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In this paper, we investigate how the interactions of a robot with its environment 
can be used to create concepts that are typically represented by verbs in language. 
Towards this end, we utilize the notion of affordances to argue that verbs typically 
refer to the generation of a specific type of effect rather than a specific type of 
action. Then, we show how a robot can form these concepts through interactions 
with the environment and how humans can use these concepts to ease their 
communication with the robots. We demonstrate that iCub, a humanoid robot, 
can use the concepts, which it has developed, to to understand what a human 
performs, perform multi-step planning for reaching a goal state as well as to 
specify a goal to the robot using symbolic descriptions.

.  Introduction

The use of natural language in our interaction with robots remains an elusive 
target for autonomous robot research. According to the embodied view of intel-
ligence, such a competence requires the robot to link the discrete symbols used 
in language into meanings that are grounded in the continuous sensory-motor 
experiences of the robot, infamously named as the symbol grounding problem by 
Harnad (1990).

Although Harnad’s approach to intelligence as a symbol grounding problem 
has initiated a great deal of debate, it was well received in the community (Borghi 
2007; Cangelosi & Harnad 2001; Fischer & Zwaan 2008; Gallese & Lakoff 2005). 
It is now widely accepted that language should be grounded in the sensorimotor 
experiences of the organism (Cangelosi & Riga 2006; Cangelosi et al. 2010; Steels 
2003; Glenberg & Kaschak 2002; Cangelosi 2010), and that the processing of a 
word requires the neural circuitry in the brain corresponding to its sensorimotor 
experience, meaning or simulation (Glenberg et al. 2008; Zwaan & Taylor 2006). 
In other words, comprehension of words is likely to involve or require the simula-
tion of the meaning represented by the corresponding concept.
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The question that we tackle in this paper can be simply put forward as: 
How can a robot ground verbs that we use in our language into its own sensory-
motor interactions? That is, when we command the robot to push (the table)1 it 
should be able to choose the proper behavior from its own repertoire and apply 
it. Note that, the behavior chosen for the execution of the verbal command 
will depend on the subject and that a command such as push (the cup) is likely 
to require a different behavior (Figure 1). Moreover, the very same command 
will require the use of a behavior executed on the “free” arm of a humanoid 
robot, who may be holding an object in its other hand. Such a grounding of 
verbs requires not only the robot to interact with its environment observing 
the effects it generated, but also the supervision from a human to properly label 
these effects.

Figure 1. Different behaviors through which one can push an object

. In this paper, we will assume that the subject is given through gaze or other means.
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.  Language, concepts and robots

In this section, we summarize the studies and the approaches related to concepts 
and language in robots and describe the main novelties of our work.

.  Language in robots

Although comprehension of words should involve the meaning represented by 
the corresponding concept, the computational efforts in the literature linking 
language and the sensorimotor data have only focused on mapping a word to 
a single object or a behavior without much consideration for generalization or 
conceptualization. Below are summaries of these studies – for reviews on other 
efforts as well as the importance of perception and action in the development of 
language, and how and why language should be grounded in action and percep-
tion, we refer to Cangelosi (2010); Nehaniv et al. (2007); Christiansen & Kirby 
(2003); Lyon et al. (2007).

An important tool in linking language and sensori-motor data is artificial 
neural networks due to its biological plausibility and easy adaptability. Cangelosi 
(2010) presents a review of their earlier work (all using multi-layer neural net-
works) on (i) the multi-agent modeling of grounding and language development, 
using simulated agents that discover labels, or words, for edible and non-edible 
food while navigating in a limited environment (Cangelosi 2001), (ii) the trans-
fer of symbol grounding, using one simulated teacher (agent) and one simulated 
learner (agent) that learn new behaviors based on the symbolic representations 
of previously learned behaviors (Cangelosi et al. 2006) and (iii) language com-
prehension in a humanoid robot, where the robot learns to associate words with 
its behaviors and the objects in the environment. Similarly, in an earlier work, 
Cangelosi & Parisi (2004) use a neural network for linking nouns to two different 
objects (a vertical bar and a horizontal bar) and verbs to two different behaviors 
(pushing and pulling).

Another study on linking language with sensorimotor data (Hashimoto & 
Masumi 2007) demonstrates the emergence of symbols (to be linked with lan-
guage) by interpreting the attractors of a dynamical system (namely, a chaotic 
neural network) to different symbols and the transitions between the attractors to 
symbolic manipulation.

For a similar goal, Steels (2007) demonstrates (using a robot and software 
simulation) the Recruitment Theory of Language, which claims that organisms 
try different cognitive or motor abilities for communication first and adapt and 
develop those that lead to successful communication.
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Cohen et al. (2005); Krunic et al. (2009); Marocco et al. (2010) have also 
attributed verbs to individual behaviors without generalization considerations. 
Other than these, some studies investigate linking behaviors with effects for other 
purposes: For example, similar to us, Rudolph et al. (2010) proposed relating 
behaviors to their effects. They suggested that behaviors be represented in terms 
of their effects. They used their proposal for learning a complex mapping between 
the hit point and the target point of a thrown ball, and they did not pursue gen-
eralization over behaviors or effects nor did they relate their representations to 
‘verb concepts’. Kozima et al. (2002) have also studied generalization over behav-
iors based on their effects in the context of imitation; in their theoretical proposal, 
they claimed that a robot should use the equivalence of the effects of behaviors 
for imitating a human performing a behavior rather than performing geometrical 
transformations between different embodiments.

Montesano et al. (2008, 2009) proposed a Bayesian network based on an affor-
dance formalization similar to the one used in our paper. In the network, there 
are nodes for perceptual features (corresponding to the object – e.g. one node for 
color, one node for shape and another for size), actions (e.g. grasp, tap, touch) and 
effects (e.g. one node for each of the following: object motion, hand motion and 
contact of the hand with the object). The model learned the dependencies between 
the nodes in the network and analyze the learned network in terms of how well 
it can interpret and imitate an observed effect. Although such an approach has 
advantages in terms of inferencing, our focus in this paper is different: we are 
interested in how to generalize over behaviors to be able to represent them as verb 
concepts allowing efficient “communication” with humans.

As mentioned by Nehaniv et al. (2007), although there exist computational 
modeling efforts for the emergence of symbols or words for nouns, the emer-
gence of symbolic representations for verbs is still mostly untouched (except for 
 Cangelosi (2010)). Moreover, although highly promising, efforts in grounding 
verbs (or nouns) mostly do not tackle the issues of generalization over behav-
iors (or entities) for representing concepts or symbols (e.g. Cangelosi (2001); 
 Cangelosi & Riga (2006); Cangelosi & Parisi (2004)), which is, in fact, the most 
essential reason for having concepts in a cognitive system.

