = 1, ..., 5.

Note that, compared to the evolutionary conditions, in which
the agents are allowed to perceive the ellipsoid only 4 times
with 4 different initial orientations,P is a severe test. The
results unambiguously tell us whether or not the five selected
highest fitness agents are capable of distinguishing and cate-
gorising the ellipsoid from the sphere in a much wider range
of initial orientations of the former object. For each selected
agent, testP is repeated 5 times (i.e.,Pi with i = 1, .., 5),
with each repetition differently seeded to guaranteed random
variations in the noise added to sensors readings.

The performance of the agentAj at testPi is quantitatively
established by considering all the responses given byAj over
3600 trials (i.e., 720 trials per testPi, repeated 5 times, with
i, j = 1, ..., 5). In each post-evaluation trial, the response
of the agent is based on the firing rates of neurons 47 and
48 during the last 20 time steps (i.e.,0.95T < t < T ) of
each trailk. In particular, the smallest and the highest firing
rates recorded by both neurons are used to define the bottom
left and the top right vertices of a rectangle, as illustrated
in Section VI. At the end of each testPi, we have 360
rectangles associated to trials in which the agent experienced
the sphere (i.e., rectanglesRS

k with k = 1, .., 360), and 360
rectangles associated to trials in which the agent experienced
the ellipsoid (i.e., rectanglesRE

k with k = 1, .., 360). At the
end of the five post-evaluation testsPi, we build five pairs of
non-overlapping minimal bounding boxes (i.e.,CS

i andCE
i ),

a pair for each testi, as explained in Section VI. At this
point, we take as a quantitative estimate of the robustness of
an agent categorisation strategy, the highest number ofRS

k and
RE

k rectangles that can be included inCS
i andCE

i respectively,
by fulfilling the condition that none of theCS

i overlaps with
any of theCE

i . Table I shows, for each selected agent and
for each testPi, the number of rectangles (RS

k andRE
k ) for

post-evaluated agent, and for post-evaluation test, that can be
included inCS

i andCE
i by fulfilling the condition that none

of theCS
i overlaps with any of theCE

i . The last row of this
Table tells us that, for agentA1, A3, A4, andA5, the total
number of rectangles that can be included by the minimal
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bounding boxes without breaking the non-overlapping rule is
extremely high, with a percentage of success over 97%. These
four agents are quite good in discriminating and categorising
the sphere and the ellipsoid in a much wider range of initial
orientations of the ellipsoid. AgentA2, whose performance
is slightly worst, is excluded from all further post-evaluation
tests.

The agents with a performance at the first test P above
95% (i.e.,A1, A3, A4, andA5) undergo a further series of
tests P in circumstances in which i) the length of the longest
radius of the ellipsoid progressively increases/decreases (see
Figure 4a); ii) the length of the radius of the sphere pro-
gressively increases/decreases (see Figure 4b); iii) the initial
position of the object and of the hand varies (see Figure 4c).
In these as well as in all the other post-evaluation tests we
describe from now on concerningA1, A3, A4, andA5, a trial
k can: (i) successfully terminate if theRE

k , built as illustrated
above, completely falls within the agent’s two-dimensional
space delimited by the five bounding boxesCE

i built during
the first test P; (ii) unsuccessfully terminate with a sphere
response if theRE

k completely falls within the agent’s two-
dimensional space delimited by the five bounding boxesCS

i

built during the first test P; (iii) unsuccessfully terminate with
a none response, if theRE

k , completely falls outside the agent’s
two-dimensional space delimited by the ten bounding boxes
CS

i ∩ CE
i built during the first test P.

As far as it concerns tests in which the length of the longest
radius of the ellipsoid progressively increases/decreases, we
notice that distortions that further increase the longest ellipsoid

TABLE I: The table shows, for post-evaluated agent (Aj with
j = 1, ..., 5), and for post-evaluation test (Pi with i = 1, .., 5),
the number of rectanglesRE

k and RS
k that can be included

in bounding boxesCE
i and CS

i , respectively, by fulfilling
the condition that none of theCE

i overlaps with any of
the CS

i . The last row indicates the total number of correct
categorisation choices and percentage of success over 3600
evaluation trials. See the text for further details.

A1 A2 A3

RE
k RS

k RE
k RS

k RE
k RS

k

P1 357 360 310 351 340 358
P2 359 360 311 347 342 358
P3 356 360 312 349 343 356
P4 357 360 304 353 341 355
P5 358 360 303 348 349 356

Tot./(%) 3587 / 0.99% 3288 / 0.91% 3498 / 0.97%

A4 A5

RE
k RS

k RE
k RS

k

P1 347 356 355 354
P2 356 358 356 355
P3 348 355 356 354
P4 342 354 354 355
P5 349 355 353 353

Tot./(%) 3520 / 0.98% 3545 / 0.98%

radius up to 1 cm, are rather well tolerated by the agents,
with A1 andA5 that manage to reliably differentiate the two
objects with a success rate higher than 90%. Distortions that
tend to reduce the longest radius of the ellipsoid are clearly
disruptive for all the agents, with an expected 50% success
rate when the ellipsoid is reduced to a sphere. In tests in
which the ellipsoids have a radius progressively shorter that
the radius of the sphere, the performance of all the agents are
quite disrupted (see Figure 4a).

As far as it concerns tests in which the length of the radius
of the sphere progressively increases/decreases, we notice that
these distortions are particularly disruptive for all the agents
except forA5. This agent is not as disrupted as the other
agents in those tests in which the sphere becomes progressively
smaller, and it is very successful in tests in which the radius
of the sphere is at least 7 millimetres longer than the longest
radius of the ellipsoid (see Figure 4b).

Finally, in a further series of post-evaluation tests we esti-
mated the robustness of the best evolved strategies in testsin
which the initial positions of object and of the arm change. To
simplify our analysis, we focused only on those circumstances
in which the movement of the arm respect to the initial
positions experienced during evolution are determined by dis-
placements of only one joint at time (see Figure 4c). Although
the results are quite heterogeneous, there are some features
which are shared by all the agents. First, displacements of joint
J1 for position A are tolerated quite well. Second, wider the
displacement, bigger the performance drop, with the exception
of J4 for agentsA1 A3 A4, in which displacements that tend
to progressively bring the hand/object closer to the body result
in a better performance for both positions. It is important to
note that,A4 is particularly sensitive to disruptions to jointJ1
andJ2 for position B, and jointJ6 for position A.

B. The role of different sensory channels for categorisation

To understand the mechanisms which allow agentsA1, A3,
A4, andA5, to solve their task, we first established the rela-
tive importance of the different types of sensory information
available through arm proprioceptive sensors (i.e.,Ii with
i = 1, ..., 7, see also Figure 1c), tactile sensors (i.e.,Ii with
i = 8, ..., 17, see also Figure 1c), and hand proprioceptive
sensors (i.e.,Ii with i = 18, ..., 22, see also Figure 1c).
This has been accomplished by measuring the performance
displayed by the agents in a series ofsubstitution testsin
which one type of sensory information experienced by each
agent during the interaction with an ellipsoid has been replaced
with the corresponding type of sensory information previously
recorded in trials in which the agent was interacting with a
sphere. In these tests, each agent experiences the ellipsoid
in all the initial rotations (i.e., from0◦ to 179◦) excluding
those for which, given the randomly chosen seed for the
tests, its responses turned out to be wrong in the absence of
any type of substitution (i.e., the rectangleRE

k did not fall
within any of the five bounding boxesCE

i resulted from the
test P described in Section VII-A). For each ellipsoid initial
orientation, eachsubstitution testsis repeated 180 times. The
rational behind these tests is that any performance drop caused

copy of publication bounded to PhD Thesis of Gianluca Massera - ©2010 IEEE. Reprinted, with permis-
sion, from Tuci E., Massera, G. and Nolfi S., Active categorical perception of object shapes in a simulated
anthropomorphic robotic arm, IEEE Transaction on Evolutionary Computation, 2010

211



TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, MONTH YEAR 8

40
50

60
70

80
90

10
0

Radius

S
uc

ce
ss

 (
%

)

1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

A1
A3
A4
A5

(a)

40
50

60
70

80
90

10
0

Radius

S
uc

ce
ss

 (
%

)

1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

A1
A3
A4
A5

(b)

Angle

S
uc

ce
ss

 (
%

)

−30 −20 −10 0 10 20 30−30 −20 −10 0 10 20 30−30 −20 −10 0 10 20 30−30 −20 −10 0 10 20 30

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

J1

J2

J4

J6

J1

J2

J4

J6

J1

J2

J4

J6

J1

J2

J4

J6

A1

A3

A4

A5

(c)

Fig. 4: Graphs showing the percentage of success in post-evaluation tests in which (a) the length of the longest radius ofthe
ellipsoid progressively increases/decreases; (b) the length of the radius of the sphere progressively increases/decreases; (c) the
initial position of the object and of the hand varies. Black is for position A, and grey for position B. See also the text for
further details.

by the replacement of different type of sensory information
provides an indication of the relative importance of that
sensory channel on the categorisation process.

The results of this first series ofsubstitution teststell us that,
for all the agents, the replacement of the sensory information
originated by the arm proprioceptive sensors and by the
hand proprioceptive sensors in position A, only marginally
interfere with their performance. That is, for position A, the
agents undergo a substantial performance drop only due to
replacement of tactile sensation (see Figure 5 black columns

in correspondence of tactile sensors). The clear performance
drop in thesesubstitution testsconcerning tactile sensation
clearly indicates that, for position A, the agents heavily rely
on tactile sensation to distinguish the ellipsoid from the sphere
and to correctly perform the categorisation task.

