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Abstract: 

Learning about the function and use of tools through observation requires the ability to exploit 

one’s own knowledge derived from past experience. It also depends on the detection of low-

level local cues that are rooted in the tool’s perceptual properties. Best known as 

‘affordances’, these cues generate biomechanical priors that constrain the number of possible 

motor acts that are likely to be performed on tools. The contribution of these biomechanical 

priors to the learning of tool-use behaviors is well supported. However, it is not yet clear if, 

and how, affordances interact with higher-order expectations that are generated from past 

experience – i.e. probabilistic exposure – to enable observational learning of tool use. To 

address this question we designed an action observation task in which participants were 

required to infer, under various conditions of visual uncertainty, the intentions of a 

demonstrator performing tool-use behaviors. Both the probability of observing the 

demonstrator achieving a particular tool function and the biomechanical optimality of the 

observed movement were varied. We demonstrate that biomechanical priors modulate the 

extent to which participants’ predictions are influenced by probabilistically-induced prior 

expectations. Biomechanical and probabilistic priors have a cumulative effect when they 

‘converge’ (in the case of a probabilistic bias assigned to optimal behaviors), or a mutually 

inhibitory effect when they actively ‘diverge’ (in the case of probabilistic bias assigned to 

suboptimal behaviors).  

 

Key words: Action prediction, Affordances, Prior information, Observational learning, Tool 
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Introduction 
Tool-use refers to a type of behavior that consists in manipulating external objects with the 

goal of altering the physical properties of another object, substance, surface, or medium, via a 

mechanical interaction, or that consists in mediating the flow of information between the tool 

user and the environment [1]. A growing amount of evidence suggests that the acquisition of 

knowledge about object use and function through observation is not the privilege of human 

subjects [2]. Yet, the richness and complexity of our technology suggests that we are 

particularly well adapted for such competence [3-6]. It has been argued that this competence 

arises from a set of interpretative and learning predispositions that allows human observers to 

i) decode kinematic information into the causal relationships between a behavioral sequence 

and its result [7], ii) interpret biological movements performed by others as ‘rational’ (i.e. 

assuming that the most optimal actions means are adopted to achieve a particular goal) [8], 

and iii) accumulate knowledge from past observations about an agent’s intentions and 

behaviors, and use this database in order to predict future events [9-13]. Together, these 

mechanisms would enable human observers to derive knowledge about the possible uses and 

functions of a tool from observing goal-directed, intentional movements performed by an 

agent [14-16]. In this article we posit that these sophisticated learning skills could also benefit 

from simpler heuristics allocated to the detection of low-level, local sources of information, 

such as the manipulative properties of objects [17].   

These properties, called ‘affordances’, are not intrinsic to objects but depend on their 

possible interactions with agents [18]. In its extended form [19] an affordance defines a 

relational property that emerges from matching the perceived physical features of an object 

(e.g. size, shape, texture, density) and the agent’s biomechanical architecture, her goals, plans, 

values, beliefs, and past experiences. They are also described as dispositional states of the 

agent’s nervous system [20]. Critically, affordances ‘suggest’ how one may interact with an 

object [21, 22]. For example, the size and shape of a softball mean that it fits into the human 

hand, and its density and texture make it perfect for throwing. We posit that object 

affordances contribute to delineating the number of potential motor acts that can be performed 

on a given object. They do this by generating effector-dependent, biomechanical priors which 

are in line with the agent’s bodily architecture [17]. These priors then bias individuals to act 

on objects with the aim of biomechanical optimization. In both human and non-human 

primates, preferentially performed behaviors are generally those that minimize the muscular 

and/or articulator costs, given the object’s affordances and the desired outcome [23-26]. 

Crucially, this minimization of costs also transfers to tool use learning. A prominent 

example is provided by our extensive technologies. Humans deliberately manufacture tools 

whose complex physical attributes offer naïve users affordances that enable the extraction of 

their functions at low cost [27-29]. Interestingly, the evolution of human technology might 

have increased the utility of simple heuristics such as affordance detection, in order to 

facilitate the highly demanding cognitive problem of tool use learning [28,30-32]. In our 

technological environments, the detection of affordances might thus play a crucial role in the 

acquisition of tool use skills through individual (i.e. trial-and-error learning) as well as social 

learning (i.e., learning from observing another agent’s behaviors). Perceiving affordances may 

thus facilitate the extraction of functional features associated with an object manipulated by a 

third party [16]. For example, based on the amplitude of the observed agent’s grip aperture 

and the orientation of her wrist, as well as on the size and texture of the object to be grasped, 

one may predict whether this object is meant to be lifted, pushed, or merely transported [11]. 

As suggested above, agents are expected to adopt tool-use behaviors that minimize 

biomechanical costs. Therefore, learning of a tool function through observation should be 
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facilitated when a demonstrator uses a tool in a way that fit the observer’s biomechanical 

expectations (behaviors that minimize the muscular and/or articulator costs), and should be 

jeopardized in the case where these expectations are patently violated (behaviors that increase 

the muscular and/or articulator costs).  

Expert tool users, like tool learners, may also benefit from past experience in their 

daily interactions with objects [33]. It has been widely demonstrated that naïve human 

observers form knowledge (e.g. about tools and their potential use) by taking advantage of 

statistical regularities gathered from past observations [9-13]. The more times an individual 

associates a certain observed goal (e.g. the achieved tool function) with a certain observed 

action (e.g. the way of achieving the tool function), the more likely she is to expect that they 

will be seen together again [34]. These ‘probabilistic’ priors, acquired from past experiences, 

are crucial when the biomechanical information conveyed by tool affordances is too 

ambiguous or noisy to sufficiently constraint the range of candidate functions. Conversely, 

reference to biomechanical priors that are generated by tool affordances may be required 

when the use of the current tool cannot be based on previous experiences. Critically, both 

these classes of priors may be recruited when sensory information conveyed by movement 

kinematics is too incomplete to predict how an agent is most likely to behave. This occurs 

when many competing intentions are equally congruent with the not-yet completed behavior 

[11].  

While the contribution of both these classes of priors to the individual-learning of 

tools’ functions and use has long been demonstrated, it is not yet clear whether, and how, they 

may both combine to enable social learning of tool use (i.e., learning from observing another 

agent’s behaviors). Here, we directly addressed this question in a task that required 

participants to predict, under various conditions of visual uncertainty, the intentions of a 

demonstrator who was using a multi-purpose tool. Affordance-related priors (termed 

‘biomechanical’ priors) and priors acquired from past observations (termed ‘probabilistic’ 

priors) were manipulated by varying the biomechanical optimality of the tool behaviors and 

the probability (low versus high) of observing optimal versus suboptimal tool behavior.  

We hypothesized that both biomechanical and probabilistic priors would have an 

effect on prediction. First, participants should be more accurate in predicting optimal than 

suboptimal behaviors (biomechanical bias). Second, participants should be more accurate in 

predicting behaviors that are most likely to occur throughout a specific experimental session 

(probabilistic bias). Third, we expected an interaction between these two classes of priors, 

whereby participants would preferentially respond towards the biased behaviors when the 

probabilistic bias is assigned to optimal behaviors. Finally, we expected this effect to vary as a 

function of the amount of visual uncertainty conveyed by the action being performed. Thus, 

the propensity to respond towards the biased behaviors should be strengthened as the amount 

of visual information shown in the action videos decreases. 

