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Abstract

This study investigates the acquisition of integrated object manipulation and categorization abil-

ities through a series of experiments in which human adults and artificial agents were asked to

learn to manipulate two-dimensional objects that varied in shape, color, weight, and color inten-

sity. The analysis of the obtained results and the comparison of the behavior displayed by human

and artificial agents allowed us to identify the key role played by features affecting the agent/envi-

ronment interaction, the relation between category and action development, and the role of cogni-

tive biases originating from previous knowledge.

Keywords: Embodied cognition; Categorization; Category and action learning; Shape bias; Neural

networks

1. Introduction

The aim of this study was to investigate how humans acquire and use categories while

manipulating novel objects. Given the fundamental role played by categorization in

behavioral and cognitive systems, a huge literature has already investigated the percep-

tual, cognitive, and neurobiological processes that mediate this crucial skill. In this arti-

cle, we focus on category learning, that is, on the acquisition of the ability to categorize

unfamiliar stimuli (Ashby & Maddox, 2005), and on category learning and use, that is,
on the acquisition of categories to accomplish a specific function (object manipulation).

For a discussion of the implications of category use in category learning, see Markman

and Ross (2003).
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In this study, human and artificial agents learned to categorize objects indirectly,

through interactions with these objects, rather than directly, as it happens in classification

tasks in which agents are explicitly required to associate items to categories. The reason

behind this choice came from considering that living organisms must frequently learn

object categories that are relevant for specific goal-directed actions. For example, in most

contexts, humans categorize a bottle as an object to drink from, but in other contexts the

same bottle can be categorized as a tool for keeping a door open (Craj�e, Lukos, Ansuini,
Gordon, & Santello, 2011). Along this line, numerous authors have argued that categori-

zation is grounded in the sensorimotor system and is action based (Barsalou, 2002; Borg-

hi, 2005; Gallese & Lakoff, 2005; Glenberg, 1997; Wilson, 2002). One notable example

of the influence of action on categorization is provided by Smith (2005). Other authors

have claimed, in more general terms, a central role of action in cognition (e.g., N€oe,
2004; Pfeifer & Scheier, 1999). We framed our experiments within this theoretic view

and explored the relationship between action and category learning by having agents per-

form specific goal-directed behaviors with objects and categorize these objects through

specific behaviors.

This study also addressed the issue of how categorization enables agents to display dif-

ferent behaviors in functionally different agent/environment contexts and to use the same

objects for different purposes. Indeed, the role played by context has become increasingly

relevant in recent literature on affordances. While previous studies mainly focused on the

automatic activation of affordances, independently from the task (e.g., Tucker & Ellis,

2001), more recent studies have pointed out the flexibility of affordances showing that

their activation is modulated by both the task and the physical and social context (e.g.,

Borghi, Flumini, Natraj, & Wheaton, 2012; Costantini, Ambrosini, Scorolli, & Borghi,

2011; Ellis et al., 2013; Mizelle & Wheaton, 2010; Natraj et al., 2013; Tipper, Paul, &

Hayes, 2006; Yoon, Humphreys, & Riddoch, 2010). Along the same line, kinematics

studies have revealed that humans vary the way they grasp an object not only depending

on its physical features, such as shape and weight, but also on its content, on the context,

and on the end-goal of the action (e.g., Ansuini, Giosa, Turella, Alto�e, & Castiello, 2008;

Ansuini, Tognin, Turella, & Castiello, 2007; Craj�e et al., 2011; Lederman & Wing, 2003;

Sartori, Straulino, & Castiello, 2011).

The study was conducted by carrying out parallel experiments on human and artificial

agents (Vassie & Morlino, 2012). This direct comparison was made to verify the extent

to which observed data can be accounted for by a simple model implemented in experi-

ments with artificial agents and to clear up the role played by humans’ previous knowl-

edge. In particular, we investigated the degree to which humans rely on online

affordances (Gibson, 1979) and the extent to which perception of affordances re-activates

previously learned associations between visual properties and motor responses acquired

through experience (Ellis & Tucker, 2000).

To target these issues, we designed a software application that presented an agent, human

or artificial, with a set of two-dimensional objects. The agent could move the objects, one at

a time, and received a numerical feedback that indicated how well the object was manipu-

lated. The objects varied with respect to four features: two features were directly perceiv-
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able, irrespectively of whether and how the object was manipulated, while the other two

were action-dependent, that is, they could be sensed only through direct manipulation (see

section 2 for more details). Furthermore, two features, one directly perceivable (shape) and

one action-dependent (weight), defined the desired manipulation, while the other two were

distractors. Objects were divided into families, requiring similar manipulations, and catego-
ries, requiring specific manipulations (e.g., the family of square objects had to be shaken

but the categories of light-square and heavy-square objects had to be shaken vertically and

horizontally, respectively). Therefore, in order to master the task, the agent had to learn the

required manipulations and the way in which objects were grouped.

Our predictions were as follows:

1.1. Embodiment

We hypothesized that the physical characteristics of the objects and the effects of inter-

action between the agent and the environment could facilitate the development of action-

oriented categorization, that is, of integrated manipulation and categorization skills (Poiri-

er, Hardy-Vallee, & De Pasquale, 2008; Tuci, Massera, & Nolfi, 2010). More specifically,

we predicted that the discriminative features that affect the agent/environment interaction,

such as weight, might facilitate the acquisition of differentiated manipulations with

respect to discriminative features, such as shape, that do not influence the effect of the

actions performed by the agents.1

1.2. Previous knowledge

We hypothesized that previous knowledge might affect learning processes, that is,

biases the type of manipulations/categorization performed by the learning agents. An

example of this process is constituted by the shape-bias effect, that is, the tendency to

extend count-nouns on the basis of shape similarity, a phenomenon present in Western

societies and becoming rather stable quite early, in 2-year-old children (Landau, Smith, &

Jones, 1988, 1998; Samuelson & Smith, 1999). In addition, affordances have been pro-

posed to be the product of the conjunction, in the brain, of repeated visuomotor experi-

ences (Ellis & Tucker, 2000). Thus, we expected that for humans a given shape should

elicit a specific movement (e.g., circular movement for circles), while this should not be

the case for artificial agents, which lack any previous knowledge.