For position B, the results are slightly more heterogeneous.
For agentA1, the results ofsubstitution testsindicate that
both the replacement of tactile sensations and of the hand
proprioceptive sensor produce about 20% performance drop
(see Figure 5 white columns in correspondence of tactile and
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Fig. 5: Graphs showing, for agentsA1, A3, A4, andA5, the
results ofsubstitution testsconcerning the readings of arm
proprioceptive sensors, tactile sensors, and hand proprioceptive
sensors for position A (see black columns) and for position B
(see grey columns).

hand sensors). For the other agents, tactile sensation keeps
on being extremely important for the correct categorisation of
the objects (see Figure 5 white columns in correspondence
of tactile sensors). However, for agentA4, the replacement
of the arm and of the hand proprioceptive sensor produces a
performance drop of about 40% in the case of the arm and 20%
in the case of the hand sensors (see Figure 5 white columns in
correspondence of arm and hand sensors). Thus, we conclude
that, for agentA1 the categorisation of the ellipsoid in position
B is performed by exploiting information distributed over
two sensory channels, that is tactile and hand sensors. The
information provided by the two sensory channels seems to
be fused together in a way that, for several orientations, the
lack or the unreliability of information from one channel can
be compensated by the availability of reliable informationfrom
the other channel (data not shown). The other agents seem to
strongly rely on tactile sensation, with agentA4 that makes
also use of arm and hand sensation to discriminate the objects.

Given that, tactile sensation is the major source of discrim-
inating cues in order to distinguish spheres from ellipsoids in
position A, for all the selected agents, and in position B for
A3, andA5, we pursue further investigations, to see whether
among the tactile sensors, there are any whose activations play
a predominant role in the categorisation task. We begin by
running substitution testsin which we applied the kind of
replacements described above only to single tactile sensors. It
turned out that the categorisation abilities of the agents are not
hindered by replacements which selectively hit the functioning
of single tactile sensors. The performance of all the agents
remain largely above 90% success rate (data not shown).

Thus, we proceeded by runningsubstitution testsin which
we applied replacements to all the possible combinations of
two elements of the tactile sensors. Although this analysishave
been carried out on all the agents for position A, and on agents
A3, and A5, for position B, in the following we illustrate
in details only the results ofA1 (i.e., the best performing
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Fig. 6: Graphs showing the results of substitution tests con-
cerning the readingsIi with i = 8, .., 17 of all the possible
combinations of two elements of the tactile sensors for position
A. Each square is coloured in shades of grey. The grey scale is
proportional to the percentage of success, with white indicating
combinations in which the agent is 100% successful, and black
combinations in which the agent is 100% unsuccessful.

agent, see Table I) for position A1. The results are shown
in Figure 6, in which, the grey scale of the small squares is
proportional to the percentage of success, with white indicating
combinations in which the agent is 100% successful, and black
combinations in which the agent is 100% unsuccessful. This
substitution testsdid not produce clear cut results. However, by
looking at Figure 6 we can see that there are specific sensors
which, when disrupted in combination with any other sensor,
produce a clear performance drop. In particular, disruptions
applied to the reading of the tactile sensors placed on the third
phalange of the middles finger (i.e.,I12), and in minor terms,
disruption applied to the reading of the tactile sensors placed
on the first phalange of the ring finger (i.e.,I15) induce the
agent to mistake the ellipsoid for the sphere. We conclude
that, agentA1 heavily relies on the patterns of activation
of tactile sensors in which the reading ofI12 and I15 are
particularly important to distinguish the ellipsoid from the
sphere. For what concerns the other agents, the performance
of agentA3 drops in position A when substitutions concern
the reading ofI10 in combination with any other tactile
sensor. In position B, a performance drop is recorded when
substitutions concern the reading ofI8 or I12 in combination
with any other sensor. AgentA4 in position A is particularly
disrupted by substitutions concerning the reading ofI11 or I12
in combination with any other sensor. AgentA5 in position A
is disrupted by substitution concerning the reading ofI12 with
any other sensor, and ofI12 or I17 with any other sensor in
position B. In conclusion, in those circumstances in which we
observed a predominance of tactile sensation to carry out the
categorisation task, the agents tend to rely on combinations
of tactile sensors, with the tactile sensor placed on the third
phalange of the middles finger basically more relevant than
the other sensors for all the agents (data not shown).
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Fig. 7: Graphs showing: (a) the Geometric Separability Index (GSI); (b) theE-representativnessof the tactile sensors patterns
recorded in the last 20 time steps of 180 different trials with the ellipsoid; (c) the percentage of success inpre-substitution
tests(see triangles) andpost-substitution tests(see empty circles); (d) the percentage of success at thewindow-substitution
tests.

C. On the dynamics of the categorisation process

In this section, we focus our attention on the dynamics of
the categorisation process. More specifically, we analyse:(i) to
what extent the sensory stimuli experienced while the agents
interact with the objects provide the regularities required to
categorise the objects; (ii) to what extent the agents succeed
in self-selecting discriminative stimuli (i.e., stimuli that can
be unambiguously associated with either category); (iii) how
long the agents need to interact with the object before being
able to tell whether they are touching a sphere or an ellipsoid;
(iv) whether the categorisation process occurs instantaneously
by exploiting the regularities provided by single unambiguous
sensory patterns or whether it occurs over time by integrating
the regularities provided by several stimuli.

To answer these questions we run qualitative and quantita-
tive tests. The former are just observations of the trajectories of
the categorisation outputs in the two-dimensional categorisa-
tion space{σ(y(t)47+β47), σ(y(t)48+β48)}, in single trials.
The latter are tests that further explore the dynamics of the
categorisation processes by taking advantage of the fact that in
both positions almost all the best evolved agents exploit tactile
sensation to carry out the task. The quantitative tests havebeen
carried out on all the agents for position A, and on agentsA3,
andA5, for position B. In the following, we illustrate in details
only the analysis concerningA1 (i.e., the best performing
agent, see Table I) for position A. However, it turned out
that, successful categorisation strategies are very similar from
a behavioural point of view, and in terms of the mechanisms

exploited to perform the task. Therefore, the reader should
consider the operational description ofA1 representative of
the categorisation strategies ofA3, A4, andA5 in position A,
and ofA3 andA5 in position B1.

The first two tests aim at establishing to what extent the
stimuli experienced byA1 during its interactions with the
objects provide the regularities required to categorise the ob-
jects. We begin our analysis by computing a slightly modified
version of the Geometric Separability Index (hereafter, referred
to asGSI). TheGSI, originally proposed by Thornton [31], is
an estimate of the degree to which tactile sensors readings
associated with the sphere or with the ellipsoid are separated
in sensory space. We built four hundred data sets, one for
each time step with the ellipsoid (i.e.,{ĨEk }180k=1), and four
hundred data sets, one for each time step with the sphere
(i.e., {ĨSk }180k=1). Where, ĨEk is the tactile sensors reading
experienced by the agent while interacting with the ellipsoid
at time step t of trialk; and ĨEi is the tactile sensors reading
experienced by the agent while interacting with the sphere at
time step t of trialk. Recall that, trial after trial, the initial
rotation of the ellipsoid around the z-axis changes of1◦,
from 0◦ in the first trial to179◦ in the last trial. Each trial
is differently seeded to guaranteed random variations in the
noise added to sensors readings. At each time step t, theGSI
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is computed in the following:

GSI(t) =
1

K

K∑

k=1

zk, with K = 180;

zk =





1 ifmEE < mES ;

0 ifmEE > mES ;
u

u+v otherwise;

mEE = min
∀j 6=k

(H(ĨEk , ĨEj ))

mES = min
∀j

(H(ĨEk , ĨSj ))

u = |{ĨEj : H(ĨEk , ĨEj ) = mEE}∀j 6=k|
v = |{ĨSj : H(ĨEk , ĨSj ) = mES}∀j|

(5)

where H(x, y) is the Hamming distance between tactile sensors
readings.|x| means the cardinality of the set x.GSIequal to 1
means that at time stept the closest neighbourhood of eachĨEk
is one or more elements of the setĨEk . GSI equal to 0 means
that at time step t the closest neighbourhood of eachĨEk is one
or more elements from the set̃ISk . As shown in Figure 7a,
for agentA1 position A, theGSI(t) tends to increase from
about 0.5 at time step 1 to about 0.9 at time step 200, and
remains around 0.9 until time step 400. This trend suggests
that during the first 200 time steps, the agent acts in a way to
bring forth those tactile sensors readings which facilitate the
object identification and classification task. In other words, the
behaviour exhibited by the agent allows it to experience two
classes of sensory states which tend to become progressively
more separated in the sensory space. However, the fact that
the GSI does not reach the value of 1.0 indicates that the two
groups of sensory patterns belonging to the two objects are not
fully separated in the sensory space. In other words, some of
the sensory patterns experienced during the interactions with
an ellipsoid are very similar or identical to sensory patterns
experienced during interactions with the sphere and vice versa.

