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This work moves from the general hypothesis that action influences knowledge formation,
and that the way we organise our knowledge reflects action patterns [7]. The traditional
assumption in the categorisation literature is that categories are organised on the basis of
perceptual similarity among their members. But much evidence shows that, when we need to
perform an action, we can group objects which are perceptually dissimilar. Many studies have
shown that we are able to flexibly organise and create new categories of objects on the basis
of more or less contingent goals [2,3].
We present some simulations in which neural networks are trained using a genetic algorithm
to move a 2-segment arm and press one of two buttons in response to each of 4 stimuli. The
neural networks are required to group the stimuli, by pressing the same button, in 2 categories
which, depending on the particular task (which is encoded in a set of additional input units),
may be formed by perceptually very similar, moderately similar, or different objects. 
We find that task information overrides perceptual information, that is, the internal
representations of neural networks tend to reflect the current task and not the perceptual
similarity between the objects. However, neural networks tend to form action-based
categories more easily (e.g. in fewer generations) when perception and action are congruent
(perceptually similar objects must be responded to by pressing the same button) than when
they are not congruent (perceptually similar objects must be responded to by pressing
different buttons). We also find that at hidden layers nearer the sensory input, where task
information still has not arrived, internal representations continue to reflect perceptual
information.

1 Introduction

One traditional assumption in the categorisation literature is that categories are
organised on the basis of perceptual similarity among their members. Perceptually
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similar objects are put in the same category, and perceptual dissimilar objects are
put in different categories. However, the role of similarity has been criticised and it
has been argued that similarity is just a post-hoc notion, as things can be similar for
many different aspects [12]. Thus it is necessary to have a principle, or at least a
point of view, in order to categorise objects. Objects become similar only after
choosing some particular principle or point of view.

The present work is more radical in criticising the notion that categories are
based on perceptual similarity. It moves from the general hypothesis that it is action,
not perceptual similarity, which determines categorisation and more generally
knowledge formation. Ultimately, the way we organise our knowledge reflects the
actions with which we respond to perceived objects [7], not the intrinsic perceptual
characteristics of objects.

The evidence shows that, when we need to perform an action, we may group
together objects which are perceptually dissimilar. Many studies have demonstrated
that we are able to flexibly organise and create new categories of objects on the
basis of more or less contingent goals [2,3]. Consider for example the category
‘things to take to the camping place’: it can include tents, shoes, and toothpaste, i.e.,
objects which are physically dissimilar.  Moreover, this category is not a stable one
and can be recreated on line: for example, its members can vary depending on the
particular place where the camping place is located. 

Assigning a relevant role to action does not necessarily imply a reduction of the
importance of perceptual similarity for category formation [15,16,17,8]. But actions
and goals remain the originary basis for category formation. The reason why
perceptual aspects are important for categorisation is that generally there is a
correlation between perception and action: similar objects tend to elicit common
motor responses [20]. It is plausible, then, that we have evolved the capacity, in
absence of a specific task indication, to react in the same way to perceptually
similar objects [7,19]. 

In this paper we address these questions using neural network simulations. Our
simulations are aimed at providing a better understanding of the role played by
perception and action in categorisation. An artificial organism performs 3 different
tasks which require to group 4 objects into 2 categories respectively formed (a) of
perceptually similar objects, (b) of moderately similar objects, (c) of objects which
are not similar at all. Thus there can be congruence, partial congruence, and total
incongruence between perceptual information and the task to perform. We predict
that the task is acquired earlier when perceptual and task information are congruent
and that it is acquired later when the task requires to group objects which are
perceptually dissimilar. 

We also predict that the role played by perceptual information and by the task
varies in the different layers of the neural networks of organisms. More specifically,
using neural networks with three layers of hidden units, we predict that in the layer
which is closer to sensory input the internal representations of the objects reflect the
perceptual properties of the objects, in the layer which is closer to the output the
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internal representations of the objects reflect the task to perform, and in the
intermediate layer there is conflict or compromise between perceptual and task
information. From the point of view of the nervous system, we might say that
information concerning objects independently from action will be located in the
sensory areas, while information on objects and actions to perform on them should
be located closer to the motor areas [10,11,9].

2 The simulation set-up

A population of 100 artificial organisms live and behave in an environment. The
environment contains four different objects but at any given time each organism
sees only one of the four objects. The organism has a single arm composed by two
segments. The arm sends proprioceptive information to the organism specifying the
arm's current position. The behaviour of the organism is controlled by a nervous
system, which is simulated with a neural network (see Figure 1).

Figure 1. The organism and the network architecture.

The network architecture consists of 5 layers: one input layer with 3 different
groups of units, three layers of 4 hidden units each, and one output layer of 2 units.
In the input layer 9 units encode the perceptual properties of the objects, 3 units
encode the task, and 2 proprioceptive input units encode the current angles between
the shoulder and the arm and between the arm and the forearm. The 2 output units
encode the actions performed by the organism: namely, they encode the variation of
the previously described angles.

