
Control system of person following robot:

The indoor exploration subtask

Solaiman. Shokur

20th February 2004

Contents

1 Introduction 3
1.1 An historical overview . 3
1.2 Reactive, pro-active and Hybrid agents 4
1.3 Problem Statement . 5
1.4 Thesis outline . 5

2 Method 6
2.1 Evolutionary Robotics using simulator 6
2.2 Realistic simulation . 6
2.3 Calculating the relative position: Odometry and magnetic

compass . 7

3 State of Art 9
3.1 Human Target following project 9
3.2 Spatial information in Robots 10
3.3 Spatial information in animals 11
3.4 Exploring an unknown environment 12

4 Exploration 14
4.1 Why is Exploration ability useful for this project 14
4.2 Formalization of the Exploration task 14
4.3 What is a complicated Environment? 15

4.3.1 Internal Rooms . 15
4.3.2 Two types of aliasing problems 18

5 Precedent work on this project 21
5.1 The transmitter-receiver Device 21
5.2 Implementation of the human target following robot 22

5.2.1 Experiments Setup . 23
5.2.2 Results and Critics . 24

6 Experiments 27
6.1 Experiments Setup . 27
6.2 Simple reactive agents . 29

1

6.3 Stochastic Neuron . 31
6.4 External memory encoding the previous robot position 37
6.5 Modular architectures . 41

6.5.1 Redefinition of exploration 42
6.5.2 Evolving a good wall following strategy 44
6.5.3 Evolve two separated Neural Networks 45
6.5.4 Define a sequence of Left and Right following 47
6.5.5 Results and critics . 50

7 Conclusion 53

A Graphs 59

B Demonstration 61

2

Chapter 1

Introduction

The goal of the main project is to develop a mobile robot able to find, fol-
low, and monitor a human target moving in a domestic environment. This
project involves both hardware and software components and is part of the
RoboCare Project 1. The hardware part includes a research for different
types of sensors able to locate a distant target, in particular the implemen-
tation of a directional radio transmitter and receiver.
On the other side, my scope was to manage the exploration task, that oc-
curs when the robot looses the target. My research includes: definition of
the fitness function, research for a convenient neural network architecture,
definition of a strategy of evolution and definition of a realistic environment
for the simulation.

1.1 An historical overview: Embodied Cognitive
Science

The Embodied Cognitive Science represents a different and exciting new
point of view challenging the traditional cognitivism and connessionism .
The traditional cognitivism, born in the middle of the past century, was a
response to the behaviorist point of view, which described all psychologi-
cal states as sets of stimuli and the response of the body to those stimuli,
defining the mechanism between them as a black box. The cognitivism gives
an answer to these black boxes, saying that what is actually between the
stimulus and the response is a computer (John Searle: ”The idea is that

1The goal of the RoboCare project is to build a multi-agent system which generates
user services for human assistance. The system is to be implemented on a distributed and
heterogeneous platform, consisting of a hardware and software prototype. The project
is funded by the Italian Ministry of Education, University and Research (MIUR). It is
organized in 3 tasks: 1. Development of a HW/SW framework to support the system
2. Study and implementation of a supervisor agent 3. Realization of robotic agents and
technology integration; for more information see http://pst.ip.rm.cnr.it/robocare/

3

unless you believe in the existence of immortal Cartesian souls, you must
believe that the brain is a computer” [4]).
However according to our everyday life experience, great differences appears
between a human brain and a computer : if the brain is a computer, why is
it, that what is easy for the brain is so difficult for a computer (recognition of
an object for example) and, in the opposite way, what is easy for a computer
is so difficult for the brain (calculation) (ref. Parisi D., Oral communication).
The classical connessionism gives another answer to the black box: a the-
oretical neural network expressed as a computer programm. A progress in
this direction has been proposed by Embodied Cognitive Science consid-
ering the agent (with a neural network) and the environment as a single
system, i.e. saying that the two aspects are so intimately connected that a
description of each of them in isolation does not make much sense [5, 10].
This work uses these new research paradigms, that is Neural Networks,
sensory-motor coordination, to satisfy a technological and theoretical prob-
lem.

1.2 Reactive, pro-active and Hybrid agents

Typical reactive agents are the Braitenberg vehicles [11], which respond al-
ways in the same way to the same sensory input. As we will see this kind
of stereotypical behavior is often not satisfying for an exploration task.

On the other hand, recent work have shown interesting results, for tasks sim-
ilar to our’s, with pro-active agents. Pro-active agents actions don’t depend
only on the sensory input but also on an ”internal state” that is defined as
the subset of variables that co-determine the future input-output mapping of
the agent. Typically, an internal state is realized by a neural controller that
translates present and past sensory inputs into actions. Miglino et all have
shown recently that introducing an internal state increases significantly per-
formance of an agent that must make a detour around an obstacle to reach
a target [17]. Nolfi S. and Guido de Croon demonstrated the importance of
internal states for the self localization task [20, 21]. However, these works
show also that introduction of internal states raises the level of complexity.
Prediction and analysis are very difficult, understanding how internal states
are used by the agents is often all but obvious.
Instead, we decided to work on a hybrid form of agent, adding both ad-
vantages of the two precedent types: simplicity of analysis of the reactive
agent and variability of the behavior of the pro-active agents. We obtain
this compromise by implementing reactive agents controlled by: a neural
network with a stochastic input, a neural network with an input using an
external memory encoding the robot’s previous position and a modular neu-
ral network.

4

1.3 Problem Statement

My main work was to solve the problem of finding the target when the
robot was lost, i.e when there is no information from the distal sensors (for
example radio sensor). In this case the robot should be able to explore the
environment until it has the information about the target again.
Many research works for exploration task in robotic use a method called
Internal map. Basically, the robot evolves in an environment and registers
its movements to obtain a map (see section 3.2). This kind of method are
not very robust and have many problems in a complex changing and realistic
environment. My work was focused on another point of view:

Define a robust strategy, using evolutionary robotics methods, to perform
the exploration task with (Hybrid) reactive agents. For this task we will have
two constraints:

. Space: The robot should be able to explore every part of the environ-
ment

. Time: It has to do it as fast as possible, avoiding as much as possible
cycles.

1.4 Thesis outline

The outline of the thesis is as follows: in chapter 2, we explain methods
used for this project as the sampling method and the evolutionary robotics
Basic theoretical knowledge as neural networks and genetic algorithms are
not presented here. Interested readers could read chapter 2 in ”Evolution-
ary Robotics” written by Nolfi S. and Floreano D. [12] as an introduction to
these notions. Following a bio-inspired engineering point of view, we give in
chapter 3 an overview of spatial information integration b both in robotics
and with animals. In addition another project working on the human target
following is briefly presented. In chapter 4, we explain more precisely what
we mean by exploration, presenting what makes it complicated. Chapter 5
presents the departure point of my project, where we explain the precedent
implementations of the human target following, its results and its limita-
tions, that we tried to overcome in my project. All my experiments and
results are explained in detail in chapter 6. Chapter 7 concludes the re-
search, reassuming the most interesting results and the next possible steps
to ameliorate them.

5

Chapter 2

Method

2.1 Evolutionary Robotics using simulator

Evolutionary Robotics, based on the darwinian evolutionary process, permit
to find robust robot controllers, difficult to find with handcraft implementa-
tion. The process begins with creation of a set of random genotypes defining
the weights of the neural networks that control the robots. All these con-
trollers are applied to a task and receive a score proportional to their ability
to perform it. At the end of a determinate life-time, we select those who have
the best score and use them for the next generation, after having applied
the genetic operators (crossing over and mutation). The process continues
till having a controller that performs perfectly the task or until a stopping
criterion is met.
As an evolutionary process involving real Robots could be excessively expen-
sive in term of time, a simulation approach using a realistic representation
of the real robot and of the environment is preferred. The idea is first to let
a good controller evolve in simulation and, in a second time, continue the
evolution on the real Robot. The simulator used for this project is Evorobot
[1] , that permits realistic experiments and the transition to real robots. Fol-
lowing this reasoning, we implement a realistic representation of the robot
Koala (that will be used as real robot for the project) on Evorobot.

2.2 Realistic simulation

As experiences on the simulator are a preliminary step before the use of a
real robot, there is an obvious interest to make them as realistic as possible.
The robot that will be used for the human target following task will be a
Koala. The Koala has been preferred to the Khepera robot for practical
reasons, as the Koala has bigger dimensions and gives the possibility to use
the radio transmitter and receiver. The problem was that in the Evorobot
software only the Khepera robot was simulated. To be able to simulate the

6

Koala Robot, we have done some changes in the code:

- The dimensions of the simulated robot (30 x 30 cm for the Koala, 7
cm diameter for the Khepera) have been changed

- The maximum speed (0.6 m
s for the Koala and 1 m

s for the Khepera)
has been modified.

- The sensors have been accurately changed as:

. The Koala has 16 infrared and ambient sensors, Khepera has 8

. The maximum range of this sensor is 20cm for the Koala and 5cm
for the Khepera

One way to simulate this sensors could be to implement their behavior by
using their theoretical specificities (i.e using the non-linear function of light
reflected value versus the distance to an obstacle). However, this method
appears dramatically irrelevant for simulating realistic cases.
First of all, even if all the sensors of the Koala appear identical, they often
response in a different way to the same external stimulus, given their intrinsic
properties. In addition, if one compares different robots, one notices that
the position and the orientation of the sensors are not exactly the same.
Finally, the Koala’s sensors are not distance measurements but a measure
of the quantity of light that a given obstacle reflects back to the robot. Thus
this measure depends of the reflexivity of the obstacle (color, kind of surface,
. . .), the shape of the object, and the ambient light settings
A more interesting way to simulate these sensors according to their speci-
ficities is to empirically sample the different classes of objects that appear
in the environment [3].
Using this method, we have sampled three classes of objects : a wall, a
small cylinder (diameter smaller than the robot’s dimensions: 20cm) and a
big cylinder (diameter bigger than the robot’s dimensions: 42cm). The real
robot was first placed in front of one of these objects (distance 5cm), and
then automatically recorded all its sensors for 180 orientations and for 20
different distances. In the simulator, given the orientation and the distance
of the simulated robot to a given obstacle, the corresponding line in the
sampling file is used as input vector.