To analyse in more details to what extent the stimuli
experienced by the agent could be associated to the correct
or the wrong category we calculated theE-representativness.
The latter refers to the probability with which a single tactile
sensors pattern is associated to the category ellipsoid. The E-
representativnessis computed on a set of 32.400 trials, given
by repeating 180 times each the 180 trials corresponding to
180 different ellipsoid initial orientations, from0◦ to 179◦.
During these trials, for each single tactile sensors pattern, we
recorded the number of times each pattern appears during
interaction with the ellipsoid (N ) and during interactions with
the sphere (M ). The E-representativnessof a single pattern
is given by ( N

N+M ). It is important to notice that anE-
representativnessof 1.0 or 0.0 corresponds to fully discrimi-
native stimuli that can be unambiguously associated with the
ellipsoid or the sphere category, respectively, while 0.5E-
representativnesscorresponds to fully ambiguous stimuli. The
graph in Figure 7b refers to theE-representativnessof the
last 20 patterns (i.e, patterns recorded from time step 380 to
time step 400) of single successful trials of test P described in
Section VII-A. Each trial refers to a different initial orientation
of the ellipsoid. A quick glance at Figure 7b indicates that

there are trials in which the agent has to deal with tactile
sensors patterns that have very lowE-representativness. That
is, they are very weakly associated with the ellipsoid. Patterns
with very low E-representativnesstend to appear in trials
in which the initial orientation of the ellipsoid is chosen in
the interval75◦, ..., 175◦. These patterns may have at least
two not mutually excluding origins: i) they may come from
the fact that the agent is not able to effectively position the
object in a way to unequivocally say whether is a sphere
or an ellipsoid; ii) they may be determined by the noise
injected into the system. The fact that agentA1 succeeds in
correctly discriminating the category of the objects also during
trials in which it does not experience fully discriminating
stimuli indicates that the problem is solved by integratingover
time the partially conflicting evidences provided by sequences
of stimuli. In fact, if the agent employs a reactive strategy
(i.e., no need of memory structure), it would be deceived
by those sensor patterns, very strongly associated with the
sphere, that appear in interaction with the ellipsoid. Under
this circumstance an agent that employs a reactive strategy
would mistake the ellipsoid for a sphere. Since, in spite of the
deceiving patterns, the agent is 100% successful, it looks like
the agent is employing a discrimination strategy which uses
the dynamic properties of its controller.

Other evidence that supports the integration over time hy-
pothesis come from additional analyses conducted employing
further types ofsubstitution tests. In particular, we substitute,
for a certain time interval, tactile sensors patterns experienced
by A1 in interaction with the ellipsoid with those experienced
in interaction with the sphere. In a first series of tests, referred
to as pre-substitution tests, substitutions have been applied
from the beginning of each trial up to time step t where t
= 1,...,400. In a second series of tests, referred to aspost-
substitution tests, substitutions have been applied from time
step t, where t = 1, ..., 400, to the end of a trial t=400.
Each test has been repeated at intervals of 10 time steps. For
agentA1 position A, the results ofpre-substitution testsand
post-substitution testsare illustrated in Figure 7c. This graph
shows that, regardless of the rotation of the ellipsoid, pre-
substitutions which do not affect the last 100 time steps do
not cause any performance drop. Forpre-substitution teststhat
involve more than 300 time steps the amount of performance
drop is higher for longer substitution periods (see triangles
in Figure 7c). Similarly, the agent does not incur in any
performance drop if post-substitutions affect less than 100 time
steps. Forpost-substitution teststhat affect more than the last
100 time steps the amount of performance drop is higher for
longer substitution periods (see empty circles in Figure 7c).

By looking at the results ofpre-substitution testsandpost-
substitution tests, we suppose that the agent is integrating
sensory states over time for a certain amount of time around
time step 310. In particular, the results shown in Figure 7c
seem to indicate that, for what concerns agentA1 position
A, the interactions between the agent and the objects can
be divided into three temporal phases that are qualitatively
different from the point of view of the categorisation process:
(i) an initial phase whose upper bound can be approximately
fixed at time step 250, in which the categorisation process
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Fig. 8: Graphs showing: (a) trajectories of the decision outputs in the two-dimensional categorisation space (σ(y(t)47 + β47),
σ(y(t)48 + β48)), with (a) t = 50, ..., 400, recorded in a successful trial with the ellipsoid initially orientated at115◦. Big
and small rectangles at 100, 200, 300, and 400 time steps indicate the bounding box of the ellipsoid and sphere category,
respectively; (b) theE-representativnessof the tactile sensory patterns recorded in a successful trial with the ellipsoid initially
orientated at115◦.

begins but in which the categorisation answer produced by
the agent is still reversible; (ii) an intermediate phase whose
upper bound can be approximately fixed at time step 350, in
which very often a categorisation decision is taken on the basis
of all previously experienced evidences; and (iii) a final phase
in which the previous decision (which is now irreversible) is
maintained. The fact that the categorisation decision formed by
A1 during the initial phase is not definitive yet is demonstrated
by the fact that substitutions of the critical sensory stimuli
performed during this phase do not cause any performance
drop (see Figure 7c, triangles). The fact that the intermediate
phase corresponds to a critical period is demonstrated by
the fact thatpre-substitution testsand post-substitution tests
affecting this phase produce a significant performance drop
(see Figure 7c). The fact thatA1 takes an ultimate decision
during the intermediate phase is demonstrated by the fact
that post-substitution testsaffecting the last 80 time steps,
approximately, do not produce any drop in performance (see
Figure 7c, empty circles).

In a further series of tests, we looked at whether there is and
eventually how big it is the hypothesised temporal phase in
which the agent is supposed to integrate tactile sensors states.
To look at this issue, we employ thewindow-substitution tests.
In these tests, substitutions are applied before and after a
temporal window centred around time step 310. The length of
the temporal window with no substitutions can varies from 1
time step (i.e., no substitution at time step 310) to 69 time steps
(i.e., no substitution from time step 276 to 344). As shown
in Figure 7d, wider the window with no substitutions higher
the performance of the agent, with 100% success rate when
no substitutions are applied to a temporal phase of about 50
time steps or longer. Although the graph in Figure 7d does not
exclude the possibility that the agent employs an instantaneous
categorisation process, the graph seems to suggest that the
performance of the agent is in a way correlated to the amount
of empirical evidences it manages to gather over time starting

from about time step 270 until time step 340.

Finally, additional evidence in support of a dynamic cate-
gorisation process based on the integration of tactile sensation
over time come from a qualitative analysis of the trajectories of
the categorisation outputs in the two-dimensional categorisa-
tion space{σ(y(t)47+β47), σ(y(t)48+β48)}, in single trials.
Figure 8a shows the trajectory recorded byA1 in a trial in
which the initial orientation of the ellipsoid was115◦. As we
can see,A1 moves rather smoothly in the categorisation space
by reaching in slightly less than 2 s (200 time steps) the corre-
sponding bounding box. If we now look at Figure 8b, we see
that during the interaction with the ellipsoidA1 experiences:
(i) few stimuli with an high percentage ofE-representativness
(i.e., stimuli that are experienced in interaction with an el-
lipsoid object most of the times); (ii) several stimuli withan
intermediate level ofE-representativness(i.e., stimuli that are
experienced in interaction with the ellipsoid and the sphere
in about the 3/4 and 1/4 of the cases, respectively); and (iii)
few stimuli with a low percentage ofE-representativness(i.e.,
stimuli that are experienced in interaction with a sphere object
most of the times). If we visually compare Figure 8a with
Figure 8b, we notice that the experienced sensory patterns
with different percentage ofE-representativnessappear to
drive the categorisation output in different regions of the
the categorisation space, corresponding to the ellipsoid and
the sphere bounding box, respectively. The final position of
the categorisation output (i.e., the categorisation decision)
therefore is not determined by a single or few selected patterns
but is rather the result of a process extended over time in which
partially conflicting evidence provided by the experienced
tactile sensation is integrated over time. Similar dynamics
have been observed by inspecting all other trials. Given this
evidence, we conclude that the performance of all best evolved
agents in position A, and of agentA3 andA5 in position B,
is the result of a dynamic categorisation process based on the
integration of tactile sensation over time.
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VIII. D ISCUSSION ANDCONCLUSIONS

In this paper, we described an experiment in which a
simulated anthropomorphic robotic arm acquires an abilityto
categorise un-anchored spherical and ellipsoid objects placed
in different positions and orientations over a planar surface.
The agents neural controller has been trained through an
evolutionary process in which the free parameters of the neural
networks are varied randomly and in which variations are
retained or discarded on the basis on their effects on the
overall ability of the robots to carry out their task. This implies
that the robots are left free to determine (i) how to interact
with the external environment (by eventually modifying the
environment itself); (ii) how the experienced sensory stimuli
are used to discriminate the two categories; and (iii) how to
represent in the categorisation space each object category.

The analysis of the obtained results indicates that the agents
are indeed capable of developing an ability to effectively
categorise the shape of the objects despite the high simi-
larities between the two types of objects, the difficulty of
effectively controlling a body with many DoFs, and the need
to master the effects produced by gravity, inertia, collisions
etc. More specifically, the best individuals display an ability
to correctly categorise the objects located in different positions
and orientations already experienced during evolution, aswell
as an ability to generalise their skill to objects positionsand
orientations never experienced during evolution. Moreover, the
agents are robust enough to deal with categorisation tasks
in which the longest radius of the ellipsoid is progressively
increased. Other distortions on the original objects dimensions
result more disruptive. These results prove that the method
proposed can be successfully applied to scenarios which
appear to be more complex than those investigated in previous
works based on similar methodologies.

The analysis of the best evolved agents indicates that one
fundamental skill that allows them to solve the categorisation
problem consists in the ability to interact with the external
environment and to modify the environment itself so to expe-
rience sensory states which are progressively more different
for different categorical contexts. This result represents a
confirmation of the importance of sensory-motor coordination,
and more specifically of the active nature of situated categori-
sation, already highlighted in previous studies [e.g., 20,23].
On the other hand, the fact that sensory-motor coordination
does not allow the agents to experience fully discriminative
stimuli demonstrates how in some cases sensory-motor coor-
dination should be complemented by additional mechanisms.
Such mechanism, in the case of the best evolved individuals,
consists in an ability to integrate the information provided by
sequences of sensory stimuli over time. More specifically, we
brought evidence showing that agentA1 categorise the current
object as soon as it experiences useful regularities and that the
categorisation process is realised during a significant period
of time (i.e., about 50 time steps) in which the agent keeps
using the experienced evidence to confirm and reinforce the
current tentative decision or to change it. Similar strategies
have been observed in the other three best evolved agents (data
not shown1). On this aspect see also [22, 33, 34].

