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This document is intended to support the paper submitted to the 9th Euro-
pean Conference on Artificial Life (ECAL 2007) [1]. It provides a detailed de-
scription of the experimental setup. In Section 1, the configuration of the s-bot

is given. In Section 2, we describe the controller and the evolutionary algorithm
used. In Section 3, we accurately describe the evaluation function used.

1 The S-bot

The s-bot is a small mobile autonomous robot with self-assembling capa-
bilities (see Fig. 1). The details about the hardware and electronics of
the s-bot can be found in [2], and in the SWARM-BOTS project website
(http://www.swarm-bots.org). In this document, we give some details about
the sensors and actuators used for the experiment presented in [1].

Each s-bot is provided with four proximity sensors placed under the chassis—
referred to as ground sensors—that can be used for perceiving the ground’s grey
level (see Fig.1 top-right). When the sensor is placed over white ground, it returns
a high value due to the high reflectivity of the ground. On the contrary, if the
ground colour is black, the reflectivity is low and consequently the sensor returns
a value close to 0. The raw sensor readings are recorded and scaled in the interval
[0,1] before being processed by the neural controller.

Each robot is also equipped with an omni-directional camera, which is used
to perceive the presence and the corresponding distance of neighbouring s-bots.
The omni-directional camera can perceive the red colour continuously emitted
by the s-bots by means of their coloured LEDs embedded in the T-shaped ring
(see Fig. 1). The circular image obtained from the camera is filtered in order to
extract only the red objects. Then, it is split in 4 sectors of 90◦ each (front-left,
front-right, rear-left, rear-right) and the distance of the closest red object in each
sector is computed. With such a system, the closest s-bot in each sector can be
perceived up to a distance of about 50 cm. Also in this case, distances are scaled
in the interval [0, 1] before being processed by the neural controller.

In order to communicate with each other, s-bots are provided with a very
simple signalling system, which can produce a continuous tone with fixed fre-
quency and intensity. When a tone is emitted, it is perceived by every robot in
the arena, including the signalling s-bot. The tone is perceived in a binary way,
that is, either some s-bot is signalling in the arena, or no one is.
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Fig. 1. View of the s-bot from different sides. The main components are indicated.

Notwithstanding the efforts to devise a precise simulation, some character-
istics of the robots and of the robot-environment interaction may escape the
modelling phase. For this reason, noise is used to ensure that the evolved be-
haviour will cope with differences between simulation and reality [3]. Except for
the binary communication system, noise is simulated for all sensors and actu-
ators, adding a random value uniformly distributed in the interval [−5%, 5%]
with respect to the maximum value.

2 The Controller and The Evolutionary Algorithm

Homogeneous groups of s-bots are controlled by artificial neural networks, whose
parameters are set by an evolutionary algorithm. A single genotype is used to
create a group of individuals with an identical control structure. Each s-bot is
controlled by a continuous time recurrent neural network (CTRNN) [4]. The
neural network has a multi-layer topology, as shown in Fig. 2: neurons NI,1

to NI,9 take input from the robot’s sensory apparatus, neurons NO,1 to NO,3

control the robot’s actuators, and neurons NH,1 to NH,5 form a fully recurrent



continuous time hidden layer. The input neurons are simple relay units, while
the output neurons are governed by the following equations:

oj = σ(Oj + βj), Oj =

5
∑

i=1

WO(i, j) σ(Hi + βi), σ(z) =
1

1 + e−z
, (1)

where, using terms derived from an analogy with real neurons, Oj and Hi are the
cell potentials of respectively output neuron j and hidden neuron i, βj and βi

are bias terms, WO(i, j) is the strength of the synaptic connection from hidden
neuron i to output neuron j, and oj and hi = σ (Hi + βi) are the firing rates.
The hidden units are governed by the following equation:
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τj
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∑
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)

, (2)

where τj is the decay constant, WH(i, j) is the strength of the synaptic connec-
tion from hidden neuron i to hidden neuron j, WI(i, j) is the strength of the
connection from input neuron i to hidden neuron j, and Ii is the intensity of the
sensory perturbation on neuron i.

Four input neurons—NI,1 to NI,4—are set looking at the four sectors of
the image grabbed by the omni-directional camera, as explained in Section 1.
Four other input neurons—NI,5 to NI,8—are set directly from the four ground
sensors. Finally, input neuron NI,9 is a binary input set by the perception of
a sound signal. The neurons NO,1 and NO,2 are used to set the speed of the
s-bot ’s wheels. Neuron NO,3 is used to set the state of the loudspeaker, which is
turned on if the neuron output is higher than 0.5, and off otherwise. The weights
of the connection between neurons, the bias terms and the decay constants are
genetically encoded parameters. Cell potentials are set to 0 each time a network
is initialised or reset. State equations are integrated using the forward Euler
method with an integration step-size of 0.1 seconds.