 

 

Method 

Participants 
Twenty-four healthy volunteers (mean age=26.5, SD=4.40) took part in an action prediction 

task. All were right-handed, naïve to the purpose of the experiment, and reported normal or 

corrected-to-normal visual acuity.  The experimental protocol was performed with approval of 

the University of Bologna - Department of Psychology - ethical committee and in accordance 

with the Declaration of Helsinki (2008) [35]. All participants gave their verbal and informed 

consent to participate in the study.   Owing to the non-invasive, purely behavioral nature of 

our study (without any emotional stimuli), the University of Bologna - Department of 
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Psychology - ethical committee  considered verbal consent was appropriate and approved this 

consent procedure.  Socio-demographic information (full name, age, sex, gender, handedness, 

education) has been collected for each subject on a separate sheet. The sheet contained an 

"Approve" box that was checked by the experimenter after the subject gave their verbal 

consent to participate. 

 

Stimuli 
Stimuli consisted in movies featuring a demonstrator acting on a two-purpose tool. The tool 

consisted of a movable handle screwed onto the lid of a box. The handle offered two distinct 

affordances enabling the demonstrator to grasp the object with a power or a precision grip 

(see fig.1). Using either grip, the demonstrator could achieve two intentions: Opening the box 

by lifting the handle (intention O); Switching on the light by rotating the handle (intention S) 

(see fig.1). 

Two movie formats were displayed, both having a total duration of 2000msec (see 

fig.1): a complete format in which actions lasted until the achievement of the underlying 

intention (the grasp and the demonstrator’s final intention were apparent); an incomplete 

format in which action course stopped 800msec after movement onset (only the grip was 

apparent but the demonstrator’s final intention was not) while the last displayed frame was 

presented on the screen for the remaining 1200msec.  

 All movies were equalized for temporal homogeneity in such a way that the duration of 

the sub-steps of each action involved the same number of video frames (sub-step 1: static 

hand to physical contact with the tool=1000ms; sub-step 2: physical contact with the tool to 

action end-state=1000ms). 

 

General Procedure 
Participants sat in front of a monitor on which video clips that showed a male demonstrator 

acting on a tool were displayed (see fig.1). The entire experiment was composed of three 

distinct experimental sessions. In each session, participants had a different probability of 

observing the demonstrator achieving his intentions using an optimal (cost-free) or a 

suboptimal (high cost) behavioral strategy [33].  

For each of the three sessions, 4 blocks of 24 complete action movies  were 

interleaved with 4 blocks of 12 incomplete action movies. Crucially, the probabilistic bias was 

exclusively assigned during the complete action movie blocks, where participants could 

benefit from a high amount of visual information to identify the demonstrator’s intentions. In 

contrast, in the incomplete action movies the amount of visual information was too low for 

the observer to unambiguously infer the demonstrator’s intention. Thus, blocks of complete 

action movies were used to generate prior expectations in favour of either the optimal or the 

suboptimal behavioral strategy. These expectations were induced through biased probabilistic 

exposure. In contrast, blocks of incomplete movies were used to test the effect of each type of 

bias (probabilistic and biomechanical biases) on the participants’ decisions when confronted 

with visually uncertain action scenes (see [11], for a similar procedure). 

For each of the 144 action movies, participants were required to predict the 

demonstrator’s intention by pressing, with their right index and middle fingers, one of two 

adjacent computer keys corresponding to the two possible intentions. The procedure used was 

a self-paced procedure: participants were instructed to make their response as soon as they 

though they had enough visual information to produce an accurate response. However, note 

that both complete and incomplete movies ran until completion independently of the subject’s 

response. 
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Figure 1: Examples of the four combinations ‘grip   intention’ that participants 

encountered during the experiment, and that lead to ‘optimal’ or ‘suboptimal’ 

behaviors. All combinations began with the demonstrator’s static hand. The actor could then 

use either a ‘power’ or a ‘precision’ grip to achieve either the intention of Opening the box 

(O) or Switching the lights on (S). The combination between the kind of grip and the kind of 

final intention resulted in the complete action as being labeled biomechanically optimal 

(OPTIMAL) or suboptimal (SUBOPTIMAL). Whereas the complete action movies lasted 

until the achievement of the underlying intention for a total duration of 2000msec, the 

incomplete action movies stopped 800msec after the movement onset (when the demonstrator 

was about to grasp the tool) while the last displayed frame remained on the screen for a 

duration of 1200 msec, so that observers had information about the grip but no information 

(on that trial) about the demonstrator’s intention.  

 

Typical trial 
All trials started with a white fixation-cross that appeared for 1000msec on a dark 

background. The fixation cross was immediately followed by either a complete or an 

incomplete action movie (see above for further details). After each decision, response time 

was displayed on the screen for 500msec. For those trials in which participants did not 

respond, or responded too late, ‘NO RESPONSE’ was displayed on the screen. The next trial 

started immediately after the 500msec visual feedback period. This feedback allowed us to 

avoid a ‘guessing bias’ that could occur during the presentation of complete action sequences, 

and that could hinder the integration of the probabilistic bias (see [11], for a similar 

procedure). The presentation of stimuli and recording of responses (correct/incorrect and 
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response times) was synchronized using E-prime2 software (Psychology Software Tools, Inc, 

USA).   

 

Biomechanical priors 
The four possible action combinations (2 grips   2 intentions) were divided into two types of 

behavioral category (optimal versus suboptimal) on the basis of their low or high 

biomechanical cost. This procedure allowed us to manipulate biomechanical priors emerging 

from perceived affordances (see fig.1): 

i) Optimal behaviors. Using the power grip to achieve the intention of opening the box 

by lifting the handle was cost-free, as was using the precision grip to achieve the intention of 

switching the lights on by turning the handle. These two combinations were identified as 

optimal behaviors (low biomechanical cost).  

ii) Suboptimal behaviors. The precision grip increased the cost of achieving the 

intention of opening the box, whereas the power grip increased the cost of achieving the 

intention of switching on the lights. These two combinations were identified as suboptimal 

behaviors (high biomechanical cost).  

The biomechanical cost of action movies were pre-tested on 10 naïve individuals. 

They were asked to estimate the muscular and/or articulator cost of each perceived movement 

on a 5-point Likert scale (ranging from 0 = null cost to 5 = very high cost). As expected, 

optimal behaviors (precision grip/switching-on the lights and power grip/opening the box, 

mean score = 1.01) were estimated as significantly less costly than suboptimal ones (precision 

grip/opening the box and power grip/switching-on the lights, mean score = 3.13) (two-tailed t-

test for paired data: t = -20.87, p < .0001). It is of note that the intentions achieved with a 

precision grip were rated as less costly than those achieved with a power grip for both optimal 

(precision grip/switching-on the lights, mean score = 0.55, versus power grip/opening the box, 

mean score = 1.47; two-tailed t-test for paired data: t = -54.83, p < .0001) and suboptimal 

behaviors (precision grip/opening the box, mean score = 2.90, versus power grip/switching-on 

the lights, mean score = 3.37; two-tailed t-test for paired data: t = -30.82, p < .0001).  