.  Theories of concept

There are three main views on how concepts can be learned or represented ( Gabora 
et al. 2008; Kruschke 2005; Rosch 1973; Rouder & Ratcliff 2006):

 – The Classical, or Rule-based, View: In this view (see, e.g. (Bruner et al. 1986)), 
categories are exact with strict boundaries; i.e. an exemplar is either a member 
of a category or not a member of a category; there is no vagueness involved. 



© 2014. John Benjamins Publishing Company
All rights reserved

 Verb concepts from affordances 

The members of the category share common properties (like YELLOW as 
color and LONG as appearance), and the membership for the category is based 
on satisfying the common properties of the category, established as rules (like 
color of exemplar = YELLOW ∧ appearance of exemplar = LONG).

 – The Prototype-based View: In this view, the membership for the categories is 
confidence-based (e.g. (Rosch 1973)) and the boundaries are not tight. Cat-
egories are represented by “prototype” stimuli (the stimuli best representing 
the category), which are used for judging the membership of other items. The 
representation of the prototype is mostly based on statistical regularities, i.e. 
the frequency distribution of the features, (Ashby & Maddox 1993). For exam-
ple, the APPLE concept can be represented by:

APPLE =

50% RED, 25% YELLOW or 25% GREENcolour

shape

…

 – The Exemplar-based View: In this view, concepts are represented by the 
exemplars of the categories stored in the memory (e.g. (Nosofsky et al. 1992)). 
An item is classified as a member of a category if it is similar to one of the 
stored exemplars in that category. For example, the APPLE concept can be 
represented by:

APPLE =
…

Although the exemplar-based view is in accordance with some experimental 
results, it falls short in explaining several findings (see (Gabora et al. 2008) for a 
review and discussion).

Although it is widely believed that the classical view is not adopted by human 
cognition, there are contradicting ev-idences about whether humans use pro-
totypes, exemplars or rules for representing concepts (Minda & Smith 2001; 
Nosofsky & Zaki 2002; Leopold et al. 2001). It might be even that for different 
tasks (such as inferencing or classification), we might be using different types of 
representations (Johansen & Kruschke 2005), making a hybrid representation 
appealing (Rosseel 2002). Overall, how we represent concepts is still an open issue 
( Parthemore & Morse 2010; Gärdenfors 2004).
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Learning concepts is also studied in Machine Learning where efficiency and 
practicality are the main concerns unlike the theories of concepts in Psychology 
and the current study, where we are interested in having a developmental concep-
tualization framework which is biologically plausible (as also discussed in Section 
“Discussion”) and based on enaction. Therefore, we leave an in-depth discus-
sion of the available Machine Learning methods and theories, and refer to Jebara 
(2004) for a review.

.  The current study

In this paper, we are interested in how a robot can ground verbs in language. 
Towards this end, we use the notion of affordances (Gibson 1986) as formalized 
by Sahin et al. (2007) to develop a method that can learn to represent and use verb 
concepts on a humanoid robot platform. Specifically, as the robot interacts with 
a set of objects using its own repertoire of behaviors, a human observes the effect 
generated and labels each interaction with a proper verb. The method uses the 
data collected through such interactions to develop prototypical representations of 
verbs. Through the use of these prototypes, the robot can be commanded to per-
form a desired “verb action” on a novel object. The commanding can be provided 
as (1) a verbal command, such as “push (the cup)”, (2) a demonstration, such as 
the human pushing a box, and asking the robot to mimic what he just did on a cup, 
(3) goal specification in the prototype space. Moreover, the robot can use these 
prototypes to make multi-step plans to achieve a goal that is not attainable through 
a single behavior. Our results have shown that the use of proto-typical representa-
tions not only reduces the search space for making such plans, but also minimizes 
the errors in making these plans by paying attention only to the relevant dimen-
sions (as represented in the prototypical representations) in the sensory space.

.  Affordances and verbs

The notion of affordance was introduced by Gibson (1986) to propose that organ-
isms perceive the environment in terms of the action possibilities that they offer 
to them. Gibson argued that when we look at a chair or a cup, our perception does 
not provide a generic perceptual view of these objects consisting of all of their 
qualities, but instead informs of the affordances such as sit-ability and lift-ability 
that they offer to us.

The notion provided a fresh perspective to the classical theories of perception 
and has inspired new lines of thinking in a wide range of fields. In an earlier study 
(Sahin et al. 2007), we formalized this important notion such that it can be utilized 
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to learn and use affordances at different levels of autonomous robot control. In 
particular, we argued that each interaction episode of an agent with its environ-
ment can be represented as an affordance relation instance tuple as (Figure 2(a)):

 (entity, behavior, effect), (1)

where entity denotes the environmental relata obtained via perceiving the envi-
ronment and the self. It encapsulates the perceptual representation of an agent at 
different complexity levels, ranging from raw sensory data to the features extracted 
from the environment. However, within the context of this paper, we confine the 
use of entity to a single object. The term behavior represents the physical embodi-
ment of the agent’s interaction encoding the internal representation that defines 
a unit of action that can often take parameters for initiation and online control. 
Within the context of this study, we assume that behaviors are discrete entities. 
Finally, effect is defined as the perceptual change generated in the environment 
due to the execution of the behavior.

For instance, when a robot applies its lift behavior to a can, it produces the effect 
lifted, meaning that the can’s position, as perceived by the robot, is elevated. Through 
its interactions with a can, a robot can acquire relation instances of the form:

(black-can, lift-with-right-hand, lifted),

meaning that there exists a potential to generate the effect lifted when lift-with-
right-hand is applied to black-can. Note that the term black-can is used just as a 

behavior Behavior
space

entity

Entity
space

Effect
space

effect

  

Behavior
space

{…}
b1

{…} {…}

e
2 liftede1

e3

b2

Entity
space

Effect
space

Figure 2. (a) An affordance (relation) involves an entity (from the entity space), a behavior 
(from the behavior) space and an effect (from the effect space) that is produced by applying the 
behavior on the entity. (b) We propose linking verb concepts to generalizations over behaviors 
based on their effects. In this example, the set of affordance relations that have the lifted effect 
should be linked to the “lift” verb.
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short-hand label to denote the perceptual representation of the black can by the 
interacting agent. Similarly, lifted and lift-with-right-hand are labels for the related 
perceptual and proprioceptive representations. For instance, the representation of 
the black can be a raw feature vector derived from all the sensors of the robot look-
ing at the black-can before it attempts to apply its lift behavior.