2. Methods

2.1. Experimental scenario

The experimental scenario involved 16 two-dimensional objects that were generated by

combining four binary perceptual features: shape (circle/square), color (red/green), weight

(light/heavy), and blinking (varying or not-varying color intensity during motion). These
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16 objects were grouped into four categories that required four corresponding manipula-

tions. Categories were determined on the basis of the combination of the shape and

weight features: circle-light, circle-heavy, square-light, and square-heavy. Each category

included four objects that varied with respect to the other two perceptual features; more

precisely, each category included a red-blinking, a red-non-blinking, a green-blinking,

and a green-non-blinking object. However, variations with respect to these features were

functionally irrelevant. Two of the perceptual features (shape and color) were directly

perceivable, while two (weight and blinking) were action-dependent (meaning that they

could be perceived only by manipulating the object and by integrating perceived informa-

tion over time). In this sense, light/heavy objects varied with respect to the inertia with

which they reacted to the movements. On the other hand, blinking/non-blinking objects

differed with respect to whether their color varied or remained the same during motion. It

is worth noting that weight is the only feature that influenced the agent/environment inter-

action; indeed, objects of different weight responded differently to the same action, while

the other three features only affected the state of the agent’s sensors.

Agents were allowed to interact repeatedly with each of the 16 objects and at the

end of each period of interaction they received a score in the range [0, 100] that

indicated how well the object had been manipulated, that is, how close the performed

manipulation was to the desired one. Each object was associated with one of four

desired manipulations (see right part of Fig. 1), which were as follows: place left,

place right, shake vertically, and shake horizontally. These four desired manipulations

were divided into two families: objects to be placed (independently of where they had

to be placed) and objects to be shaken (independently of how they had to be shaken).

For a detailed description of how the behaviors exhibited by the agents were scored,

see Appendix A.

Across trials in the experiment, the assignment of desired manipulations to object cate-

gories was fixed. This assignment was manipulated between subjects: Human participants

and artificial agents were randomly assigned to one of the conditions and performed the

experiment in this condition only. We provided four experimental conditions systemati-

cally varying the relation between objects and desired manipulations (see Fig. 1); thus,

we had: place-circles–shake-squares, place-squares–shakes-circles, place-heavy–shake-
light, and unstructured, which consisted in placing light circles and heavy squares, and

shaking light squares and heavy circles. Notice how in the first three conditions the type

of desired manipulation, namely whether the objects should be shaken or placed, could

be determined on the basis of a single perceptual feature. In the unstructured condition,

instead, both the type of manipulation, placing or shaking, and the specific manipulation,

shaking direction or placing area, could only be determined by taking into account the

combination of two perceptual features.

Data analysis of performance in these four experimental conditions allowed us to: (i)

verify the role of cognitive biases in human participants; (ii) investigate the role of

action-dependent versus directly perceivable object features; (iii) verify the role of fea-

tures that affect versus those that do not affect the agent/environment interaction; and (iv)

study how agents can develop integrated action and categorization capabilities.
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Fig. 1. Experimental conditions. In each condition the 16 objects, grouped in categories, have to be manipu-

lated differently. All the objects in a row have to be manipulated accordingly to the manipulations depicted

on the right, so objects from the first, second, third, and fourth row have to be placed left, placed right, sha-

ken vertically, and shaken horizontally, respectively. The circle/square objects have a diameter/side of 100

pixels (corresponding to 3 cm on the screen used to perform the experiment). The dimensions of the area in

which the objects can be moved are 600 9 600 pixels (18 9 18 cm). The arrows indicate the shaking behav-

iors. The dashed circles indicate the target areas where objects have to be placed. The target areas (depicted

with dashed circles) are centered at (150, 150) and (450, 300), respectively (coordinates relative to the bot-

tom-left corner of the arena), and their size, defined as the diameter of the area in which the score is maxi-

mum, is 200 pixels (6 cm).
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2.2. Experiments with human participants

Twenty participants took part in the experiment (7 males, 13 females) and were

equally divided into the four experimental conditions described above, five participants

for each experimental condition. The average age of the participants was 21.34

(SD = 3.71) and they all self-reported to be right-handed.

Participants carried out the experiment at a computer terminal and were asked (see

Appendix B) to manipulate the objects with the mouse trying to maximize the received

scores. Each object could be manipulated for a maximum of 30 s. The instructions

informed the participants that after each manipulation, feedback would be displayed rat-

ing the extent to which she/he approximated the correct desired manipulation for the cur-

rent object. The participants were also told that they could skip to the next object by

clicking on the left button of the mouse or could re-try with the same object by clicking

the right button. Moreover, the participants were informed that the experiment consisted

of a 25 min training phase in which she/he was asked to learn to properly manipulate the

objects and of a 5 min testing phase in which she/he was asked to maximize the scores.

Objects were presented randomly and participants were not aware of the number and type

of desired manipulations. During the experiment, we recorded the position of the mouse

and of the object over time, the state of the mouse buttons, and the scores. At the end of

the two phases, the experimenter interviewed the participants (questionnaire reported in

Appendix B).