 

Probabilistic priors 
Unbeknownst to the participants, the probability of observing the demonstrator using an 

optimal or a suboptimal behavioral strategy was varied within the three distinct experimental 

sessions (‘baseline’, ‘convergent bias’, ‘divergent bias’ – see below). Varying the probability 

distributions of each possible strategy allowed us to manipulate each participant’s 

probabilistic priors, that is, prior expectations they could form about the behavioral strategy 

being favored by the demonstrator to achieve the tool’s functions.  After each participant 

performed the task, we controlled for the extent to which she/he was aware of the induced 

bias. As expected, none of the subjects spontaneously reported that one type of action was 

more likely observed than another. 

i) Baseline session: no probabilistic bias. In the first session, participants had an equal 

probability of observing the demonstrator achieving his intention by performing an optimal or 

a suboptimal behavior.  

ii) ‘Convergent bias’ session: probabilistic bias towards optimal behaviors. In this 

session participants were biased towards ‘optimal’ behaviors to the detriment of ‘suboptimal’ 

behaviors. In 80% of the ‘box opening’ trials the demonstrator opened the box using a power 

grip, and in 80% of the ‘light switching’ trials he switched on the lights using a precision grip. 

Here, behaviors that were preferentially used by the demonstrator converged towards the 

participant’s biomechanical priors.  

iii) ‘Divergent bias’ session: probabilistic bias towards suboptimal behaviors. In this 
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session participants were biased towards ‘suboptimal’ behaviors to the detriment of ‘optimal’ 

behaviors. In 80% of the ‘box opening’ trials the demonstrator opened the box using a 

precision grip, and in 80% of the ‘light switching’ trials he switched on the lights using a 

power grip. Here, the behaviors that were preferentially used by the demonstrator diverged 

from the participant’s biomechanical priors.  

All participants began the experiment with the baseline session. The order of the two 

bias sessions (convergent and divergent) was counterbalanced across participants.  

 

Training phase  
Prior to the experiment participants were familiarised with the task. The training consisted of 

an unbiased complete action movie block followed by an incomplete action movie block.  

 

Data analysis  
We analysed the percentage of correct responses (hits) and response times (RTs) collected for 

both complete and incomplete action movies. Responses for incomplete actions were encoded 

as correct if the predicted intentions conformed to those that the demonstrator actually 

achieved in their complete format. Participants who responded too early on more than 10 

percent of the complete action movies were discarded from further analyses (responses were 

considered as too early when they occurred between 0 and 1000msec after movie onset, 

making accurate predictions impossible). Using this criterion, two subjects were excluded. 

 All statistical analyses were performed separately for complete and incomplete action 

movies. The magnitude of the probabilistic bias and its interaction with biomechanical 

expectations was investigated by comparing performance during the baseline session with that 

during the two biased sessions. The hit rates and RTs were then analysed using a 2   2   3 

repeated-measures ANOVAs. The first two-level factor was the ‘type of behavior’ (optimal 

versus suboptimal behaviors), the second two-level factor was the ‘type of grip’ (power 

versus precision grip), and the third, three-level factor was the ‘probabilistic bias’ (baseline 

versus convergent bias versus divergent bias). Post-hoc Fisher tests were used to compare 

performance between conditions.  

We further investigated the learning dynamics internal to each session by comparing 

data (hits and RTs) collected during the first (time-step 1) and the second half (time-step 2) of 

each session. Thus, for each session, the hits rates and RTs were analysed using 2   2   2 

repeated-measures ANOVAs with ‘time-step’ (time-step 1 versus time-step 2), ‘type of 

behavior’ (optimal versus suboptimal behaviors), and ‘type of grip’ (power versus precision 

grip) as two-level factors. Post-hoc Fisher tests were used to compare performance between 

conditions. 

For all analyses, p < .05 was taken as the criterion for significance and eta squared (ή) 

was used as a measure of effect size. Statistical analyses were performed using Statistica 9 

(www.statsoft.com). 

 

 

Results 

Overall performance 
Complete action movies (Hits and RTs) 

The 2 (type of behavior)   2 (type of grip)   3 (probabilistic bias) repeated-measures 

ANOVAs revealed a main effect of the ‘type of behavior’ on both hits (F1,21 = 18.08, p < .001, 

ή = .46) and RTs (F1.21 = 93.43, p < .0001, ή = .82). Participants were more accurate and faster 

at predicting optimal than suboptimal behaviors (hits: 88% vs. 81%; RTs: 1382msec vs. 

1444msec). The main effect of the ‘probabilistic bias’ was also significant on both hits (F2,42 = 
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6.5, p < .01, ή = .24) and RTs (F2.42 = 22.18, p < .0001, ή = .51). In the divergent bias session, 

participants made more accurate predictions compared to the baseline (hits: 88% vs. 84%, p < 

.05) and the convergent bias sessions (hits: 88% vs. 82%, p < .001). However, when 

compared to baseline, RTs were faster in both the convergent (1368msec vs. 1452msec, p < 

.0001) and the divergent bias sessions (1420msec vs. 1452msec, p < .05). It is of note that a 

difference occurred also between the two bias sessions, with faster RTs in the convergent bias 

session (1368msec vs. 1420msec, p < .001). Finally, a main effect of the ‘type of grip’ was 

found on hits only (F1,21 = 23.27, p < .0001, ή = .53), with participants being overall more 

accurate at predicting behaviors that were performed with a precision than a power grip (88% 

vs. 81%). 

The two-way interaction ‘type of behavior’   ‘probabilistic bias’ was significant for 

both hits (F2.42 = 19.76, p < .0001, ή = .48) and RTs (F2.42 = 31.69, p < .0001, ή = .60) (see 

fig.2a,b). Post-hoc comparisons (LSD Fisher tests) indicated that during the baseline session – 

where both types of behaviors were equally probable – participants were more accurate 

(87.5% vs. 80%, p < .01) and faster (1411msec vs. 1492msec, p < .0001) at predicting optimal 

compared to suboptimal behaviors. A similar pattern was observed in the convergent bias 

session. Participants were more accurate (91% vs. 72%, p < .0001) and faster (1308msec vs. 

1427msec, p < .0001) at predicting the optimal behaviors when these behaviors were more 

frequently shown than the suboptimal ones. In the divergent bias session, no differences were 

found between the optimal and suboptimal behaviors, despite the fact that the latter were more 

frequently shown than the former (hits = 85% vs. 90%, p > .05; RTs = 1427msec vs. 

1414msec, p > .05). Thus, increasing the probability of observing suboptimal behaviors did 

not significantly increase the number of correct responses for these behaviors compared to the 

optimal ones.  

Interestingly, the interaction effect between the optimality of the behavior and the 

probabilistic bias was further modulated by the type of grip used, as revealed by a significant 

three-way interaction between all three factors for hits (F2.42 = 9.49, p < .001, ή = .31). In the 

baseline session, the preference for optimal over suboptimal behaviors was observed for 

power grip only (post hoc test comparing optimal/power grip vs. suboptimal/power grip: p < 

.0001; post-hoc test comparing optimal/precision vs. suboptimal/precision grip: p > .05). In 

the convergent bias session, participants were impaired at predicting suboptimal over optimal 

behaviors irrespective of the type of grip used. In the divergent session, no difference between 

optimal and suboptimal behaviors was observed, irrespective of the type of grip used. 

 

Incomplete action movies (Hits and RTs) 

The 2 (type of behavior)   2 (type of grip)   3 (probabilistic bias) repeated-measures 

ANOVAs revealed a main effect of the ‘type of behavior’ on both hits (F1.21 = 17.19, p < .001, 

ή = .45) and RTs (F1.21 = 6.97, p = .01, ή = .25); participants were more accurate and faster at 

predicting optimal than suboptimal behaviors (hits: 58% vs. 42%; RTs: 1176msec vs. 

