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Behavioural and brain imaging evidence has shown that seeing objects automatically 
evokes “affordances”, for example it tends to activate internal representations related to 
the execution of precision or power grips. In line with this evidence, Tucker and Ellis [1] 
found a compatibility effect between object size (small and large) and the kind of grip 
(precision and power) used to respond whether seen objects were artefacts or natural 
objects. This work presents a neural-network model that suggests an interpretation of 
these experiments in agreement with a recent theory on the general functions of prefrontal 
cortex. Prefrontal cortex is seen as a source of top-down bias in the competition for 
behavioural expression of multiple neural pathways carrying different information. The 
model successfully reproduces the experimental results on compatibility effects and 
shows how, although such a bias allows organisms to perform actions which differ from 
those suggested by objects’ affordances, these still exert their influence on behaviour as 
reflected by longer reaction times. 

1.   Introduction 

According to the traditional view of cognition, perception precedes action and is 
not influenced by it. Sensory stimuli determine how the world is represented in 
organisms’ nervous systems whereas processes underlying actions play only a 
role on how they intervene on the environment to modify it. This passive view 
of knowledge is challenged by recent behavioural [2], physiological [3] and 
brain imaging [4] evidence showing that organisms’ internal representations of 
the world depend on the actions with which they respond to sensory stimuli. 

In this perspective, the notion of affordance [5] has been given new 
relevance. An affordance is a quality of an object which is directly accessible to 
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an organism and suggests its possible interactions, uses and actions. Many 
works provide evidence in favour of an automatic activation of affordances 
during the observation of objects [6][7]. 

One way of studying how internal representations of objects and concepts 
rely upon motor information is to devise experimental tasks in which 
participants are shown objects and are asked to produce actions which are either 
in agreement (congruent trials) or in contrast (incongruent trials) with the 
actions typically associated with those objects (e.g., to grasp an object with the 
appropriate grip). As objects automatically elicit the activation of their related 
affordances, if participants find it more difficult (e.g. as revealed by longer 
reaction times) to act in incongruent trials than in congruent ones, one can infer 
that objects are at least in part represented in terms of potential actions. 

Tucker and Ellis [1] performed an experiment with this compatibility 
paradigm. Participants were asked to classify large and small objects into 
artefacts or natural categories by mimicking either a precision or a power grip 
while acting on a customised joystick. Importantly, object size was not relevant 
to the categorisation task. The authors found a compatibility effect between 
object size (large and small) and motor response (power and precision grip), 
namely shorter reaction times (RTs) in congruent trials than in incongruent 
ones. These results show that object knowledge relies not only on objects 
perceptual features but also on the actions that can be performed on them. 

This work presents a bio-mimetic neural-network model which allows 
interpreting the results of the aforementioned experiments on the basis of the 
integration of three general principles of brain functioning. The first regards the 
broad organization of brain cortex underlying visual processing into the “dorsal 
and ventral streams” [25]. The ventral stream is a neural pathway which carries 
information, among other things, about the identity of objects (“what”). The 
dorsal stream is a neural pathway which carries spatial information, for example 
about the shape and location of objects (“where/how”). This pathway 
implements the “affordances” of objects which can be learned during the first 
months of life, but also in the rest of life, on the basis of spontaneous 
environment explorations. The second principle concerns the general theory on 
the functions of prefrontal cortex (PFC) recently proposed by Miller and Cohen 
[8]. This theory views PFC as an important source of top-down biasing where 
different neural pathways carrying different types of information compete for 
expression in behaviour [8][24]. Finally, the third principle is about the use of 
neural networks based on the dynamic field approach [21] which allow 
accounting for reaction times on the basis of biologically plausible mechanisms. 
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In agreement with the computational neuroscience approach [9], the model 
is not only requested to reproduce behaviours observed in experiments but it is 
also constrained, at the level of the model overall architecture and functioning, 
by the known anatomy and physiology of brain structures underlying the 
behaviours investigated [10]. 