The importance of the ability to integrate the regularities
provided by sequences of stimuli is also confirmed by the
results obtained in a control experiment, replicated 10 times,
in which the agents were provided with reactive neural con-
trollers (i.e., neural networks without recurrent connections,
with simple logistic internal neurons, and in which all other
parameters were kept equal to those described in Section IV).
Indeed the performance displayed by the best evolved individ-
uals in this control experiment were significantly worse than
those observed in the basic experiment in which the agents
were allowed to keep information about previously experi-
enced sensory states (data not shown1). Although we cannot
exclude that different experimental scenarios (e.g., scenarios
involving agents provided with different neural architecture
and/or different physical characteristics of the agents) could
lead to qualitatively different results, the analysis of the results
obtained in this specific scenario overall indicates that the
task does admit pure reactive solutions or alternatively that
such solutions are hard to synthesise through an evolutionary
process. This may also be due to functional constraints which
limit the movements of the robotic arm (e.g., the fact that
the fingers can not be extended/flexed separately, or that there
was no adduction/abduction movement of the fingers), as well
as other implementation details (e.g., the dimensions of the
objects with respect to the hand). This issue will be definitely
investigated in future works.

The analysis of the role played by different sensory channels
indicates that the categorisation process in the best evolved in-
dividuals is primarily based on tactile sensors and secondarily
on hand and arm proprioceptive sensors (with arm proprio-
ceptive sensors playing a role only for agentA4 position B,
see Figure 5). It is interesting to note that at least one of the
best evolved agents (i.e.,A1) does not only display an ability
to exploit all relevant information but also an ability to fuse
information coming from different sensory modalities in order
to maximise the chance to take the appropriate categorisation
decision [see also 32]. More specifically, the ability to fuse the
information provided by the tactile and hand proprioceptive
sensors, for objects located in position B, allows the robotto
correctly categorise the shape of the object in the majorityof
the cases even when one of the two sources of information is
corrupted (see Figure 5).

For the future, we plan to validate the obtained results
by porting the best evolved controller on the I-CUB hu-
manoid robotic platform [see 35]. Note that, the porting may
require only few changes. In particular, while structurally
the simulated arm described in Section III is identical to
the real I-CUB, from the functional point of view, it may
not match the dynamics of the tendon actuators moving
the arm of the real I-CUB. The simulation-reality gap can
be closed by firstly quantitatively estimating the mismatch
between simulation model and real robot and by appropriately
adjusting the system to undo this mismatch. Moreover, we
plan to scale up the experiment to a larger number of object
categories, and to study experimental scenarios in which the
robots are rewarded for the ability to perform a manipulation
task (e.g., grasping different type of objects) that presumably
requires categorisation rather than directly for the ability to
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perceptually categorise the shape of the objects.
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son, and N. Xiong, Eds. Västerás, Sweden: Mälardalen
University, 2005, pp. 81–86.

[13] M. Johnsson and C. Balkenius, “A robot hand with t-
mpsom neural networks in a model of the human haptic
system,” inProceedings of the International Conference
Towards Autonomous Robotic Systems, M. Witkowski,
U. Nehmzow, C. Melhuish, E. Moxey, and A. Ellery, Eds.
Springer Verlag, Berlin, Germany, 2006, pp. 80–87.

[14] ——, “Experiments with proprioception in a self-
organizing system for haptic perception,” inProceedings
of the International Conference Towards Autonomous
Robotic Systems, M. Wilson, F. Labrosse, U. Nehmzow,
C. Melhuish, and M. Witkowski, Eds. Springer Verlag,
Berlin, Germany, 2007, pp. 239–245.

[15] ——, “Neural network models of haptic shape percep-
tion,” Robotics and Autonomous Systems, vol. 55, pp.
720–727, 2007.

[16] P. Dario, C. Laschi, C. Carrozza, E. Guglielmelli, G. Teti,
B. Massa, M. Zecca, D. Taddeucci, and F. Leoni, “An
integrated approach for the design of a grasping and
manipulation system in humanoid robotics,” inProceed-
ings of the 2000 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), vol. 1, 2000, pp.
1–7.

[17] L. Natale and E. Torres-Jara, “A sensive approach to
grasping,” inProceedings of the 6th International Work-
shop on Epigenetic Robotics, F. Kaplan, P. Oudeyer,
A. Revel, P. Gaussier, J. N. L. Berthouze, H. Kozima,
C. Prince, and C. C. Balkenius, Eds., vol. 128. Lund
University Cognitive Studies, Lund, Danemark, 2006, pp.
87–94.

[18] S. Stansfield, “A haptic system for a multifimgered
harnd,” in Proceedings of the IEEE International Con-
ference on Robotics and Automation, 1991, pp. 658–664.

[19] C. Scheier and D. Lambrinos, “Categorization in a real-
world agent using haptic exploration and active percep-
tion,” in Proceedings of the 4th International Conference
on Simulation of Adaptive Behavior (SAB96), P. Maes,
M. Mataric, J. Meyer, J. Pollack, and S. Wilson, Eds.
MIT Press, Cambridge, MA, 1996, pp. 65–74.

[20] C. Scheier, R. Pfeifer, and Y. Kunyioshi, “Embedded neu-
ral networks: exploiting constraints,”Neural Networks,
vol. 11, no. 7-8, pp. 1551–1596, 1998.

[21] S. Nolfi, “Power and limits of reactive agents,”Neuro-
computing, vol. 42, pp. 119–145, 2002.

[22] R. Beer, “The dynamics of active categorical perception
in an evolved model agent,”Adaptive Behavior, vol. 11,
pp. 209–243, 2003.

[23] S. Nolfi and D. Marocco, “Active perception: A sensori-
motor account of object categorisation,” inProc. of the
7th Inernational Conference on Simulation of Adaptive
Behavior (SAB ’02), B. Hallam, D. Floreano, J. Hallam,
G. Hayes, and J.-A. Meyer, Eds. MIT Press, Cambridge,
MA, 2002, pp. 266–271.

[24] T. Buehrmann and E. D. Paolo, “Closing the loop:
Evolving a model-free visually-guided robot arm,” in
Proceedings of the 9th International Conference on the
Simulation and Synthesis of Living Systems, J. Pollack,
M. Bedau, P. Husbands, T. Ikegami, and R. Watson, Eds.
MIT Press, Cambridge, MA, 2004, pp. 63–68.

[25] E. Tuci, V. Trianni, and M. Dorigo, “Feeling the flow
of time through sensory-motor coordination,”Connection
Science, vol. 16, no. 4, pp. 301–324, 2004.

[26] O. Gigliotta and S. Nolfi, “On the coupling between
agent internal and agent/ environmental dynamics: Devel-
opment of spatial representations in evolving autonomous

copy of publication bounded to PhD Thesis of Gianluca Massera - ©2010 IEEE. Reprinted, with permis-
sion, from Tuci E., Massera, G. and Nolfi S., Active categorical perception of object shapes in a simulated
anthropomorphic robotic arm, IEEE Transaction on Evolutionary Computation, 2010

218



TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, MONTH YEAR 15

robots,”Adaptive Behavior, vol. 16, pp. 148–165, 2008.
[27] G. Massera, A. Cangelosi, and S. Nolfi, “Evolution of

prehension ability in an anthropomorphic neurorobotic
arm,” Front. Neurorobot., vol. 1, pp. 1–9, 2007.

[28] R. Beer and J. Gallagher, “Evolving dynamical neu-
ral networks for adaptive behavior,”Adaptive Behavior,
vol. 1, no. 1, pp. 91–122, 1992.

[29] D. Goldberg,Genetic algorithms in search, optimization
and machine learning. Reading, MA: Addison-Wesley,
1989.

[30] S. Strogatz,Nonlinear Dynamics and Chaos. Perseus
Books Publishing, 2000.

[31] C. Thornton, “Separability is a learner’s best friend,” in
Proc. of the4th Neural Computation and Psychology
Workshop: Connectionist Representations, J. Bullinaria,
D. Glasspool, and G. Houghton, Eds. Springer Verlag,
London, UK, 1997, pp. 40–47.

[32] A. Waxman, “Sensor fusion,” inHandbook of brain
theory and neural networks, 2nd ed., M. Arbib, Ed. MIT
Press, Cambridge, MA, 2002, pp. 1014–1016.

[33] J. Townsend and J. Busemeyer, “Dynamic representation
of decision-making,” inMind as motion: Explorations in
the dynamics of cognition, R. Port and T. van Gelder,
Eds. MIT Press, Cambridge, MA, 1995, pp. 101–120.

[34] M. Platt, “Neural correlates of decisions,”Current Opin-
ion in Neurobiology, vol. 12, pp. 141–148, 2002.

[35] G. Sandini, G. Metta, and D. Vernon, “The icub cognitive
humanoid robot: An open-system research platform for
enactive cognition,” in50 Years of Artificial Intelligence,
M. Lungarella, F. Iida, J. Bongard, and R. Pfeifer, Eds.
Springer Verlag, Berlin, GE, 2007, pp. 358–369.

Elio Tuci received a Laurea (Master) in Experimental Psychology from“La
Sapienza” University, Rome (IT), in 1996, and a PhD in Computer Scinece and
Artificial Intelligence from University of Sussex (UK), in 2004. His research
interests concern the development of real and simulated embodied agents to
look at scientific questions related to the mechanisms and/or the evolutionary
origins of individual and social behaviour.

Gianluca Massera is a PhD student at the Plymouth University working
under the supervision of Prof. A. Cangelosi and Dr S. Nolfi. His research
interests are within the domain of evolutionary robotics, active perception,
and sensory-motor coordination in artificial arms.

