nnfw/include/outputfunction.h
Go to the documentation of this file.
00001 /******************************************************************************** 00002 * Neural Network Framework. * 00003 * Copyright (C) 2005-2011 Gianluca Massera <emmegian@yahoo.it> * 00004 * * 00005 * This program is free software; you can redistribute it and/or modify * 00006 * it under the terms of the GNU General Public License as published by * 00007 * the Free Software Foundation; either version 2 of the License, or * 00008 * (at your option) any later version. * 00009 * * 00010 * This program is distributed in the hope that it will be useful, * 00011 * but WITHOUT ANY WARRANTY; without even the implied warranty of * 00012 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * 00013 * GNU General Public License for more details. * 00014 * * 00015 * You should have received a copy of the GNU General Public License * 00016 * along with this program; if not, write to the Free Software * 00017 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * 00018 ********************************************************************************/ 00019 00020 #ifndef OUTPUTFUNCTION_H 00021 #define OUTPUTFUNCTION_H 00022 00028 #include "nnfwconfig.h" 00029 #include <parametersettable.h> 00030 #include <configurationparameters.h> 00031 #include <QRegExp> 00032 00033 namespace farsa { 00034 00039 class FARSA_NNFW_TEMPLATE OutputFunction : public ParameterSettableWithConfigureFunction { 00040 public: 00042 OutputFunction() : clusterv(NULL), tmp1(1), tmp2(1) { /*nothing to do*/ }; 00044 virtual ~OutputFunction() { /*nothing to do*/ }; 00046 virtual void apply( DoubleVector& inputs, DoubleVector& outputs ) = 0; 00048 double apply( double input ) { 00049 tmp1[0] = input; 00050 apply( tmp1, tmp2 ); 00051 return tmp2[0]; 00052 }; 00059 virtual bool derivate( const DoubleVector& inputs, const DoubleVector& outputs, DoubleVector& derivates ) const { 00060 Q_UNUSED( inputs ); 00061 Q_UNUSED( outputs ); 00062 Q_UNUSED( derivates ); 00063 return false; 00064 }; 00068 void setCluster( Cluster* cl ) { 00069 if ( clusterv != NULL ) throw OutputFunctionSetClusterException(); 00070 clusterv = cl; 00071 clusterSetted(); 00072 }; 00073 protected: 00077 virtual void clusterSetted() { /* nothing to do */ }; 00079 Cluster* clusterv; 00080 private: 00082 DoubleVector tmp1; 00084 DoubleVector tmp2; 00085 }; 00086 00087 } 00088 00089 #endif