As shown in Figure 1, the visual input units are connected with the first of the 3
layers of hidden units, the task input units are connected with the second hidden
layer, while the proprioceptive input units are directly connected with the output
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units. We use this architecture in order to analyse the role played by perceptual
similarity and task demand in the categorisation of the four objects.

Graphically the objects are represented by a 3x3 matrix in which 4 of the 9 slots
are filled. Objects A-B and C-D are perceptually more similar as they have 3 slots in
common; objects A-C and B-D have some physical similarity as they have 1
common slot; objects A-D and B-C are perceptually dissimilar as they have no
common slots (see Figure 2).

Figure 2. The four objects. The numbers indicate the common slots between pairs of objects. 

The organisms are required to group the objects into 2 categories by pressing two
different buttons: the left button indicates the first category, the right button
indicates the second category. The first task is performed correctly when the 2
categories are composed by perceptually similar objects, i.e., by objects with 3
common slots (A-B; C-D), the second when the 2 categories are composed by
objects with 1 common slot (A-C; B-D), and the third one when the 2 categories are
composed by perceptually dissimilar objects, i.e., objects with no common slots (A-
D; B-C) (see Figure 3).

    Task 1      Task 2           Task 3
Figure 3. The four objects grouped differentially depending on the task. 

To find the connection weights which allow the organisms to perform correctly the
three tasks we used a genetic algorithm The use of a genetic algorithm is dictated by
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the difficulty to find a good learning algorithm for ecological simulations but of
course there is no implication that the ability to classify perceived objects is
genetically inherited rather than learned during life. We first assigned random
connection weights to the neural networks of an initial population of 100
individuals. Then we tested each of these 100 individuals on 20 randomly selected
trials. In each trial an individual starts with a randomly chosen arm’s position and
sees one of the four objects. At the end of the 20 trials we assign each individual a
fitness value reflecting the individual's ability in performing the task (pressing the
correct button). Each individual has a genotype encoding the individual's connection
weights. We used a direct one-to-one mapping: each gene encodes a different
connection weight as a real number. The 20 best individuals are selected for
(nonsexual) reproduction and each of them generates 5 offspring inheriting their
parent's genotype with the addition of some random mutations (mutation rate =
10%). The 20x5=100 individuals thus obtained represent the new generation. The
process is repeated for a sufficient number of generations so that at the end the
organisms are able to execute the three tasks.

3 Data analysis and results

We repeated the simulation 10 times, starting with different sets of initial
connection weights. All the results presented are the average of the 10 replications,
each of which lasted 3500 generations. 

In order to study the role of perception and action in object categorisation, we
performed two different analyses. In the first analysis, we calculated the percentage
of correct responses and of errors (trials in which the organism presses the wrong
button) in performing the three tasks. At the end of the simulation (generation 3500)
the performance was about the same in all the three tasks. The best individual
responded correctly almost 100% of the times, while the population average was
around 60%.

However, comparing the performance of the best individual and of the
population average in the three tasks during the first 1000 generations, we found
that performance in Task 1 was better than performance in Task 2, and performance
in Task 2 was better than performance in Task 3. In other words, Task 1 is learned
somewhat earlier (in terms of generations) than Task 2, and Task 2 is learned earlier
than Task 3 (see Figure 4). This indicates that when there is congruence between
perceptual similarity and categorisation task, the performance is facilitated. In other
words, the ability to perform the task is influenced by the perceptual similarity
between the objects.

The second analysis we performed concerns the way objects are represented
inside the neural network of the best organisms. Each object causes some particular
activation pattern in the 4 hidden units of each hidden layer, and these internal
representations of the objects can be considered as points in a 4-dimensional space.
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We calculated the Euclidean distance between the points which represent the
objects in each layer of hidden units. The results are shown in Figures 5-9.
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Figure 4. Percentage of correct responses and errors for the three tasks across 3500 generations (a: best
individual; b: population average).

Figure 5 shows that in the first hidden layer the points which represent perceptually
similar objects (A-B; C-D) are the closest points, while the points which represent
perceptually dissimilar objects (A-D; B-C) are the most distant ones. This result can
be explained by the fact that, in this layer, the task information still has not arrived,
so the activation patterns of these hidden units reflect the visual input and the
distance between them is determined by the perceptual similarity between the
objects.
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Figure 5. First hidden layer: Euclidean distances between the four points representing the activation
patterns of the four objects.

In the second hidden layer, however, when the task information has arrived, the
smallest distances are generally those between the points which represent objects
which require the same response (Figure 6). In other words, at this level task
information overrides perceptual similarity. However, perceptual similarity also has
an effect since we observe some differences among the tasks.