1215msec). This preference for optimal behaviors significantly differed from chance (t-test 

for single mean, t > 4.40, p < .001).The main effect of the ‘probabilistic bias’ was significant 

only for RTs (F2,42 = 5.75, p < .01, ή = .21). This indicated that, compared to the incomplete 

movie blocks of the baseline session, participants make faster predictions in the incomplete 

movie blocks of the convergent bias (1156msec vs. 1235msec, p < .01). Note that they also 

tended to make faster predictions in the incomplete movies of the divergent bias session 

(1194msec vs. 1235msec, p = .08). The main effect of ‘type of grip’ was not significant (hits 

and RTs: all F > .33, all p > .48). 

The two-way interaction ‘type of behavior’   ‘probabilistic bias’ was significant for 

both hits (F2,42 = 9.84, p < .001, ή = .32) and RTs (F2,42 = 3.34, p < .05, ή = .14) (see fig.2c,d). 

As for the complete movie blocks, post-hoc comparisons (LSD Fisher tests) indicated that, in 
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the baseline session, participants were more accurate at predicting optimal than suboptimal 

behaviors (59% vs. 35%, p < .001). This preference for optimal behaviors significantly 

differed from chance (t-test for single mean, t > 3.32, p < .01).They were also more accurate 

(66% vs. 36%, p < .0001) and faster (116msec vs. 1197msec, p < .001) at predicting optimal 

than suboptimal behaviors in the incomplete action movie blocks of the convergent bias 

session. Again, the preference for optimal behaviors was significantly different from chance 

level (t-test for single mean, t > 4.75, p < .001). However, in the incomplete action movie 

blocks of the divergent bias session, we did not find any differences between the optimal and 

the suboptimal behaviors, although the latter were most likely observed than the former in the 

complete movie blocks that preceded (hits = 49% vs. 55%, p > .05; RTs = 1187msec vs. 

1202msec, p > .05). Note that performances for both optimal (t-test for single mean, t < -0.17, 

p > .05) and suboptimal behaviors (t-test for single mean, t > 1.46, p = .15) did not 

significantly differ from chance. 

Finally, the interaction effect between the ‘type of behavior’ performed (optimal vs. 

suboptimal) and the ‘probabilistic bias’ (baseline vs. convergent vs. divergent) was modulated 

by the type of grip (power vs. precision) used by the demonstrator (F2,42 = 3.37, p < .05, ή = 

.14). In the incomplete action movie blocks of the baseline and convergent bias sessions, the 

difference between optimal and suboptimal behaviors was observed independently of the type 

of grip used. In the incomplete action movie blocks of the divergent bias session, a difference 

between optimal and suboptimal behaviors was observed only when both of them were 

achieved by a precision grip (optimal/precision = 47% vs. suboptimal/precision = 59%). Note 

that the proportion of correct predictions for suboptimal behaviors achieved with a precision 

grip differed from chance (t-test for single mean, t > 2.38, p < .05). 
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Figure 2: Overall performances. a) and c) represent the mean percentages of correct 

responses collected during complete and incomplete action movies for all three sessions. b) 

and d) represent the mean response times collected during complete and incomplete action 

movies for all three sessions. The green columns refer to the mean percentages of correct 

predictions for observed ‘optimal’ behaviors (pooled across ‘power’ and ‘precision’ grip). 

The orange columns refer to the mean percentages of correct predictions for observed 

‘suboptimal’ behaviors (pooled across ‘power’ and ‘precision’ grip). Error bars denote the 

standard error of the mean.  

 

 

 

 

 

 

Overall performance: preliminary discussion (fig.2) 

Results for the complete action movies demonstrate that, compared to baseline, the 

probabilistic bias significantly improved participants’ performance – as also indicated by 

faster reaction times in the two bias sessions. Note that the rate of correct responses was 

overall higher in the divergent session. This is easily explained by the fact that, in the 

convergent session, the probabilistic bias assigned to optimal behaviors concomitantly 

increased the errors rate for unbiased (i.e., suboptimal) behaviors. In contrast, the probabilistic 

bias assigned to suboptimal behaviors did not alter the participants’ ability to accurately 

predict the unbiased (i.e., optimal) behaviors. Thus, the higher the probability that a behavior 

occured, the better and faster it was predicted, irrespective of its type (optimal or suboptimal). 

These results indicate that, as expected, participants were successful in integrating the 

probability distributions of both convergent and divergent bias sessions. 

The second set of results shows that the biomechanical constraints generated by the 

detection of tool affordances play a major role in participants’ predictions: participants were 

more accurate and faster at predicting behaviors that minimized biomechanical costs, 

irrespective of probabilities. Thus, in both the complete and incomplete action movies of the 

baseline session (i.e. a session in which the demonstrator equally selected between the two 

available behavioral strategies), participants preferentially chose intentions achieved by 

optimal behaviors rather than suboptimal behaviors (see fig.2a,b,c,d). This result demonstrates 

that when participants cannot rely on past observations (i.e., on probability) to decide how an 

observed agent is most likely to behave, they tend to rely on their biomechanical priors by 

default. That is, they assume that the observed agent behaves ‘rationally’, i.e., that he favors 

strategies which minimize biomechanical costs. 

 The third set of results concerns the interaction between the two kinds of priors 

(biomechanical and probabilistic) (fig.2a,b,c,d). We found that both the magnitude and 

dynamics of the probabilistic bias differed as a function of the type of behavior, with 

participants’ biomechanical expectations overriding the effect of the probabilistic bias. Thus, 

in the convergent bias session (probabilistic bias assigned to optimal behaviors) performance 

decreased for the suboptimal behaviors, and was facilitated for the optimal behaviors, as 

expected. This pattern of performance – observed in both the incomplete movie and complete 

movie blocks – suggests that it is costly for participants to inhibit a response that fits with 

their biomechanical expectations, even though a high amount of visual information is 

available. However, in the divergent bias session (probabilistic bias assigned to suboptimal 

behaviors), no significant differences were found between the two alternatives: participants 

did not preferentially choose the suboptimal behavior over the optimal one, although the 

former was more likely to be performed than the latter. This pattern suggests that participants 
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actively integrated both types of priors, by combining their respective effects. Thus, when 

probabilistic and biomechanical priors diverged, the overall effect tended to sum to zero, 

resulting in performances that did not significantly differ from chance for both optimal and 

suboptimal behaviors.  

 Finally, we found that the type of grip used by the demonstrator had an effect on the 

participants’ predictions when i) the probability of each competing intention was equal 

(baseline session), and ii) when the intention that was eventually achieved was fully visible 

(complete movies). This finding can be accounted for by a facilitatory effect of the precision 

grip. Although suboptimal behaviors that were achieved with a precision grip were estimated 

as suboptimal, they were nevertheless estimated as less constraining than those performed 

with a power grip. Interestingly, this facilitatory effect was easily overcome by the 

probabilistic bias, since it disappeared in both the convergent and divergent bias sessions. It is 

of note that this tendency to over-estimate the optimality of precision grips may be due to the 

biomechanical characteristics of the effector itself. Indeed, performing prehension movements 

with either a power grip or a precision grip differentially affects the synergies of arm 

segments. While the achievement of a power grip exerts constraints on many degrees of 

freedom of the arm (i.e. the wrist, elbow and shoulder) [36], the precision grip offers more 

flexible solutions [37], independently of the overall cost of the final action (e.g. opening the 

box with a precision grip).   

