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Abstract

Organisms, and especially primates, are
able to learn several skills while avoiding
catastrophic interference and enhancing gen-
eralisation. This paper proposes a novel re-
inforcement learning (RL) architecture which
has a number of features that make it suit-
able to investigate these phenomena. The
model instantiates a mixture of expert archi-
tecture within a neural-network actor-critic
system trained with the TD(λ) RL algorithm.
The “responsibility signals” provided by the
gating network are used both to weight the
outputs of the multiple “expert” controllers
and to modulate their learning. The model is
tested in a simulated dynamic 2D robotic arm
which autonomously learns to reach a target
in (up to) three different conditions. The re-
sults show that the model is able to train same
or different experts to solve the task(s) in the
various conditions depending on the similarity
of the sensorimotor mappings they require.

1. Introduction

During development children acquire a complex
repertoire of skills by interacting with the environ-
ment. In particular, they are capable of learning to
do many related things and to execute them in vari-
ous contexts. Although social interactions are funda-
mental for human development, individual processes
have at least a comparable importance, in particular
those based on trial-and-error learning.

This research had the goal to develop a bioinspired
hierarchical and (softly) modular reinforcement-
learning model useful to study these individual pro-
cesses. In particular, the model allows to study the
brain processes for which when an organism learns
many different skills, it can store the related informa-

tion in the same neural structures when the sensori-
motor mappings related to the skills to be learned are
similar, so to enhance generalisation and fast learn-
ing, and in different brain structures when they are
substantially different, so to avoid catastrophic in-
terference. These mechanisms might for example be
the neural correlate behind the assimilation and ac-
commodation processes proposed by Piaget (1953) to
explain children development. In particular, assimi-
lation, which implies that a goal is accomplished on
the basis of previously acquired skills, might involve
the reuse of the same neural structures, whereas ac-
commodation, which implies that a goal is pursued
by developing a new skill, might involve the forma-
tion of rather new neural representations.

1.1 The biology of skill acquisition

Neuroscience suggests that basal ganglia are among
the main brain systems underlying the acquisition of
multiple skills (Houk et al., 1995). They seem to un-
derly trial-and-error learning processes and action se-
lection (also in an exploratory/random fashion when
the system faces a new situation). They are formed
by a first type of structure, the matriosomes, which
might encode actions at various levels of abstraction,
and a second type of structure, the striosomes, ca-
pable of responding to rewards and cues predicting
them Striosomes are connected to areas (e.g., the
substantia nigra pars compacta) responsible for pro-
ducing learning signals based on the neuromodulator
dopamine, leading to update the synapses of matrio-
somes and striosomes themselves.

The basal ganglia also have a hierarchical struc-
ture based on (partially) segregated loops linked to
different cortical areas. These loops encode, for ex-
ample, motor actions (e.g., the loops with motor and
premotor cortex ), or contest and goals (e.g., loops
with prefrontal cortex ). Loops seem to be character-
ized by a (soft) modularity, possibly encoding differ-



ent actions and goals. Functionally, hierarchy and
modularity might have the two important functions
of (a) helping to avoid catastrophic interference and
(b) enhancing generalisation, in particular the stor-
ing of different behaviours involving similar sensori-
motor mappings in the same neural structures.

1.2 The constraints used to build the model

Given the aforementioned goal of this research, the
model presented here was developed with these con-
straints in mind: (a) using RL (Sutton and Barto,
1998), and not supervised learning, as our goal is
to study skill acquisition based on individual trial-
and-error learning processes; (b) being capable of au-
tonomously deciding if encoding skills in the same or
different neural structures depending on their sim-
ilarities; (c) using neural-networks (linear function
appproximation) to ease finding relations with brain
structures and processes; (d) using RL actor-critic
models (Sutton and Barto, 1998) as these are among
the most biologically plausibility RL models; in par-
ticular, the actor component of the model plays a
function similar to the basal ganglia matriosomes,
the critic plays a function similar to the basal gan-
glia striosomes, and the TD-error learning signal has
a dynamics similar to that of phasic dopamine dur-
ing learning (Houk et al., 1995); (e) having a hier-
archical macro-architecture, similarly to basal gan-
glia, capable of suitably deciding which part of the
system should encode which skills based on their
similarities/differences; (f) being capable of func-
tioning within an embodied system (here a simu-
lated robot) interacting with a world with contin-
uous states through continuous actions. Note that,
given the constraints “a-d”, the features “e” and “f”
render the model rather novel (see sec. 1.3).