2.   The model 

2.1.   Simulated robotic set-up 

The model controls a simulated 3D artificial organism endowed with a visual 
system, a human-like 3-Segments/4-DOF arm, and a 21-Segments/19-DOF 
hand (Fig. 1a). The visual system is formed by a simulated “eye” (a 630×630 
pixel RGB camera with a 120° pan angle and a 120° tilt angle) mounted 25cm 
above the arm’s “shoulder” and leaning forward 10cm. The organism can see 
four different objects: two natural objects (orange and plum) and two artefacts 
(glass and nail) (Fig. 1b). For simplicity, the image that is sent to the system is 
caused only by the objects and not the hand: this amounts to assuming that the 
hand is ignored on the basis of a suitable non-explicitly-simulated attention 
mechanism (Fig. 1c; cf. [36]). The simulated arm and hand have the same 
parameters of the iCub robot (http://www.robotcub.org). The model controls 
only 2-DOF of the hand: one for the thumb, whose DOF are controlled together 
proportionally to commands, and one for the four same-sized fingers, controlled 
as a whole “virtual finger” [11] again proportionally to commands. Reaching is 
not simulated as not relevant for the experiment (DOF of the arm are kept still). 

 

eye vertical 
axis    arm 

 
Fig. 1. (a) The simulated arm, hand, and eye interacting with a simulated object (orange). (b) Hand 
grips for four objects: glass, orange, nail, and plum. (c) The corresponding activation of PC neurons. 
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The activation of the output map of the model (premotor cortex) encodes 
(see Sect. 2.2) the desired hand’s posture used to continuously feed the hand 
muscle models with “equilibrium points” [12]. Here, similarly to what is done in 
[13], single muscle models are simulated as simple Proportional Derivative 
controllers (PD) [14]. The equation of a PD muscle controller is as follows: 
 

                                                   qKqKT DP &−~=                                              (1) 
 

where T is the vector of muscles’ torques applied to the joints, Kp is a diagonal 
matrix with elements equal to 300, q~  the difference vector between the desired 
joints’ angular position and the current joints’ angular position, KD is a diagonal 
matrix with elements equal to 10, and  is the vector of current joints’ angular 
speed. The PDs’ action is integrated by a gravity compensation mechanism here 
implemented by simply ignoring the effects of gravity on the arm and hand.  

q&

2.2.   Architecture and functioning of neural network model 

The model is formed by nine 2D maps of 21×21 neurons each (Fig. 2). 
Visual cortex (V1) receives the visual pre-processed signal supplied by a 
simulated camera. Its neurons have an activation ranging in [0, 1] and encode 
the information about shape and colour of the foveated object obtained through 
three edge-detection Sobel filters [15]. Each filter is sensible to a particular 
component of the object’s colour (red, green or blue: this simulates the 
functioning of the three kinds of cones in the human retina). The model assumes 
that the eye always foveates the target, in line with the current neuroscientific 
literature suggesting that primates tend to foveate the target objects with which 
they interact and that their brain exploits gaze centred reference frames as much 
as possible for sensorimotor coordination (see [16] for a review). 

The neurons of parietal cortex (PC) encode the information about the object 
shape but not colour. To this purpose the neurons are activated with the average 
activation of the topologically correspondent RGB neurons of V1. This 
assumption is in accordance with recent neurophysiological data showing that 
the information about the object’s shape plays a crucial role during learning and 
use of affordances related to objects [17][18]. 

The neurons of premotor cortex (PMC) encode the output of the system in 
terms of desired hand fingers’ angles: these angles, mapped onto the 2 
dimensions of the map, are “read out” as a weighted average of the neurons’ 
position in the map with weights corresponding to the neurons’ activation 
(“population code hypothesis”, [19]). The PMC supports the selection of 
postures [20] on the basis of a dynamic competition between its leaky neurons 
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having lateral short-range excitatory connections and lateral long-range 
inhibitory connections [21]. When input signals from PC and PFC activate 
neurons of PMC, they tend to accumulate activation and form clusters (due to 
lateral excitatory connections) and, at the same time, to suppress other clusters 
(via lateral inhibitory connections). This dynamic process continues until a 
cluster succeeds in suppressing all other clusters, overcomes a threshold (set to 
0.75), and so triggers the hand movement based on the reading out of the map: 
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where s[j, t], u[j, t] and a[j, t] are respectively the total signal, the activation 
potential, and the activation of neuron j at t time, Δt (set to 0.01s) is the 
integration time step (100 steps = 1s), τ (set to 0.3s) is the relaxation time, f is an 
activation function equal to [tanh[.]]+. 
 