 

Learning dynamics 
Complete action movies (Hits and RTs) 

i) Baseline session. The 2   2   2 repeated-measures ANOVA performed on ‘time-step’ 

(time-step 1 vs. time-step 2),‘type of behavior’ (optimal vs. suboptimal) and ‘type of grip’ 

(power vs. precision grip) revealed a main effect of the ‘type of behavior’ for both hits (F1,21 = 

11.57, p < .01, ή = .36) and RTs  (F1,21 = 47.7, p < .0001, ή = .69), with optimal behaviors 

being overall  faster (1411msec vs. 1493msec) and more accurately predicted (88% vs. 80%) 

than suboptimal ones. A main effect of ‘type of grip’ was also found on hits only (F1,21 = 9.48, 

p < .01, ή = .31), with behaviors achieved using a precision grip being overall more accurately 

predicted than those achieved using a power grip (87% vs. 80%). The two-way interaction 

‘time-step’   ‘type of behavior’ was significant for hits (F1,21 = 4.91; p < .05, ή = .19) (see 

fig.3a). Post-hoc comparison tests (LSD Fisher tests) showed that the difference between the 

percentage of hits observed at time-step 1 for the optimal and the suboptimal behaviors (90% 

vs. 78%; post-hoc test: p < .0001) was no longer significant at time-step 2 (85% vs. 82%; 

post-hoc test: p > .05). Neither the main effect of ‘time-step’, nor the two-way interaction 

‘time-step’   ‘type of grip’, nor the three-way interaction was significant (hits and RTs: all F 

< 2.93, all p > .10). 

ii) Convergent bias session. The same 2   2   2 repeated-measures ANOVA performed 

on complete movie blocks of the convergent bias session revealed main effects of ‘time-step’ 

(hits: F1,21 = 9.80; p < .01, ή = .32; RTs: F1,21 = 6.87; p < .05, ή = .25) and ‘type of behavior’ 

(hits: F1,21 = 34.09; p < .0001, ή = .62; RTs: F1,21 = 43.61; p < .0001, ή = .67) on both hits and 

RTs. Participants were more accurate but slower at predicting the demonstrator’s intention at 

time-step 1 than at time-step 2 (hits = 85% vs. 78%, p < .01); RTs = 1386msec vs. 1337msec, 

p < .05). Overall, they were more accurate and faster at predicting likely optimal than unlikely 

suboptimal behaviors (hits = 91% vs. 73%, p < .0001; RTs = 1307msec vs. 1416msec, p < 

.0001). A main effect of the ‘type of grip’ was also shown on hits only (F1,21 = 17.26; p < 

.001, ή = .45), revealing that participants more accurately predicted behaviors performed with 

a precision than a power grip (87%vs. 77%, p < .001), independently of their optimality and 

of the time-step. Furthermore, the two-way interaction ‘time-step’   ‘type of behavior’ was 

significant for hits (F1,21 = 9.07; p < .01, ή = .30) (see fig.3a). Post-hoc analyses (LSD Fisher 



Affordances and Prior Expectations in Action Prediction 

   12 

 

tests) showed that throughout the session, participants were overall more accurate at 

predicting the optimal than the suboptimal behaviors, and that this advantage for optimal 

behaviors increased over time (time-step 1 = 91% vs. 79%, p < .001; time-step 2 = 91% vs. 

66%, p < .0001). The two-way interaction between ‘time-step’   ‘type of grip’ as well as the 

three-way interaction were not significant (hits and RTs: all F < 1.60, all p > .22). 

iii) Divergent bias session. The same 2   2   2 repeated-measures ANOVA performed on 

complete movie blocks of the divergent bias session showed a main effect of ‘time-step’ (F1,21 

= 5.04.; p < .05, ή = .19), with better performance at time-step 1 than at time-step 2 (90% vs. 

85%). A main effect of the ‘type of grip’ was also found on hits (F1,21 = 6.99.; p < .05, ή = 

.25), with better performance for behaviors performed with a precision than a power grip 

(90% vs. 84%), irrespective of their optimality. The interaction between the ‘time-step’ and 

‘type of behavior’ factors was significant for hits only (F1,21 = 6.85.; p < .05, ή = .25) (see 

fig.3a). In the first half of the session participants performed equally well (post-hoc test: p > 

.05) for the likely suboptimal (time-step 1 = 89%) and the unlikely optimal behaviors (time-

step 1 = 91%). In the second half, however, they were more accurate at predicting the 

suboptimal behaviors (time-step 2 = 91% vs 79%; p < .01). This was associated with 

decreased performance for the unlikely optimal behaviors throughout the session (time-step 1 

= 90% vs. time-step 2 = 79%). The main effect of ‘type of behavior’, the ‘time-step’   ‘type 

of grip’ interaction, and the three-way interaction were not significant (hits and RTs: all F < 

3.83, all p > .06).  

 

Incomplete action movies (Hits and RTs) 

i) Baseline session. The 2   2   2 repeated-measures ANOVA performed on ‘time-step’ 

(time-step 1 vs. time-step 2),‘type of behavior’ (optimal vs. suboptimal) and ‘type of grip’ 

(power vs. precision grip) showed a main effect of the ‘type of behavior’ on hits only (F1,21 = 

17.96, p < .001, ή = .46). In the incomplete movie blocks of the baseline session, participants 

were more accurate at predicting optimal (59%) than suboptimal (35%) behaviors, 

independently of the time-step. Neither the main effects of ‘time-step’ or ‘type of grip’, nor 

the two-way interactions ‘time-step’   ‘type of grip’ and ‘time-step’  ‘type of behavior’ (see 

fig.3b), nor the three-way interaction were significant (hits and RTs: all F < 1.21, all p > .28).  

ii) Convergent bias session. The same 2   2   2 repeated-measures ANOVA performed 

on incomplete movie blocks of the convergent bias session revealed a main effect of ‘time-

step’ on RTs only (F1,21 = 9.53; p < .01, ή = .31). Overall, participants responded slower at 

time-step 1 (1178msec) than at time-step 2 (1141msec). A main effect of the ‘type of 

behavior’ was present for both RTs (F1,21= 14.11; p < .01, ή = .40) and hits (F1,21 = 21.17; p < 

.001, ή = .50), with participants being more accurate (66% vs. 36%) and faster (1116msec vs. 

1203msec) at predicting optimal than suboptimal behaviors. The main effect of the ‘type of 

grip’, the ‘time-step’   ‘type of grip’ and ‘time-step’  ‘type of behavior’ interactions (see 

fig.3b), and the three-way interaction were not significant (hits and RTs: all F < 3.77, all p > 

.07). 

iii) Divergent bias session. The same 2   2   2 repeated-measures ANOVA performed on 

incomplete movie blocks of the divergent bias session showed a significant interaction 

between the ‘time-step’ and ‘type of behavior’ on hits only (F1,21 = 8.39; p < .01, ή = .27) (see 

fig.3b). Post-hoc tests (LSD Fisher tests) demonstrated that in the first half of the incomplete 

movie blocks, rates of correct predictions for the optimal and the suboptimal behaviors did not 

differ (time-step 1 = 54% vs. 54%; p > .05). However, a difference occurred in the second 

half of the incomplete movie blocks, with suboptimal behaviors being more accurately 

predicted than optimal ones (time-step 2: optimal = 44% vs. suboptimal = 57%; p < .001). Of 

note is the fact that this effect was due to the rate of correct predictions for the optimal 

behaviors decreasing over the session (time-step 1 = 54% vs. time-step 2 = 44%; p < .01). 
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However, neither the performance for suboptimal behaviors (t-test for single mean, t < 1.47, p 

= .15) nor the performance for optimal behaviors (t-test for single mean, t < -1.32, p = .19) 

significantly differed from chance level. No significant main effects were revealed (hits and 

RTs: all F < 1.87, all p > .19). Neither the ‘time-step’   ‘type of grip’ interaction was 

significant (hits and RTs: all F < .74, all p > .40).  