2.3 Calculating the relative position: Odometry
and magnetic compass

The Koala has an internal counter that calculates exactly how much the mo-
tors turn [2]. Using the right and left motor counters, one could determine
the position of the Koala at every time step. Unfortunately, even if the inter-
nal counter for the motors is exactly known, the calculation for the position

7

of the Koala cannot be that precise, as the way in which Koala’s wheels
turn depends a lot on the kind of surface used. For example the Koala turns
much more easily on a smooth surface than on a carpet. We have estimated
an error rate of about 1% between the position internally calculated by the
Koala (based on the motor’s counter), and it’s real position. Calculus was
done as follows: the Koala randomly moves in the environment and registers
its position, after approximately 10 meters covered, the robot is asked to go
back to the initial position (set as (0.0) position). We calculated then the
difference between the effective initial point and this new point. For a more
realistic simulation, this error rate was introduced in the simulator when
odometry was used.
Our test shows also that the error rate of the calculus made by the robot
for its position increases when the robot turns. In fact, tests with a Robot
that had to go only forward and come back to the initial point were much
more precise (less then 0.5% of error). What increases the error rate is the
accumulation of errors on the angle. To avoid this we could add a magnetic
compass to the Koala. This kind of component has been successfully used
by the K-team on the Koala (ref. Mondada F. Oral communication).
In our case, as we didn’t test a magnetic component, we didn’t simulate it
on Evorobot, we simply assume that having 1% of error on the position is
not unrealistic. A more precise and accurate estimation could be done when
this this component will be available.

8

Chapter 3

State of Art

3.1 Human Target following project

Bahadori S. et all, also involved in the Robocare project, are developing
robots for the same task of ”human target following”, but with a very dif-
ferent point of view [23]. Their work is mainly based on 3D reconstructions
through Stereo Vision. By computing a difference between a stored im-
age, representing the background, and new images, they isolate the moving
objects (as robots and persons) from the environment. The robot is dif-
ferentiated from persons with a particular marker. Then, by using stereo
computation, the position of the robot and the person are found.

The main idea for the next step is to use this information about robots’ and
persons’ position to manage the target following task, with some planifica-
tion algorithms.
The limitation of such a system are the following:

- The number of persons in the room has to be limited, the moving
objects could be of a maximum 3 or 4.

- The person should be easily differentiable from the robot.

- If one wants to cover a big room, or even maybe several rooms, the
number of stereo cameras needed could become high.

I think that the third point here is very important, as, although, this ap-
proach is highly interesting if one needs a Robot that has to follow the target
in a small area, it become really expensive because of the number of stereo
cameras involved and the complexity of installation (which is different for
every type of surroundings).

9

3.2 Spatial information in Robots

Robots that have to explore an environment is certainly one of the most
classical problems in the filed of robotics . Implementation of robots able
to go out of a labyrinth is a typical exercise proposed to students 1 as
well as studied by researchers [26]. The most common way to manage the
exploration with robots is to use internal maps. We will see here the two
very general ways of using internal maps: static and dynamic maps.
The static map is certainly the easiest way to manage the exploration prob-
lem, but could often be irrelevant. The main idea is to have a geometric
representation layer of a particular environment and topological layer. For
example, the letters A to F in the geometrical map shown in figure 4.1 are
the identifiers of the topological regions which can be seen as nodes of an
indirect graph (see appendix A). Using odometry and complex sensory in-
puts2 the robot could be able to keep the track of its current position and
orientation. Using a list of all unvisited rooms and the paths to join them
(given by the topological graph), the robot is able to optimally explore the
environment avoiding cycles. This method could be successfully used if one
could have a perfect a priori knowledge of the environment and also needs
a robot able to explore a particular environment (as used, for example, by
Johan Bos and all [27]) but cannot be applied if we want to have a general
exploration method for any kind of environment.

Instead, robots using a dynamic internal map do not need an a priori map
of the environment, the map is dynamically created by the robot during
exploration. Here, the topological layer is created step by step with roughly:
recognition of the environment with sensory inputs and odometry. The
recognition of the environment implies huge and precise sensory information
to be used. The problem that particulary occurs for robots with poor sensory
information (as in our case), is that different places of the environment
could give the same sensory vector input (known as the aliasing problem
[13]), and so it is impossible for the robot to know if it has already been in
a particular position or not. The limitation of odometry is that it is very
imprecise and sensitive to error cumulation, and the classical way to manage
this accumulation is to re-initialize periodically the position at which the
robot identifies perfectly a particular position where it has already been,
what is limited again by the sensory information poorness. The typical
problem that occurs in this kind of method is that one has to stress with
two source of information, that may not concord. The robot, calculates it’s
position with odometry, and sensory inputs are used for the internal map.
When robot wrongly think to be in a point where it has already been, and

1http://diwww.epfl.ch/ sshokur/projets/matinfo.zip
2Often for this kind of method video cameras are used

10

the sensory input do not coincide with the registered input, it has to re-
actualize, or its position (what it think to be it’s position) or the internal
map. Actually, it’s very difficult to decide which one of the two information
have to be actualized, as both odometry and environment recognition could
be erroneous.

3.3 Spatial information in animals

There are two principal points of view about animals’ strategy to manage
with the surrounding environment. The main difference between them is
about the referential that animals use to integrate information about the
environment: egocentric or exocentric coding.
In a behaviorist point of view, exploration of an animal could be traduced as
a simple association between stimulus and responses. For example, the way
to go from one initial point to a food zone will be registered by the animal
as a series of movement that will be reproduced if we put the animal again
in the initial position [6]. The method could be used by the animals even for
long and difficult ways by dividing the road in different little subsequences.
In this case the information about the environment is coded according to
the animal itself : the referential is egocentric. Another use of egocentric
referential has been shown by Wehner et al. for the homing navigation of the
desert ants Cataglyphis, who can explore a long distance and return directly
to the nest. They explain that this ants register all their movements during
the exploration for food and that they integrate them to derive the direction
to go back to the nest.
The advantage of of egocentric reference coding is to limit the information
to be registered to only two parameters: angle and distance. However, it is
very difficult to know exactly these two parameters as they are extremely
sensitive to error cumulation, especially for the angle [8]. To avoid this
accumulation different techniques are used by animals: birds for example
use magnetic compass for calculating angle during their long migrations.
Insects, in particular ants and bees, use sunlight compass derived by the
azimuthal position as well as from spectral gradient in the sky. Hartmann
and Wehner have shown how path integration based on solar compass is
implemented neurophysiologically to perform homing navigation [28]. Rats
re-initialize their information when they recognize a particular place that
they had already visited [18, 19].
This very easy and rapid strategy is certainly used by animals for some
changes of location, but could be irrelevant in a changing environment. For
example, if the position of an object is changed or if an object is added, this
method could fail.

The second point of view has been proposed by O’Keefe and Nadel in 1978

11

[14], and is the base of what is called a ”cognitive carte”. For animals,
as well as for humans beings, the part of the brain that manage the space
apprehension and representation is the hippocampus, with the location cel-
lular as neural support. In the case of rats for example location cellular,
are activated when they are in a particular position of the environment.
The importance of location cellular has been demonstrated in an experi-
ment involving rats: those who had lesion in the hippocampus were unable
to manage with exploration subtasks such as distinguishing visited and non
visited ways in a labyrinth [9].

In this case information about the environment is registered referred to fixed
reference marks extracted from the surroundings. The animal registers the
reciprocal relation between different places. This method is efficient even
if some parts of the environment change and in the worst case, as it has
been shown for the rats, if the environment changes too much, there is a
selective re-exploration. However, it is not yet very clear what are the fixed
references to be registered and how these are integrated by animals.

3.4 Exploring an unknown environment

We will discuss here the techniques used in robotics or inspired by nature
that could be useful for us. Remember that our task is to accurately explore
any environment, avoiding as much as possible cycles.
We have seen classical solutions used in robotics: use of a static or a dynamic
internal map. The first technique has to be immediately rejected, as it is
not a general way to explore any environment.
We have to be careful not to confuse dynamical internal maps in robotics
and cognitive maps in animals, as internal maps could be performed with
egocentric or exocentric information (contrary of animals where the notion
of cognitive map is associated only with exocentric coding3). An exocentric
registration of the surroundings implies the recognition of particular places
in the environment and the relations between them. This method requires
a huge amount of information about the environment [31]. For example for
rats, which recognize some parts of the environment (proved by the fact
that there are specific location cells that are activated only when the Rat
is in a particular place [14]) there are a lot of different sensorial modalities
used : visual seems to be the most important, but audition and smell are
also involved (as shown by Hill and Best, even blind rats use location cel-
lular [22]). So there is a huge amount of information (think about vision
that involves color, distance, shapes, . . .) used to detect unambiguously a
particular position of the space. Compared to the rat, our sensory infor-
mation (16 Infra-red proximity and ambient light sensors) is dramatically

3if we accept the definition given by O’Keefe and Nadel [14]

12

poor. Robotic projects using these kind of techniques are confronted to a
dilemma: augmenting the sensory information by adding video cameras and
techniques of image analyze that slow down the robots’ behavior (see 3.1),
or limit the exploration task to very simple environments (see [26]). We
would like to avoid both disadvantages.

In the other hand we have seen that the problem of egocentric information
is the possible cumulation of errors, that could be corrected with external
reference: for example sunlight for insects, environment recognition for Rats
or magnetic compass for birds.
A solution inspired by insects has been successfully implemented by Kim D.
and Hallam J. C. T. [30] on a simulated Khepera. They have shown how
a robot can use a referential light source, as a lamp, to perform homing
navigation. However, as in our case the robot has to explore more than one
single room, this technique cannot work.
The problem of landmark recognition is the same as in the exocentric coding:
it implies more sensory input information to avoid aliasing problems.
Instead, a method inspired by birds using a magnetic compass could be more
interesting, we could use it compounded with odometry to avoid angle error
cumulation and having an egocentric information about the environment.
Thus we decided not to use internal - dynamic or static - maps. We tried to
find other kinds of techniques using egocentric information, in a more easy
and less dependant on error way (see in section 6.4) or even technics not
using at all egocentric information (see section 6.3 and 6.5).

13

Chapter 4

Exploration

4.1 Why is Exploration ability useful for this project

The ability to correctly explore an environment is very useful for a robot
which has to follow a human target. We propose here two situations where
this ability occurs:

- When the robot looses the target, i.e when it has no information from
the distal sensors (example radio sensor) because of the distance.

- When there is an obstacle between the robot and the target that has
to be circumvented (losing may be temporarily the information from
the distal sensor)

In these two cases, the robot has to explore the environment till it has again
information about the target.

4.2 Formalization of the Exploration task

In our study, we will split the problems in two sub-problems: following
the target and exploring. By exploration, we mean that the robot should
be able to visit any part, or any rooms, of any realistic environment. We
can formalize the problem as a problem of research on an undirect Graph
G(V, E,Ψ) (see Appendix A), where V (node) is the set of all rooms of the
environment, E the set of all doors (see figure 4.1), and Ψ the function that
associates for each door the two rooms separated by the corresponding door.