Stefano Nolfi is research director at the Institute of Cognitive Sciencesand
Tecnologies of the Italian National Research Council (ISTC-CNR) and head
of the Laboratory of Autonomous Robots and Artificial Life. His research
activities focus on Embodied Cognition, Adaptive Behaviour, Autonomous
Robotics, and Complex Systems. He authored or co-authored more than 130
scientific publications and a book on Evolutionary Roboticspublished by MIT
Press.

copy of publication bounded to PhD Thesis of Gianluca Massera - ©2010 IEEE. Reprinted, with permis-
sion, from Tuci E., Massera, G. and Nolfi S., Active categorical perception of object shapes in a simulated
anthropomorphic robotic arm, IEEE Transaction on Evolutionary Computation, 2010

219



220



1556-603X/10/$26.00©2010IEEE AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE    33

Gianluca Massera, Elio Tuci, Tomassino Ferrauto, and Stefano Nolfi
Institute of Cognitive Sciences and Technologies (ISTC), ITALY

Abstract–In this paper, we show how a simulated 
humanoid robot controlled by an artificial 
neural network can acquire the ability to 
manipulate spherical objects located over 
a table by reaching, grasping, and lift-
ing them. The robot controller is 
developed through an adaptive pro-
cess in which the free parameters 
encode the control rules that 
regulate the fine-grained inter-
action between the agent and 
the environment, and the vari-
ations of these free parameters 
are retained or discarded on 
the basis of their effects at the 
level of the behavior exhibited 
by the agent. The robot devel-
ops the sensory-motor coordi-
nation required to carry out 
the task in two different condi-
tions; that is, with or without 
receiving as input a linguistic 
instruction that specifies the type 
of behavior to be exhibited during 
the current phase. The obtained 
results shown that the linguistic 
instructions facilitate the development 
of the required behavioral skills.

© CORBIS CORP.

I. Introduction

In this paper, we describe a series of experiments in which a simulated iCub robot acquires through 
an adaptive process the ability to reach, grasp, and lift a spherical object. The robot develops the 
sensory-motor coordination required to carry out the whole task in two different conditions; that 
is, with or without receiving as input linguistic instructions that specify the type of behavior that 

should be exhibited during the current phase. These are binary input vectors associated with elementa-
ry behaviors that should be displayed by the robot during the task. The main objective of this study is 
to investigate whether the use of linguistic instructions facilitates the acquisition of a sequence of 
 complex behaviors. The long term goal of this research is to verify whether the acquisition of ele-
mentary skills guided by linguistic instructions provides a scaffolding for more complex behaviors. 
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The first theoretical assumption behind this work is that 
the activity of developing robots displaying complex cognitive 
and behavioral skills should be carried out by taking into 
account the empirical findings in psychology and neurosci-
ence which show that there are close links between the 
mechanisms of action and those of language. As shown in [1], 
[2], [3], [4], [5] action and language develop in parallel, influ-
ence each other, and base themselves on each other. If brought 
into the world of robotics, the co-development of action and 
language skills might enable the transfer of properties of 
action knowledge to linguistic representations, and vice versa, 
thus enabling the synthesis of robots with complex behavioral 
and cognitive skills [6], [7]. 

The second theoretical assumption behind this work is that 
behavioral and cognitive skills in embodied agents are emergent 
dynamical properties which have a multi-level and multi-scale 
organization. Behavioral and cognitive skills arise from a large 
number of fine-grained1 interactions occurring among and 
within the robot body, its control system, and the environment 
[8]. Handcrafting the mechanisms underpinning these skills 
may be a hard task. This is due to the inherent difficulty in fig-
uring out from the point of view of an external observer, the 
detailed characteristics of the agent that, as a result of the inter-
actions between the elementary parts of the agent and of the 
environment, lead to the exibition of the desired behavior. The 
synthesis of robots displaying complex behavioral and cognitive 
skills should instead be obtained through an adaptive  process in 
which the detailed characteristics of the agent are subjected to 
variation and in which variations are retained or discarded on 
the basis of their effects at the level of the overall behavior 
exhibited by the robot situated in the environment [8]. There-
fore, the role of the designer should be limited to the specifica-
tion of the utility function, that determines whether variations 
should be preserved or discarded, and eventually to the design 
of the ecological conditions in which the adaptive process takes 
place [9], [10], [8]. 

II. Background and Literature Review
The control of arm and hand movements in human and non-
human primates and in robots is a fascinating research topic 
actively investigated within several disciplines including psy-
chology, neuroscience, and robotics. However, the task to 
model in detail the mechanisms underlying arm and hand 
movement control in humans and primates and the task of 
building robots able to display human-like arm/hand move-
ments still represents an extremely challenging goal [11]. 
Moreover, despite the progress achieved in robotics through 
the use of traditional control methods [12], the attempt to 
develop robots with the dexterity and robustness of humans is 
still a long term goal. These difficulties can be explained by 
considering the need to take into account the role of several 

aspects including the morphological characteristics of the arm 
and of the hand, the  bio-mechanics of the musculoskeletal sys-
tem, the presence of redundant degrees of freedom and limits 
on the joints, non- linearity (e.g., the fact that small variations 
in some of the joints might have a strong impact on the hand 
position), gravity, inertia, collisions, noise, the need to rely on 
different sensory modalities, visual occlusion, the effects of 
movements on the next experienced sensory states, the need to 
coordinate arm and hand movements, the need to adjust 
actions on the basis of sensory feedback, and the need to han-
dle the effects of the physical interactions between the robot 
and the environment. The attempt to design robots that devel-
op their skills autonomously through an adaptive process per-
mits, at least in principle, to delegate the solutions to some of 
these aspects to the adaptive process itself. 

The research work described in this paper proposes an 
approach that takes into account most of the aspects discussed 
above, although often by introducing severe simplifications. 
More specifically, the morphological characteristics of the 
human arm and of the hand are taken into account by using a 
robot that reproduces approximately the morphological char-
acteristics of a 3.5 year-old in term of size, shape, articulations, 
degrees of freedom and relative limits [13]. Some of the prop-
erties of the musculo-skeletal system have been incorporated 
into the model by using muscle-like actuators controlled by 
antagonistic motor neurons. For the sake of simplicity, the seg-
ments forming the arm, the palm, and the fingers are simulated 
as fully rigid bodies. However, the way in which the fingers are 
controlled, enable a certain level of compliance in the hand. 
The role of gravity, inertia, collision, and noise are taken into 
account by accurately simulating the physic laws of motion and 
the effect of collisions (see Section IV for details of the model). 

One of the main characteristics of the model presented in 
this paper is that the robot controller adjusts its output on the 
basis of the available sensory feedback directly updating the 
forces exerted on the joints (see [14] for related approaches). 
The importance of the sensory feedback loop has been empha-
sized by other works in the literature. For example in [15] the 
authors describe an experiment in which a three-fingered 
robotic arm displays a reliable grasping behavior through a 
series of routines that keep modifying the relative position of 
the hand and of the fingers on the basis of the current sensory 
feedback. The movements tend to optimize a series of proper-
ties such as hand-object alignment, contact surface, finger 
 position symmetry, etc. 

In this work, the characteristics of the human brain that 
processes sensory and proprio-sensory information and control 
the state of the arm/hand actuators are modeled very loosely 
through the use of dynamical recurrent neural networks. The 
architecture of the artificial neural network employed is not 
inspired by the characteristics of the neuroanatomical pathways 
of the human brain. Also, many of the features of neurons and 
synapses are not taken into account (see [16], for an example of 
works that emulate some of the anatomical characteristics of 
the human brain). The use of artificial neural networks as robot 

1The granularity refers to the extent to which the robot-environmental system is bro-
ken into small parts and to the extent to which the dynamics of the system is divided 
into short time periods. The term fine-grained interactions thus refer to interactions 
occurring at a high frequency between small parts.
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controller provides several advantages with respect to alternative 
formalisms, such as robustness, graceful degradation, generaliza-
tion and the possibility to process sensory-motor information 
in a way that is quantitative both in state and time. These char-
acteristics also make neural networks particularly suitable to be 
used with a learning/adaptive process in which a suitable 
 configuration of the free parameters is obtained through a pro-
cess that operates by accumulating small variations. 

Newborn babies display a rough ability to perform reach-
ing, which evolves into effective reaching and grasping skills 
by 4/5 months, into adult-like reaching and grasping strate-
gies by 9 months, up to precision grasping by 12/18 months 
[17], [18], [19]. Concerning the role of sensory modalities, the 
experimental evidence collected on humans indicates that 
young infants rely heavily on somatosensory and tactile infor-
mation to carry out reaching and grasping action and they 
use vision to elicit these behaviors [20]. However, the use of 
visual information (employed to prepare the grasping behav-
ior or to adjust the position of the hand by taking into 
account the shape and the orientation of the object) starts to 
play a role only after 9 months from birth [21]. On the basis 
of this, we provide our robot with proprioceptive and tactile 
sensors and with a vision system that only provides informa-
tion concerning the position of the object but not about its 
shape and its orientation. Moreover, we do not simulate visual 
occlusions on the basis of the assumption that the information 
concerning the position of the object can be inferred in rela-
tively reliable way even when the object is partially or totally 
occluded by the robot’s arm and hand. 

In accordance with the empirical evidence indicating that 
early manipulation skills in infants are acquired through self-
learning mechanisms rather than by imitation learning [16], 
the robot acquires its skills through a trial and error process 
during which random variations of the free parameters of the 
robots’ neural controller (which are initially assigned random-
ly) are retained or discarded on the basis of their effect at the 
level of the overall behavior exhibited by the robot in interac-
tion with the environment. More precisely, the effect of varia-
tions is evaluated using a set of utility functions that 
determine the extent to which the robot manages to reach 
and grasp a target object with its hand, and the extent to 
which the robot succeeds in lifting the object over the table. 
The use of this adaptive  algorithm and utility functions leaves 
the robot free to discover during the adaptive process its own 
strategy to reach the goals set by the experimenter. This in 
turn allows the robot to exploit sensory-motor coordination 
(i.e., the possibility to act in order to later experience useful 
sensory states) as well as the properties arising from the physi-
cal interactions between the robot and the environment. In 
[22] it is shown how this approach allows the robot to distin-
guish objects of different shapes by self-selecting useful stimuli 
through action, and in [23] it is shown how this approach 
allows for the exploiting of properties arising from the physi-
cal interaction between the robot body and the environment 
for the purpose of manipulating the object. 