In order to set the parameters of the s-bot ’ controllers, a simple generational
evolutionary algorithm is employed [5]. The population contains 100 genotypes
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Fig. 2. The multi-layer topology of the neural controller. The hidden layer is composed
of continuous time neurons with fully recurrent connections.



that are evolved for 5000 generations. Each genotype is a vector of 98 real values
(85 synaptic connections, 5 decay constants and 8 bias terms) that are initially
chosen uniformly random from the range [−10, 10]. Subsequent generations are
produced by a combination of selection with elitism and mutation. Recombi-
nation is not used. At every generation, the best 20 genotypes are selected for
reproduction, and each generates 4 offspring. The genotype of the selected par-
ents is copied in the subsequent generation; the genotype of the 4 offspring is
mutated with a 50% probability of adding a random Gaussian offset N(0, 1) to
each real-valued gene. During evolution, genotype parameters are constrained
to remain within the range [−10, 10]. They are mapped to produce CTRNN
parameters with the following ranges: connection weights W (j, i) ∈ [−4, 4]; bi-
ases β ∈ [−4, 4]; concerning decay constants, the genetically encoded parameters
are firstly mapped onto the range [−1, 3] and then exponentially mapped onto
τ ∈ [10−1, 103]. The lower bound of τ corresponds to the integration step size
used to update the controller; the upper bound is arbitrarily chosen and it is
bigger than the maximum length of a trial.

3 The Evaluation Function

During the evolution, a genotype is mapped into a control structure that is cloned
and downloaded in all the s-bots taking part to the experiment (i.e., we use a
homogeneous group of s-bots). Groups of 3 s-bots are evaluated 10 times—i.e.,
10 trials, 5 performed in environment A and 5 in environment B. Each trial lasts
65 seconds and differs from the others in the initialisation of the random number
generator, which influences mainly the s-bots starting positions and orientations
and the way out amplitude, if present.

The evaluation function takes into account the behavioural state in which the
s-bots should be and it rewards their movements accordingly. When s-bots are
placed in environment A, they should search for and traverse the way out, there-
fore they should always be in state S. When s-bots are placed in environment
B, they should initially search for the way out, being in state S, and after some
searching they should aggregate, therefore switching to state C. In order to eval-
uate the behaviour in environment B, we ignore the time needed for searching
the way out and we consider that an s-bot switches to state C when it encounters
the circular band for the first time. In this way, we can systematically evaluate
the movements of an s-bot according to its behavioural state:

S(s, t) = environment A OR dM (s, t) < 1.0, C(s, t) = NOT S(s, t), (3)

where dM (s, t) is the maximum distance from the centre reached by s-bot s at
time t. In other words, an s-bot is considered to be in state S if it is placed in
environment A or if the maximum distance it reached from the centre of the
arena is smaller than one meter, which corresponds to the inner radius of the
circular band. Otherwise, an s-bot is considered to be in state C. Having defined
the behavioural states at time t, an s-bot s should maximise its distance from
the centre of the arena when in state S, while it should minimise its distance



from the centre of mass of the group when in state C. Therefore, for each s-bot

s at step t, we compute the measure d(s, t) according to the following equation:

d(s, t) =

{

||X(s, t) − Xo|| if S(s, t),
1.0 − ||X(s, t) − Xc(t)|| if C(s, t),

(4)

where X(s, t) are the coordinates of s-bot s at time t, Xo and Xc(t) are the
coordinates of the centre of the arena and of the centre of mass of the s-bots.
Therefore, an s-bot should always maximise d(s, t) in order to reach the opti-
mal position: in state S, an s-bot should move away from the centre, and it
is considered successful if it reaches an optimal distance DO(S) = 2.4 m (i.e.,
d(s, t) ≥ DO(S)); in state C, an s-bot should aggregate with the other robots
by reducing its distance from the centre of mass of the group, and it is con-
sidered successful if it stays below an optimal distance DO(C) = 0.25 m (i.e.,
d(s, t) ≥ 1.0 − DO(C)). We measure a normalised distance d̃(s, t) according to
the behavioural state as follows:

d̃(s, t) =
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(5)

where Θ(x) simply bounds the value of x in the interval [0, 1]. In both behavioural
states, d̃(s, t) = 1 indicates that s-bot s at least reached the optimal distance DO

at time t. We conventionally say that a successful s-bot “achieves the optimal
distance DO”.

In order to evolve the desired behaviour, we compute two measures that
reward the s-bot ’s movements both for its absolute position and for the stepwise
increment of the d(s, t):

fd(s, t) = τd · fd(s, t − 1) + (1 − τd) · d̃(s, t), (6)

fi(s, t) =
d(s, t) − d(s, t − 1)

2dM

+ 0.5, (7)

where τd = 0.975 is the time constant of a moving average, and dM is the
maximum distance increment that an s-bot can cover in a single simulation
cycle. The measure fd(s, t) rewards the s-bot for the absolute position reached,
and the moving average is justified by the necessity to reward behaviours that
keep the optimal distance for a long time (which also justifies the high value we
have chosen for the time constant τd). Differently, the measure fi(s, t) rewards
the s-bot for the stepwise increments toward an optimal position. Notice that,
while in state S robots should continue to move away from the centre of mass
even if they achieved the optimal distance DO(S), in C s-bots cannot decrease
further their distance from the centre of mass once the optimal distance DO(C)
is reached. For this reason, we set fi(s, t) = 1.0 when the s-bot is in state C and
d̃(s, t) = 1.



Given the above measures computed for all s-bots and for all simulation
cycles, the fitness in a trial is computed as follows:

F =
1

N

N
∑

s=1

fd(s, T ) ·
1

NT

N
∑

s=1

T
∑

t=1

fi(s, t), (8)

where N = 3 is the number of s-bots and T = 650 is the number of simulation
cycles of the trial. Note that a trial is terminated whenever an s-bot passes over
the black border of the circular band—and in this case F = 0—or if s-bots collide
when in state S.
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