 
Figure 3: Learning dynamics. a) and b) represent the mean percentages of correct responses 

collected during complete and incomplete action movies for all three sessions. The green 

columns refer to the mean percentages of correct predictions for ‘optimal’ behaviors (pooled 

across ‘power’ and ‘precision’ grip). The orange columns refer to the mean percentages of 

correct predictions for ‘suboptimal’ behaviors (pooled across ‘power’ and ‘precision’ grip). 

Error bars denote the standard error of mean.  

 

 

Learning dynamics: preliminary discussion (fig.3)  

In both the baseline and the convergent bias session, analyzing the evolution of response 

patterns over time (from time-step 1 to time-step 2) revealed an early preference for the 

optimal behaviors (see fig.3a,b). This preference was already present in the first half of the 
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baseline session and did not vary further with increasing probabilities. Interestingly, this 

preference for behaviors that minimized biomechanical costs seemed impervious to their 

probabilistic likelihood sampled from past observations. This suggests that biomechanical 

priors might short-circuit probabilistic sampling, and might interfere with decisions based on 

the extraction of statistical regularities.  

 In the divergent bias session (suboptimal bias), the evolution of the response pattern 

from time-step 1 to time-step 2 suggests that the absence of a difference between performance 

for optimal and suboptimal behaviors – although the latter were more frequently shown – 

could be primarily due to participants’ initial preferences for optimal behaviors (see fig.3a,b). 

This preference progressively decreased over time as the probability of observing suboptimal 

behaviors concomitantly increased. However, overall, this increase was not sufficient to 

compensate for the participants’ initial lack of preference toward suboptimal behaviors. 

Finally, it is noteworthy that the number of responses toward optimal versus 

suboptimal behaviors was overall greater in the incomplete, relative to the complete, action 

movies in both the baseline and the convergent bias sessions. This difference may account for 

the fact that the rate of hits for both the optimal and suboptimal behaviors was very high in 

the complete movie blocks. Therefore, the number of responses for optimal behaviors, and 

hence the difference between the two types of behavior, could not further increase due to a 

‘ceiling’ effect. Alternatively, this difference may be accounted for by the fact that, in 

conditions of visual uncertainty, individuals tended to favor responses that were consistent 

with their prior expectations. Interestingly, this assumption is consistent with the finding that 

one’s priors (here, an intrinsic preference for optimal behaviors) are primarily used to 

complement sensory uncertainty in order to allow decisions, and thus actions, to be made 

even in cases of noisy signals or sparse data [11,16].  

Discussion 

The aim of this study was to test how the biomechanical expectations conveyed by tool 

affordances interact with prior knowledge about tool function and use, and whether this 

interaction influences predictions about a demonstrator’s intentions when using tools. Here, 

we provide the first evidence that low-level local cues such as object affordances influence 

the learning and prediction of tool-use behaviors. We demonstrate that biomechanical priors 

modulate the extent to which participants’ predictions are influenced by probabilistically-

induced prior expectations (see fig.2). In particular, we found that when the demonstrator’s 

behavior satisfied both the participants’ biomechanical and probabilistic priors, the learning 

cost decreased, as participants efficiently combined both types of priors to make their 

predictions. Conversely, when the demonstrator’s behavior violated the biomechanical but not 

the probabilistic priors, the learning cost increased, as participants had to deal with two 

conflicting sources of prior information.  

Specifically, the dynamics of the integration of these probabilistic expectations was 

strongly dependent on the biomechanical optimality of the observed behaviors (see fig.3). 

When the probabilistic bias favored suboptimal behaviors, participants needed a greater 

number of observations to neutralize a preference for optimal behaviors, as well as to derive 

and use probabilistic information to predict suboptimal behaviors. Furthermore, performance 

during both the baseline and the convergent bias sessions showed that participants exhibited 

an initial preference for optimal behaviors that was sustained throughout the session, and did 

not vary with changes in probabilistic bias. Interestingly, this initial preference was even 

stronger in the interrupted sequences, where subjects had little information about the 

demonstrator’s intention. The strong influence of biomechanical priors in these sequences 

suggests that these priors might be primarily used in the case of noisy signals or sparse data. 

As such, they may be specifically suited to reduce the intrinsic uncertainty of goal-directed 
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behaviors [16]. In sum, biomechanical priors provided by the tool’s affordances acted as an 

inductive bias [13], complementing the available perceptual information when this 

information did not sufficiently constrain the number of potential solutions (e.g. ‘opening a 

box’ versus ‘switching the lights on’). 

Together, these findings complement recent results published by Chambon and co-

workers [11]. In their study, participants were requested to infer the intentions of a 

demonstrator who performed various actions on meaningless objects. The authors showed that 

as the amount of visual information conveyed by movement kinematics progressively 

decreased, participants responded more frequently toward the intentions that had the highest 

probability of occurring. Chambon et al.’s findings are consistent with a Bayesian estimation 

scheme: the less information one has about the action scene, the greater the weight of one’s 

priors in the decision. Put another way: the higher the sensory uncertainty, the more the 

probabilistic bias is used to ‘resolve’, or ‘complement’, this sensory uncertainty. Our findings 

suggest that the effect of priors gathered from probabilistic sampling of past observations also 

depends on whether or not the visual information conveyed by the movement’s kinematics 

meets the expectations that are induced by an object’s affordances.  

Even though visual information did not meet these expectations, participants tended to 

assume the demonstrator to behave in an optimal way. In other words, they expected the 

demonstrator to act as a ‘rational’ agent – i.e., an agent who adopts the most optimal (i.e., 

least costly) action means to achieve his goal given the constraints of the current situation. 

This echoes recent evidence showing that humans, even at a very early age, consider their 

conspecifics to be rational agents [8,38,39]. Thus, children may posit states of the world 

occasionally counterfactual to the perceptual evidence (such as the presence of occluded 

physical objects) but consistent with a rational interpretation of the observed action [40,41]. 

Here, we show that, rather than being restricted to external, environmental aspects of reality 

(e.g., a ball jumps an obstacle to reach a new location versus a ball jumps to reach a new 

location but there is no obstacle present), the situational constraints through which the rational 

attributes of an observed behavior are estimated, are extended to self-centred, sensorimotor 

properties that observers share with the observed agents.  