 
Fig. 2. Schema of the neural network model. V1 includes three RGB neural maps. Downstream V1, 
the model divides into two main neural pathways: the dorsal stream, implementing suitable 
sensorimotor transformations needed to perform action on the basis of perception, and the ventral 
stream, allowing a flexible control of behaviour due to the biasing effects of prefrontal cortex. 

 
The Inner component of the formula accounts for signals received from 

lateral PMC connections with hardwired connection weights w(PMC→PMC). These 
weights, excitatory for connections between neighbouring neurons and 
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inhibitory for connections between distant neurons, are set to fixed values on 
the basis of a Gaussian function and an inhibition term as follows: 
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where wij is the weight between two neurons i and j of the map, d[j, i] is the 
distance between the two neurons in the map “neural space” (where the measure 
unit is equal to 1 for two maximally-close neighbouring neurons), σ (set to 0.6) 
is the width of the Gaussian, and I (set to 0.9) is the inhibition term. 
The Dorsal stream component accounts for the signals received from PC 
neurons modulated by the connection weights w(PC→PMC); finally, the component 
Ventral stream accounts for the signals received from PFC neurons modulated 
by the connection weights w(PFC→PMC). The reaction time is the time required by 
at least one neuron of the winner cluster of PMC to reach the threshold [21]. 

The neurons of temporal cortex (TC) encode objects’ identity. In 
accordance with visual physiology findings [22], from lower (V1) to higher 
levels (TC) of the visual hierarchy receptive field size and stimulus selectivity of 
neurons increase, whereas visual topography is progressively lost. In the model, 
TC is a Kohonen self-organising map (SOM) which activates as follows [23]: 
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where aj is the activation of the TC neuron j,σ is the size of the clusters of 
active neurons equal to 0.55, w(V1→TC)j is the vector of connection weights from 
V1 to TC neuron j, and aV1 is the activation of V1 neurons. After learning, TC 
responds to different objects with different neuron clusters (see Sect. 2.3). 

The neurons of medial temporal cortex (MT) encode the category of actions 
to be performed on objects, namely either those required by a grasping task, as 
performed by participants in everyday life, or those required by the 
psychological experiment specified by language. To this purpose, neurons of 
MT are activated with two random patterns with 20 neurons set equal to one and 
the rest equal to zero. The neurons of prefrontal cortex (PFC) encode 
information about the current goal of action depending on both the task (MT) 
and object identity (TC). To this purpose, PFC neurons are activated according 
to the Kohonen activation function of Eq. (4). The use of a Kohonen network 
for both TC and PFC is based on studies which suggest that these cortical areas 
are involved in high-level visual processing and categorization [24][26][35]. 
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2.3.   Learning phases 

The organism undergoes two learning phases, one representing experience 
gathered in “normal life”, during which it learns to suitably grasp objects, and 
one representing the psychological experiment, during which the organism 
learns to trigger a power or precision grip on the basis of the objects’ category. 

Before learning, the connection weights of the model are set to values 
uniformly drawn in [0, 1]. Learning during life involves learning of the 
affordance-based behaviour within the dorsal stream [27] and learning of 
objects’ identity in TC [28]. To this purpose, the four objects are repeatedly 
presented to the system in repeated trials during which MT is always activated 
with the pattern corresponding to the grasping task. Note that during this “life 
learning” the PFC and MT are activated, notwithstanding this would not be 
required to execute actions via the dorsal pathway, to avoid biasing the results 
when the ecological and experimental conditions are compared. In each trial the 
hand is open and the object is located in close to the hand palm, V1 performs 
Sobel-based colour-dependent edge detection of the object image, and PC 
performs colour-independent edge detection (that is it encodes object’s shape) 
by averaging the activation of RGB neurons of V1 with same topography. 