Arguing that affordances should be relations with predictive abilities, rather 
than a set of unconnected relation instances, we proposed a learning process that 
can be applied on this representation. For instance, a robot can achieve the effect 
lifted, by applying the lift-with-right-hand behavior on a black-can, or a blue-can. 
It can thus learn a relation:

(〈*-can〉, lift-with-right-hand, lifted),

where 〈*-can〉 denotes the derived invariants of the can that are relevant for lift-
ability. In our previous studies (Ug ̃ur et al. 2009; Uğur & Şahin 2010), we were 
able to train SVM (Support Vector Machine) classifiers to implement prediction 
modules such as 〈*-can〉 for each behavior, successfully. In these studies, the effects 
were grouped into a number of discrete effect categories.

.  Affordances and language

The link between the notion of affordances and language comprehension has 
already been pointed out in Psychology (Borghi & Riggio 2009; Borghi 2012). The 
indexical hypothesis by Glenberg & Robertson (2000) explains how this may hap-
pen. According to the hypothesis, words and sentences are linked to objects in the 
world, their referents, or to analogical representations as pictures or perceptual 
symbols (Barsalou 1999). For example, the word handle refers to its referent, a 
handle, or to an analogical representation of the handle. Thus words that refer to 
objects would evoke firstly perceptual information relative to such objects. Given 
the close relationship between perceptual and motor processes, words should 
also evoke motor information. Indeed, depending on their perceptual features, 
objects can activate affordances (Gibson 1986). For instance, different kinds of 
handle may afford different actions: some can be turned, some pushed to open a 
door. From this view comes the idea that activation is more tied to the affordances 
elicited by objects than to the words representing the objects. Object affordances 
would influence not only the understanding of words but also the understanding 
of more complex linguistic structures such as sentences.

Although the relationship between words, concepts and affordances has been 
pointed out by others, the problem of how such a link exists in organisms and how 
it can be created in robots has not been completely tackled yet. In this article, we 
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argue that verbs that are provided by a human observing the physical interactions 
of the robot with objects can be used to bridge the concepts represented by these 
verbs into sensorimotor interactions of the robot.

Within the context of this paper, we assume that verbs, that are used to com-
mand a robot, mostly specify the accomplishment of a desired goal with no regard 
on the means of how it is achieved. For instance, when we command a robot to lift 
(a box), we expect him to pick the proper behavior to vertically elevate the box. 
As illustrated in Figure 1, the command should invoke different behaviors on the 
robot as determined by the properties of the box (such as size) or the state the 
robot (such as the robot already holding a cup in one of its hands). Such an abil-
ity relieves the human from being aware of the robot’s sensorimotor capabilities 
and requires the robot to flexibly respond to verbal commands based on its prior 
interaction with the objects.

.  Verbs: Behavior or effect categories

It is tempting to associate the concept of a verb with a category that covers all the 
interactions that are generated by the execution of a particular behavior. If we want 
the robot to lift a particular object,2 the verb “lift” can trigger the lift behavior of 
the robot to accomplish our goal. For instance, it might be suggested that the con-
cept of lifting should cover:
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lift  (2)

However, such an association provides a limited coverage for all the meanings 
that the verb “lift” should convey. First, the robot can probably lift an object with 
different behaviors, such as lift-with-right-arm and lift-with-left-arm (for example, 
Figure 1 shows six different behaviors that can be used by humans to push an 
object towards left). Second, the execution of the particular behavior may fail on 
some objects, e.g. heavy or slippery objects. Third, in certain cases, a seemingly 
contradictory behavior such as pressing, may also lift an object that is placed on a 
lever to accomplish lifting.

The criticisms that are stated above indicate that the representation of 
a verb concept by a particular behavioral category implicitly includes the 

. For simplicity, assume that the object is pointed through mechanisms such as shared gaze.
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“ manner”  information by specifying the exact type of behavior that is being 
asked for. An alternative, which we take in this article, is to associate verbs with 
effect categories as:

 (〈any-entity〉, 〈any-behavior〉, lifted). (3)

In other words, we propose linking the verb “lift” to the set of behaviors that have 
the lifted effect (see Figure 2(b)).

.  Experimental framework

We used the iCub humanoid robot (Metta et al. 2008), a fully open-source plat-
form designed for cognitive and developmental robotics research. The robot, built 
in the form of 4 year old child, has 53-DOF in its body and equipped with 7-DOF 
arms and 9-DOF hands making it possible to develop human-like simple object 
manipulation behaviors for inter-acting with objects put on a table.

The robot used a Kinect RGB-D camera (Figure 3) fixated on the side of the 
robot to perceive the objects on the table. The camera captured the depth of scenes 
with a resolution of 640 × 480, providing a cloud of 3D points with the corre-
sponding RGB data.

.  Behaviors

We used a repertoire of six manipulation behaviors for interacting with the objects, 
similar to the ones used by Bergquist et al. (2009); Metta & Fitzpatrick (2003). 

Figure 3. iCub interacting with an object on the table
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These behaviors, denoted as b0,.., b5, are: push-left, push-right, push-forward, pull, 
top-grasp and side-grasp behaviors.3 The top-grasp and side-grasp behaviors are 
approach the object from the top, or from the left or right (depending on the rela-
tive position of the object) and fingers close upon touch.

Surface normals

Principal curvatures
(Min and max)

Shape index

Pose and size

Figure 4. The elements of perception extracted within our system

.  Perceptual features

The object in the depth image captured by the Kinect device is segmented from 
the tabletop by assuming that the workspace is planar and placed parallel to the 
ground. The following features were then extracted from the point cloud corre-
sponding to the object:

 – Surface features: surface normals (azimuth and zenith angles), principal cur-
vatures, and shape index as represented with 20-bin histograms, using curva-
ture and normal estimation methods provided by an open-source Point Cloud 
Library – PCL (Rusu & Cousins 2011).

 – Spatial features: bounding box center, orientation, and dimensions (along  
x, y, z).

 – Object Presence: a binary feature for whether an object exists on top of the 
table or not. This information is especially useful when an object disappears 
after an interaction.

. The reaching part of these behaviors is achieved using a modified form of Dynamic Move-
ment Primitives (Akgun et al. 2010) and the remaining parts of the behaviors are pre-coded. 
Due to Dy-namic Movement Primitives, there is a feedback loop in the system allowing the 
robot to adapt to changes in position.
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The features extracted from the objects before the execution of a behavior are called 
the initial features whereas the features extracted after the behavior are called the 
final features. The difference between the final and the initial features are used as 
the effect features. These initial and effect features correspond to the entity and the 
effect in the affordance formalization in Equation 1.