This issue is currently debated in the literature. On one hand, previous findings 

suggest that in early infancy such sensorimotor cues do not play an essential, selective role in 

the rational interpretation of observed actions. For example, Southgate and colleagues [42] 

showed that 6- to 8- month-old infants attributed rational properties to observed actions even 

when the movements used to achieve them were biomechanically impossible. In their study, 

rationality was defined as conditions in which the observed goal-directed movements were 

adapted to external situational constraints, independently of the biomechanical plausibility of 

these movements. On the other hand, other evidence suggests that a rational interpretation of 

goal-directed actions may be predicated upon sensorimotor information conveyed by 

movement kinematics [43]. On a similar line, Southgate and co-workers [44,45] recently 

showed that the motor system of 9- to 15-months old infants was activated during the 

prediction of observed actions. The authors proposed that the activation of the motor system, 

instead of being driven by current visual information, was driven by the infants’ expectations 

about the movements by which an attributed goal would likely be achieved. Given these 

contradicting data, one may speculate that the coupling of a rational interpretation of goal-

directed actions with the processing of sensorimotor cues such as object affordances might be 

highly dependent on motor expertise acquired from experience [46]. Furthermore, this 

coupling might mature later in development. Our results suggest that the coupling of 

biomechanical with probabilistic priors may be particularly strong in adult observers, 

presumably equipped with a high degree of motor expertise.  
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Biomechanical and probabilistic priors may recruit two different – and parallel – 

neural systems that occasionally combine to derive information about tool use and function 

from observation. However, the exact nature and function of these systems is still a matter of 

conjecture. Effector-dependent, biomechanical priors may exert their influence on action 

prediction by differently weighting action alternatives within the motor repertoire of posterior 

frontal cortices such that certain actions become favored over others according to the 

biomechanical constraints of the motor effectors. This process of weighting action alternatives 

could be mediated by reciprocal inhibitory connections within the motor cortices, either by 

suppressing or increasing the activity of current competitors [47]. Occasionally, probabilistic 

priors may exert top-down influences on the selection of action alternatives within premotor 

cortices by using evidence gathered from past events to re-assigning new weights to the set of 

possible actions. Interestingly, these probabilistic priors may recruit more anterior frontal 

regions, such as the dorsolateral [48] or the inferior parts [49] of the dorsolateral prefrontal 

cortex. As a result, one may speculate that an abnormal connectivity between dorsolateral 

prefrontal and premotor regions – resulting from an impaired biasing influence from anterior 

to more posterior frontal cortices – would lead to abnormal action selection [50,51]. Such 

abnormal selection might jeopardize acquisition of motor expertise and the ability to infer 

other people’s intentions from observation [52]. 

 

 

Conclusion 
To our knowledge, the present study provides the first evidence that object affordances play a 

major role in the learning and prediction of observed tool-use behaviors. In particular, we 

show that perceiving observed behaviors as rational depends on low-level local cues from 

which their biomechanical costs are estimated with regard to their final goals. We suggest that 

biomechanical expectations elicited by affordances impede or bias the extraction of 

probabilistic regularities from past events. When these statistical regularities favor the 

observation of biomechanically suboptimal behaviors, biomechanical expectations delay the 

acquisition of probabilistic priors. Consequently, they also hinder the use of these priors in 

solving the uncertainty that is associated with incomplete visual signals.  

Interestingly, one may extrapolate from our results that increasing the number of 

observations for suboptimal behaviors would further boost the weight devoted to probabilistic 

information in the participants’ decisions. If this is the case what might this boost reflect and 

how might the brain represent it? Further studies should investigate how, and whether, the 

increasing weight of probabilistic information is associated with an update of biomechanical 

priors. Such an update could occur through a mechanism of visuomotor learning mediated by 

the plastic properties of the motor system [53-55]. This would allow one to determine whether 

the interaction between a ‘rational’ interpretation of actions and the detection of affordances 

recruits a modular, domain-specific process that would configure the experience of the 

external world per se. Implications for the social learning of tool use could be particularly 

important, as it would suggest that the larger the magnitude of this interaction for learners, the 

less able they would be to predict and learn from biomechanically suboptimal or unexpected 

behaviors. More generally, we believe that this cognitive selectivity for biomechanical 

optimality could contribute to the convergence of individual behaviors towards homogeneous 

patterns [17]. This could arise in the absence of high-level, faithful social transmission 

mechanisms such as true imitation of observed action goals and means [56- 58]. Affordances 

could enhance the efficiency of less precise, though less costly, forms of social learning 

strategies in the acquisition of novel tool use, like emulation learning [59] or stimulus 

enhancement [60]. 

 



Affordances and Prior Expectations in Action Prediction 

   17 

 

Acknowledgements 
We are very grateful to Alessandro Farnè, Karen T. Reilly, Alice C. Roy, Alberto Acerbi and 

Janet Bultitude for their help, comments, suggestions and support. 

 

 

References 
1. St Amant R, Horton TE (2008) Revisiting the definition of animal tool use. Anim Behav 

75: 1199-1208. 

2. Seed A, Byrne R (2010) Animal tool-use. Curr Biol 20: 1032-1039. 
3. Hernik M, Csibra G (2009) Functional understanding facilitates learning about tools in 

human children. Curr Opin Neurobiol 19: 34-38.  

4. Johnson-Frey SH (2003) What’s so special about human tool use? Neuron 39: 201-204. 

5. Osiurak F, Jarry C, Le Gall D (2010) Grasping the affordances, understanding the 

reasoning: toward a dialectical theory of human tool use. Psychol Rev 117: 517-540.  

6. Vaesen K (2012) The cognitive bases of human tool use. Behav Brain Sci: In press. 

7. Gergely G (2007) Learning “about” versus learning “from” other minds: natural pedagogy 

and its implications. In: Carruthers P, Laurence S, Stich S, editors. The innate mind: Vol3, 

Foundations and the future. Oxford, UK: Oxford University Press: pp 170-198.  

8. Gergely G, Csibra G (2003) Teleological reasoning in infancy: the naive theory of rational 

action. Trends Cog Sci 7: 287-292.  

9. Baker CL, Saxe R, Tenenbaum JB (2009) Action understanding as inverse planning. 

Cognition 113: 329-349. 

10. Buchsbaum D, Gopnik A, Griffiths TL, Shafto P (2011) Children’s imitation of causal 

action sequences is influenced by statistical and pedagogical evidence. Cognition 120: 331-

340.  

11. Chambon V, Domenech P, Pacherie E, Koechlin E, Baraduc P et al. (2011) What are they 

up to? The role of sensory evidence and prior knowledge in action understanding. PloS One 6: 

e17133 

12. Griffiths TL, Kemp C, Tenenbaum JB (2008) Bayesian models of cognition. In: Sun R, 

ed. The Cambridge handbook of computational psychology. Cambridge, UK: Cambridge 

University Press. pp 59-100. 

13. Griffiths TL, Chater N, Kemp C, Perfors A, Tenenbaum JB (2010) Probabilistic models of 

cognition: exploring representations and inductive biases. Trends Cog Sci 14: 357-364. 

14. Casler K, Kelemen D (2005) Young children's rapid learning about artifacts. 

Developmental Sci 8: 472-480.  

15. Casler K, Kelemen D (2007) Reasoning about artifacts at 24 months: the developing 

teleo-functional stance. Cognition 103: 120-130.  

16. Csibra G, Gergely G (2007) « Obsessed with goals »: functions and mechanisms of 

teleological interpretation of actions in humans. Acta Psychol 124: 60-78.  

17. Jacquet PO, Tessari A, Binkofski F, Borghi AM (2012) Can object affordances impact on 

human social learning of tool use? Behav Brain Sci: In press. 

18. Gibson JJ (1979) The ecological approach to visual perception. Boston, MA: Houghton 

Mifflin. 