2.3. Experiments with artificial agents

The artificial agents were constituted by three-layer recurrent neural networks (see

Fig. 2) that, every 100 ms, received the perceptual properties and the position of the

object as input and calculated the movement of the mouse pointer as output. The input

layer had four sensory neurons that encoded the current position of the mouse pointer

and of the centroid of the object, two sensory neurons that encoded (as binary features)

whether the current object had a circular or squared shape, and three sensory neurons that

encoded the current RGB color of the object. The sensory neurons projected connections

to the internal neurons with recurrent connections. The internal neurons, which included

three dynamical neurons (see Gigliotta & Nolfi, 2008), projected connections to the motor

neurons. The two motor neurons were standard logistic neurons that encoded the displace-

ment (mapped into the range [0, 100] pixels) of the mouse pointer over the horizontal

and vertical dimension.

The agents were trained using a trial-and-error process in which the free parameters

were varied randomly; variations were retained or discarded depending on whether or

not they led to improved average performance over the whole set of objects. This

was done by using an evolutionary method (Nolfi & Floreano, 2000). More specifi-

cally, the initial population consisted of 100 randomly generated genotypes that

encoded the connection weights, the biases, and the time constants of 100 correspond-

ing neural controllers. Each parameter was encoded by eight bits and normalized in
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the range [�5.0, +5.0] in the case of the connection weights and biases and in the

range [0.0, 1.0] in the case of the time constants of the internal neurons. The 30 best

genotypes of each generation were allowed to reproduce by generating five copies

each, with 2% of their bits replaced with a new randomly selected value. The evolu-

tionary process lasted 500 generations and was repeated 30 times, starting from differ-

ent randomly generated parameters, for each experimental condition. The performance

of the individuals was computed by averaging the score obtained during 64 trials dur-

ing which they were allowed to interact four times with each of the 16 objects for

100 s. The object position was randomly set at the beginning of each trial. The rea-

son behind this choice is that evolutionary algorithm is one of the simplest yet effec-

tive ways to train a neural network through a trial-and-error process on the basis of a

distal reward.

2.4. Differences between human and artificial agents

Although the two experimental settings were designed to be as similar as possible,

some important differences should be considered in comparing the results. Even though

compared to these artificial agents humans are extremely complex in their sensory, motor,

and cognitive apparatus, here we want to stress two specific differences that we have to

consider to correctly interpret the data.

The first difference is that the artificial agents had no previous knowledge since the

free parameters that determined their behavior at the beginning of the training process

were set randomly. By contrast, humans possess highly structured capacities and knowl-

edge. More specifically, as mentioned above, human participants have cognitive biases,

Fig. 2. Architecture of the artificial neural controller. Sensory, hidden, and motor neurons are depicted at the

bottom, center, and top of the illustration, respectively. Arrows indicate that all neurons of one layer are con-

nected to all neurons of the other. Sensory neurons were relay units, hidden neurons were dynamic units, and

motor neurons were standard logistic units (see text for details).
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deriving from their previous experience, which might affect the way in which they inter-

acted with different objects at the beginning and/or during the course of the learning

process. Incidentally, the comparison of obtained results can be used to verify the

strength of these biases and the positive or negative role that they have in the develop-

ment of new skills that are not correlated with previously developed abilities.

A second difference concerns the nature of learning processes. The artificial agents

learned through a stochastic trial and error process conducted over an extended period of

time (by stochastic we refer to the fact that variations were introduced randomly). On the

contrary, humans instead were exposed to a minor number of trials but rely on a variety

of learning strategies developed during their life.

The aim of the experiments with artificial agents was not to model human behavior

but rather to (i) identify commonalities in behavior that can be attributed to general prop-

erties of the agent/task and that arise independently of the differences between human

and artificial agents, and (ii) investigate the differences in the behavior observed in the

two cases that in turn provides a way to detect the role played by aspects that are simply

modeled in the artificial agents.

3. Results

Overall, the analysis of the performance showed that both human and artificial

agents managed to master the task. They both learned to manipulate the objects in

ways that allowed them to achieve good performance, defined as a score above 70

(maximum score being 100). More specifically, human agents reached an average

score of 71.08 at the end of the training section (lasting 25’, as described above),

while artificial agents instead reached an average score of 91.21 at generation 50,

96.82 at generation 200, and close-to-optimal score (98.57) at generation 500 (see

Figs. 3 and 4). Artificial agents displayed better performance in the condition in which

the predictive feature was the weight (place-heavy–shake-light) than in the conditions

in which it was the shape (place-circles–shake-squares and place-squares–shake-circles)
or in which there was no predictive feature at all (unstructured). Human data also dis-

played a similar trend; however, participants had relatively better performance when

the coupling between the object shape and the required movements was congruent

with biases deriving from their previous experiences (the place-squares–shake-circles
condition).

The behavioral analysis performed on trained agents showed that both human partici-

pants and artificial agents adopted overgeneralized strategies to solve the task: They

manipulated objects of two or three different categories or all the objects in the same

way. However, as we will see, this did not necessarily lead to sub-optimal performance.

Although the way in which scores were calculated did not explicitly encourage the

production of minimal trajectories, humans (in contrast with artificial agents) tended to

reduce the number of submovements performed for objects to be placed during the course

of the training process.
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Fig. 4. Average performance of the best artificial agents of 30 replications of the experiment in the four

experimental conditions and at different phases of the training process (generations 1, 50, 200, and 500).

Error bars represent the standard error of the means. Data obtained by post-evaluating the best agents for 640

trials.