Thus our problem could be formalized as Graph Searching with visit of all
nodes and the avoidance of cycles as constraints.

Notice that the set of environments EV that we will consider, are those
who’s corresponding graph G(V, E,Ψ) is connected. That means that the

14

Figure 4.1: (Right) Environment E0 defined with rooms A,B,C,D,E,F; (Left)
Graph G(V, E,Ψ) of E0: where V = {A,B, C,D, E, F} the set of rooms in
E0 and E = the set of doors

excluded environments, are those, very degenerated, that have rooms that
cannot be joined by the other rooms (example rooms without door).
We will define a strategy as acceptable if one who follows it is able to visit
at least one time every room and we will say that a strategy is optimal if
it permits to visit all rooms avoiding any cycle.

So we have basically two different sorts of constraints: space (the explo-
ration strategy should permit to go in every room) and time (it should do
it as fast as possible). In our case, it is highly unrealistic to look for an
optimal solution. Instead, we will say that a strategy is satisfying, even
if it is suboptimal, if it is acceptable and avoids as much as possible cycles.

4.3 What is a complicated Environment?

One of the most challenging problem was to define a good environment,
representative of realistic complications that occur in real environments,
what is quite different from what appears intuitively complicated.

4.3.1 Internal Rooms

Let us consider a labyrinth1 that could appear as being complicated (figure
4.2).

1from http://www.BillsGames.com/mazegenerator

15

Figure 4.2: a very common labyrinth, (Left) a strategy of Left wall following;
(Right) a strategy of Right wall following

If one wants to visit the bottom room (and so wants to go out of this
labyrinth) without any a priori information about the labyrinth’s configu-
ration he can choose between two very easy strategies : Left wall following
(figure 4.2 (Left)) or Right wall following (figure 4.2 (Right)). The two
methods reveal to be successful; obviously one could argue that in this case,
following the left wall is a much more optimal solution than the other one,
but an agent with no a priori knowledge of the environment cannot know it.

However, we don’t consider this as a complicated environment. Let us con-
sider another labyrinth inspired by the CNR2 building (figure 4.3). In this
case, if the robot is lost (no radio information) and does a Right (or Left)
wall following, while the target is in the room A, the robot will never find
the target.
So a complicated environment for an exploring task could be defined as an
environment with some internal rooms. The idea is that the first environ-
ment could be integrally explored with simple reactive agents as we will
show, but the second one needs a more complex behavior including some
changing strategy and\or some information about the environment itself
(that could be collected during the life or given as an a priori information
by the engineer).

We can notice that environments with internal rooms are very realistic (not
only because it appears in the CNR building). In fact, considering even a
normal room with an object stored in the center (for example a bed), the
exploration with a wall following will not always have success.

2Consiglio Nazionale delle Ricerche, Rome

16

Figure 4.3: [Up] schematic plan of the CNR; [Down] Considering that the
target is in the room A, the robot will never find it by doing a simple Right
wall following

17

Figure 4.4: Aliasing problem during exploration: when the robot is in the
shaded part of the corridor it has to go one time straight on(A)and the other
time to the left (B).

4.3.2 Two types of aliasing problems

A second source of complication for exploring an environment is the aliasing
problem [13]. An aliasing problem occurs in our case if we have one single
place with at least two different possible ways or if there are two (or more)
different places that give the same input vector but need different responses
(example one time going right, another time going left).
An example for the first aliasing problem could be a normal corridor. As
we could see on figure 4.4, when the robot is in the middle of the corridor
(shaded), it has two different possible choices. To be able to explore all the
environment, it should certainly go at least one time in each direction (A
and B). We could notice that this aliasing problem occurs if and only if we
have an internal room as shown in figure 4.5.
The second aliasing problem is also particulary present in our case because
of the dramatically poor sensory information. As said we have omly 16
infrared ambient sensors.
These two types of aliasing problems complicate the exploration task as
follows:

- The first type of aliasing renders the exploration task complicated in
terms of space. We will show that a simple reactive agent is not able
to visit an environment integrally if the first aliasing problem occurs.

- The second type of aliasing renders the exploration task complicated
in terms of time. In an environment without any second type aliasing,
an agent can be evolved to recognize exactly if it has already been in a
particular point of the environment and could easily avoid cycles (by
for example changing its direction or strategy of exploration).

In other words, an easy environment can be entirely explored by a simple
reactive agent (which always responds in the same way to the same sensory

18

Figure 4.5: (Left) if there is no internal room, by using a simple wall fol-
lowing a robot could explore both direction in a corridor (Right) The robot
cannot visit both direction with a wall following, the robot should have two
different behaviors for the same sensor information

inputs). As defined above, an internal room gives another level of complexity
that prevents simple reactive agents to solve the exploration task.
However, we will see that there are different ways to define an environment
with an internal room that gives also a different level of complexity (see
section 6.3).
As we will see, another important parameter for the complexity of an en-
vironment is the size. The main problem with a big size environment is
to manage the cycles, because there is a direct correlation between the size
of cycles and the size of memory required. It is intuitively obvious that if
one wants to perceive a cycle, one should be able to detect some kind of
periodicity, and the more the period is long, the more memory is used to
detect it.

19

Figure 4.6: Three environments used for our experiments, the little
round in the corners are artificially added to give thickness to the
walls;(Left)Environment 1; (Middle)Environment 2; (Right)Environment 3

20

Chapter 5

Precedent work on this
project

Before my project, some tests were done for this specific task. We will
see in this chapter the results and some limitations that appear in those
experiments.

5.1 The transmitter-receiver Device

To allow a robot to localize a distant target, even separated by an obstacle, a
radio type transmitter-receiver system consisting of a transmitter carried by
the target person and a receiver installed on the robot is under development
at the CNR by Raffaele Bianco, Massimiliano Caretti and Stefano Nolfi
[16]. This new sensor will permit the robot to find the relative direction of
the human target. Preliminary tests of this system indicate that it provides
reliable information about direction but not about the distance of the target.
The system consists of a transmitter producing a continuous signal of 433
MHz (figure 5.1 Left), a receiver (figure 5.1 Top-Right), and a directional an-
tenna (figure 5.1 Bottom-Right). To provide information about the current
direction of the transmitter the antenna should be mounted on a motorized
support (still to be developed) that allows the rotation of the antenna and
the detection of its current orientation with respect to the frontal direction
of the robot.
A second more precise sensor that could give additional information about
the distance of the target is also under development at the CNR. The main
idea is the same as for the first one but it uses sound instead of radio waves.
The system consists of a transmitter (on the target) producing very short
sounds separated in time and a receiver (on the robot) provided with two
omni-directional microphones that detects the arrival of the first waves and
then stop listening until echoes have disappeared. The receiver device detect
the time difference between the signals detected by the two microphones that

21

Figure 5.1: The radio transmitter-receiver device. Left: The transmitter.
Top-Right: The receiver. Bottom-Right: The antenna.

provides information about both direction and distance.

5.2 Implementation of the human target following
robot

The human target following robot was already implemented in the simulator
Evorobot by Raffaele Bianco at the CNR (see figure 5.2). Here are the new
components added by him into the Evorobot simulator:

- A moving target has been implemented. This agent moves freely in
the environment. It avoids obviously the obstacles and at each step
he randomly it choses between turning right or left, going straight,
accelerating, decelerating or even not moving at all.

- A directional sensor (see section 5.1) has been implemented. This
component is a very simplified implementation of the radio transmitter
and receiver. As the knowledge about the real radio transmitter and

22

Figure 5.2: Koala Robot and the directional radio transmitter/receiver sim-
ulated on Evorobot, the receiver divides the environment in three zone cor-
responding to three input of the robot, if the target is in one of these zones
(no matter its’ distance) the corresponding input is activated

receiver component is low, the simulator includes simply three inputs
that divide the space in front of the robot, and which are activated if
the target is in the corresponding section (see figure 5.2).

One could argue that this simulation is not realistic at all as it doesn’t
manage any distance problems, in particular there is no attenuation of in-
formation if there is an obstacle between the robot and the target or if the
target is very far. In addition, in the real case, we could have some interfer-
ence problems with the radio waves in a room, or attenuation of the signal
if there is an open window or a closed door,. . . All this data will be known
only when the radio sensor will be completely implemented, tested and sam-
pled to be used by the simulator. Therefore we decided to concentrate our
work on more theoretical problems, that are useful for the next step of the
project.
In fact, even if we don’t know exactly how the sensor reacts, there is at least
one certainty: in some cases the robot will be lost. For example if the target
is too far or if there is an obstacle between the robot and the target. We
don’t have to know if too far means exactly 20.5 or 30.4 meters. In this case
the robot should be able to explore the environment to find the target (or
for having some radio information again).

5.2.1 Experiments Setup

We will see in this section how the first experiments done by Raffaele Bianco
were implemented.
The fitness function defined for this first experiment was:

1/distance between the robot and the target (5.1)

This function has some limitations:

- As it is not possible to know what is the maximum value: interpreta-
tion in term of optimal performance is not possible.

23

Figure 5.3: Evolved agent following the target, Simulated Koala Robot with
the directional radio sensor, The evolved agent tries to minimize his distance
with the target

- It is an external function : the variable distance between the robot
and the target is not available to the robot it self, and could require
complex machineries and procedures if we project to evolve a real robot
(p.64-66 in [12]).

- The evolved individuals are not able to follow the target in all cases
as we will see in the next section.

The architecture of neural network was a standard feedforward , with 11
input i.e. 8 infra-red proximity sensors of the Khepera (the Koala’s sensors
weren’t yet sampled) plus 3 inputs of the radio type sensors and 2 output
for Khepera’s motor left and right controllers. The environment was the one
shown in figure 5.4.

5.2.2 Results and Critics

In the very first part of the project I have tried to identify situations that
evolved agents, found with this first implementation, did’n’t manage.

The best individuals of these first experiments show a very good ability to
follow the target in an easy environment, defined as a box with no obstacle
(see figure 5.3).
Using a more complicated environment with obstacles, the agent shows still
good abilities to follow the target. In fact in some of these evolved agents
there is emergence of wall following strategy when there is an obstacle be-
tween them and the target.