Finally, in this work we shape the ecological conditions in 
which the robot has to develop its skills by allowing the robot to 
access linguistic instructions that indicate the type of behavior 
that should be currently exhibited by the robot. We do not con-
sider any other form of shaping, such as, for example, the possi-
bility to expose the robot to simplified conditions in some of the 
trials (in which, for example, the object to be grasped is initially 
placed within the robot’s hand) although we assume that other 
forms of shaping might favour the developmental process as well. 

III. Experimental Setup
Our experiments involve a simulated humanoid robot that is 
trained to manipulate a spherical object located in different 
positions over a table in front of the robot by reaching, grasp-
ing, and lifting it. More specifically the robot is made up of an 
anthropomorphic robotic arm with 27 actuated degrees of 
freedom (DOF) on the arm and hand, 6 tactile sensors 
 distributed over the inner part of the fingers and palm, 17 pro-
priosensors encoding the current angular position of the joints 
of the arm and of the hand, a simplified vision system that 
detects the relative position of the object (but not the shape of 
the object) with respect to the hand and 3 sensory neurons 
that encode the category of the elementary  behaviors that the 
robot is required to exhibit (i.e., reaching, grasping, or lifting 
the sphere). The neural controller of the robot is a recurrent 
neural network trained through an evolutionary algorithm for 
the ability: (i) to reach an area located above the object, (ii) to 
wrap the fingers around the object, and (iii) to lift the object 
over the table. The condition in which the linguistic instruc-
tions are provided has been compared with the condition in 
which the linguistic instructions are not provided. For each 
condition, the evolutionary process has been repeated 10 times 
with different random initializations. The robot and the robot/
environmental interactions have been simulated by using 
Newton Game Dynamics (NGD, see: www.newtondynamics.
com), a library for accurately simulating rigid body dynamics 
and collisions. For related approaches, see [23], [22], [24]. 

In section IV, we describe the structure and the actuators of 
the arm and hand. In section V, we describe the architecture of 
the robot controller and the characteristics of the sensors. In 
section VI, we describe the adaptive process that has been used 
to train the robot. In section VII, we describe the results 
obtained, and, finally, in section VIII, we discuss the significance 
of these results and our plans for the future. 

IV. Robot Structure

A.  Arm Structure
The arm consists mainly of three elements (the arm, the fore-
arm, and the wrist) connected through articulations placed 
into the shoulder, the arm, the elbow, the forearm and wrist 
(see Figure 1).2

2Details about arm and hand dimensions are available at the supplementary web page 
http://laral.istc.cnr.it/esm/linguisticExps.
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The joints J1, J2 and J3 provide abduction/adduction, exten-
sion/flexion and supination/pronation of the arm in the range 
32140°, 1100° 4,  32110°, 190° 4 and 32110°, 190° 4, respec -
tively. These three degrees of freedom (DOFs) acts like a ball-
and-socket joint moving the arm in a way analogous to the 
human shoulder joint. J4, located in the elbow, is a hinge 
joint which provides extension/f lexion  within the 
32170°, 10° 4  range. J5 twists forearm providing pronation/
supination of the wrist (and the palm) within 32100°, 1100° 4.  
J6 and J7 provide flexion/extension and ab  duction/adduction of 
the hand within 3240°, 140° 4  and 32100°, 1100° 4  
respectively (see Figure 1). 

B.  Arm Actuators
The arm joints ( J1, c, J7) are actuated by two simulated 
antagonist muscles implemented accordingly to Hill’s muscle 
model [25], [26]. More precisely, the total force exerted by a 

muscle is the sum of three forces TA 1a, x 2 1 TP 1x 2 1 TV 1x
# 2  

which depend on the activity of the corresponding motor neu-
ron (a) on the current elongation of the muscle (x) and on the 
muscle contraction/elongation speed (x

#
) which are calculated 

on the basis of the following equations: 

TA 5 aa2
AshTmax 1x 2 RL 2

2

RL
2 1 Tmaxb

Ash 5
RL

2

1Lmax 2 RL 2
2

 TP 5 Tmax

exp eKsha
x 2 RL

Lmax 2 RL
b f 2 1

exp EKshF 2 1
 (1)

 TV 5 b # x# , 

where Lmax and RL are the maximum and resting lengths of the 
muscle, Tmax is the maximum force that can be generated, Ksh is 
the passive shape factor, and b is the viscosity coefficient. 

The active force TA depends on the activation of muscle 
a and on the current elongation/compression of the muscle. 
When the muscle is completely elongated/compressed, the 
active force is zero regardless of the activation a. At the rest-
ing length RL, the active force reaches its maximum that 
depends on the activation a. The red curves in Figure 2 show 
how the active force TA changes with respect to the elonga-
tion of the muscle for some possible values of a. The passive 
force TP depends only on the current elongation/compres-
sion of the muscle (see the blue curve in Figure 2). TP tends 
to elongate the muscle when it is compressed less than RL 
and tends to compress the muscle when it is elongated above 
RL. TP differs from a linear spring for its exponential trend 
that produces a large opposition to muscle elongation and 
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FIGURE 2 An example of the force exerted by a muscle; the graph 
shows how the force exerted by a muscle varies as a function of the 
activity of the corresponding motor neuron and of the elongation of 
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FIGURE 1 (a) The robot structure and (b) its kinematic chain. Cylinders represent rotational DOFs where its main axis indicates the 
 corresponding axis of rotation; the links amongst cylinders represents the rigid connections that make up the arm structure.
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 little to muscle compression. TV  is the viscosity force. It pro-
duces a force proportional to the velocity of the elongation/
compression of the muscle. 

The parameters of the equation are identical for all 14 mus-
cles controlling the seven DOFs of the arm and have been set 
to the following values: Ksh 5 3.0, RL 5 2.5, Lmax 5 3.7, 
b 5 0.9, Ash 5 4.34 with the exception of parameter Tmax 
which is set to 3000 N  for joint J2, 300 N  for joints J1, J3, J4, 
and J5, and 200 N  for J6 and J7. 

Muscle elongation is computed by linearly mapping the 
angular position of the DOF, on which the muscle acts, into the 
muscle length range. For instance, in the case of the elbow 
where the limits are 32170o, 10o 4,  this range is mapped onto 
311.3, 13.7 4 for the agonist muscle and 313.7, 11.3 4  for the 
antagonist muscle. Hence, when the elbow is completely 
extended (angle 0), the agonist muscle is completely elongated 
(3.7) and the antagonist muscle is completely compressed (1.3), 
and vice versa when the elbow is flexed. 

C.  Hand Structure
The hand is attached to the robotic arm just after the wrist (at 
joint J7 as shown in Figure 1). One of the most important 
features of the hand is its compliance. In details, the compli-
ance has been obtained setting a maximum threshold of 
300 N  to the force exerted by each joint. When an external 
force acting on a joint exceeds this threshold, either the joint 
cannot move further, or the joint moves backward due to the 
external force. 

The robotic hand is composed of a palm and 15 phalanges 
that make up the digits (three for each finger) connected 
through 20 DOFs, J8, c, J27 (see Figure 1). 

Joint J8 allows the opposition of the thumb with the other 
fingers and it varies within the range 32120°, 10° 4, where the 
lower limit corresponds to thumb-pinky opposition. The 
knuckle joints J12, J16, J20 and J24 allow the abduction/adduction 
of the corresponding finger and their ranges are 30°, 115° 4 for 
the index, 322°, 12° 4 for the middle, 3210°, 10° 4 for the ring, 
and 3215°, 10° 4 for the pinky. All others joints are for the 
extension/flexion of phalanges and vary within 3290°, 10° 4  
where the lower limit corresponds to complete flexion of the 
phalanx (i.e., the finger closed). 

D.  Hand Actuators
The joints are not controllable independently of each other, but 
they are grouped. The same grouping principle used for devel-
oping the iCub hand [13] has been used. More precisely, the 
two distal phalanges of the thumb move together as do the two 
distal phalanges of the index and the middle fingers. Also, all 
extension/flexion joints of the ring and pinky fingers are linked 
as are all the joints of abduction/adduction of the fingers. Hence, 
only 9 actuators move all the joints of the hand, one actuator 
for each of the following group of joints: 8 J89, 8 J99, 8 J10, J119, 
8 J139, 8 J14, J159, 8 J179, 8 J18, J199, 8 J12, J16, J20, J249 and 8 J21, J22,
J23, J25, J26, J279. These actuators are simple motors controlled 
by position. 

V. Neural Controller
The architecture of the neural controllers varies slightly depend-
ing on the ecological conditions in which the robot develops its 
skills. In the case of the development supported by linguistic 
instructions, the robot is controlled by a neural network which 
includes 29 sensory neurons, 12 internal neurons with recurrent 
connections and 23 motor neurons. In the case without the 
support of linguistic instructions, the neural network lacks the 
sensory neurons dedicated to the linguistic instructions. Thus, it 
is composed of 26 sensory neurons instead of 29. The sensory 
neurons are divided into four blocks. 

The Arm Sensors encode the current angles of the 7 
DOFs located on the arm and on the wrist normalized in the 
range 30, 1 4. 