.  Learning affordance relations

In the experiments, the robot interacted with a set of 35 objects of different sizes 
and shapes as shown in Figure 5. In total, 413 different interactions were recorded, 
that consisted of multiple interactions with the objects placed at different positions 
and in different orientations, in order to capture the variability.

Figure 5. The objects interacted by the robot for learning

During these interactions, the initial and final features of the objects were 
recorded, and the effects generated on the objects were labeled by a human. Spe-
cifically, each interaction episode is encoded as a relation between an object oj ∈O, 
a behavior bi ∈ B and an effect f as:

 (eoi
, bj , f 

bj
oi

), (4)

where eoi
 is the initial perceptual representation of the object oi; bj ∈ B is a behav-

ior from the set of behaviors B; and f bj
oi

 is the representation of the effect. The effect 
f bj

oi
 is defined as the difference observed in the perceptual representation of object 

eoi
 as a result of the interaction as:
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  f bj
oi

 =e bj
oi

 - eoi , (5)

Then, each interaction is labeled by a human based on the effect generated using 
a set of verbs (i.e. effect labels) E ∈ E where E included no-effect, moved-
left, moved-right, moved-forward, pulled, grasped, 
knocked, and disappeared. For example, if the robot applies a push-right 
behavior on an object, leading to a measurable displacement towards the right, the 
user verbally provides “moved right” to the robot.

Figure 6 depicts the categories formed in the effect space as a result of the 
effect labeling. For instance, when the robot applied the push-left behavior on 
cubes and cylinders, the objects moved-left. However, the application of the 
very same behavior on the balls, caused the objects to disappeared, since they 
rolled away and became invisible. It can also be seen that the same disappeared 
effect can be generated on balls through the application of push-*(any type of 
push) behaviors.

The overall process of learning affordances from the affordance relation 
instances is sketched in Figure 7. Specifically, for each behavior bi, the mapping 
Mbi : eoj → E bi

oj from the initial representation of the objects (i.e. eoj) to the effect 
clusters E bi

oj is learned by a Support Vector Machine (SVM) classifier. These SVMs 
enable the robot to predict the effect category (E bk

ol
 ) that it can generate by apply-

ing a behavior bk on a novel object ol. In our experiments, the SVM classifiers for 
each behavior were trained with 5-fold cross validation reaching average accuracy 
values above 90% (as can be seen in Table 1).

We would like to note that these SVMs effectively provide an affordance-
based perception view of the object, by predicting what the robot can do (such as 
move-right, knock, disappear etc.) with them, i.e. what they afford.

Table 1. The average, maximum and minimum prediction accuracies  
of SVMs for each behavior obtained through 5-fold cross validation

Behavior Average 
accuracy

Maximum 
accuracy

Minimum 
accuracy

side-grasp 100% 100% 100%
top-grasp 90% 100% 85%
push-left 92% 100% 83%
push-right 96% 100% 85%
push-forward 100% 100% 100%
pull 96% 100% 86%
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Effect space
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Side grasp:

Moved

rig
ht

Knocked

Moved
left

Disappeared

Movedforward

Pulled
Grasped

No
effect

Figure 6. Labeled clusters in the effect space. ‘*’ represent all instances of the corresponding 
object category

.  Verb conceptualization

In this section, we describe (i) our verb conceptualization based on effect proto-
types and two alternative methods for verb conceptualization, and (ii) how verb 
concepts can be used for various human-robot interaction problems.

.  I – Verb conceptualization using effect prototypes – CEP

In this section, we describe how we derive the condensed prototype representation 
fpro of the effects { f } in an effect cluster E ∈ E (Figure 6). We call this condensed 
representation the effect prototype and claim that they correspond to concepts rep-
resented by verbs.

Figure 8 depicts a summarized version of the distribution of effect features 
for different effect categories. Examining the distribution of change in each fea-
ture element, i.e. i  f (where i  f is the ith element of the n-dimensional feature vec-
tor f), we observe four different characteristics: feature elements that (i) increase 
consistently, (ii) decrease consistently, (iii) remain constant or (iv) change in an 
unpredictable way. Therefore, we find it suitable to represent an effect prototype 
using labels ‘+’, ‘-’, ‘0’, ‘*’, corresponding to increase, decrease, no-change and 
unpredictable- change in the feature element, respectively. In addition to these 
labels, we also include the mean and the variance of the changes in the representa-
tion to quantify the amount of the changes.

As a result, we define an effect prototype as a string consisting of labels ‘+’, ‘-’, 
‘0’, ‘*’, called “prototype labels” in the rest of the article, together with two vectors 
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corresponding to the mean and the variance of the observed changes. In order to 
assign prototype labels to the feature elements, we use unsupervised clustering 
(namely, Robust Growing Neural Gas (Qin & Suganthan 2004)) in the space of 
mean and variance of the changes (summarized in Algorithm 1). The prototypes 
derived from our experiments are shown in Table 2. For the sake of clarity, we will 
abbreviate these prototypes as a combination of sk denoting k consecutive occur-
rences of the symbol s (which can be ‘+’, ‘-’, ‘0’ or ‘*’).

In order to compare two effect prototypes or an effect prototype with an 
effect instance, we define a similarity metric using the Mahalanobis distance 
( Mahalanobis 1936). This modified version of Mahalanobis distance between two 
effect clusters (or between an effect prototype and an effect instance – Equation 8) 
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Figure 7. Clusters in the effect space are used for training an SVM, which allows the effect 
label to be predicted from a behavior on a novel object
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Figure 8. An illustration of how feature dimensions change in effect clusters. The types 
of changes are obtained by unsupervised clustering (using RGNG – see the text) in the 
space of mean and variance of the changes. The shapes (circle, triangle and star) in this 
plot correspond to the mean values of the changes, while the error bars correspond to their 
variance (in the case of circles and triangles, the error bar looks like a single line due to small 
variance). From unsupervised clustering of the changes, we get four change types (clusters): 
consistently increasing (upwards triangle), consistently decreasing (downwards triangle), 
consistently not changing (circle) and inconsistenly changing (star). The abbreviations on the 
y-axis stand for some of our effects (NC: “no change”, ML: “moved-left”, MR: “moved-right”, 
MF: “moved-forward”, P: “pulled”, G: “grasped”, K: “knocked” and D: “disappeared”) and the 
abbreviations on the horizontal axis stand for the feature elements (OP: Object Presence,  
PX: position-x, PY: position-y, PZ: position-z, Q: Orientation, WX , WY , WZ : Size along x, y  
and z and H1 …H10 : Shape Histograms – only a subset of the shape histograms are provided 
for the sake of space, see Table 2 for a complete listing)
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Algorithm 1 Derivation of Effect Prototypes – for CEP.
Given: Interactions with the environment to collect a set of effects

f b B o Oo
b

j ii

j | , .∀ ∀{ }∈ ∈

Output: Effect prototypes fpro (i.e. CEP) for each effect category.