24

Figure 5.4: Evolved agent following the target, with wall following strategy
when there is an obstacle

As shown in figure 5.4 this simple implementation gives a very good result.
The main idea is that till the directional radio receiver has information (the
directional receiver oriented in the direction of the transmitter), the robot
tries to minimize the distance with the transmitter (target), but when this
information is lost, it changes its strategy and begins a wall following. How-
ever, the fact that sometimes the robot looses the radio information depends
on the target movement. For example: the robot is against the wall, it tries
to go in the target’s direction but an obstacle prevents it. Then, the target
moves away and robot’s receiver loses the radio information, the robot stops
trying to go in a particular direction and follows the obstacle until it has
again some radio information available. We could see on figure 5.5 what
happens if the target does not move and the radio information remains al-
ways available to the robot. In those cases the agent does not go into a wall
following strategy and continues indefinitely with the first strategy (mini-
mizing the distance).

However the problem of the blocked robot when the target is not moving is
actually not a very serious one as we could resolve it by adding some random
movement to the blocked robot (it this case the robot will lose the direction
of radio signal and begins a normal wall following).
A much more serious problem is to define a good exploration strategy that
could be used by the robot when it looses completely the radio signal and
the human target. We have seen that the only strategy used by the agent
to explore the ambient, when looking for the target, is a wall following, that
is not enough for an acceptable exploration of any realistic environment (see
section 4) .

25

Figure 5.5: If the target (up Left) does not move and if there is an obstacle
between the robot and the target, the robot is blocked indefinitely against
the wall

26

Chapter 6

Experiments

In this section I will explain the experiences I have done to find agents able
to explore any realistic environment. The strategy was to evolve this agents
and to test them on some very general and some complicated environments.
The definition of what is general and complicated was a difficult task. In
fact I had to define environments for the testing part, that ensure us that
if the evolved agent was able to explore the totality of them, this agent will
be able theoretically to explore any environment. The environments used
are those defined in section 4 (Environment 1,2 and 3).

6.1 Experiments Setup

As the implementation of the simulation for the Koala was done during the
last part of my project (the real Koala Robot was available only the last
month), a huge part of the experiments has been done with the simulated
Khepera. Then when the Koala was correctly implemented some of the
most interesting experiments were reproduced. Obviously, when we compare
different types of agents between them and give statistics of success rate, we
use only one type of simulated Robot.
Evolution and tests for the next sections was done as follows: Agents were
evolved on Environment 1 (see figure 4.6), each experiment was reproduced
at least 10 times. A population was composed of 100 randomly generated
individuals, and was evolved for at least 300 generation. Individuals’ life
lasted 5 epochs of 5000 life steps. At the beginning of each epoch, the
individual was positioned randomly in the environment.The mutation rate
was 4%.
Then the best individual of the best seed was tested 20 times on Environ-
ments 1, 2 and 3. At the beginning of each epoch the start position was
randomly selected. The life for the test was 20’000 time step, considering
that an agent with an optimal strategy should be able to visit the environ-
ment integrally in approximatively 4’000 time steps.

27

Fitness Function

The fitness function was defined as follows:

Fitness = φ + ψ (6.1)

Where φ is the obstacle avoidance function as defined by Floreano D. and
Mondada F. [15]:

φ = (V)(1−
√

∆V)(1− i); 0 ≤ V ≤ 1; 0 ≤ ∆V ≤ 1; 0 ≤ i ≤ 1; (6.2)

With V: the sum of rotation speeds of the two wheels, v: the absolute
value of the algebraic difference between the signed speed values of the
wheels (positive is one direction, negative the other), and i: the normalized
activation value of the infrared sensor with the highest activity.

And ψ defined by:

ψ =

positivescore, if the agent cross a door for the first time;
0, every par time that the agent crosses the same door;
negativescore, every odd time that the agent crosses the same door

and if | (fitness− negativescore) |≥ 0.
(6.3)

The point was to force an individual to go into all rooms (+ score to cross
a door) but to avoid to return into the same rooms. As par times are those
where the agents simply get out of a visited room, no positif or negative
score was given1. Obviously, if all rooms were visited the list of the visited
rooms was re-initialized (the agent could go back into a room that was
already visited and have a positive score).

Many values of the positive and negative score have been tested. The most
interesting solutions were obtained with a half incremental score:

- positive score = 5′000× number of visited rooms (+5000 for the first
crossed door, + 10’000 for the second one, . . .)

- negative score = −5′000
1Example: a agent crosses a door and goes into a room ⇒ positive score, it recrosses

the same door to get out of the room ⇒ no positive or negative score, it recrosses again
the same door ⇒ negative score, etc

28

The reason of an incremental positive score and a normal negative one, was
that we prefered an agent a which visits three rooms and returns back in
two of them: fitness(a) =

∑3
i=1 i ∗ 5′000 − (2 ∗ 5′000) = 20′000, to an

agent b which visits only two rooms fitness(b) =
∑2

i=1 i ∗ 5′000 = 15′000,
because agent a explores more space than agent b. Instead a normal positive
and negative score would give best fitness for agent b than for agent a:
fitness(a) = 3∗5′000−(2∗5′000) < 2∗5′000 = fitness(b) and an incremental
positive and negative would give the same fitness for both:

∑3
i=1 i ∗ 5′000−∑2

i=1 i ∗ 5′000 =
∑2

i=1 i ∗ 5′000 = 15′000.

6.2 Simple reactive agents

For these experiments, I have used some parts of the implementation done
by Raffaele Bianco (see 5.2) without using the simulated radio sensor.
The first architecture tested was a simple feedforward with 16 input neurons
(Koala’s sensors), 4 hidden neurons and 2 output neuron (Koala’s motor left
and right controllers).
As previewed these simple reactive agents were only able at most to perform
a wall following and they never explored integrally an environment with
internal rooms (figure 6.1 (Right)). In addition, another problem that
occurred here was that sometimes the agent could be blocked in a smaller
cycle (figure 6.1 (Left).
In the next tabular the percent of complete exploration, of crash and partial
exploration is reported. A partial exploration appears when the agent is
either or in micro cycles (in this case it visits often only one room) or in
macro cycles. The results are based on 20 tests for each Environments.

Environment1 Environment2 Environment3
completely visited 0 0 0

crash 0 0 0
partially visited 100 100 100

Change the obstacle avoidance fitness

We have defined our fitness function using the obstacle avoidance fitness
Φ (see equation 6.1), which gives a good score for individuals that have
tendency to go straight (parameter ∆V). In our case it could be desirable
to have an agent that turns more, and that instead of going straight into
into corridors has the tendency to turn and enter in the different rooms. So
we have changed the fitness function to give less importance to ∆V compare
to the parameter speed V and the distance to the walls i:

φ′ = (V)(1− ϕ(∆V, k))(1− i) (6.4)

29

Figure 6.1: Typical behavior of a reactive agent: (Left) Micro-cycle
(Right)Wall following and macro-cycles

With V , ∆V and i defined as in the normal obstacle avoidance fitness φ and
ϕ(x, k) = x+(k−1)

k .
Test with three different values of k: 5,10 and 15 have been done. Once
again the architecture was a simple feedforward neural network with 16
input neurons (Koala’s sensors), 4 hidden neurons and 2 output neuron.
Here are the results in function of the value of k (k=0 is the same agent as
the one presented in chapter 6.2).
The percent of tests in which the agent has respectively explored all the en-
vironment, crashed or explored only one part of the environment is reported
in the next table. The results are based on 20 tests for each value of k and
each Environments, the value is the average result for Environment 1, 2 and
3.

k = 0 k = 5 k = 10 k = 15
completely visited 0 6 4 0

crash 0 0 0 5
partially visited 100 94 96 95

We could understand these results by comparing the path of the best indi-
viduals of the best seed for each experiment. The main difference is about
the angle between the initial direction and final direction when the agent
avoids a wall. The more k is high the more this angle is near of 180◦, as we
could see on figure 6.2. This ability to change direction could be more or
less benefic. In fact, as we have seen results shows that for k = 5 the rate of
complete exploration raise. The main reason is that, instead of doing a wall
following (see k = 0) the new agent changes it’s direction and can sometimes
enter in the internal room, as suggested in the figure. In the other hand what

30

Figure 6.2: Tests of agents evolved with different values of k for the fitness
function using φ′. k = 0 is the normal obstacle avoidance fitness. There
is an inverse correlation between the value of k and the angle of the agent
when it avoids an obstacle: a1 > a2 > a3 > a4

makes agents with high values of k inefficient, is the fact that, when they
avoid an obstacle, they turn completely (often 180◦) and by doing so enter
in a cycle (they actually go up and down in the right corridor). A good
value of k seems to be between 5 and 10, but the optimum value depends
a lot of the considerate environment, and we are not interested by finding
it. The only important result is that, here we have raising of the success
rate for the exploration without a raising of crash rate. Even if in the best
case (k = 5) the rate of entire exploration is very low, the introduction of
the constant k stays interesting if it’s coupled with other methods. For next
experiments when we have to use the obstacle avoidance fitness function, we
chose φ′ (see equation 6.4) with k ' 5 instead of the normal φ (see equation
6.2).

6.3 Stochastic Neuron

We have seen that the problem with reactive agents was that they give
always the same response(motor action) to the same stimulus (sensor input),
and we have also seen that in general, there are positions in the environment
that require more than one action (see first aliasing problem in section 4)
to perform an acceptable exploration.
In this section we will introduce a way to solve this problem by introducing
more variability in the agent’s behavior, i.e. having agents that don’t follow
always the same path. The problem that will appear is: if the behavior is
too variable the agent will often crash and a lower level of variability will
not be enough to explore all kinds of environments. In addition, even if we
find an agent who explores an environment integrally , the strategy will be
sub-optimal in term of time.

31

Figure 6.3: A fully connected neural network with a stochastic neuron;
Input: 16 normalized infrared sensor of the Koala plus one stochastic neuron;
4 hidden neurons; Output: 2 neurons that control the left and right motor
controllers

”A man of genius does’t make mistakes,
his mistakes are deliberate and are

gates of discovery”
Philippe Sollers2

The idea, to develop an agent who has a more variable behavior was to
introduce a stochastic neuron. The architecture was as shown in figure 6.3:
we had the 16 infrared sensors of the Koala as input, and in addition we
had one stochastic neuron with random values. We have implemented the
stochastic neuron as follows:

Stochastic neuron[t] = k∗random value[t]+(1−k)∗random value[t-1]; 0 ≤ k ≤ 1
(6.5)

The parameter k, gives somehow the level of randomness of the stochastic
neuron, a value near to 1 gives a very variable neuron (and as we will see also
a very variable behavior); contrary k near to 0 gives a neuron with values
around 0.5 and few variability and k = 0 gives a normal reactive agent as
those seen in section 6.2.
The statistics of the experiments with different values of k (k = 1.0, 0.75, 0.5, 0.25, 0.0)
and different sort of environment (Environment 1,2 and 3) are reported on
figure 6.4.