1.3 Related models

In the literature on neural networks the problem of
how avoiding catastrophic interference and exploit-
ing generalisation has been tackled with “mixture of
experts” models (Jacobs et al., 1991). This model
has a hierarchical modular architecture formed by a
number of experts, which compete to learn the train-
ing patterns, and a gating network, which learns to
decide when each expert should act and learn. This
system is central for this work but is wholly based
on supervised learning.

Within the RL framework, some models have been
developed to work with continuous actions and states
(e.g. Doya, 2000; Peters and Schaal, 2008) and have
been shown to work within embodied systems. How-
ever, these systems are not hierarchical and have not
been designed to acquire multiple skills. Hierarchi-
cal RL systems are particularly well-suited for our
purposes (see Barto and Mahadevan, 2003 for a re-

view). These systems are capable of performing task-
decomposition, usually on the basis of learning sub-
tasks from a “final” task. However, most of them
assume discrete states and action spaces. Konidaris
and Barto (2009) and Mugan and Kuipers (inpr)
have proposed two hierarchical systems to build op-
tions in continuous spaces. The first system is based
on the idea of forming new skills in chain on the ba-
sis of the “initiation set” (set of states from which a
skill can be successfully accomplished) of other skills.
The second (QLAP) learns models and uses them to
learn to discretise states represented by continuous
variables, and to build actions which reliably lead to
certain effects. Although very interesting, these sys-
tems do not directly face the problem tackled here
of how storing different skills in the same or differ-
ent expert/options. Furthermore, they have some
non-neural aspects that might reveal difficult to be
mapped to brain processes.

Doya et al. (2002) have developed a Multi-
ple Model-Based Reinforcement Learning system
(MMRL) capable of performing autonomous task de-
composition in continuous state-action spaces. The
model is based on several experts each formed by
a controller and a forward model. This system al-
lows performing task decomposition when the non-
observability of the world can be disambiguated only
by acting on it (e.g., lifting a new object can reveal its
weight). Although very interesting, the system per-
forms task decomposition based on the dynamical
characteristics of the sensorimotor mapping space,
and not on the capability of each module to learn or
not certain skills.

Finally, Baldassarre (2002) proposed a modular
RL system that combines the mixture of experts idea
with the actor-critic RL, but was capable of dealing
only with discrete actions. In this paper we present
an evolution of this system which can tackle tasks re-
quiring continuous actions: in particular it can con-
trol a dynamic simulated robotic arm that learns to
reach the handle of a cup with different orientations.

In the rest of the paper, sec. 2 presents the sim-
ulated robot and environment, sec. 3 presents the
model, sec. 4 presents the results of the tests,and
finally sec. 5 draws the conclusions.

2. Setup

2.1 The Simulated Robot and the Task

Fig. 1 shows the simulated robot and environment.
The simulated robot is formed by three components:
a simulated RGB camera, a 3D arm-hand (a sim-
ulation of the iCub robot based on the 3D physics
engine Newton, cf. Caligiore et al., 2008), and sim-
plified simulated muscles.

The camera always fixates the target of reaching
(cup-handle) on the basis of a simple hardwired fix-



Figure 1: The robotic setup and the three conditions:

handle on the left of the cup, at the centre facing the

robot and, and on the right of the cup.

ation reflex focusing on the barycenter of the pix-
els having the colour of the target (Caligiore et al.,
2008). The model controls only 2DOFs of the arm
working on the plane. This reflects the fact that
children use few degrees of freedom when learning
to reach (Berthier et al., 2005, 1999). The hand is
always kept straight open.