Fig. 3. Overall performance and performance by target manipulations obtained in the four experimental con-

ditions by human participants and artificial agents. Error bars represent the standard error of the means. Sig-

nificant differences in the overall performance (rightmost bars) are marked with stars (“*” means the

difference is significant at .05 level and “***” means the difference is significant at .01 level). Left: perfor-

mance of the 20 human participants in the test phase. Right: average performance of the best 120 artificial

agents (30 replications for each experimental condition) at generation 50. Data obtained by post-evaluating

the agents for 640 trials.
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3.1. Statistical analysis

ANOVAs were carried out on the scores received by human and artificial agents.

We first performed an ANOVA on human performance in the testing phase and artificial

agents at Generation 50 using Participant Type (human or artificial) and Condition

(1=place-circles–shake-squares, 2=place-squares–shake-circles, 3=place-heavy–shake-
light, 4=unstructured) as between-participants factors and Manipulation (place left, place

right, shake vertically, shake horizontally) as within-participants factor. Effect sizes were

computed as values of eta-squared (g2).

We then performed two more ANOVAs, one on human performance in testing phase and

the other on artificial agents data. The ANOVA on human performance had Condition as

between-participants factor and Manipulation as within-participants factor. The ANOVA on

artificial agents had Generation (training stages): 1, 50, 200, 500, in addition to Condition

and Manipulation, as between-agents factor.

To facilitate the comparison with human performance we reported in Fig. 3 (right)

only the data of artificial agents for Condition and Manipulation at Generation 50, with

the data on Condition and Generations being reported in Fig. 4.

In order to investigate significant main effects and interactions, Newman-Keuls post-

hoc tests were used.

3.1.1. Human versus artificial
The ANOVA on human performance in testing phase and artificial agent performance at

Generation 50 showed a main effect of Participant Type, F(1, 132) = 57.16, MSE = 2.78,

p < .001, g2 = .245, with artificial agents performing relatively better than humans

(p < .001).

Condition was also a main effect, F(3, 132) = 11.06, MSE = 0.54, p < .001,

g2 = .142. Post-hoc test showed that place-heavy–shake-light and unstructured were over-

all easier than the placing conditions (ps < .001), which did not significantly differ each

other; place-heavy–shake-light was also easier than unstructured (p = .037).

A main effect of Manipulation emerged as well, F(3, 396) = 7.71, MSE = 0.33,

p < .001, g2 = .049, with shaking horizontally turning out to be the easiest manipulation

(ps = .002 with respect to place left and shake vertically, and p < .001 with respect to

place right).

As regards the interactions both Manipulation X Participant Type and Condition X Par-

ticipant Type were significant (p < .001 and p = .017, respectively), while Manipulation

X Condition and Manipulation X Condition X Participant Type were not (p = .227 and

p = .167, respectively). Being humans and artificial agents highly dissimilar, the signifi-

cant interactions likely depend on factors not relevant to this study. For this reason, we

further analyzed humans and artificial agents performing two more separate ANOVAs.

However, this first ANOVA provided a general overview of the result and, showing that the

Participant Type X Manipulation and Participant Type X Condition interactions were sig-

nificant, informed us that human participants and artificial agents performed differently.
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However, as reported below, we observed interesting similarities between human and arti-

ficial agents, which allowed us to deeply understand the phenomena in place.

3.1.2. Human participants
The analysis of human performance showed a main effect of Condition, F(3,

16) = 4.82, MSE = 0.07, p = .014, g2 = .475: Post-hoc tests showed that Condition 1

(place-circles–shake-squares) had overall the worst performance (p = .062 with respect to

Condition 2, p = .015 with respect to Condition 3, and p = .020 with respect to Condition

4). The other conditions did not significantly differ.

A main effect of Manipulation emerged as well, F(3, 48) = 5.76, MSE = 0.06,

p = .002, g2 = .184. Post-hoc tests showed that no difference was present between the

Manipulation of placing on the left and placing on the right (p = .934), and between

shaking horizontally and vertically (p = .273). Interestingly, shaking manipulations

obtained better performance. More specifically, participants performed better with shaking

horizontally than placing right (p = .030) and with shaking vertically than both the plac-

ing manipulations (p = .007 respect to placing left and p = .005 respect to placing right).

The difference between shaking horizontally and placing left was not significant

(p = .063).

Condition X Manipulation interaction was not significant, F(9, 48) = 0.85,

MSE = 0.06, p = .570, g2 = .082.

3.1.3. Artificial agents
The analysis of artificial agents’ performance showed a significant main effect of Con-

dition, F(3, 464) = 23.20, MSE = 236.75, p < .001, g2 = .013. Condition 2 (place-

squares–shake-circles) was overall the worst performance, significantly different from

Condition 3 and 4 (place-heavy–shake-light and unstructured), ps < .001. Similarly, Con-

dition 1 (place-circles–shake-squares) significantly differed from Condition 3 and 4

(ps < .001). Performance was overall the worst in Condition 1 and 2 and did not differ

between the two (p = .118). Similarly, Condition 3 and 4 did not significantly differ

(p = .666) and exhibited the overall best performance.

A significant main effect of Generation was present as well, F(3, 464) = 1,559.49,

MSE = 236.75, p < .001, g2 = .893. Obviously, the overall worst performance was Gen-

eration 1, significantly differing from all the other generations (ps < .001). In addition,

Generation 50 was significantly worse than Generations 200 and 500 (ps < .001), while

these last two did not differ from each other.

The main effect of Manipulation was significant as well, F(3, 464) = 67.57,

MSE = 336.16, p < .001, g2 = .081. Shaking actions were worse than placing actions (all

ps < .001). Shaking vertically was significantly worse than shaking horizontally

(p = .004). Similarly, placing right was worse than placing left (p < .001).