2Gisèle Freud, Philippe Sollers, Trois jours avec James Joyce, 1982 Denoël, Paris

32

Figure 6.4: Agents with a stochastic neuron, tested on Environments 1,2
and 3; X axis: value of the constant k (k = 0 corresponds to the reactive
agent) Y axis: type of exploration, Z axis: percentage of experiment (in
basis to 20 test for each type of experiment)

An accurate analysis of the statistics reveals that:

- The best agents are able, at most, to visit an environment integrally,
in a third of case.

- The rate of acceptable tests and the rate of crash is correlated (corre-
lation for the three environment = 0.59). That means that if we look
for agents able to visit all the rooms by adding some kind of variability
on its behavior, we augment its probability to crash

- A ”good” value of k depends of the environment. For example k = 0.75
gives the best results for the first environment (33% of case it visits
the environment integrally) but reveals to be inefficient in the third
environment (100% of case it visits only 3

4 of the environment).

- The rate of crash and the rate of partial exploration is negatively
correlated (correlation for the three environment = −0.91). Those
who partially visit the environment are those who, by doing a wall
following, miss the internal room. Thus it seems that if one follows
walls it’ is easier for it to avoid to crash.

First we will try to understand how the stochastic neuron with different
values of k is used by the agents.

33

Figure 6.5: The 5 agents with values of k = 0, 0.25, 0.5, 0.75 and 1.0, the
agent are tested for 5000 life steps on an ambient where walls are not visible
from the starting point; (Up Right Squares) the variation of the center of
the circular path that the agent is doing

The stochastic neuron gives some kind of noisy behavior to the agent (as
could be seen of figure 6.6 Right), but its contribution becomes really im-
portant when the value of the infrared sensors are low, i.e when the agent is
not near a wall and has few information coming from the environment. To
illustrate this fact we test the five different agents in an ambient where the
walls are not visible (see figure 6.5).
It is interesting to see that the space covered by the agents (in 5000 time
steps) is proportional to their value of k. The simple reactive agent, turns
always in exactly the same way, when the other agents have tendency to
change the path. Notice that what we mean by ”covered space” has nothing
to do with the diameter of the circle, but with the variation of the center of
this circle, as shown into the right up squares.

Now we can try to explain the difference of success rate in function of envi-
ronment and the value of k by analyzing an example of test with k = 0.75.
We will also explain why this agent shows good abilities to explore Environ-
ment 1, but not Environment 3.
Let consider the best individual of the experiment with k = 0.75 and a
simple reactive agent on Environment 1. When the simple reactive agent is
in a macro-cycle, it always follows exactly the same path, whereas a reactive

34

robot with a stochastic neuron has a more changing path even when it is in
a cycle as shown in figure 6.6(Left).
If we compare the paths of the two different agents (figure 6.6(Right)), we
could notice several differences. The most interesting is the third one (figure
6.6 (Right bottom)), that shows how the agent with stochastic neuron is able
to visit once the left room and another time the right room.
The difference is about how the agent enters in the critical zone where it has
the choice between more then one way. In Environment 1, in this particular
position, the values of the other sensor inputs are near to 0, as there is no
visible wall on right or left. The simple reactive agent turns always with
the same angle (as we have seen on figure 6.5), even if we let the reactive
agent live a long time(example 20’000 life step when it does a cycle in 4’000
life steps), nothing changes, it visits only three rooms, by doing exactly the
same cycles. Instead the agent with the stochastic neuron, when confronted
with the critical zone, has variable behavior, the angle of turning could be
different from one to another passage.
Now that we have explained why the agent with stochastic neuron has a
higher success rate than the normal reactive agent, we have to understand
why its success rate is low when tested on Environment 3 (see figure 6.7)
The problem here is that when the agent is in the critical zone (bottom
right) the values of the other inputs are not low, so the stochastic neuron
cannot be used to visit both directions.
Notice also that in the corridors the agent’s path is not perfectly rectilinear,
because of the noisy behavior introduced by the stochastic neuron. This
fact explains also why the agent with k = 1, is sometimes able to explore
Environment 3. This agent has an even more noisy path into the corridors,
and so, sometimes, when it arrives in the critical zone, it is far enough from
the right wall to use the stochastic neuron and enter in the internal room.
On the other hand, it is because of its very noisy behavior that its crash
rate is so high.

This analysis could appear tiresome and very specific for one particular prob-
lem to the reader, but actually it’s important to understand that introducing
variability we are in confronted to a dilemma, if the neuron is completely
random we have agent able to visit at least one time integrally any one of
the three environment , but at same time we see the probability of crashing
arise.
Instead a stochastic neuron with a lower level of random (example k =
0.75, 0.5) is useful for exploring a particular kind of environment: those in
which the stochastic neurons which could be used in the critical zones. In
both cases, it is not a satisfying strategy.

35

Figure 6.6: (Left) Path of a reactive agent with a stochastic neuron; (Right)
Comparison between a simple reactive agent and a reactive agent with a
stochastic neuron; bottom how the second model of agent manages to explore
the internal room

Figure 6.7: Path of a reactive agent with a stochastic neuron (k=0.75),
tested on Environment 3, the variability of the agent’s behavior is not enough
to enter into the internal room.

36

Figure 6.8: The Koala Robot and it’s 16 infrared sensors, using odometry
the robot calculates it’s actual position that it a) Memorizes in the queue
b) Compares with it’s position at time− n and injects it as a new input

6.4 External memory encoding the previous robot
position

We introduce here for the first time, an egocentric information about the
environment. This will be done by adding a queue3 that retains the robots’
relative position.
The implementation is schematized on figure 6.8. At every life step the
position of the agent is registered in a queue of dimension n, and the dif-
ference between the actual position and the position at time t − n (i.e the
displacement) is calculated as :

Displacement [t0] = normalized(|x[t0]−x[t0−n]|+ |y[t0]− y[t0−n]|) (6.6)

The input value is given by 1-Displacement. The rest of the neural architec-
ture (not shown), is as for the precedent experiments, i.e. 4 hidden neurons
and two output neurons.
The idea was to help the agent to get out of the cycles, by adding an input
that had a value near of 1 if it had already been in the same position before
(see figure 6.9). The most important parameter here is obviously n, that
gives both the memory length and the determined past life step that is used
to calculate the Relative Position input. We will see that a serious limitation

3a First In First Out (FIFO) list

37

Figure 6.9: Simulated Robot and the corresponding activation for the input
using the the difference between actual and time− n position, here n = 50
life steps, B: the value of the input is near of 0 when the agent returns in a
point where it was 50 time steps before

of this method resides in the fact that a good choice of n depends highly of
the environment’s shape and dimensions. If the agent is in a cycle, but n <
time needed for cover the cycle, the Position Input is not anymore useful.

It’s important to notice that this method is not the same as the Dead Reck-
oning that implies the integration of all paths. Here we have only an in-
formation about a relative position in a particular instant in past. The
cumulation of error is prevented by the fact that we calculate the position
compare to a moving reference and not to an absolute point. Metaphorically
said it is a Ariadne’s thread with a finite length n dragging behind Theseus;
one could notice that he is doing a cycle if the length of the cycle is shorter
than the length of the thread.
This method could be easily used even with the Koala robot by using odom-
etry and a magnetic compass (see section 2.3). The error rate is more or
less always the same and we can control it with the value of n.
We will not present all the experiments with all different values of n that have
been tested, instead will analyze two different ways to use this egocentric
information: using a single value of n and one input neuron, or using a
couple of value of n (typically one very high the other very low) and two
corresponding neurons.
First of all, let consider an experiment with n = 400, i.e. with a memory that
registers the 400 last positions of the the agent. In our case 400 life steps is a
low quantity of memory. In fact, as it has been said, the entire environment
could be explored a least in 4000 life steps. To understand how this new
input changes the agent’s action, we test it on an empty environment (figure
6.10 Left). The interest of the input appears clearly: when the agent begins
to turn an makes a cycle, the value of the new input raise, and makes change

38

Figure 6.10: An agent with an input using egocentric information, with
n = 400, Up (Left) the agent tested on a empty environment, (Center) The
agent is able to get out from little cycles (Right) The agent is not able to
get out of macro cycles; (Down) The corresponding values of the the input
using the egocentric information

the agent’s path. Then, as the agent is going in a new direction, and doesn’t
make any cycle anymore, the value of the input became null and the agent
re-begins to cycle.
Now lets consider two cyclic paths of the agent (figure 6.10 Center and
Right). The first one is smaller that what an agent could traverse in 400
time steps, when the second one is longer. Thus in second case the value of
the neuron stays near to 0.
One could argue that an easy way to solve the problem is to have the biggest
memory possible; for example if the environment needs 5000 life steps to be
explored integrally, we could add have a memory of 5000 life steps. This
”solution” should prevent any possible cycle. However as we know that the
calculus of the position is not very precise we prefer to limit the cumulation
of error. Thus the maximum value of n that we consider is n = 2000, during
which, the agent could traverse approximatively 15 meters (the error will be
±15cm, see section 2.3).

The other solution explored is based on two neurons using the egocentric
information, one with a low value of n (n1 = 300) and the other with a
high value of n (n2 = 2000). The principal interest of this solution is that
the vector of input, given by this two new inputs, is very variable. The
agent has seldom two times exactly the same values from input with n1 and
input with n2 as entry. This variability of input gives results near of what

we have seen with the stochastic neuron, the vector
[input with n = n1

input with n = n2

]

has stochastic values. We illustrated this affirmation with figure 6.11.

39

Figure 6.11: An agent with two inputs using egocentric information, with
n1 = 300 and n2 = 2000,(Left) the agent tested on a empty environment
shows a chaotic behavior, (Center) The agent has a very variable behavior,
(Right) When the cycles is to long and the path traverse a very extended
area of the environment, the variability disappears

The difference with the agent with the stochastic neuron is that, here the
”random” behavior appears only if the agent stays in the same area of the
environment. Instead if the agent is not cycling (or if it’s cycles is longer
than n2) and if the it traverse a very extended area of the environment the
random behavior disappears completely.
What makes this solution more interesting than the one using only one neu-
ron, is that here even if the period of the cycles is longer that the ”memory”
of the agent, it’s enough to have a cycles that is not extended in the en-
vironment to be able to go out the cycle. And what makes the method
interesting compare to the solution with the stochastic neuron is that the
random behavior disappear if the agent is correctly exploring the Environ-
ment, for example if the agent is going straight on in a long corridor, it’s
path will be rectilinear. This fact lowers also it’s probability to crash as we
could see on the next tabular.
The two type of agent (left part for the agent using one external memory,
right part for agents using two external memories) tested on Environments
1, 2 and 3 (average of 20 experiments for each type of agent and each type
of environment)

Completely visited 15 40
Crash 10 20

Partially visited 75 40

40

Figure 6.12: Modular architecture, with two pre-designed modules

6.5 Modular architectures

Till now we have seen specific type of agents that were sometimes able to
visit some kind of environment but didn’t use general strategy to explore all
environments.
Instead a very general way to explore could be the use of an accurate se-
quence of Right and Left Wall Following.
For this issue we will introduce a modular architecture. In addition we will
see a modelling for exploration in term of Right and Left wall following,
finally we will try to define what is an accurate sequence. We will call a
WF-strategy one of the two wall following (exclusively Right or Left). Thus
exploration strategy will be a sequence of alternate WF-strategies.