– Assign a label E ∈ E to each effect.
for all E in the set of effect clusters E do
  – Compute the mean i µE of the change in each feature element i:

 
i E i

f EN
fm = ∑1 ,

∈

 (6)

  where N is the cardinality of the set { f ∈ E}.
  – Compute the variance iσE of the change in each feature element i:

 
i i i E

f EN
fσ =Ε

∈

1 2( ) .−∑ m  (7)

end for
– Apply Robust Neural Growing Gas (RGNG) algorithm (Qin & Suganthan 2004) 
in the space of µ × σ.
– Manually assign the labels ‘+’, ‘-’, ‘0’ and ‘*’ to the four clusters that emerge in 
the previous step.

is calculated by taking the mean µEi 
of first effect cluster Ei and using the second 

effect cluster’s Ej mean µEj
 and variance σEj

: 

 
d E E f S fEP i j E pro E

T

j E pro Ei j i j
( , ) ,,

, ,
,

, ,= −



 −





+ − − + −m m0 1 0  (8)

where Sj is the covariance matrix of the second effect cluster Ej. In accordance 
with (Verguts et al. 2004) who claim that (i) non-existing features and (ii) dis-
similar features are not used in computing similarity between categories, in 
computing the Mahalanobis distance, the dimensions denoted by a ‘*’ in the 
prototype strings are disregarded (denoted by f +,–,0

pro,Ei
 , for the effect prototype 

fpro,Ei
 of an effect cluster Ei), since these correspond to an unpredictable/incon-

sistent change in the feature elements.
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. II – Verb conceptualization using naive prototypes - CNP

In order to evaluate our effect-prototype-based verb concepts (CEP), we intro-
duce another prototype representation of verbs that do not utilize the string 
 representation (i.e. ‘+’, ‘-’, ‘*’, ‘0’). This amounts to pure Mahalanobis distance 
which considers all dimensions in a feature:

 
d E E f S fNP i j E pro E

T
j E pro Ei j i j

( , ) ., ,= −( ) −( )−m m1  (9)

. III – Verb conceptualization using examplars - CEx

For better evaluation, we also introduce conceptualization of verbs using the 
exemplars in the categories. In this case, checking the membership of an instance 
requires comparing that instance with all the members of a category and picking 
up the category that has the minimum distance. Item wise comparison is achieved 
using Euclidean distance:

 
d f E f fE new i f E i new i

n

N

x
i

( , ) min ( ) ,= −
=
∑

∈
2

1
 (10)

where fnew is the new effect instance; Ei is the effect cluster fnew is compared against; 
and, N is the number of dimensions in a feature.

. Understanding an interaction in terms of verbs

An important problem in human-robot interaction is the correspondence 
between the different embodiments (Alissandrakis et al. 2003), which requires, 
e.g.  matching the different body parts of the human to the parts of the robot. A 
practical way around the correspondence problem is to interpret interactions 
based on their effects using the symbolic space of effect prototypes. In this study, 
matching an observed interaction (effect) with another effect or prototype (CEP , 
CNP or CEx) is achieved using the distance functions dEP , dNP and dEx respectively 
provided in Equations 8, 9 and 10, as outlined in Algorithm 2.

. Goal specification through demonstration and multi-step planning

A natural way to command a robot is to specify our goal through demonstration, a 
form of non-verbal communication that humans use with babies, with people that 
we do not have a common language, or with people that we have to communicate 
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in loud environments. We term this form of communication as goal specification 
through demonstration in general. Within the context of this study, we would like 
a human to demonstrate a desired goal, by demonstrating it in front of the robot 
and ask him to “do what I just did”. In this study, we can achieve this by using 
verb concepts, which provide abstraction over the behaviors, eliminating the need 
to recognize individual behaviors and to handle the correspondence problem 
( Alissandrakis et al. 2003).

Our method for “do what I just did” (see also Algorithm 3) relies on (i) pre-
dicting the outcome of each behavior, (ii) comparing the predictions with the 
desired observed effect (i.e. what the human has demonstrated) and (iii) repeating 
step-(i) for each prediction produced in step-(ii). For comparing the predictions 
with the desired effect, we will use and compare the distance functions dEP , dNP 
and dEx respectively provided in Equations 8, 9 and 10.

Algorithm 2 Understanding an observed effect/behavior.
Given: Observation of an entity eoi

 and a behavior applied on eoj , leading to the 
effect f joi

 . Note that this behavior may not be in the repertoire of the robot.
Output: Determine the verb concept E* (i.e. the effect category) that best describes 
the observed interaction.
– Take E* (the best matching effect category) as the interpretation of the observed 
effect:

 
E d f f

E
C o

j
pro Ei

* arg min ( , ),,=
∈ε

 (11)

where dC(.,.) is either dEP(), dNP() or dEx() respectively defined in Equations 8, 9 
and 10; and, fpro,E is the prototype of the effect category E. If required, a threshold 
on dC (f joi

 , fpro,E) can be set as a criteria to determine whether the observed effect is 
unknown to the robot.
– (Optional) Given a novel entity eok, find the behavior b*(among the behavior 
repertoire of the robot) that produces an effect in the effect cluster represented by 
the effect prototype fpro,E*:

 
b d e b f E

b
C o prok

* arg max ( ( , ), , *),= SVM  (12)

where dc(.,.) is either dEP(), dNP() or dEx() respectively defined in Equations 8, 9 and 
10; and fpro,E* is the prototype of the effect category E*. If required, a threshold on 
d(SVM (eok, b), fpro,E*) can be set as a criteria to determine whether the observed 
behavior cannot be replicated on the novel object eok

.
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. Commanding with verbs or symbols

The SVMs allow the robot to predict the category of the effect that it can gener-
ate on a novel object after executing a certain behavior. This allows the robot to 
respond to verb commands, such as push-right (the object on the table), by feed-
ing the objects perceptual representation to all the SVMs and checking whether 
the specified goal (via giving the verbal command) matches with the predicted 
effects of any of the behaviors as outlined in Algorithm 4. Moreover, the robot 
can be specified a goal in terms of ’+’, ‘-’, ‘0’ or ‘*’ symbols, and satisfy such a goal 

Algorithm 3 Multi-step planning algorithm
Given: estart and egoal.
Output: P, a plan, which is a sequence of behaviors leading to egoal from estart .