Task 1    Task 2                    Task 3
Figure 6. Second hidden layer: Euclidean distances between the points representing the activation
pattern of the four objects in the three tasks. 

In order to better understand the respective roles played by perception and task
demand in the second hidden layer, we calculated the distances between the
activation patterns of objects belonging to the same vs different categories in the
three tasks. Figure 7 shows that task information is more important than perceptual
similarity, as the distance between the activation patterns of the objects of the same
category is lower than the distance between the activation patterns of objects of
different categories. However, perceptual similarity has an effect on categorisation,
in that the difference between same-category distances and different-category
distances is highest for Task 1 (congruence between perceptual similarity and task),
while it is lowest for Task 3 (no congruence between perceptual similarity and task). 
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Figure 7. Second hidden layer: Euclidean distances between the points representing the activation
patterns of objects belonging to the same vs different categories in the three tasks. 

We now turn to the third hidden layer. As it can be seen in Figure 8, in the third
hidden layer the smallest distances are always those between points which represent
objects which require the same response. At this later level of neural processing,
task information is clearly more important than perceptual similarity; furthermore,
unlike what happens in the second hidden layer, in the third hidden layer perceptual
similarity has no effect. In fact, the difference between same-category distances and
different-category distances increases consistently in comparison with the second
hidden layer, and there is no sensitivity to the task (see Figure 9). 

 Task 1        Task 2         Task 3
Figure 8. Third hidden layer: Euclidean distances between the points representing the activation pattern
of the four objects in the three tasks. 
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Figure 9. Third hidden layer: Euclidean distances between the points representing the activation patterns
of objects of the same category vs. of different categories in the three tasks. 

4 Discussion

The results of our simulations show that even in the very simple scenario of our
simulations there is a complex interplay between perception and action in
categorisation. 

Consider first the role played by perception. As predicted, the task which is
learned earlier (in terms of number of generations) and which therefore appears to
be the simplest one is the task which requires to assign perceptually similar objects
to the same category, while the most difficult task is the one which requires to
assign objects which have no perceptual similarity to the same category.
Furthermore, we found that, in the first hidden layer of our neural networks, where
the task information still has not arrived and the units of this layer are processing
visual information only, the activation patterns observed in the hidden units reflect
the properties of the sensory input and the perceptual similarities among the objects.

These results show that when the neural networks prepare themselves for acting
but haven’t specific information on the action to perform, the perceptual
characteristics of the objects on which they are expected to act represent the first
cues they tend to use for categorisation. Consider that, differently from humans
beings, neural networks do not have any previous experience of the world and of
interactions between perception and action. The role played by perception in
absence of specific action indication may be even more important in humans. In
fact, in humans the tendency to group according to perceptual cues may get
reinforced as generally in our life perception and action are linked. In fact, objects
with similar perceptual characteristics, and especially objects with similar parts
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[14], may elicit similar motor responses, as they have similar affordances [6,13,19].
If it is true, as argued by Glenberg [7], that categories are patterns of possible
actions with objects, we may have evolved the tendency to put together perceptually
similar objects in that perceptually similar objects tend to elicit similar actions. 

But what happens when we have to perform a specific action and to reach a
specific goal? In this case, if there is congruence between perceptual similarity and
the task to perform, categorisation is facilitated (in our simulations this means that
the task is learned in fewer generations). However, if in order to pursue a specific
goal we need to put together perceptually dissimilar objects, task information
overrides perceptual similarity. In both the second and the third hidden layers of our
neural network model, categorisation is based on the task and therefore on the
actions to perform, not on the perceptual characteristics of the objects. This does not
mean that perceptual similarity doesn’t play any role: in fact, in the second hidden
layer categorisation is facilitated if there is congruence between perceptual
similarity and task demand. 

Of course, in the last (third) hidden layer the perceptual characteristics of the
objects cease to play any role and at this level the nervous system is only
preoccupied with encoding the specific action to perform. Notice, however, that
actions are encoded at this level as macro-actions, that is, in terms of the overall
goal of the action - pressing the right or left button -, not in terms of the specific
sequence of micro-actions - specific micro-movements of the two segments of the
arm - which can vary for the same macro-action depending on the starting position
of the arm [5].

Our results can be interpreted as supporting the distinction, advanced by
Barsalou [1], between primary and secondary categorisation. Primary categorisation
has its basis in perceptual features; secondary categorisation in functional and action
requirements. However, in our neural network model primary and secondary
categorisation cannot be conceived of as separate processes. Rather, as soon as the
task information arrives (in the second hidden layer), i.e., as soon as the goal and
the macro-action the organism is going to perform become explicit, they influence
and lead to a reorganisation of the sensory input. Thus perception and action cannot
be considered as separate, but as meshed processes [18] which interact in
categorisation. Altogether, the results of our simulations argue for an embodied
view of cognition: categories reflect action patterns, and generally action patterns
reflect perceptually salient parts of objects [4].
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