A modular architecture can be used when we can subdivide a particular task
in subtasks that are may be not compatible. This kind of architecture has
been introduced and used successfully by S.Nolfi [24, 25].
The idea was to evolve two different neural subnetwork: one specialized for
the left wall following, another for the Right wall following and a modula
that chooses at each life step one of this two subnetworks. As shown on figure
6.12 the modular architecture is a duplicated neural network that permits
to separately evolve two tasks. The choice of one or the other subnetwork
is what we will call the Sequence of Right and Left Wall following.

41

6.5.1 Redefinition of exploration in term of Right and Left
Wall following

We have given a definition of an environment as a graph, with nodes repre-
senting the rooms and edges representing doors (see chapter 4). However, if
we want to define a strategy based on wall following, we should redefine our
graph problem. A WF-Graph (Wall following Graph) is an undirect Graph
G(E, V,Ψ) where a node represents parts of the environment that could be
visited with one particular wall following (exclusively Right or Left), and
edges the position where the agent could change from one WF-strategy to
the other. We give here this new formalization.
Any environment En could be expressed as a set of Cp, with Cp a set of
points connected by segments.

(x, y) ∈ Cpj ⇐⇒ ∃(xi, yi)[(xi, yi) ∈ Cpj and (xi, yi), (x, y) are connected
with a segment]

(6.7)

Cpj ⊂ En ⇐⇒ ∀Cpi ⊂ En, Cpi

⋂
Cpj = ∅ (6.8)

Let’s consider the Environment 4 (figure 6.13), according to our definition
6.7 this environment has three sets of connected points, A, B and C. Now,
an agent positioned near of one of this different set of point, for example A,
will visit (or pass near of) all the points of A by doing exclusively a Left
(respectively Right) Wall Following. If after certain time the agent changes
its strategy and uses a Right (respectively Left) Wall Following, it will visit
B, and so on by changing ones again it’s strategy it will visit C.

We informally define with V Cpi the set of all points of the Environment
that could be visited if one follows the walls defined by Cpi. In fact as we
can see on figure 6.13 an agent who follows for example A do not cross the
set of points of A but V A.

Def 1 V Cpi (vicinity) the set of all points of an Environment En that could
be visited if one follows the walls defined by the set of connected points Cpi ⊂
En

We can constat that there are particular position where the robot can change
from one WF-strategy to another. In fact if we consider ones again the figure
6.13, if the agent is in the right part of the environment and is doing a Right
wall following it cannot change its strategy to a Left Wall Following because
there is no visible wall on it’s Left (as the right wall of C is not visible for
the Koala’s sensors). So there is no way to go directly from A to B.

42

We introduce here the definition of a set of points that connects two different
sets of connected Points. The set of connection points SCP (Ci, Cj) is defined
as:

(x, y) ∈ SCP (Cpi, Cpj) ⇐⇒ ∃(xi, yi) ∈ Cpi, ∃(xj , yj) ∈ Cpj

[Ed((x, y), (xi, yi)) < Ms and Ed((x, y), (xj , yj)) < Ms]

(6.9)

with Ed the Euclidean distance defined as ((x, y), (xi, yi)) =
√

(x− x2
i) + (y − y2

i)
and Ms the maximum range of the Koala’s sensors (i.e ∼ 20 cm).

Using the V Cp notation, equation 6.9 is equivalent to :

SCP (Cpi, Cpj) = V Cpi ∩ V Cpj (6.10)

We introduce the relation is Robot Connected (Rc) as following:
Two sets of connected points Cpi and Cpj are Robot Connected if there is
at least one position in the environment where the robot can perceive at
least one element of Cpi and one element of Cpj .

Rc(Cpi, Cpj) ⇐⇒ Cpi 6= Cpj and SCP (Cpi, Cpj) 6= ∅ (6.11)

Now we can formulate WF-graph as:

Def 2 The WF-graph G(E, V, Ψ) of an Environment En is an undirect
graph where: E is the set of Cp ⊂ En, and there is an edge between two
nodes CpiCpj if Rc(Cpi, Cpj).

We have to redefine the set of all visitable environment E′
V in term of wall

following as:

E ⊂ E′
V ⇐⇒ ∀Cpi ∈ E, ∃Cpj ∈ E[Cpi 6= Cpj and Rc(Cpi, Cpj)] (6.12)

Using WF-graph, that means that an environment is visitable if an only if
its WF-graph is connected.
Notice that E′

V ⊂ EV : the set of all environment that have been considerate
at the very beginning of our research (see section 4). The set of environment
that we don’t consider anymore ¬E′

V

⋂
EV are environments that have in-

ternal rooms not visible for the Koala’s sensors. Theoretically this set could
be reduced as much as we want by augmenting the Robot’s sensors range
(by adding other type of sensors for example).
Returning to our example (figure 6.13), we have 3 set of Cp, and we have
Rc(A,B) and Rc(B, C); with equation 6.12 we obtain that Environment 4

43

Figure 6.13: (Right) Environment 4: three set of connected points
A,BandC, bold arrow: Right wall following, light arrow: Left wall following
(Left) Corresponding WF-Graph

is a visitable environment(we should be able to visit it integrally by doing a
sequence of Right and Left wall following). Reasoning with graphs we could
have the same conclusion as WF-Graph of Environment 4 is connected.

The main problem here will be to define this sequence of changing strategy.
We will show that even a random strategy (arbitrary changing of strategy
on each life step) will give us a acceptable exploration, but obviously this
method will be suboptimal in term of time and will not be satisfying.

6.5.2 Evolving a good wall following strategy

Thus the first part was to find a good fitness function and again a good
environment, that could give us agents that follow for example the wall on
right without regard to what is on it’s left, i.e even if there is a wall very
near on left, it will look for the wall on right.
As the wall following task is not very complicated in term of sensory motor
coordination, the fitness, as well as the environment should be as simple as
possible. My first attempts were with complicated environment (see figure
6.14 (Left)), or even changing environment (i.e. at each epoch the environ-
ment configuration changed). The fitness function was roughly implemented
as follows: we defined an ordered list of big zone (numerated on figure 6.14),
if an agent crossed two zone in the incremental direction, a good score S
was given

44

In addition little zones were defined inside the big zones and if the agent
crossed this zone in the good direction, a score 2 ∗ S was given. The idea
was to evolve agents that do a Left wall following, the agent had to follow
the ”C” form in the center and not follow the other walls. The little zone
were the ideal position to the wall that we hoped to have, the big zone were
defined to avoid the bootstrap problem (i.e. if we had only the little round
zone the task could have been to difficult, and the fitness of all individuals
of first generation could be null, avoiding any possible evolution, (p.13 in
[12]). The evolved agents showed good abilities to follow the ”C” but were to
specific for this complicated environment, and tests with other environment
didn’t success, as they didn’t had ability follow the Left wall but a specific
shape.
At contrary, evolution with a very easy environment as defined on figure
6.14 (Right Up), gives much better solution. The fitness function was a
particular form of obstacle avoidance:

φ′′ = (V)(1−
√

∆V)(1− λ); (6.13)

With V and ∆V given as in equation 6.2 and λ defined as:

λ =

1.0, δ(walls,agent) = 300;
linar function f, 300 < δ(walls,agent)< 700;
0.5, δ(walls,agent) = 700;
0.1, else.

(6.14)

Where δ gives the distance to the nearest wall.

The agents were evolved for 4 epoch, and at each epoch a different round
zone was selected as start position. Their initial direction was set with
regard to the selected position, to have the agent in the right direction for
the corresponding wall following that we wanted to obtain.
It’s interesting to notice that the second implementation permit to have
agents able to manage with much more complicated environments (see figure
6.14 (Right Down)).

6.5.3 Evolve two separated Neural Networks

When a good strategy for an exclusive Right or Left wall following was
obtained, we evolved agents with two separated neural network: first one
evolved with Left wall following strategy and the second one with Right wall
following strategy.
The architecture was as the one shown in figure 6.12 and the fitness function
was φ′′. The evolution was done as follows: first we evolved the agent for
300 generation on the ambient shown in figure 6.15 (Left). Every individual
was evolved for 4000 life steps and 2 epochs. At the beginning of each epoch

45

Figure 6.14: (Left)Environment 5: a complicated environment, not adapted
for evolving wall following, round zones: if the agent cross these zone it has
a positive score; (Right Up) Environment 6: a more easy and adapted envi-
ronment, one round zone is randomly chosen as a start point at the begging
of each epoch; (Right Down)Environment 7: Test on a more complicated
environment success

46

Figure 6.15: Environment 8, arrows gives the initial direction of the agent
at the beginning of each epoch, big rounds are ”holes”, little rounds are
obstacles; (Left) Environment for evolving a Left wall following (Right) En-
vironment for evolving a Right wall following

the agent was positioned in the bottom right part of the environment and
turned toward up. The big round on it’s right is a ”hole”, the agent cannot
perceive it but if it goes on the round, it crash. This was done to force the
agent to make Left wall following. The little rounds were added to teach the
agent to continue following the wall even it there were obstacles on right.
Then, when a good population was found, we re-evolve it on the second
Environment (figure 6.15 (Right)). Here we evolve agents able to perform
the Right wall following. During the re-evolution, mutation was done only on
the second modula. In fact without this precaution, the agents could loose
their ability to perform correctly the first task after the second evolution.

6.5.4 Define a sequence of Left and Right following

Here we will show first of all that the strategy is acceptable for any envi-
ronment subset of EV (set of all visitable environment defined in equation
6.12), if we use a random sequence of alternated WF-strategy. However, to
render this strategy satisfying, we should define a good sequence.

Random sequence

We will consider again Environment 4. First we discretize our environment
in zone that the agent crosses in n life step (see grey and black rounds in
figure 6.16) and that we will call n-life zone, and assume that the agent
could change WF-strategy every n-life zone, i.e one of this two possibility is
selected randomly: continuing with the same WF-Strategy or change to the
other WF-strategy.