The Hand Sensors encode the current angles of hand’s 
joints. However, instead of feeding the network with all joint 
angles of the hand, the following values are used: 

ha 1 J82 , a 1 J9 2 , 
a 1 J10 21 a 1 J11 2

2
, a 1 J13 2 , 

a 1 J14 21 a 1 J15 2

2
, 

a 1 J17 2 , 
a 1 J18 21 a 1 J19 2

2
, a 1 J21 2, 

a 1 J22 21 a 1 J23 2

2
, a 1 J12 2 i,

where a 1 Ji 2  is the angle of the joint Ji normalized in the range 
30, 1 4 with 0 meaning fully extended and 1 fully flexed. This 
way of representing the hand posture mirrors the way in which 
the hand joints are actuated (see section IV-D). 

The Tactile Sensors encode how many contacts occur on 
the hand components. The first tactile neuron corresponds to 
the palm and its activation is set to the number of contacts nor-
malized in the range 30, 1 4 between the palm and another 
body (i.e., an object or other parts of the hand). Normalization 
is performed using a ramp function that saturates to 1 when 
there are more than 20 contacts. The other five tactile neurons 
correspond to the fingers and are activated in the same way. 

The Target Position Sensors can be seen as the output of a 
vision system (which has not been simulated) that computes 
the relative distance in cm of the object with respect to the 
hand over three orthogonal axes. These values are fed into the 
networks as they are without any normalization. 

Arm Muscle Actuators
14 Neurons

Finger Actuators
9 Neurons

12 Hidden Neurons

Arm
Sensors

7 Neurons

Hand
Sensors

10 Neurons

Tactile
Sensors

6 Neurons

Target
Position

Linguistic
Input

FIGURE 3 The architecture of the neural controllers. The arrows 
 indicated blocks of fully connected neurons
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The Linguistic Instruction Sensors is a block of three neu-
rons each of which represents one of the commands reach, grasp 
and lift. Specifically, the vector 850, 0, 09 corresponds to the lin-
guistic instruction “reach the object”, 80, 50, 09 corresponds to 
the linguistic instruction “grasp the object” and 80, 0, 509 corre-
sponds to the linguistic instruction “lift the object”. The way in 
which the state of these sensors is set is determined by equation 
4 explained below. 

Note that the state of the Linguistic Instruction and Target 
Position Sensors varies on a larger interval than the other sen-
sors in order to increase the relative impact of these neurons. 
Indeed, control experiments in which all sensory neurons were 
normalized within the 30, 1 4 interval led to significantly lower 
performance (result not shown). 

The outputs Hi 1 t 2  of the Hidden Neurons are calculated on 
the basis of following equation: 

 yi 1 t 2 5 saa
29

j51
wjiIj 1 t 2 1 bib 

 Hi 1 t 2 5 di
# yi 1 t 2 1 11 2 di 2 # yi 1 t 2 1 2 , (2)

where Ij 1 t 2  is the output of the jth sensory neuron, wji is the 
synaptic weight from the jth sensory neuron to the ith hidden 
neuron, bi is the bias of the ith hidden neuron, di is the decay-
factor of the ith hidden neuron, and s 1x 2  is the logistic func-
tion with a slope of 0.2.

The output neurons are divided into two blocks, the Arm 
Muscle Actuators and the Finger Actuators. All outputs of these 
neurons are calculated in the same way using the following 
equation: 

 Oi 1 t 2 5 saa
12

j51
wjiHj 1 t 2 b, (3)

where Hj 1 t 2  is the output of hidden neuron j as described in 2, 
wji is the synaptic weight from the jth hidden neuron to the ith 
output neuron and s 1x 2  is the logistic function with slope 0.2. 
With respect to the hidden neurons, the output neurons do not 
have any bias or decay-factor. 

The Arm Muscle Actuators output sets the parameter a 
used in equation 1 to update the position of the arm as 
described in section IV-B while the Finger Actuators output 
sets the desired extension/flexion position of the nine hand 
actuators as described in IV-D. The state of the sensors, the 
desired state of the actuators, and the internal neurons are 
updated every 10 ms. 

This particular type of neural network architecture has been 
chosen to minimize the number of assumptions and to reduce, 
as much as possible, the number of free parameters. Also, this 
particular sensory system has been chosen in order to study sit-
uations in which the visual and tactile sensory channels need to 
be integrated. 

VI. The Adaptive Process
The free parameters of the neural controller (i.e., the connec-
tion weights, the biases of internal neurons and the time con-

stant of leaky-integrator neurons) are set using an evolutionary 
algorithm [27], [28]. 

The initial population consists of 100 randomly generated 
genotypes, which encode the free parameters of 100 corre-
sponding neural controllers. In the conditions in which Lin-
guistic Instruction Sensors are employed (hereafter, referred to 
as Exp. A), the neural controller has 792 free parameters. In the 
other condition without the Linguistic Instruction Sensors 
(hereafter, referred to as Exp. B) there are 756 free parameters. 
Each parameter is encoded into a binary string (i.e., a gene) of 
16 bits. In total, a genotype is composed of 792 # 16 5 12672 
bits in Exp. A and 756 # 16 5 12096 bits in Exp. B. In both 
experiments, each gene encodes a real value in the range 
326, 16 4, but for genes encoding the decay-factors di the 
encoded value is mapped in the range 30, 1 4. 

The 20 best genotypes of each generation are allowed to 
reproduce by generating five copies each. Four out of five cop-
ies are subject to mutations and one copy is not mutated. Dur-
ing mutation, each bit of the genotype has a 1.5% probability 
to be replaced with a new randomly selected value. The evolu-
tionary process is repeated for 1000 generations. 

A.  Fitness Function
The agents are rewarded for reaching, grasping and lifting a 
spherical object of radius 2.5 cm placed on the table in exact-
ly the same way in both Exp. A and Exp. B. Each agent of the 
population is tested 4 times. Each time the initial position of 
the arm and the sphere change. Figure 4 shows the four initial 
positions of the arm and of the sphere superimposed on one 
another. For each initial arm/object configuration, a random 
displacement of 61o is added to each joint of the arm and a 
random displacement of 61.5 cm is added on the x and the y 
coordinates of the sphere position. Each trial lasts 6 sec corre-
sponding to 600 simulation steps. The sphere can move freely 
and it can eventually fall off the table. In this case, the trial is 
stopped prematurely. 

The fitness function is made up of three components: FR 
for reaching, FG for grasping and FL for lifting the object. 
Each trial is divided in 3 phases in which only a single fitness 
component is updated. The conditions that define the current 
phase at each timestep and consequently which component has 
to be updated are the following: 

r 1 t 2 5 1 2 e120.1.ds 1t22

g 1 t 2 5 e 120.2 #graspQ 1t22

l 1 t 2 5 1 2 e 120.3.contact1t22

Phase 1 t 2 5 •
 

reach  r 1 t 2 . g 1 t 2 , 0.5
 grasp   otherwise  

 lift   g 1 t 2 . 0.7` l 1 t 2 . 0.6,

where ds 1 t 2  is the distance from the center of the palm to a 
point located 5 cm above the center of the sphere. graspQ 1 t 2  is 
the distance between the centroid of the fingertips-palm poly-
gon and the center of the sphere. contacts 1 t 2  is the number of 
contacts between the fingers and the sphere. The shift between 
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the three phases is irreversible (i.e. the reach phase is always fol-
lowed by the reach or grasp phases and the grasp phase is 
always followed by the grasp or lift phases). 

Essentially, the current phase is determined by the values 
r 1 t 2 , g 1 t 2  and l 1 t 2 . When r 1 t 2  is high (i.e., when the hand is far 
from the object) the robot should reach the object. When r 1 t 2  
decreases and g 1 t 2  increases (i.e., when the hand approaches 
the object from above) the robot should grasp the object. 
Finally, when l 1 t 2  increases (i.e., when the number of activated 
contact sensors are large enough) the robot should lift the 
object. The rules and the thresholds included in equation 4 
have been set manually on the basis of our intuition and have 
not been adjusted through a trial and error process. In Exp. A, 
the phases are used to define which linguistic instruction the 
robot perceives. 

The three fitness components are calculated in the follow-
ing way: 

FR 5  

a
t[TReach

a
0.5

1 1 ds 1t 2 /4
1

0.25

1 1 ds 1t 2
1fingersOpen 1t21palmRot 1 t 22b

FG 5 a
t[TWrap

a
0.4

1 1 graspQ 1 t 2
1

0.2

1 1 contacts 1 t 2 /4
b

FL 5 a
t[TLift

objLifted 1 t 2 ,

where TReach, TWrap and TLift are the time ranges determined 
by equation 4. fingersOpen 1 t 2  correspond to the average 
degree of extension of the fingers, where 1 occurs when all fin-
gers are extended and 0 when all fingers are closed. palmRot 1 t 2  
is the dot product between the normals of the palm and the 
table, with 1 referring to the condition in which the palm is 
parallel to the table and 0 to the condition in which the palm is 
orthogonal to the table). objLifted 1 t 2  is 1 only if the sphere is 
not touching the table and it is in contact with the fingers, oth-
erwise it is 0. 

The total fitness is calculated at the end of four trials as: 
F 5 min 1500, FR 21min 1720, FW 21min 11600, FL 21bonus,  
where bonus adds 300 for each trial where the agent switches 
from reach phase to grasp phase only, and 600 for each trial 
where the agent switches from reach to grasp phase and from 
grasp to lift phase. 

During the reach phase the agent is rewarded for approach-
ing a point located 5 cm above the center of the object with 
the palm parallel to the table and the hand open. Note that the 
rewards for the hand opening and the rotation of the palm are 
relevant only when the hand is near the object (due to 
0.25/ 11 1 ds 1 t 22  factor); in this way the agent is free to rotate 
the palm when the hand is away from the sphere allowing any 
reaching trajectory. 

During the grasp phase, the centroid of the fingertips-
palm polygon can reach the center of the sphere only when 
the hand wraps the sphere with the fingers, producing a 

potential power grasp. During the lift phase, the reward is 
given when the agent effectively moves the sphere upward 
of the table. 