19. Norman DA (1988) The Psychology of Everyday Things. New York, NY: Basic Books. 

20. Ellis R, Tucker M (2000) Micro-affordance: the potentiation of components of action by 

seen objects. Brit J Psychol 91: 451-471.  

21. Borghi AM, Bonfiglioli C, Lugli L, Ricciardelli P, Rubichi S et al. (2007) Are visual 

stimuli sufficient to evoke motor information? Neurosci Lett 411: 17-21. 



Affordances and Prior Expectations in Action Prediction 

   18 

 

22. Grèzes J, Tucker M, Armony J, Ellis R, Passingham RE (2003) Objects automatically 

potentiate action: an fMRI study of implicit processing. Eur J Neurosci 17: 2735-2740. 

23. Rosenbaum DA, van Heugten CM, Caldwell GE (1996) From cognition to biomechanics 

and back: the end-state comfort effect and the middle-is-faster effect. Acta Psychol, 94: 59-

85. 

24. Rosenbaum DA, Vaughan J, Barnes HJ, Jorgensen MJ (1992) Time course of movement 

planning: selection of handgrips for object manipulation. J Exp Psychol Learn 18: 1058-1073. 

25. Sartori L, Straulino E, Castiello U (2011) How objects are grasped: the interplay between 

affordances and end-goals. PLoS One 6: e25203 

26. Weiss DJ, Wark JD, Rosenbaum DA (2007) Monkey see, monkey plan, monkey do: the 

end-state comfort effect in cotton-top tamarins (Saguinus oedipus). Psychol Sci 18: 1063-

1068. 

27. Dennett DC (1982) Beyond beliefs. In: Woodfield A, ed. Thought and object: essays on 

intentionality. Oxford, UK: Oxford University Press. pp 1-97. 

28. Dennett DC (1995) Darwin’s dangerous idea. New York, NY: Simon and Schuster. 

29. Gregory RL (1981) Mind in science: a history of explanations in psychology and physics. 

Cambridge, UK: Cambridge University Press. 

30. Clark A (1997) Being there: putting brain, body, and world together again. Cambridge, 

MA: MIT Press. 

31. Sterelny K (2003a) Thought in a hostile world. New York, NY: Blackwell. 

32. Sterelny K (2003b) Cognitive load and human decision, or, three ways of rolling the rock 

uphill. In: Carruthers P, Laurence S, Stich S, editors. The innate mind: Vol2, Culture and 

cognition. Oxford, UK: Oxford University Press. pp 218-233 

33. Tessari A, Bosanac D, Rumiati RI (2006) Effect of learning on imitation of new actions: 

implications for a memory model. Exp Brain Res 173: 507-5013. 

34. Hommel B, Müsseler J, Aschersleben G, Prinz W (2001) The theory of event-coding. 

Behav Brain Sci 24: 849-937. 

35. World Medical Association Declaration of Helsinki (October 2008). 

http://www.wma.net/e/policy/b3.htm (accessed 16 August 2010)  

36. Desmurget M, Prablanc C, Rossetti Y, Arzi M, Paulignan Y et al. (1995) Postural and 

synergic control of three-dimensional movements of reaching and grasping. J Neurophysiol 

74: 905-910. 

37. Paulignan Y, Frak VG, Toni I, Jeannerod M (1997) Influence of object position and size 

on human prehension movements. Exp Brain Res 114: 226-234. 

38. Gergely G, Nádasdy Z, Csibra G, Bíró S (1995) Taking the intentional stance at 12 

months of age. Cognition 56: 165-193.  

39. Gergely G, Bekkering H, Király I (2002) Rational imitation in preverbal infants. Nature 

415: 755.  

40. Csibra G, Gergely G, Bíró S, Koós O, Brockbank M (1999) Goal attribution without 

agency cues: the perception of « pure reason » in infancy. Cognition 72: 237-267.  

41. Onishi KH, Baillargeon R, Leslie AM (2007) 15-month-old infants detect violations in 

pretend scenarios. Acta Psychol 124: 106-128. 

42. Southgate V, Johnson MH, Csibra G (2008) Infants attribute goals even to 

biomechanically impossible actions. Cognition 107: 1059-1069.  

43. Kilner JM, Vargas C, Duval S, Blakemore SJ, Sirigu A (2004) Motor activation prior to 

observation of a predicted movement. Nat Neurosci 7: 1299-1301. 

44. Southgate V, Johnson MH, El Karoui I, Csibra G (2010) Motor system activation reveals 

infants’ on-line prediction of others’ goals. Psychol Sci 21: 355-359.  

45. Southgate V, Johnson MH, Osborne T, Csibra G (2009) Predictive motor activation 

during action observation in human infants. Biol Lett 5: 769-772.  



Affordances and Prior Expectations in Action Prediction 

   19 

 

46. Aglioti SM, Cesari P, Romani M, Urgesi C (2008) Action anticipation and motor 

resonance in elite basketball players. Nat Neurosci 11: 1109-1116.  

47. Cisek P (2007) Cortical mechanisms of action selection: the affordance competition 

hypothesis. Philos T Roy Soc B 362: 1585-1599. 

48. Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the 

human prefrontal cortex. Science 302: 1181-1185. 

49. Kilner J (2011) More than one pathway to action understanding. Trends Cog Sci 15: 352-

357. 

50. Barbalat G, Chambon V, Franck N, Koechlin E, Farrer C (2009) Organization of cognitive 

control within the lateral prefrontal cortex in schizophrenia. Arch Gen Psychiat 66: 377-86. 

51. Barbalat G, Chambon V, Ody C, Domenech P, Koechlin E et al. (2011) Top-down control 

within the lateral prefrontal cortex in schizophrenia. Biol Psychiat 70: 73-80.  

52. Chambon V, Barbalat G, Pacherie I, Jacquet PO, Franck N et al. (2011) Mentalizing under 

influence: abnormal dependence on prior expectations in patients with schizophrenia. Brain 

134: 3725-38. 

53. Catmur C, Walsh V, Heyes C (2007) Sensorimotor learning configures the human mirror 

system. Curr Biol 17: 1527-1531. 

54. Stefan K, Cohen LG, Duque J, Mazzocchio R, Celnik P et al (2005) Formation of a motor 

memory by action observation. J Neurosci 25: 9339-9346. 

55. Stefan K, Classen J, Celnik P, Cohen LG (2008) Concurrent action observation modulates 

practice-induced motor memory formation. Eur J Neurosci 27: 730-738. 

56. Claidière N, Sperber D (2010) Imitation explains the propagation, not the stability of 

animal culture. P Roy Soc B-Biol Sci 277: 651-659.  

57. Tennie C, Hedwig D, Call J, Tomasello M (2008) An experimental study of nettle feeding 

in captive gorillas. Am J Primatol 70: 584-93.  

58. Acerbi A, Jacquet PO, Tennie C (2012) Behavioral constraints and the evolution of 

faithful social learning. Current Zoology 58: 307-318. 

59. Acerbi A, Tennie C, Nunn C (2011) Modeling imitation and emulation in constrained 

search space. Learn Behav 39: 104-114.  

60. Franz M, Matthews LJ (2010) Social enhancement can create adaptive, arbitrary and 

maladaptive cultural traditions. P Roy Soc B-Biol Sci 277: 3363-3372.  

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov.gate2.inist.fr/pubmed?term=%22Tennie%20C%22%5BAuthor%5D