Each of the muscle models (one for each of the
two controlled DOFs of the arm) is based on a Pro-
portional Derivative controller (PD) which offers a
simple way of simulating the spring-like and dump-
ing properties of real muscles and of producing stable
reaching movements. The PDs supply the torque to
the arm joints in proportion to the difference between
the arm desired equilibrium points (EPs) generated
by the model (i.e., the desired shoulder and elbow
joint angles, see sec. 3.4), and the current joint an-
gles. The torque applied to each joint is decreased
inversely to the current rate of change (derivative) of
the joint angle. As shown in Berthier et al. (2005),
simple muscle models as these allow reproducing var-
ious aspects of real reaching movements.

The environment is a working plane with a simpli-
fied “cup”, solidly anchored to it, having a handle at
either the left, centre, or right position with respect
to the robot. The task requires that the arm learns to
touch the cup handle with the hand starting to move
from random initial positions. When this happens,
the system gets a reward of one. If the hand touches
parts of the cup different from the handle it receives
a small punishment (-0.2). In all other cases it re-
ceives a zero reinforcement. Notice that the tasks is
rather challenging for four reasons. First, to reach
the cup handle the model has to generate variable
EPs so that the arm follows a curved trajectory with
a dynamic plant (cf. Caligiore et al., 2008). Sec-
ond, the target changes position in space renders the
sensorimotor mapping highly unlinear. Third, the
controller has to learn on the basis of the rare scalar
value of reinforcement (Berthier et al., 2005). Last,
the perception of the system (see Sect. 2.1) is rather
limited and the controller is informed only on the
kinematics (joint angles) but not on the arm dynam-
ics (changes of joint angles, hand velocity, etc.).

3. Model Architecture and Algo-

rithms

The architecture of the model is built on the fol-
lowing ideas (see fig. 2). First, it is based on two
components, an actor for controlling action and a
critic for evaluating actions. Second, each of the ac-
tor and critic has a hierarchical architecture formed
by one gating network and number of experts, follow-
ing the idea of the mixture of experts model (Jacobs
et al., 1991). The functioning of the gating networks
and the critic experts is as in the mixture of expert
model. The functioning of the actor experts has been
modified to implement actions within continuous RL.
Last, the learning algorithms of all components are
novel and have been modified to implement continu-
ous RL (cf. Baldassarre (2002)).

The system gets two types of inputs: (a) the gaze
direction of the camera, which indicates the position
of the target (the image of the camera is only used to
guide the hardwired fixation reflex, see sec. 2.1); (b)
the combined information about the arm posture and
the hand-target distance. These two sources of infor-
mation are encoded in neural maps on the basis of
the population code hypothesis Pouget and Latham
(2003) for which the closer the posture (angles) to
the preferred posture of a neural unit, the higher its
activation. In particular, the camera pan and tilt an-
gles are encoded in a 2D eye-posture map formed by
21×21 neural units. This map is activated on the ba-
sis of a Gaussian function (maximum value equal to
1, width equal to the distance between two close units
in the map) centred on the angles to encode. The
arm-posture/hand-target-distance information is en-
coded in a 3D arm-posture map. First, the arm pos-
ture (angles) is encoded in each of five 21 × 21-unit
maps as done for the eye-posture map. Then the ac-
tivation of all units of four of these maps is scaled
on the basis of the distance (passed through a Gaus-
sian function) of the hand from the target towards a
particular direction (i.e, each map is maximally ac-
tivated when the hand-target distance is maximally
towards east, or north, or west, or south). The last
of the five maps is maximally activated, again on the
basis of a Gaussian function, when the hand-target
distance is zero.

Importantly, the different information sent to the
gating networks and to the experts reflects the the
fact that the gating networks should make high-level
decisions on overall goals, whereas the experts should
implement the detail actions to pursue them (cf. also
Jacobs et al. (1991)). This also reflects basal gan-
glia organisation where high-level loops receive per-
ceptual information useful for selecting overall goals
(e.g., internal states, object identity), whereas low-
level loops receive visual information useful to con-
trol action (e.g., object shape) and proprioception.



Figure 2: The architecture of the model.

3.1 Functioning of actor and critic

The actor is formed by a gating network and four
experts.