– Initialize: ecurrent ← estart.
for all level = 1 : Nlevel do
  – Update the remaining effect: fcurrent ← egoal ← ecurrent.
  – Find the verb concept that is closest to egoal:

 
E d f E

E
C current* arg min ( , ).=

∈ε  
//dC(): dEP(), dNP() or dEx() (13)

   where dC(., .) is either dEP(), dNP() or dEx() respectively defined in Equations 8, 
9 and 10.

   – Find the behavior that takes us closer to egoal. This behavior is the one that 
best produces an effect corresponding to the verb concept E*:

 
b d e b E

b B
C current* arg min ( ( , ), *).=

∈
SVM  (14)

   where dC(., .) is either dEP(), dNP() or dEx() respectively defined in Equations 8, 
9 and 10.

  – Update the plan by adding the new behavior: P ← P + b*.
  – Update the current state of the object using the predicted verb concept E*:
  if CEP then
   ecurrent ← ecurrent + f +,-,0

proto,E*
  else
   // CNP or CEx
   ecurrent ← ecurrent + µE*
  end if
end for
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by finding the behavior yielding the closest effect to the specified goal (using the 
distance functions Equations 8, 9 and 10).

Note that the application of more than one behavior may be predicted to 
generate the desired effect specified by the commanding verb. The set of these 
behaviors provides the robot with a flexibility that can be useful in cases of fail-
ure or in making multi-step plans (as outlined in Algorithm 3) subject to other 
constraints.

. Results

In this section, we first demonstrate and evaluate the three different verb con-
ceptualization methods outlined in the previous section. Having verbs or verb 

Algorithm 4 Satisfying a given symbolic goal specification.
Given: fgoal, which is a rough description of what should change in what direction 
(marked with ‘+’ and ‘-’). If required, the user can also specify what should not 
change (with a ‘0’). The other elements are marked as ‘*’.
Output: Find b* (among the behavior repertoire of the robot) that satisfies the goal 
fgoal.

– Take f*pro (the best matching effect prototype) as the interpretation of the goal:

 
f d f fpro

f
EP goal pro

pro

* arg min ( , ),=  (15)

where dEP(.,.) is the Mahalanobis distance in Equation 8. If required, a threshold 
on dEP(fgoal , fpro) can be set as a criteria to determine whether the goal cannot be 
satisfied by the robot.
– Given a novel entity eok

, find the behavior b*(among the behavior repertoire 
of the robot) that produces an effect in the effect cluster represented by the effect 
prototype f*pro:

 
b d e b f

b
EP o prok

* arg max ( ( , ), ),*= SVM  (16)

where dEP(.,.) is the Mahalanobis distance in Equation 8. If required, a threshold 
on dEP(SVM(eok , b), f *pro ) can be set as a criteria to determine whether the goal 
cannot be achieved on the novel object eok

.
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 concepts should enable an organism (1) to understand, in his own sensory-motor 
and symbolic representations, the observed behavior of another organism, and (2) 
to achieve goals specified in his own symbolic representations which are grounded 
in his own sensory-motor system. We demonstrate and evaluate both aspects on 
the iCub platform.

. Verb concepts for goal emulation and multi-step planning

In Figure 9, some novel interactions (leading to novel effect instances) are shown. 
For these instances, the robot can find the best interpretation by matching them 
against the verb concepts that it has formed using the distances defined in the 
previous section.

For these effect instances, we compare our prototypebased representation 
(CEP) with the naive prototype representation (CNP) and the exemplar-based 
 representation (CEx), as shown in Table 3. We see that our prototype-based rep-
resentation can find the correct category whereas the exemplar-based conceptu-
alization and the naive prototypebased conceptualization fail to find the correct 
category in some cases. CEx especially fails because the observed in-stances are clos-
est to the disappeared effect category since all dimensions in this category are zero. 
CNP performs better than CEx; however, we see that inconsistent dimensions that are 
not excluded by CNP in distance calculations may lead to wrong effect categories.

Another advantage of the prototype-based representation is that iCub can sym-
bolically describe what it has seen. In Figure 9, iCub is shown two different inter-
actions. Observing the effects, iCub finds the effect prototype (Figure 10) that best 
describes the observed behavior using Algorithm 2. The matching effect prototype 
is the symbolic representation (i.e. the verb concept) of the observed behavior and 
this symbolic representation is grounded in iCub’s sensorimotor experiences. Hav-
ing the sensorimotor grounding of the effect prototype, iCub is asked to produce 
the same effect (Figure 10). Note that with the set of behaviors iCub is equipped 
with, there may be more than one way to achieve the goal, and iCub chooses the 
one with highest prediction accuracy, as described in Algorithm 2.

In a scenario requiring multi-step plans, we compare the prototype with the 
exemplar-based and naive prototype conceptualization. The multi-step planning 
results are provided in Figure 11. We see that, using the verb concepts presented 
in Table 2, iCub can successfully find a sequence of effect prototypes leading to the 
target state. From these prototypes, iCub can choose the best behaviors that can 
generate those effects. In Figures 13 and 14, we provide the planning results when 
naive prototypes (CNP – Equation 9) or exemplars (CEx – Equation 10) are used 
for conceptualization. We see that, in these cases, the planner could not produce 
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a. Toy box initial state

c. Toy duck initial state d. Toy duck final state

e. Toy bone initial state f. Toy bone final state

b. Toy box final state

Figure 9. Some novel interactions with novel objects. The effect is simply the difference of 
final and initial states of the given object. The novel effect predictions with different distance 
metrics for these instances are listed in Table 3

proper behavior sequences to achieve the given goals in limited steps (the distance 
threshold was constant throughout the experiments). The multi-step planning is 
sketched in Algorithm 3.