47

Figure 6.16: Environment 4, subdivision in zone that could be crossed in
n-life steps: round gray zones; round black zones: border zones between two
sub-zones of the environment.

We can divide our environment in a set of sub-zone, that are set of n-life
zones:

Def 3

AB = SCP (A,B)

A′ = V A−AB

BC = SCP (B, C)

B′ = V B −BC

C ′ = V C −BC

with SCp(Cpi, Cpj) a set of connection points between Cpi, and Cpj as de-
fined in equation 6.10, V Cpi the set of vicinity points as defined in definition
1 and ”−” the normal substraction operator as defined by theory of set.
The border points Bp (in black in figure 6.16) are n-life zones between two
sub-zones, for example the border point 1 is between A′ and AB.
Our exploration graph GE(E, V, Ψ) (see figure 6.19) will be defined as fol-
lows: nodes are border points and edge between two nodes means that there
is a direct path between the corresponding border points, we give also the
probability of chousing such a path (considering that at each n-life zone the
agent chooses randomly between continuing it’s WF-strategy or changes to
the other) and it’s length.
The acceptability of the exploration strategy is insured by showing that
GE is strongly connected, i.e. by finding a circuit that visits all node.
1 → 3 → 4 → 6 → 5 → 2 → 1 could be a possible circuit.
But the average time needed to explore an Environment cannot be calcu-
lated, as an agent could cycle indefinitely, for example 3 → 4 → 5 → 3.

48

Figure 6.17: Direct Exploration Graph of Environment 4; nodes: border
zone; edge between nodes a and b: path between a and b, label on edges:
probability to chouse the corresponding path / length of the path.

In annex (see B)we give the demonstration that, for any Environment in-
clude in the set of visitable Environments E′

V , a random sequence of WF-
strategy is an acceptable exploration strategy (by showing that the explo-
ration Graph of an environment En ⊂ E′

v i strongly connected) but not a
satisfying one (by showing that an average time for visiting all rooms cannot
by defined).

Fixed Time sequence

Another possibility could be to have a fixed time sequence. The idea was
simply to change WF-strategy every fixed m life steps. As we will see this
methods could give very good results and the exploration could be performed
very quickly sometimes, but the problem is that, at contrary to the random
sequence, here the acceptability is not insured.

For example, consider a strategy of fixed time sequence of alternated WF-
strategies with m = 13 × n life steps on Environment 4 (see figure 6.16),
with n the time needed to cross a gray (or a black) zone (the agent will
change WF-strategy after having crossed 13 round zones).
If the agent begins on the the border zone 1 (black round), and do a Right
wall following, it will continue till arriving in the gray round positioned on
the Left of the border zone 2. Here it will change it’s WF-strategy and will
continue forward by following the Left wall, till arriving back to the border
zone 1 where it will change again it WF-strategy, and so on it will cycle

49

indefinitely, and will never visit internal rooms B and C.

6.5.5 Results and critics

In this section we will present the results for the two different type of se-
quence of WF-strategy that we have seen. The best individuals of the best
seed for both method have been tested on Environment 1,2,3. On figure 6.18
we show the average percent of complete exploration compared to partial
exploration, in 20’000 life steps.
The table on right gives the average time (in thousand life steps) for an
integral exploration, and the square root of the variance. The test confirms
what we have presented theoretically in the last section:

- With the fixed time sequence the probability to cycle is much higher.
As we could see the rate of total exploration is much lower, particulary
for low values of m. The problem is, as we explained, that the agent
could indefinitely cycle. Instead using a random sequence, there is
always a possibility to explore integrally.

- However, for those that don’t cycle, the performance are better than
for the random sequence. The average time for exploration is much
lower.

- The square root of variance of the the random sequence is very high.
That confirms what we have theoretically shown, average time for the
random sequence is not insured.

- The value of n is negatively correlated with the success rate, for the
random sequence. That could be understood as follows. If the gray
zone (that are defined by the value of n) on figure 6.13 are very big we
could have the same problem as for the fixed time sequence, i.e. the
agent could indefinitely cycle.

To illustrated the relevance of the method using a random sequence, we give
here an example of a a successful test for each Environment. As we could see
agents using this method shows good ability to explore even complex envi-
ronment. The only problem that we haven’t resolved yet is that sometimes
the agent doesn’t change wall when it changes WF-strategy, but simply turn
and continue in in the other direction. To avoid this problem, that decrease
performance in term of time, we have tried serval possible method: revolv-
ing agents in a very big environment, to force them to go straight when the
sensory inputs are low or use a third modula that is activate between two
WF-strategy and that is evolved for an obstacle avoidance, none succussed
yet.
In addition the crash rate is for the moment high: ∼ 15% indifferently for
the two methods and the different ambient. We haven’t include it in the

50

Figure 6.18: (Left) Average percent of complete and partial exploration in
20’000 life steps on Environments 1,2 and 3 with the two types of sequences
of WF-strategy proposed, (Right) Average and the square root of the time
(in thousand life steps) for tests that have succussed

51

Figure 6.19: Agent using a random sequence of WF-strategies, n = 1000 life
steps, form top Left to Right: Environment 1,2 and 3, down: Environment
4

statistics because it has nothing to do with the to types of strategy (nor
with the value of m), it is simply a consequence of a problem that occurs
in the precise moment in which the agent changes from one WF-strategy to
the other: if the agent is in a corner, it crashes.

52

Chapter 7

Conclusion

Our research begun with the the human target following task, and we realize
that if a Robot had to follow a human, it had also to manage exploration
when it loses its target.

We will discuss here our results in basis of what were our initial statements:
Defining a robust strategy, using evolutionary robotics methods, to perform
the exploration task with (Hybrid) reactive agents with two constraints: Space
(The robot should be able to explore every part of the environment) and Time
(It has to do it as fast as possible, avoiding as much as possible cycles).

Looking for particularities of realistic environment, we discovered the limi-
tation of the simple reactive agents, and showed that they were unable to
explore environments that comport internal rooms (that is correlated with
the aliasing problem).
Thus we have introduced three hybrid reactive agents: A reactive agent with
a stochastic neuron, A reactive agent with an external memory encoding its
precedent actions, An agent with a modular architecture.
The conclusions we made are the following:

a A possibility to explore, and go out of cycles is to add some randomness
on the agent’s behavior. This method confronted us with a dilemma: if
the behavior was very random, the agent was sometimes able to explore
correctly but on the other hand its probability to crash increased.
Istead, a lower level of randomes did’n’t permit reactive agents to
explore and go out of cycles.

b Another possibility was to add an information about the environment.
We used an external memory coding the previous positions of the
agent. Here the problem was the length of the memory, short mem-
omry prevented only few cycles, and long memory introduced errors
because of the imprecise calculus of the postion. We have presented

53

also another experiment using two external memories with different
length and we found agents which behavior was similar to agents with
stochastic neuron. In fact by having two neurons using two external
memories we augmented the variability of the agent in a intelligent
way: the behavior became random when the agent returned in a place
where it had been before or remained in the same area of the environ-
ment.

c Finally we used a duplicated feedforward architecture with a modula
that chose at every life step which network was used. The idea here
was to traduce the indoor exploration as a sequence of Left and Right
wall following and evolve a distinct neural network for each task. The
most challenging problem was to define how the modula had to choose
the networks to be used. We have given in this project two very
easy solution that still give good results: the modula chose randomly
every m life step one of the two networks, or the two networks were
alternatively selected every m life steps.

Our constraints were space and time. With all this new hybrid reactive agent
we have considerably augmented the performence in term of space: the new
agent are in general able to explore more parts of the environment than
the simple reactive. The most interesting was the one using the modular
architecture with a rapid random sequence of Right and Left Wall Following.
However the time needed to explore in this case wasn’t satisfying the agent
could do a lot of cycles before exploring all the environment.

Future Research

We obtained the most interesting results by using an agent with a modular
architecture. One of our limitation was the high rate of crash. We think
that the problem is not inherent to the method, we should be able to avoid
the crash, changing may be the environment on which the agents are evolved
to perform the wall following. Our problem was that the agent learned how
to follow wall on one side but didn’t learn to avoid the wall on the other side.

Another possible future work could be to introduce internal states. I think
that cupelling the modular method based on a sequence of Left and Right
wall following with a pro-active architecture able to perform the self-localization
task could give interesting results. The self-localization ability could be used
to choose the right moment to change from one network to the other.

54

Bibliography

[1] S. Nolfi.(2000) Evorobot 1.1 user manual.
http://gral.ip.rm.cnr.it/evorobot/simulator.html.

[2] K-Team S.A. Kephera robot(1998). Koala Version1.1 User manual.
http://www.k-team.com.

[3] Miglino O., Lund H. and Nolfi S.(1995). Evolving mobile robots in
simualting and real environments, Artificial Life, 2:417-434.

[4] Searle J.(1987). Minds and Brains without Programs , C. Blakemore
and S. Greenfield (eds.), Mindwaves (Oxford: Blackwell)

[5] Varela F.J., Rosch E., and Thompson E. (1991). The Embodied
Mind: Cognitive Science and Human Experience, Cambridge, MA: MIT
Press/Bradford Books.

[6] Cressant A.(1999) Étude in vivo des cellules de lieu, impliquées dans la
mémoire spatiale, thesis repport

[7] Beer R.D. (1995). A dynamical systems perspective on agent-
environment interaction, Artificial Intelligence, 72:173-215.

[8] Benhamou S., Sauvé J.P. and Bovet, P. (1990). Spatial memory in large
scale movements: Efficiency and limitations of the egocentric coding
process. J. Theor. Biol., 145, 1-12.

[9] Olton D.S. (1982). Spatially organized behaviors of animal : behavioral
and neurological studies. In : Spatial abilities. Developmental and phys-
iological foundations, M. Potegal, Ed., New York : Academic Press,
335-360.

[10] Beer R.D.(2001) The dynamics of active categorical perception in an
evolved model agent. Behavioural and Brain Sciences, submitted.

[11] Braitenberg V. (1984). Vehicles: Experiments in Synthetic Psychology.
MIT Press, Cambridge, Massachussets.

55

[12] Nolfi S. & Floreano D. (2000). Evolutionary Robotics, The biology, In-
telligence, and Technology of Self- Organizing Machines, London, The
MIT Press/Bradford Books.

[13] Whitehead S.D. and Bellard D.H. (1991), Learing to perceive and act
by trial and error, Machine Learning, 7:45-83

[14] O’Keefe J. and Nadel L. (1978). The hippocampus as a cognitive map.
Oxford, U.K.: Oxford University Press. Workshop: Connectionist Rep-
resentation. London: Springer Verlag

[15] Floreano D. and Mondada F. (1994), Automatic creation of an au-
tonomus agent: genetic evolution of a neural-network driven robot, In
D.Cliff,P.Husbands,J.Meyer and S.W. Wilson(Eds.), From Animals to
Animats 3: Proceedings of Third Conference on Simulation of Adapta-
tive Behavior. Combrige, MA:MIT Press/Bradford Books.