The PC-PMC connection weights are developed using a Hebb covariance 
learning rule while the organism performs randomly-selected power/precision 
grip grasping actions in correspondence to the perceived object. This “motor 
babbling” [29][30] is a general learning process [37] for which the production 
of rather unstructured behaviours allow the formation of basic associations 
between sensory representations and motor representations [31]. Here, motor 
babbling is composed of these phases: (a) either a large (orange and glass both 
with a 7cm diameter) or small object (plum with a 2cm diameter or nail with a 
8mm diameter) is set close to the system’s hand palm; (b) the hand moves its 
fingers around the object with constant torques (this is done by issuing suitable 
desired angles to the PD muscle models; objects are kept fixed in space to avoid 
that they slip away from fingers during closure); (c) when the fingers have been 
closed on the object (see Fig. 1b), the Hebb covariance learning rule reported 
below [32] is used to update the all-to-all connection weights between PC and 
PMC neurons so as to form associations between the object’s perceived shape 
(PC) and the corresponding hand posture (PMC): 
 

                                 ( )( ) | |( )jimaxiijjji wwaaaaη=w −−−Δ                                         (5) 
 

where η is a learning rate (set to 10), wmax (set to 0.2) keeps the connection 
weights within a small range, aj is the activation of the PMC neuron j, ai is the 



 8 

activation of the PC neuron i, āj and āi are moving decaying averages of the 
neurons’ activations calculated as ā[t+Δt]=(1-ξ)ā[t]+ξa (ξ is set to 0.8). This 
rule strengthens the connections between each couple of neurons which have 
both an activation above or both an activation below their own average 
activation, and weakens their connections in other cases. Within the ventral 
pathway, during motor babbling the V1-TC connection weights develop the 
capacity to categorise objects on the basis of a Kohonen learning rule [23][33]: 

                       [ ]( ) [ ]
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where μ is a learning rate (set to 1), ai is the activation of V1 neuron i, j is the 
index of an TC neuron, j* is the index of the TC neuron with maximum 
activation (“winning neuron”), Λ[j, j*] is a proximity Gaussian function which 
determines the size of the cluster of neurons whose weights are updated, d[j, j*] 
is the Euclidean distance between j and j* on the TC map, σ is the width of 
Gaussian function. During the model tests, the value of σ is set to a larger value 
for larger objects, in particular it is set within [0.5, 0.9] in proportion to the 
activation of V1 neurons for the various objects. This assumption is motivated 
by the following considerations. The Kohonen neural network is an 
approximation of the dynamic-field neural network of Eq. (2) and is used here 
because it is computationally faster and because it offers a well-understood 
learning algorithm. Contrary to the dynamic-field neural network, however, the 
Kononen neural network has the implausible feature for which it forms clusters 
of active neurons having a constant number of units and overall activation level. 
As the total activation of clusters may have important effects on RTs, and this 
was important for the goals of the paper, this limit of the Kononen network is 
overcome with the assumption on the variable σ. Note that a similar assumption 
is done also for PFC (see below). Having a larger number of active neurons in 
correspondence to larger objects seems a better approximation of what might 
happen in real brains (e.g., in this way information on objects size is encoded in 
terms of overall activation of neurons, cf. Hu and Goodale, 2000). 

During the psychological experiment learning involves acquiring suitable 
“goal representations” in PFC, that is representations of which action to select 
(stored in the PFC-PMC connections) in correspondence to which combination 
of task and object identity currently tackled by the organism (stored in the (MT, 
TC)-PFC connections). To this purpose, the four objects are repeatedly 
presented to the system in multiple trials during which (a) MT is always 
activated with the pattern corresponding to the categorisation task, and (b) the 
hand has performed the grip requested by the psychological experiment. The 
connection weights between (MT, TC)-PFC are updated using the modified 
Kohonen algorithm of Eq. (6). Similarly to TC, also within PFC the use of the 
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modified Kohonen algorithm allows obtaining larger clusters of activated 
neurons for larger objects. In this way the model assumes that the ventral stream 
stores information about the object size in terms of number of activated neurons 
(cf. [34]). During the objects presentation, accompanied by the hand closure 
requested by the categorisation task of the simulated psychological experiment, 
also the connection weights between PFC and PMC are updated, in this case on 
the basis of the Hebb covariance rule of Eq. (5). This allows the system to 
associate the particular combination of task (MT) and object identity (TC) with 
the suitable action required to correctly categorise the observed object (PMC). 