. Verb concepts and goal specification

As if specifying a goal for iCub with a verb (like “push left the object”), we give 
iCub the goal with his own symbolic representations (Algorithm 4). Since they 
are grounded in iCub’s sensorimotor experiences, iCub can find the behavior that 
satisfies the requested goal (shown in Figure 15).
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iCub computes the category of the
effect in figures 9(a)–9(b) as

“moved right”

iCub chooses and applies
push-right on the object

iCub computes the category of the
effect in figures 9(e)–9(f) as

“moved left”

iCub chooses and applies
push-left on the object left

Figure 10. “Do what I just did” Demonstration. First row: iCub interprets the interaction 
in Figures 9(a)–9(b) as an instance of “moved-right” verb concept, i.e. which only has the 
change in y position as consistently increasing, more specifically: *16[0*]2 *17 015 *13 0 *6 [0*]3 *3 
+ *5 0 (For the sake of space, we denote k consecutive occurrences of a symbol s with sk). Then, 
iCub is asked to create the same effect on a novel object. The columns show iCub executing the 
push right behavior which it successfully chose among the behaviors in its repertoire leading to 
the effect category “moved-right”. Second row: Similarly, iCub interprets the interaction in 
Figures 9(e)-9(f)) as an instance of “moved left” verb concept (i.e. *606 *3 0 *4 0[**0]203 *2 
04 *014 *5 06 *0 *2 [0*]2 *2 04 *02 *0 – 0 *04), and a new object is put in front of it. It then chose 
to execute the push left behavior to produce the same effect

Table 3. Evaluation of the different conceptualization methods (i.e. CEP , CNP , CEx) for the 
novel interactions in Figure 9. The table lists the distances between the observed effect and 
the existing verb concepts. The verb concept with the smallest distance is the  corresponding 
interpretation of the corresponding conceptualization method (i.e., one of CEP , CNP , CEx). 
The correct predictions are in bold, whereas false predictions are  underlined

Inter. Concept. No  
change

Moved 
right

Moved  
left

Moved  
forward

Pulled Knocked Grasped Disappeared

CEP 390.81 146.24 372.24 389.21 215.56 215.50 392.11 410.31

Figure 9(b) CNP 392.16 182.13 386.92 416.43 241.06 219.28 395.04 410.31

CEx 237.01 236.89 237.42 237.24 237.42 237.42 237.25 236.84

CEP 731.36 494.18 416.42 340.71 393.76 358.06 738.04 790.41

Figure 9(d) CNP 732.98 497.02 417.18 426.71 423.17 428.06 741.11 790.41

CEx 789.45 789.08 789.83 789.49 789.83 789.83 789.54 788.84

dEP 925.41 577.51 267.45 328.75 354.85 354.74 928.16 947.51

Figure 9(f) CNP 929.37 580.26 291.77 369.75 373.37 359.88 929.94 947.51

CEx 946.74 946.42 947.03 946.66 947.03 947.03 947.01 946.21
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c. First step d. Second and final step

a. Initial state b. Goal state

START GOAL

PUSH RIGHT PUSH FORWARD

Figure 11. A sample execution of multi step planning using CEP - i.e. effect prototype based 
verb concepts. First, the initial state (a) and final state are shown (b). Then, the robot makes  
a plan involving push-right and push-forward behaviors, which are executed as shown in (c) 
and (d). When a simple Euclidian distance or naive prototype is used, the robot could not 
derive a plan

. Discussion

In this article, we have taken an ecological, embodied and grounded approach 
to verb conceptualization. We have pro-posed novel methodologies for linking 
the notion of affordances with concepts that correspond to verbs in language. To 
this end, a humanoid robot, iCub exercised its behavior repertoire on the objects 
available in the environment for the purpose of discovering the affordances of the 
objects.

The learned affordances allow the derivation of novel condensed represen-
tations of behaviors’ effects, which we called effect prototypes. We proposed that 
effect prototypes correspond to verb concepts. We demonstrated that, with these 
concepts, the robot can generalize/abstract over its behaviors, and represent the 
behaviors (and what they are useful for) using symbols, which then allow the 
robot to interpret its own or others’ interactions with the environment. These con-
cepts can easily be linked to words (i.e. verbs like “push”, “lift”, etc.) through which 
the robot can interact with humans more naturally without the designer being 
worried about how a certain verb is executed by the robot. For better  evaluation 
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of our proposal, we compared our effect prototypes with naive prototypes and 
 exemplar-based conceptualization in goal emulation and multi-step planning 
tasks. Our evaluation showed that the regular-expression like nature of our con-
ceptualization proposal combined with Mahalanobis distance performs better 
than the alternatives considered in the article.

Our prototypical representation of concepts is novel in that they represent 
the overall feature distribution in a category in a compact and efficient man-
ner. This has several advantages: (i) Unimportant features can be discarded 
in similarity computation as also argued by (Verguts et al. 2004). (ii) Feature 
elements can be grouped and segmented together; other inter-feature rela-
tions and dependencies can be easily interpreted and recovered. (iii) Such 
a symbolic condensed representation is very suitable for goal specification. 
With these advantages at hand, we have demonstrated the advantages of our 
 prototype-based concepts over exemplar-based and naive-prototype-based 
verb concepts.
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PRPF

PFPL PB TG PF

SGTGPBPL

PREVIOUS STATE

PREDICT PREDICT PREDICT PREDICT PREDICT PREDICT

PREDICTPREDICTPREDICTPREDICTPREDICTPREDICT

CURRENT STATE
TARGET STATE

PR

Figure 12. Multi-Step planning demonstration with effect prototype based verb concepts – 
CEP (and the modified Mahalanobis distance in Equation 9). The behaviors are abbreviated as 
PR (push-right), PL (push-left), PF (push-forward), PB (pull), TG (top-grasp), SG (side-grasp). 
The planner successfully terminates with a reasonably small sequence of behaviors executed. 
The trial is also visualized in Figure 11
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. Verb concepts from effects: Biological relevance

Our proposal of linking verb concepts to the effects of behaviors is in line with 
psychological ideomotor theories (e.g. Hommel et al. (2001), according to which a 
behavior is represented in distal terms, i.e. in terms of overall goals, not in proxi-
mal terms, i.e. in terms of the kinematics of the movements and of the effectors 
required to reach the goal (see also (Hamilton et al. 2007).

The neural underpinnings of this claim can be found in evidence on mir-
ror neurons in monkeys, showing that they are activated preferentially when 
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CURRENT STATE
TARGET STATE

Figure 13. Multi-Step planning demonstration with naive prototype based verb concepts – 
CNP (and the pure cMahalanobis distance in Equation 9). The behaviors are abbreviated as PR 
(push-right), PL (push-left), PF (push-forward), PB (pull), TG (top-grasp) and SG (side-grasp). 
The initial and the target states for the objects are the same with the one provided in Figure 11. 
Since the distance calculations yield wrong results due to irrelevant changes between the initial 
and goal states, the search does not terminate with success
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the behavior or the goal is clear (Umilta et al. 2001, 2008). Such an association 
strongly indicates that the concept being conveyed by the verb is the request 
for a certain effect to be generated through the use of an appropriate behavior. 
In this sense, when we ask the robot to lift an object, we specify the goal as an 
increase of the object position in the vertical axis and leave the choice of the 
particular behavior to the robot itself. This is referred to as goal emulation in the 
literature as a form of imitation characterized by the replication of the observed 
end effect (Want & Harris 2002), and is observed in infants after 12 months 
(Elsner 2007).