Condition X Generation interaction was significant as well, F(9, 464) = 2.82,

MSE = 236.75, p = .003, g2 = .005. Post-hoc test showed that Condition 3 (place-heavy–
shake-light) in Generation 50, 200, and 500 and all Conditions in Generations 200 and 500

did not significantly differ (ps > .05). All the other differences were instead significant
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(ps < .012). In other words, optimal or close-to-optimal performance was reached earlier

in the place-heavy–shake-light compared to the other Conditions.

Condition X Manipulation interaction was significant too, F(9, 1392) = 9.64,

MSE = 336.16, p < .001, g2 = .035. Post-hoc tests showed there to be an advantage of

placing over shaking actions, and of shaking vertically over shaking horizontally. Condi-

tion 3 (place-heavy–shake-light) and Condition 4 (unstructured) resulted in better perfor-

mance (ps < .001) than Condition 1 (place-circles–shake-squares) and Condition 2 (place-

squares–shake-circles) in the case of placing actions (place left and place right).

Generation X Manipulation interaction gave complementary information, F(9,
1392) = 80.48, MSE = 336.16, p < .001, g2 = .291. Post-hoc tests showed that only at

Generation 1 did shaking Manipulations result in worse performance compared to placing

ones (ps < .001), while these differences disappeared in the other Generations.

Finally, Condition X Generation X Manipulations interaction was also significant,

F(27, 1392) = 3.12, MSE = 336.16, p < .001, g2 = .034.

In addition to the previous results, post-hoc tests showed that Condition 1 and Condi-

tion 2 were significantly worse than Condition 3 and 4 only in the placing actions

(ps < .001) but not in the shaking ones (ps > .05). As also shown above, shaking actions

had an overall performance disadvantage.

3.2. Behavioral analysis

The analysis of the behaviors displayed by trained agents indicated that both human

and artificial agents tended to manipulate objects belonging to the same category in the

same way. However, as we will see in more detail below, objects of different categories

were not always manipulated differently. Both human and artificial agents found and

exploited manipulations that could be applied to objects of two or more categories

achieving good or optimal scores. Examples of such overgeneralized strategies were

abundant both in human and artificial agents and were observed both during the course

and at the end of the training process.

In the case of humans, overgeneralized solutions for objects to be shaken were

observed in most participants. In some cases, participants constantly moved the mouse

pointer along the diagonals of the arena (see Fig. 5a) or along trajectories that resembled

the shape of the objects (see Fig. 5b and c). In other cases, instead, participants simply

shook objects in varying directions (see Fig. 5d). Overgeneralized solutions were also

observed, although less frequently, for objects to be placed. In these cases, all objects

were brought roughly at the center of the arena (see Fig. 5e) or at one of the two target

areas (see Fig. 5f) gathering a relatively high average score without differentiating the

manipulations. In some cases we observed higher level overgeneralizations, in which all

the objects were treated in the same way. In these cases, suboptimal performance was

achieved by exhibiting two manipulations in sequence, by first shaking the objects in

varying directions or along the diagonals of the arena and then placing them at the center

of the arena. For additional details on the number and frequency of overgeneralized strat-

egies see Tables 1 and 2.
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Overgeneralized strategies also characterized the majority of the solutions found by

artificial agents (see Table 1 for additional details).

In order to analyze the quality of the behavioral strategy, we post-evaluated trained

agents by using an effort measure. In the case of objects to be placed, this was computed

by subtracting from 1 the ratio between the length of the shortest trajectory and the

length of the actual trajectory. In the case of objects to be shaken, this measure was com-

puted by subtracting from 1 the difference between the obtained score and the score that

would be obtained if the object had to be shaken along the orthogonal axis, that is,

horizontally instead of vertically, or vice versa. Fig. 6 reports the average effort of human

and artificial agents computed over successful trials, defined as trials in which the

manipulation performance was >.9.
As it can be observed, although the performance criterion did not reward effort mini-

mization, humans produced shorter trajectories during training for objects to be placed.

Artificial agents, instead, did not decrease but rather increase effort during training, for

all object types.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Type of the overgeneralized strategies displayed by human participants. Little squares and triangles in

panels a, b, c, and d represent the start and end points of four exemplary trajectories, respectively. Little cir-

cles and diamonds in panels e and f represent the end points of the trajectories performed by two participants

during the test phase with objects to be placed in the bottom-left and right target areas (big circles), respec-

tively.
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3.3. Human self-report

At the end of the experiment, human participants were interviewed by means of a

questionnaire (see Appendix B).

One of the questions asked which object features they had noticed. Shape was the only

feature reported by all 20 participants. Interestingly, color, even if it was not relevant for

category membership, was reported by 18 participants, more than weight and blinking,

which were reported by 17 and 15 participants, respectively.

Most of participant described shape, color, and blinking in the same way; weight

instead was described in different ways (inertia to the movement, delay in reaction time,

speed, laziness, stickiness, responsiveness to the participant’s willingness), even by the

same participant.

Participants were also asked to indicate which of the detected features was relevant to

the task. The majority of them reported shape and weight as features relevant or partially

relevant to the task and discarded color and blinking. Particularly, shape was considered

more relevant with respect to weight in the conditions in which it was predictive. Con-

versely, weight was considered more relevant than shape in the place-heavy–shake-light
condition (see Table 3). Besides, in this condition, some participants explicitly stated to

have exploited the different reactions of light/heavy objects to accomplish the task.

Fig. 6. Effort of human participants and artificial agents. The left picture reports the average effort of the

human participants for each target action over the first 70 trials. Linear regression lines are drawn to show

the trends (dashed lines). The right picture reports the average effort of the best artificial agents computed

over the first 50 generations.

Table 2

Overall frequency of the overgeneralized strategies3

Gen. Level 2 3 4 Total

Human% 50.00 0.00 15.00 65.00

Artificial% 12.92 4.17 70.83 87.92
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Data related to the remaining questions were incomplete or not particularly relevant

here; thus, we decided not to report them.