VII. Results
For both Exp. A (with linguistic instructions) and Exp. B 
(without linguistic instructions), we run 10 evolutionary sim-
ulations for 1,000 generations, each using a different random 
initialization. Looking at the fitness curves of the best agents 
at each generation of each evolutionary run, we noticed that, 
for Exp. A, there are three distinctive evolutionary paths (see 
 Figure 5a). The most promising is run 7, in which the last 
generation’s agents have the highest fitness. The curve corre-
sponding to run 2 is representative of a group of seven evolu-
tionary paths which, after a short phase of fitness growth, 
reach a  plateau at F 5 2,000. The curve corresponding to 
run 9 is representative of a group of two evolutionary paths 
which are characterized by a long plateau slightly above 
F 5 1,000. Generally speaking, these curves progressively 
increase by going through short evolutionary intervals in 
which the fitness grows quite rapidly followed by a long pla-
teau 3. For Exp. B, all the runs show a very similar trend, reach-
ing and constantly remaining on a plateau at about F 5 3,000 
(see Figure 5b). 

Due to the nature of the task and of the fitness function, 
it is quite hard to infer from these fitness curves what could 
be the behavior of the agents during each evolutionary 
phase.  However, based on what we know about the task, 
and by visual inspection of the behavior exhibited by the 
agents, we found out how the agents behave at different 
generations of each evolutionary run. In Exp. A, the phases 
of rapid fitness growth are determined by the bonus factor, 
which substantially rewards those agents that successfully 

FIGURE 4 Initial positions of the arm and the sphere over imposed; 
the joints J1, cJ4 are initialized to 8273, 230, 240, 2569, 
8273, 230, 240, 21139, 826, 130, 210, 2569 and 
8273, 230, 145, 21139; the initial sphere positions are 8218, 1109, 
8226, 1189, 8218, 1269 and 8210, 1189. 

3The fitness curves of the runs not shown are available at the supplementary web page 
http://laral.istc.cnr.it/esm/linguisticExps.
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accomplish single parts of the task. The first fitness jump is 
due to the bonus  factor associated to the execution of a suc-
cessful reaching behavior. This jump corresponds to the 
phase of fitness growth observed in run 7 in correspon-
dence of label R Figure 5a, and in run 2 in correspondence 
of label V Figure 5a. The agents generated after these fitness 
jumps are able to systematically reach the object. Run 9 
does not go through the first fitness jump, and the agents of 
this run lack the ability to systematically carry out a suc-
cessfull reaching behavior. 

The second fitness jump is due to the bonus factor associ-
ated with the execution of a successful grasping behavior. 
Only in run 7 is it possible to observe a phase of rapid fitness 
growth corresponding to a second fitness jump (see label S 
Figure 5a). The agents generated after this jump are able to 
successfully carry out reaching and grasping. Note also that, 
in run 7, the fitness curve keeps on growing until the end of 
the evolution. This growth is determined by the evolution of 
the capability to lift the object. Thus, in run 7, the best 
agents following generation 400 are capable of reaching, 
grasping, and lifting the object. The constant increment of 
the fitness is  determined by the fact that the agents become 
progressively more effective in lifting the object. Run 2 does 
not go through a second fitness jump. The agents of this run 
lack the ability to systematically carry out a successfully 
grasping behavior. 

In summary, only run 7 has generated agents (i.e., those best 
agents generated after generation 400) capable of successfully 

accomplishing reaching, grasping, and lifting.4 The best agents 
of run 2, and of the other six runs that show a similar evolu-
tionary trend, are able to systematically reach but not grasp the 
object and completely lack the ability to lift the object. The 
best agents of run 9, and of the other run that show a similar 
evolutionary trend, are not even able to systematically reach the 
object. In Exp. B, they are able to successfully reach and grasp 
the object, but not lift it. 

A. Robustness and Generalization
In this section, we show the result of a series of post-evalua-
tion tests aimed at establishing the effectiveness and robustness 
of best agents’ behavioral strategies of the four runs show in 
Figure 5. In these tests, the agents, from generation 900 to 
generation 1000 of each run, are subjected to a series of trials 
in which the position of the object as well as the initial posi-
tion of the arm are systematically varied. For the position of 
the object, we define a rectangular area (28 cm 3 21 cm) 
divided in 11 3 11 cells. The agents are evaluated for reach-
ing, grasping and lifting the object positioned in the center of 
each cell of the rectangular area. For the initial position of the 
arm, we use the four initial positions employed during evolu-
tion as prototypical cases (see Figure 4). For each prototypical 
case, we  generate 100 slightly different initial positions with 
the addition of a 610° random displacement on joints J1, J2, 
J3, and J4. Thus, this test is comprised of 48400 trials, given 
by 400 initial positions (4 # 100) for each cell, repeated for 
121 cells corresponding to the different initial positions of the 
object during the test. In each trial, reaching is considered 
successful if an agent meets the conditions to switch from the 
reach phase to the grasp phase (see equation 4). Grasping is 
considered successful if an agent meets the conditions to 
switch from the grasp phase to the lift phase (see equation 4). 
Lifting is considered successful if an agent manages to keep 
the object at more than 1 cm from the table until the end of 
the trial. In this section, we show the results of a single agent 
for each run. However, agents belonging to the same run 
obtained very similar performances. Thus, the reader should 
consider the results of each agent as representative of all the 
other agents of the same  evolutionary run. 

All the graphs in Figure 6 show the relative position of 
the rectangular area and the cells with respect to the agent/
table system. Moreover, each cell of this area is colored in 
shades of grey, with black indicating 0% success rate, and 
white indicating 100% success rate. As expected from the 
previous section, the agent chosen from run 7 Exp. A proved 
to be the only one capable of successfully accomplishing all 
the three phases of the task. This agent proved capable of suc-
cessfully reaching the object placed almost anywhere within 
the rectangular area. Its grasping and lifting behavior are less 
robust than the reaching behavior. Indeed, the grasping and 
lifting performances are quite good everywhere except in 

4Movies of the behavior and corresponding trajectories are available at the supple-
mentary web page http://laral.istc.cnr.it/esm/linguisticExps.
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two small zones located in the top left and bottom right of 
the rectangular area in which cells are colored black. The 
agent chosen from run 2 Exp. A proved to be capable of suc-
cessfully performing reaching behavior for a broad range of 
object initial positions, and completely unable to perform 
grasping and lifting behavior. The agent chosen from run 9 
Exp. A does not even manage to systematically bring the 
hand close to the object regardless of the object’s initial posi-
tion. The agent chosen from run 0 Exp. B, proved capable of 
successfully performing reaching and grasping behavior but 
not lifting behavior. 

VIII. Conclusion
In this paper, we showed how a simulated humanoid robot 
controlled by an artificial neural network can acquire the ability 
to manipulate spherical objects located over a table by reaching, 
grasping and lifting them. The agent is trained through an adap-
tive process in which the free parameters encode the control 
rules that regulate the fine-grained interaction between the 
agent and the environment, and the variations of these free 
parameters are retained or discarded on the basis of their effects 
at the level of the behavior exhibited by the agent. This means 
that the agents develop their skills autonomously in interaction 
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with the environment. Moreover, this means that the agents are 
left free to determine the way in which they solve the task 
within the limits imposed by i) their body/control architecture, 
ii) the characteristics of the environment, and iii) the constraints 
imposed by the utility function that rewards the agents for their 
ability to reach an area located above the object, wrap the fin-
gers around the object, and lift the object. The analysis of the 
best individuals generated by the adaptive process shows that 
the agents of a single evolutionary run manage to reach, grasp, 
and lift the object in an reliable and effective way. Moreover, 
when tested in new conditions with respect to those 
 experienced during the adaptive process, these agents proved to 
be capable of generalising their skills with respect to new object 
positions never experienced before. The comparison of two 
experimental conditions (i.e., with or without the use of lin-
guistic instructions that specify the behaviors that the agents are 
required to exhibit during the task) indicates that the agents 
succeed in solving the entire problem only with the support of 
linguistic instructions (i.e., in Exp. A). This result confirms the 
hypothesis that the possibility to access linguistic instructions, 
representing the category of the behavior that has to be exhib-
ited in the current phase of the task, might be a crucial pre-
requisite for the development of the corresponding behavioral 
skills and for the ability to trigger the right behavior at the 
right time. More specifically, the fact that the best agents of 
Exp. B succeed in exhibiting the reaching and then the  grasping 
behavior but not the lifting behavior suggests that the linguistic 
instructions represent a crucial pre-requisite in situations in 
which the agent has to develop an ability to produce different 
behaviors in similar sensory-motor circumstances. The reaching 
to grasping transitions are marked by well differentiated senso-
ry-motor states, which are probably sufficient to induce the 
agents to stop the reaching phase and to start the grasping 
phase, even without the support of a linguistic instruction. The 
grasping to lifting transition is not characterized by well differ-
entiated sensory-motor states. Thus, in Exp. A, it seems to be 
that the valuable support of the linguistic instruction induces 
successful agents to move on to the lifting phase. 

In future work, we plan to verify whether these agents can 
be trained to self-generate linguistic instructions and use them 
to trigger the corresponding behaviors autonomously (i.e., 
without the need to rely on external instructions). In other 
words, we would like to verify whether the role played by lin-
guistic instructions can be later internalized in agents’ cognitive 
abilities [29], [30], [31]. Moreover, we plan to port the experi-
ments performed in simulation in hardware by using the iCub 
robot and the compliant system recently developed [32]. Even 
though the iCub joints are stiff, the implementation of the 
muscle model used in this article is still possible. Two 6 axis 
force sensors placed on the arms and a module developed by 
the robotcub consortium allow the joints to react as if they 
were compliant. In this way, it is possible to move the joint 
applying a torque on its axis and thanks to the opensource 
aspect of the project, it would be possible to implement muscle 
actuation directly on the motor control boards. 
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