PREVIOUS STATE
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Figure 14. Multi-Step planning demonstration with examplar-based verb concepts – CEx 
(and Euclidean distance in Equation 10). The behaviors are abbreviated as PR (push-right), 
PL (push-left), PF (push-forward), PB (pull), TG (top-grasp) and SG (side-grasp). The initial 
and the target states for the objects are the same with the one provided in Figure 11. Since the 
distance calculations yield wrong results due to irrelevant changes between the initial and goal 
states, the search does not terminate with success.
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Figure 15. Goal specification with symbols. (a) iCub is given a goal *80 – *60 (For the sake 
of space, we denote k consecutive occurrences of a symbol s with sk), meaning that it should 
produce a decrease in the x position while avoiding a change in object presence (i.e. the object 
should not disappear) and the change in the other dimensions can be ignored. iCub matches 
this goal with the moved forward verb concept and chooses to execute the push forward  behavior 
accomplishing the specified goal. (b) Similarly, iCub is given a goal *81 – *50, meaning that iCub is 
to produce an increase in the y position of the object and the change in the other dimensions can 
be ignored while, again, the object presence should not change. iCub matches this goal with the 
moved right verb concept and executes push right behavior to accomplish the goal
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. Verb concepts from effects: Robotic and computational advantages

We claim that our proposal of linking verb concepts to the effects of behaviors and 
representing these concepts in terms of effect prototypes provides the following 
advantages, some of which have been demonstrated in this article:

 – Condensation: The prototypes represent the distribution of features in a 
category using less storage. However, we have shown that, compared to 
exemplar-based conceptual-ization, this does not degrade the performance 
requirements expected from a humanoid (as listed below).

 – Low computational complexity: A concept allows checking whether an item 
is of that concept or not. The fact that the information in a category is rep-
resented in a condensed manner facilitates faster checking of membership, 
hence faster interpretation of an observed event in terms of verb concepts.

  The complexity of checking the membership of an effect instance f in n 
verb concepts is O(n) in our proposal. However, that of exemplar-based con-
ceptualization (CEx) is O(n × m), where m is the average number of items in 
a verb concept. The complexity of checking membership in the case of naive 
prototype conceptualization (CNP) has also the complexity of O(n); however, 
(i) the distance metric in Equation 9 requires more computations than the one 
in Equation 8 on average and (ii) Equation 9 leads to worse matching perfor-
mance (as shown in Section “Results”).

 – Flexibility: Our verb concepts provide flexibility in different aspects: (i) The 
same set of methods can be applied to another robot with a different embodi-
ment having a different perceptual system and a different set of behaviors 
since the concepts are derived from the distribution of features and are not 
dependent on the set of behaviors and the features used. (ii) The prototypes 
allow a human to interact with the robot at a more symbolic and abstract level.

 – Robustness: Since in our proposal irrelevant changes in features are marked 
and not taken into consideration while interpreting effects and verb concepts, 
our prototype-based proposal of verb concepts is robust to changes in appear-
ance and spatial changes, as demonstrated especially by the multi-step plan-
ning scenario where the alternatives failed to converge to a target state in 10 
steps whereas our proposal (by comparing the most relevant and consistent 
features) converged to the target states in 2–3 steps.

  The effect-prototype-based verb concepts, being an abstraction over 
behaviors, are beneficial for the following problems:

 – Goal specification and satisfaction: The robot provides flexibility to the 
user to provide commands at different levels: (i) at the language level, using 
verbs, in which case the robot can choose the best behavior that satisfies the 
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 corresponding effect, (ii) at the symbolic level, using strings of ‘+’, ‘-’, ‘0’ and 
‘*’, making it easy for a human to specify in more detail what is expected to 
change, in which case the robot can again find the best behavior leading to the 
required change specification, (iii) at the low sensorimotor level, using exact 
values for features’ final state, which again can be achieved using the concep-
tualization we have proposed. Moreover, as we have shown, the human can 
demonstrate an effect on any object and the robot can generate the same effect 
on a completely different object.

 – Language and human-robot interaction: An important cornerstone in lan-
guage and seamless humanrobot interaction is sharing the same meaning for 
the words that are used by humans and robots. With the verb concepts pro-
posed in this article, we have addressed how verbs can be grounded in the 
sensorimotor system of the robot such that the robot can interpret in his own 
system the meaning associated with the word and utilize that meaning in vari-
ous tasks involving interactions with humans.

. Limitations and future directions

An important aspect of the system is the inclusion of supervision. The only super-
vision we put into the system is the effect labels that are provided by a human after 
each interaction. Although a developing infant gets such supervision throughout 
most of his development, it is worthwhile to investigate what the different effect 
categories could have been in the lack of supervision. The simplest idea would be 
to cluster the effect instances using an unsupervised clustering method. In (Akgun 
et al. 2009), we attempted an unsupervised approach to clustering the effect space; 
however, such an approach does not guarantee that the set of verb concepts would 
converge to be similar to the ones used by humans, and even if it did, it would 
take a longer time span. In a developing infant, both supervised and unsupervised 
mechanisms are used in the development of concepts, and we leave the integration 
of unsupervised categorization of effects as a future work. However, it should be 
noted that if we wish a robot to have the same concepts as we, humans, do, then we 
should provide supervision for the sensorimotor interactions.

For any computational system, representation is very important in that a suit-
able representation can simplify many tasks, and an unsuitable one can complicate 
many simple tasks unnecessarily. In fact, one can argue that cognitive develop-
ment is about learning “suitable” representations from sensorimotor interactions. 
A representational requirement for our method is that the features extracted from 
the objects must be a fixed-length vector, and that the information extracted 
from the objects have fixed positions in this vector. For more complex objects, 
especially those with articulated parts, our methods can work with a  hierarchical 
 representation where the abstraction processes described in this article can be 
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modified to work over the nodes of the hierarchy. For a scenario involving differ-
ent behaviors or effects, a different set of features might be required to be able to 
represent the changes. However, the same abstraction process can be used as long 
as the features have fixed length and positions.

The current planning method is designed just to demonstrate the usefulness 
of verb concepts. Our planner makes plans in terms of “what” changes are required 
in the environment in order to reach to a target state, and finds a sequence of verb 
concepts to satisfy them. In a full-fledged cognitive system, the planning must be 
able to take into account also “how” some changes are performed in the environ-
ment. This can be achieved by having the behaviors parametric such that the same 
behavior with different parameters can yield different effects. The planner then 
can treat different parameter settings as different behaviors while making plans 
and determine the behavior with the parameters conforming to the required task.
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