4. Discussion

4.1. Role of object features in categorization and behavior development

The differences in performance in the four experimental conditions (reported in Fig. 3)

indicate that the type of features that defined the objects’ families significantly affected

the ability to learn to master the task.

More specifically, the fact that for artificial agents the place-heavy–shake-light condition
(in which the discriminating feature—the weight—affected the agent/object interaction)

led to significantly better performance with respect to the place-circles–shake-squares and
place-squares–shake-circles conditions (in which the discriminating feature—the shape—
did not influence the agent/object interaction) indicates the importance of embodiment in

object categorization (see explanation below). A similar trend was observed in humans,

although in this case, performance in the place-heavy–shake-light condition differed signif-

icantly only with respect to performance in the place-circles–shake-square condition (see

section 4.3 for a discussion on the reason that may explain this difference). These results

confirm the hypothesis that discriminative features affecting the agent/environment interac-

tions, such as weight, facilitate the acquisition of the required categorization abilities with

respect to alternative features that are equally informative but that do not affect the out-

come of the agent actions. This facilitation effect overcomes the fact that weight is an

action-dependent property, namely a feature that cannot be immediately detected by the

agent, but that can only be inferred by integrating sensory-motor information over time

while the agent interacts with the object (Brouwer, Georgiou, Glover, & Castiello, 2006;

Jenmalm, Schmitz, Forssberg, & Ehrsson, 2006; Scorolli, Borghi, & Glenberg, 2009). The

effect was not observed in an additional set of experiments performed with artificial agents

in which blinking was used as discriminative feature instead of weight (results not shown).

This supports an embodied account as it suggests that the effect is due not only to proper-

ties that can be detected once objects are manipulated, such as both blinking and weight,

but only to properties, such as weight, that codetermine the effects of the agent/environ-

ment interaction.

Table 3

Features reported as relevant by human participants4

Condition 1 2 3 4

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Shape r r - r r p r r r p - p - - r r p r r p

Weight p p p p - p p - p r r r r r r - - r r p

Color - - - - - - - r - - - p - - - - p - - -

Blinking - - - - - r - - - - - - - - - - p r - r
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The facilitation effect of weight with respect to shape can be explained by considering

the action-oriented nature of the categories postulated in these experiments (the category

of an object defines the way in which it should be manipulated). In this situation, a fea-

ture like weight tends to produce spontaneous differentiation in the way in which objects

are manipulated. The differentiation arises from agent/object interaction irrespectively of

whether the agent treats objects varying with respect to that feature differently. Indeed,

the fact that interaction with light versus heavy objects tends to spontaneously produce

more differentiated behaviors than interaction with objects varying in shape can be

observed in artificial agents already from the very first phases of the training process (see

Fig. 4). In addition, as reported in section 3.3, some participants of the place-heavy–
shake-light condition explicitly declared to have exploited the different reactions of light/

heavy objects to accomplish the task. In other contexts, purely perceptual features might

be preferred with respect to features affecting the agent/environment interaction, such as

weight.

The explanation of the apparently surprising result that the unstructured condition

(place-light-circles-and-heavy-squares–shake-light-squares-and-heavy-circles) leads to sig-

nificantly better performance in artificial agents with respect to the place-circles–shake-
squares and place-squares–shake-circles conditions can be explained by the fact that

artificial agents tend to converge on a relatively simple strategy that consists in shaking

circles horizontally in the bottom-left area and shaking squares vertically in the center-

right area. This strategy allows the agents to exploit, also in the unstructured experimental

condition, the effect that weight has in the agent/object interaction, for example, the fact

that heavy objects tend to oscillate less than light ones. Indeed, artificial agents oscillated

the mouse pointer horizontally in the bottom-left part of the arena in the same way,

regardless of the object weight. The selected amplitude, frequency, and location of the

oscillation, combined with the effect of the weight, produced an appropriate horizontal

oscillatory movement of light circles and a smaller oscillatory movement inside the

appropriate target area of heavy circles. The need to shake and place heavy and light

squares in the unstructured condition, on the other hand, forced the agents to (often later)

develop an ability to differentiate their actions for objects belonging to these two catego-

ries. This could explain why the unstructured condition outperformed the place-circle–
shake-square and place-squares–shake-circles conditions only during the final phase of

the training process (see Fig. 4).

It is well known that different views of embodiment exist, from more moderate to more

radical ones (for discussion on these issues see Borghi & Cimatti, 2010; Chemero, 2009;

Chatterjee, 2010; Goldman & De Vignemont, 2009). We define strong an embodied

approach which assigns a central role to the body for cognition, in contrast with more mod-

erate versions of embodied cognition, which assign less centrality to the body and to bodily

states. Proponents of “mild” embodied approaches underline that cognition is “typically

grounded in multiple ways, including simulations, situated action and, on occasion, in bod-

ily states” (Barsalou, 2008, p. 619; Pezzulo et al., 2011). Our data on weight are more

consistent with a strong embodied account, as they reveal that properties affecting the

agent/environment interaction are more salient than properties that only affect perceptual
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states (for similar behavioral results obtained with a sorting task, see Iachini, Borghi, & Se-

nese, 2008). Indeed, in our setting object weight influences the way objects can be dragged

in space: Heavy objects are slower than light ones in following the mouse pointer. Due to

these characteristics, we believe that the importance of weight emphasizes the central role

of action and of the body in constraining cognitive processes (Glenberg & Gallese, 2012;

Goldman & De Vignemont, 2009).