3.   Results 

The model reproduces the experimental results of [1] (Fig. 3). An ANOVA on 
response times was performed with two factors: congruency (congruent vs. 
incongruent) and object size (large vs. small). Participants were ten different 
simulated organisms trained and tested with ten different random-number 
generator seeds. In agreement with the experiments run with real subjects, both 
factors were statistically significant: RTs were faster in congruent than in 
incongruent trials (p<0.01) and for large than for small objects (p<0.01). 

Fig. 3. Reaction times (y-axis) versus kind of grip (x-axis). (a) Real experiment [1] (copyright of 
Taylor & Francis, Visual Cognition, http://www.informaworld.com). (b) Simulated experiment. 

 
The analysis of the system during “life” (i.e. while performing a grasping 

task) shows that the dorsal pathway tends to trigger an action on the basis of the 
affordances elicited by it (a power grip for a large object, a precision grip for a 
small object). In particular, after the learning phase, when organisms see an 
object the neurons of V1 become active by encoding shape and colour, and thus 
the neurons of PC become active by encoding the shape. The activation of PC 
causes a neuron cluster in PMC to gain activation until it reaches the action-
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triggering threshold. This leads to the execution of either a power or precision 
grip through the muscle-models and the simulated hand. In parallel, when the 
task requires grasping objects the ventral pathway evokes the same congruent 
action in PMC as the dorsal pathways (see Fig. 4a). In particular, TC activates 
four different clusters of neurons, one for each different object, PFC does the 
same, and each PFC cluster evokes the action congruent with the object. 

In the case of the categorisation task, TC activates four different clusters of 
neurons, one for each different object, as during “life”. On the contrary, PFC 
activates four different clusters with respect to what happens during “life”, as 
now the MT activation pattern indicates to the system that it needs to respond to 
each object with an action which depends on its category (artefact vs. natural) 
and not on its size (small versus large). As a consequence, in incongruent trials 
the ventral pathway evokes an action different with respect to the dorsal 
pathway (e.g. a precision grip to categorise as artefact an orange) via a suitable 
bias issued by the PFC to the PMC, thus causing a conflict within the latter (Fig. 
5b). As the PFC-PMC signal is stronger than the PC-PMC signal, the bias from 
PFC wins the competition (e.g. by triggering a precision grip) but the RTs is 
longer with respect to the congruent cases. In fact, when PFC and PC signal 
clusters mismatch they lead to a slower charge of the PMC leaky neurons, and 
hence reaching of the threshold requires more time than when they match. 

 
 
 

 (a)  
 
 
 
 (b) 

 
Fig. 4. (a) Activation of PMC in a congruent trial. (b) Activation of PMC in an incongruent trial. 

 
The results also show faster RTs for the larger objects, as in real 

experiments. The reason is that large objects activate more neurons of V1 than 
small ones, and these activate a larger number of neurons in PC, and, in turn, in 
PMC. The signal arriving to PMC via the ventral pathway is also greater for 
large objects than for small ones due to the use of the modified Kohonen 
learning rule. Both phenomena tend to produce a faster “charge” of the leaky 
neurons of the PMC and hence faster RTs (see Eq. (1)). In incongruent trials, 
the two signals from PFC and PC to PMC do not overlap but are both large: a 
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competition between two large activation patterns again leads to faster RTs in 
PMC than when there is a competition between two small patterns. However, 
these RTs are slower than RTs of congruent trials. 

4.   Conclusion 

The proposed model successfully reproduces the experimental results of [1], in 
particular faster reaction times in congruent conditions vs. incongruent ones, 
and with large objects vs. small objects. The architecture of the model integrates 
three important principles, namely the interplay between ventral and dorsal 
visual pathways, the top-down biasing effect of prefrontal cortex on selection of 
actions, and the dynamic-field competitive processes, which make it quite 
general and suitable to tackle other empirical experiments in future work. 
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