[16] Bianco R., Caretti Massimiliano, Nolfi S.,(2003) Developing a Robot
able to Follow a Human Target in a Domestic Environment,RoboCare:
Proceedings of the First RoboCare Workshop. Rome: Edited by
Amedeo Cesta.

[17] Miglino O., Denaro D., Tascini G., Parisini D.,(1998) Detour Be-
havior in Evolving Robots: Are Internal Representations Neces-
sary?,EvoRobots 1998: 59-70

[18] Etienne A. S., Joris-Lambert S., Reverdin B. and Téroni E. (1993).
Learning to recalibrate the role of dead reckoning and visual cues in
spatial navigation. Anim. Learn. Behav., 21, 266-280.

[19] McNaughton B.L., Chen L.L. and Markus E.J. (1991). ”Dead reckon-
ing”, landmark learning, and the sense of direction: A neurophysiolog-
ical and computational hypothesis. J. Cog. Neurosci., 3, 190-202.

[20] Nolfi S.,(2002) Evolving Robots able to Self-localize in the Environment:
The Importance of Viewing Cognition as the Result of Processes Occur-
ring at Different Time Scales, Connection Science (14) 3:231-244.

[21] De Croon G.,(2004) Pro-active agents with recurrent neural controllers,
thesis repport

[22] Hill B., Best P. (1981) Effects of deafness and blindness on the spatial
correlates of hippocampal unit activity in the rat. Exp. Neurol., 74, 204-
217.

[23] Bahadori S., Iocchi L., Scozzafava L., (2003) People and Robot Lo-
calization and Tracking through a Fixed Stereo Vision System, Robo-
Care: Proceedings of the First RoboCare Workshop. Rome: Edited by
Amedeo Cesta.

56

[24] Nolfi S. (1997) Using emergent modularity to develop control system for
mobile robotsAdaptative Beahvior, 3-4:343-364.

[25] Nolfi S. (1997) Evolving not trivial behavior on autonomous robots: A
garbage collecting Robot Robotics and Autonomous System, 22:187-198.

[26] Caprari G., Arras K.O. and Siegwart R. (2001) Robot Navigation in
Centimeter Range Labyrinths. In Proceedings of the First International
Conference on Autonomous Minirobots for Research and Edutainment,
Heinz Nixdorf Institute, Paderborn, Germany.

[27] Johan Bos, Ewan Klein, and Tetsushi Oka. (2003) Meaningful conver-
sation with a mobile robot. In Proceedings of the 10th Conference of
the European Chapter of the Association for Computational Linguis-
tics (EACL10), pages 71-74, Budapest

[28] Hartmann G. and Wehner R. (1995). The ants path integration system:
a neural architecture. Biological cybernetics, 73:483-497

[29] Wehner R. Michel B. and Antonsen P. (1996). visual navigation in in-
sects: Coupling of egocentric and geocentric information, The journal
of experimental Biology, 199:129-140

[30] Kim D., Hallam J. C. T. (2000). Neural network approach to path in-
tegration for homing navigation. In Meyer J. A., Berthoz A., Floreano
D., Roitblat H., S. W. Wilson (Eds.), From Animals to Animats 6 (pp.
228-235). : MIT Press.

[31] Poucet B., Benhamou S. (1997). The neuropsychology of the spatial
cognition in the rat. Critic. Rev. Neurobiol., 1 (2&3), 101-120.

57

Thanks

This thesis would not have been realized in one human life without the
great help of my Supervisors Stefano Nolfi at the CNR in Rome and Dario
Floreano at the EPFL in Lausanne. I would like to thank those how have
helped me during these four month: R. Bianco, for his innumerable hint
and suggestions, Francesco Mondada for the precious help during my last
chaotic days of work, but also my colleague in CNR Gianluca Baldasarre,
Marco, Luca, Davide, Massimiliano and Emiliano.
Finally I would like to tanks Petra Krausz and Omar Shokur, for their help
during the difficult writing process.
A last special thanks for Romulus and Remus for having founded a city like
Rome.

58

Appendix A

Graphs

Direct and Undirect Graph

A finite Direct (respectively Undirect) Graph G = (V, E,Ψ) is the triplet
defined by:

- A finite set V (|V | = n) who’s elements are called nodes

- A finite set E (|E| = m) who’s elements are edges

- A function Ψ : E −→ V x V , called function of incidence who asso-
ciate for all edge e ∈ E an ordinate (respectively non ordinate) couple
(u(e), v(e)) of nodes, where the node u(e) is the called initial extrem-
ity of the edge e (respectively adjacent with e) and v(e) is the final
extremity of e (respectively adjacent with e).

Chain and Cycle

A chain is an alternated sequence of nodes and edges C = (u0, f1, u1, f2, u2, ..., uk−1, fk, uk)
where ∀i ui ∈ V , fi ∈ E and fi = {ui−1, ui}

- A cycle is chain where the two extremity are the same node.

- A chain (or a cycle) is elementary if any node appear only once.

- A chain (or a cycle) is elementary if any edge appear only once.

- An undirect Graph is is acyclic if it no simple cycles.

Path and circuit

A path is an alternated sequence of nodes and edges C = (u0, f1, u1, f2, u2, ..., uk−1, fk, uk)
where ∀i ui ∈ V and fi = (ui−1, ui) ∈ E.

- A circuit is a path where the two extremity are the same node.

- A direct graph is acyclic if it has no circuit.

59

Connectivity

Consider G = (V,E, ψ) an undirect graph, we define on V a relation of
connectivity C as:

viCvj =

{
vi = vj or
There is a chain between vi and vj

(A.1)

C is an equivalence relation: reflexive, symmetric and transitive. Classes of
equivalence of C define the connected components of G.

A graph G is connected ⇐⇒ G is composed by only one connected component
(A.2)

Strong Connectivity

Consider G = (V, E, ψ) an direct graph, we define on V a relation of strong
connectivity CF as:

viCFvj =

{
vi = vj or
There is a path between vi and vj , and a path between vj and vi.

(A.3)
CF is an equivalence relation: reflexive, symmetric and transitive. Classes
of equivalence of CF define the strong connected components of G.

A graph G is Strongly connected ⇐⇒
G is composed by only one strong connected component

(A.4)

60

Appendix B

Demonstration

Acceptable strategy

We give here the demonstration that a random sequence of Left and Right
wall following is an acceptable strategy of exploration, for any environment
in E′

V .
We have to show that: En ⊂ E′

V =⇒ the exploration graph GE(E, V, Ψ) is
strongly connected.

0. En ⊂ E′
V

Justification: Hypothesis

1. En = {Cp1 ∪ Cp2 ∪ ... ∪ Cpn} and ∀Cpi, Cpj : Cpi ∩ Cpj = ∅
J: 6.8

1.1 The set of points that could be visited by following elements of En,
V En = {V Cp1 ∪ V Cp2 ∪ ... ∪ V Cpn}
J: 1. and Def 1

2. ∀Cpi ∈ En,∃Cpj ∈ En[Cpi 6= Cpj and Rc(Cpi, Cpj)]
J: 0. and 6.12

3. ∀Cpi ∈ En,∃Cpj ∈ En[Cpi 6= Cpj and (SCP (Cpi, Cpj) 6= ∅)]
J: 2. and 6.11

4. SCP (Cpi, Cpj) ⊆ V Cpi

J: Definition 6.10

5. SCP (Cpi, Cpj) =⇒ V Cpi =
(
V Cpi∩¬SCP (Cpi, Cpj)

)
∪SCP (Cpi, Cpj)

J: 4. and theory of set’s property : A = (A ∩ ¬B) ∪B if B ⊆ A

61

6. V En =
{(

(V Cp1 ∩ ¬SCP (Cp1, Cpi)) ∪ SCP (Cp1, Cpi)
) ⋃ (

(V Cp2 ∩
¬SCP (Cp2, Cpj)) ∪ SCP (Cp2, Cpi)

) ⋃
. . .

⋃ (
(V Cpn ∩ ¬SCP (Cpn, Cpk)) ∪

SCP (Cpn, Cpk)
)}

J: 1. and 5.

7. V En =
{
C ′

1 ∪ C ′
2 ∪ . . . ∪ C ′

n ∪ C1Ci ∪ C2Cj ∪ . . . ∪ CnCk

}

J: Def 3

Now we can continue the reasoning with graphs: we know that the WF-
graph of En is connected (by definition of Environments ⊂ E′

V). In addition
with proposition 7. we have a traduction of the environment V En in sub-
zones. The border points that defines the nodes of the exploration graph are
simply the points between two sub-zones. We can show that the exploration
graph is strongly connected if the WF-graph is connected, by passing by an
intermediary graph using the sub-zones as shown on figure B.1.
We first traduce the undirect WF-Graph in a direct WF-Graph, by simply
duplicating any edge e in e′ and e′′. The non ordinate couple of nodes
(u(e),v(e)) associated to e will be traduced in two ordinates couples of nodes
((u(e), v(e)) and (v(e), u(e))) associated to e′ and e′′. The corresponding
direct graph is strongly connected.
If the directed WF-graph is strongly connected the sub-zone graph is strongly
connected, and by so the exploration graph is strongly connected, as the
nodes are the points between two sub zone and edges are path between two
border zone. The existence of the path is insured by the fact that we have
based the exploration graph on sub-zones graph, path between two border
nodes is the corresponding node of the sub-zone graph, for example the path
between the border node i and j is CpiCpj .

Thus the exploration graph, for the exploration strategy based on a random
sequence of Right and Left wall following is strongly connected.

Non satisfying strategy

We want to show here that an average time for exploring an environment
integrally by using a random sequence of Right and Left following is not
insured, and by so that the strategy is not satisfying.

The average time for exploring could be found by calculating the average
length of the Exploration graph (see figure 6.19).
The average length is the average of the Expected Value of all the possible
paths:

62

Figure B.1:

1
n

n∑

i=0

E(Pathi)

with n the number of possible path and E(pathi) given by:

E(pathi) =
1
m

m∑

j=0

λ(edgej)× P (edgej)

with m the number of edges for the corresponding path, λ(edge) and P (edge)
respectively the length and the probability of the the edge (as defined in our
exploration graph on figure 6.19).
As our graph is cyclic, the number of possible path n → ∞, and thus the
average length is undefined: the strategy is not satisfying.

63