4.2. Integration of categorization and action skills

As reported above, the analysis of human and artificial agents revealed that they dis-

covered and exploited overgeneralized behaviors, namely manipulations applied to objects

belonging to more than one category, which allowed them to achieve relatively good and

sometimes optimal performance. This result is consistent with the original idea by Gibson

(1979) according to which we do not need to categorize objects in order to respond to

their affordances. In other words, agents might produce the required differentiated manip-

ulations for objects belonging to different categories without differentiating the way in

which they are treated but rather by identifying a single manipulation that, in interaction

with objects with different properties, produces the required differentiated manipulations

(for another example of such implicit categorization behavior, see Nolfi & Marocco,

2002).

The role of overgeneralized strategies and the analysis of the process through which

lower and higher-level categories are acquired in our experiments also provide interesting

evidence that can shed light on the way in which categories are formed. According to

one influential account (e.g., Mandler, 2004) children first form global categories, which

are more general than those referred to by words. Later, they start differentiating them

and forming more specific ones. Other authors instead report evidence showing that

infants start learning basic level categories, then form more general, superordinate ones

(see, for example, the seminal work by Rosch et al., 1976). The behavioral analysis con-

ducted on data from the training of artificial agents provided evidence of both processes

in the same experimental scenario. We observed both cases in which agents first display

an ability to discriminate between higher level categories, that is, object to be placed ver-

sus objects to be shaken, and cases in which agents first exhibit the acquisition of lower

level categories, that is, object to be placed on the right versus object to be placed on the

bottom-left, and then the acquisition of higher level categories. In more general terms,

these results confirm the tight interaction between action and categorization.

4.3. Role of cognitive biases

Artificial agents did not have previous experience and therefore initially treated all

objects in the same way. The behavior exhibited before training might differ significantly

only for objects varying with respect to features that affect the agent/environment interac-

tion (weight). As expected, the conditions that differ with respect to the relation between

the shape of the object and the associated desired manipulation (place-circle–shape-squares
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and place–squares-shake-circles) were equally difficult to master for artificial agents and

produced similar results (see Fig. 3, right).

Human participants, on the other hand, were influenced by previous experience, with

particular reference to objects varying in shape (as discussed in the introduction). The

analysis of the way in which circle and square objects were manipulated during the first

phase of the experiment indicated that the behavior was much more varied in the case of

human participants than in the case of artificial agents. Moreover, it showed that humans

tended to manipulate circles and squares in specific ways, for example (i) by moving cir-

cles more, and more quickly, than squares, (ii) by producing curvilinear trajectories with

circles and rectilinear trajectories with squares, or (iii) by moving squared objects along

walls and placing them in the corners of the arena. Consistent with our predictions, this

demonstrates that, due to their previous experience, participants associated specific object

shapes with specific movement types and performed better in placing squares and shaking

circles than doing the opposite.

The presence of these biases also explains why in humans, and not in artificial agents,

the place-squares–shake-circles condition led to better performance than the place-cir-

cles–shape-square condition. Thus, biases can facilitate the acquisition of action/categori-

zation skills that present similarities to already mastered skills.

5. Conclusion

The results allow us to draw some conclusions on the development of categories in

humans and artificial agents.

First, our work allowed us to investigate the role played by different properties during

learning of novel categories. It is possible to contrast three different accounts, which may

alternatively explain the results we obtained concerning the role played by the different

properties: sense-based, weak embodied, and strong embodied accounts. According to the

first, both artificial and human agents would first form categories on the basis of proper-

ties that can be sensed directly; thus, they would categorize primarily on the basis on

directly perceivable perceptual features, such as shape and color, rather than on the basis

of weight and blinking, which in the present setting could only be perceived by manipu-

lating the object (for weight this is true also in real life). This was clearly not our case.

According to a weak embodied account, agents should have been particularly sensitive to

properties that are perceivable only through manipulation, such as weight and blinking.

This was only partially our case, since we found that weight was the most important

property for categories formation, but blinking was not. According to a strong embodied

account, agents should have formed categories preferentially on the basis of properties

that affect agent/environment interaction. Our data support the latter case. Indeed, agents

categorize primarily on the basis of weight, the only property that codetermines the effect

of the agent actions.

Second, our results give many insights as to the strategies developed by human and

artificial agents during learning and suggest how action and category development may
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interact. The analysis of the course of learning indicates that, in general terms, action

and category development are achieved by (i) developing smart suboptimal overgeneral-

ized behaviors, particularly undifferentiated manipulations applied to two or more

groups of objects, which allow the agent to achieve relatively good performance; (ii)

exploiting the effects of agent/environment interaction, such as identifying non-differen-

tiated manipulations that produce appropriate differentiated behaviors in interaction with

objects with different features; and (iii) differentiating through learning initially non-dif-

ferentiated behaviors. Thus, our analysis and results provide evidence of an action-ori-

ented categorization process. This process is bidirectional; therefore, it is in keeping

with two accounts which appear to be only apparently in contrast: (i) the theory that

postulates that categorization proceeds with the formation of global categories that are

then progressively differentiated and refined (Mandler, Bauer, & McDonough, 1991),

and (ii) the theory that postulates that categorization proceeds the other way, from par-

ticular to general (Rosch et al., 1976). Overall our experiment supports enactivist theo-

ries (e.g., Bateson, 1987; Chemero, 2009; van Elk, Slors, & Bekkering, 2010; Maturana

& Varela, 1992; Varela, Thompson, & Rosch, 1991) that postulate that cognitive pro-

cesses, including categorization, are dynamical and emerge from the agent/environment

interaction.

A third contribution of this work concerns the possibility of comparing the results

obtained from human and artificial agents to disentangle the role played by previous

experience/knowledge from that played by learning context.

Finally, we would like to stress the advantages of studies in which human and artifi-

cial beings are compared. The comparison between human and artificial agents allowed

us to formulate interesting hypotheses that can be tested experimentally. As an exam-

ple, let us consider the limited impact of shape observed in our experiments. We inter-

preted this result in the framework of a strong embodied account. Indeed, we explained

the relevance of weight, arguing that it directly impacts interaction with objects, while

shape does not. In other words, it is possible that the reason why shape played a minor

role in our experiments is that it did not affect the agent/environment interaction. This

opens the interesting possibility that the importance of shape for categorization (e.g.,

Jones & Smith, 1993; Landau et al., 1988; Smith, 2005) might be due to its role in

modulating agent/environment interaction rather than to its perceptual nature or to the

role of action in shape perception. In real life, when humans manipulate objects, they

modify the perceived shape, for example, as a result of object squeezing or modifica-

tion of the object orientation. The investigation of this hypothesis is a challenge for

future research.
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Notes

1. Whether a feature is interactive or not also depends on the task/scenario. In our sce-

nario, the shape of the object does not influence the effect of the agent’s actions. In an

alternative three-dimensional manipulation scenario, the shape of the objects could

influence actions since, for example, spherical objects will tend to roll. Indeed, recent

research on 2-year-old children has revealed that actions performed on objects modify

the way their shape is perceived and lead them to categorize differently (Smith, 2005).

We intentionally selected a task/scenario with an interactive and non-interactive pre-

dictive feature (weight vs. shape) to disentangle the role of interactivity in category

learning and use.

2. Data related to the 20 human participants and the 120 artificial agents and listed by

level of generalization, defined as the number of categories of objects manipulated

in the same way; the strategies from a to f are depicted in Fig. 5g and h stand for

“shake vertically” and “shake horizontally”, respectively, while i stands for “place

the objects in the correct target areas” and l stands for “place all objects in one of

the two target areas.”

3. The level of generalization is defined as the number of object categories manipu-

lated in the same way.

4. “r”/“p” stand for feature reported as relevant/partially relevant. Conditions 1, 2, 3,

and 4 represent place-circles–shake-squares, place-squares–shakes-circles, place-

heavy–shake-light, and unstructured, respectively.
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Appendix A: Scoring

The score S was computed on the basis of the following equations:

S ¼
0; S0\:02
S0; :02� S0 � :9
1 otherwise

( )

S0 ¼ 1

1þ e6�12
ffiffi
s

p ð1Þ

where s depended on the required manipulation.
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For object to be placed, s was computed as s ¼ 1� d
a, where d was the distance from

the object and the target area (positioned in the bottom-left corner or on the right-center

of the arena, depending on the specific manipulation required) at the end of the trial,

when the agent skipped to the next trial or when the time provided for the trial expired,

and a was the side length of the square arena in which the objects were manipulated.

In the case of objects to be shaken s, whose value was initially set to 0, was computed

through an exponential moving average updated each time that the direction of the move-

ment changed along the relevant direction (horizontally or vertically, depending on the

required manipulation):

s ¼ asþ ð1� aÞsi

where a = 0.7 was the time constant of the moving average and si was the score gained

at the i-th change of the (horizontal/vertical) direction. This, in turn, was computed as:

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jdi � a=2j

a=2

s

where di was the distance between the horizontal/vertical projections of the i-th and

(i-1)-th points (the 0-th point was the position in which the object was at the beginning

of the trial) in which the movement along the relevant direction changed.

Notice that the non-linear transformation in (1) provided the agent with a bad/neutral/

good but still continuous feedback (in the range [0.02, 0.98]) that pushed the agent more

strongly toward close-to-optimal manipulation. In order to be more easily read by

humans, the score S was linearly mapped from [0, 1] to [0, 100].

Appendix B: Instructions and questionnaire for human participants

Preliminary instructions:

You are in an alien world where there are a number of objects with which you have to

appropriately interact using the mouse.

The game is divided into two phases.

In the first phase (TRAINING) you are asked to learn to interact properly with the

objects, which will be presented one at a time. You can interact with each object, for a

maximum time of 30 s, how many times you want. At the end of each period of inter-

action you will be given a score (between 0 and 100). This score, during training,
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allows you to understand how well you interacted with each object and DOES NOT

PENALIZE YOU. If you are not interested in an item, you can safely skip to the next.

Once trained, you can get the maximum score for each object after interaction with it

for a few seconds. The value of the score is also represented in the vertical bar on the

right side of the window.

The training phase lasts 25 min and then you will pass to the TESTING phase, where

you have 5 min to interact with AS MANY OBJECTS as possible (the same experi-

enced during the training phase) trying to achieve, for each, the MAXIMUM SCORE

(100). The total points gained at this stage will indicate your ability to survive in this

alien world.

During the game “THINK ALOUD” saying what you see, think, do, and how do you

feel.

Press “SPACE” to start the experiment.

Click the LEFT mouse button to jump to the next object. Remember that moving to

the next object does not penalize you.

Click the RIGHT button to interact again with the last object (only possible during

training). Remember that interacting again with the last object does not penalize you.

Instructions at the end of the training phase:

Training phase finished.

Now you have 5 min in which, for every object with which you’ll interact, you’ll

receive a score.

In this phase, unlike in the training phase, you cannot interact again with the last

object.

The total score received in this phase will indicate your chance of surviving in this

alien world.

Press “Space” to start.

Questionnaire:

1. Please describe with your own words the objects that you experienced in the alien

world.

2. Did you notice specific object properties? Can you remember/describe these proper-

ties? Do you think that all properties were relevant to the task, or some characteris-

tics were more important than others?

3. Can you describe your strategies of interaction? Do you think they were successful?
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4. How did you feel during the experiment? Did you ever feel bored/tired?

5. Did you think-aloud? If not, do you think it could have helped you to do so?
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