Actor gating network This network (AG) has four
output units indexed with e with activation potential
pAe. These units receive input from the eye-posture
map units zi (see below) via connections with weights
wAGei. The activation gAe of the units encodes the
prior responsibility of the actor experts and is com-
puted on the basis of a many-winner competition
(see below). To this purpose, the units are ranked
in a decreasing order based on pAe and then they
are activated on the basis of the resulting ranks ke

(ke = 0, 1, 2, 3) as follows:

gAe = b−ke/

4
∑

e=1

b−ke (1)

where e (e = 1, 2, 3, 4) is the number of experts and
b is a coefficient used to set the propability that each
expert contributes to the global action computation
(b is set to 6, so gAe = 0.834, 0.139, 0.023, 0.004).
Differently from the mixture-of-experts way of com-
puting the prior responsibilities, based on a soft-
max function (Jacobs et al., 1991), the use of the
ranks guarantees that the responsibility of all the
experts is always different from zero, even after pro-
longed training. This implies that although one ex-
pert might become maximally specialized in encod-
ing a skill, some other expert could learn in “back-
ground” the same skill as its responsibility is differ-
ent from zero. Preliminary tests, not reported here,
show that this allows a “latent duplication” of skills
which could allow to develop new skills starting from
previous ones (this might be the neural correlate of
Piagetian accomodation). This aspect of the model,
not further discussed here, will be investigated in fu-
ture work.

Actor experts Each actor expert (AE) encodes ac-
tions (the two arm angles) with two output units j

having Sigmoidal activation aej . These receive in-
put signals from the arm-posture map units xi (see
below) via connections with weights wAEeji. The
global action aj (desired EPs) of the actor is com-
puted on the basis of the prior responsibilities of the
experts gAe:

aj =
∑

e

gAe · aej (2)

Also the critic is formed by a gating network and
four experts.
Critic gating network This network (CG) works
as the one of the actor on the basis of the connection
weights wCGei, the unit activation potential pCe, and
the prior responsibility of the critic experts gCe.
Critic experts Each critic expert (CE) has a linear
output unit ve encoding the evaluation of the current
state and receives input from the arm-posture map
units xi via connections with weights wCEei. The
global evaluation v of the critic is computed on the
basis of the prior responsibilities of the experts gCe:

v =
∑

e

gCe · ve (3)

3.2 Learning signals

Critic TD-error Couples of successive global eval-
uations, together with the reward signal rt, are used
to compute the global TD-error (or surprise) st for
reinforcement learning (Sutton and Barto, 1998):

st =











rt − vt−1 if end trial

(rt + γvt) − vt−1 if during trial

0 if start trial

(4)

where γ is a discount factor (γ = 0.99).
Experts TD-error The expert TD-error (surprise)
signals are instead:

set =











rt − vet−1 if end trial

(rt + γvet) − vet−1 if during trial

0 if start trial

(5)

In the brain, the error signals st and set might cor-
respond to dopaminergic signals.
Actor experts posterior responsibilities To
train the actor experts and gating network the algo-
rithm computes the posterior responsibilities of the
actor experts as follows:

hAe =
cAe · gAe

∑

e [cAe · gAe]
(6)

where cAe is a measure of the correctness of the actor
expert e defined as:

cAe = e−0.5(D[an

t−1
,aet−1])

2

(7)

where D
[

an
t−1,aet−1

]

is the Euclidian distance be-
tween the two vectors encoding respectively the past



action of the actor expert aet−1 and the global
actually-executed action an

t−1 affected by noise (is-
sued to muscles, see sec. 3.4).
Critic experts posterior responsibilities The
posterior responsibilities of the critic experts are
computed as follows:

hCe =
cCe · gCe

∑

e [cCe · gCe]
(8)

where cCe is a measure of the correctness of the critic
expert e defined as:

cCe = e−0.5(set)
2

(9)

3.3 Learning of actor and critic

Actor gating network learning The weights of
the actor gating network are updated as follows:

∆wAGei = ηAG · (hAe − gAe) · zit−1 (10)

where ηAG is a learning rate set to 3.0. Technically
the rule follows the ideas proposed by the mixture of
experts model to update the gating network output
(i.e., the experts’ responsibilities). Intuitively, here
the rule implies that the responsibility of an expert is
increased if its correctness was higher (i.e., its action
closer to the overall actually-executed noisy action)
than other experts.
Actor experts learning The weights of the actor
experts are trained on the basis of a TD(λ) learning
rule with replace eligibility traces applied to linear
function approximators Sutton and Barto (1998). In
particular, at time t and for the expert e the eli-
gibility trace eAEejit of a connection weight wAEeji

is computed. If this eligibility is smaller than the
“decayed” old eligibility eAEejit−1, the latter is used
instead of the former to train the weight:

eAEejit = γ · λ · eAEejit−1

eb = hAe · (a
n
jt − aejt) · ȧejt · xit

iff |eAEejit| <
∣

∣eb
∣

∣ then eAEejit = eb

wAEjit = wAEjit−1 + ηAE · st · eAjit−1 (11)

where eb is a buffer variable, ηAE is a learning rate
(set to 0.9), and ȧejt = aejt(1 − aejt) is the Sigmoid
derivative. The rationale of this formula is as follows.
By default, the new eligibility eAEejit is equal to the
old discounted (γ = 0.99) and decayed (λ = 0.94)
eligibility eAEejit−1 (cf. Sutton and Barto, 1998).
Then the potential new eligibility (stored in eb) is
computed and becomes the new actual eligibility if
it is higher than the decayed old eligibility. In either
case, the resulting eligibility is used to update the
weights (in particular the previous eligibility eAjit−1

is used to this purpose together with the global sur-
prise st). Importantly, eb is computed on the basis

of the signal xit affecting the weight to which the el-
igibility refers to, the expert posterior responsibility
hAet (this implies that the update is stronger if this is
higher), and the difference between the global noisy
answer an

jt and the expert output aejt (this implies
that the expert action is moved towards the noisy
executed action, if st > 0, or away from it, if st > 0).
Critic gating network learning The weights of
the critic gating network are updated as follows:

∆wCGei = ηCG · (hCe − gCe) · zit−1 (12)

where ηCG is a learning rate set to 0.5. Again, the
rule follow the ideas proposed by the mixture of ex-
perts model. Intuitively, here the rule implies that
the responsibility of an expert is increased if its cor-
rectness was higher (i.e., its future-reward prediction
error smaller) than other experts.
Critic experts learning The weights of the critic
experts are also trained on the basis of “replace eli-
gibility traces”. In particular, at time t and for the
expert e the eligibility trace eCEeit of a connection
weight wCEei is computed on the basis of the signal
xit and the expert responsibility het. Similarly to
what done for the actor, if this eligibility is smaller
than the “decayed” old eligibility eCEeit−1, the latter
is used instead of the former to train the weight:

eCEeit = max [γ · λ · eCEeit−1, hCexit]

wCEeit = wCEeit−1 + ηCE · set · eCEeit−1 (13)

where λ is the decay coefficient of the eligibility
(λ = 0.94), and ηCE is a learning rate (η = 0.06).
Note how, contrary to what done for the actor, the
comparison between the old decayed eligibility and
the new potential eligibility can be done without con-
sidering their absolute values as both values are pos-
itive: indeed, the sign of change of the weight is
given by surprise set. Also note that, contrary to
the actor experts, the expert surprise set, and not
the global surprise st, is used to update the critic
expert weights.

Notice that the learning rates of gates (ηAG and
ηCG) were set to values smaller than those of the
learning rates of the respective experts (ηAE and
ηCE) as this was found to ease the specialisation of
experts (cf. Baldassarre, 2002). Moreover, the learn-
ing rate related to the actor experts is higher than
the one related the critic experts as the actor ex-
perts have sigmoid output units (implying a deriva-
tive ¡ 0.25 in the learning rule of eq. 11), whereas
the critic experts have linear output unit (implying
a derivative = 1 in the learning rule of eq. 13). The
learning rate related to actor gating network is larger
than the one related the critic gating network as the
former tends to have a difference between the poste-
rior and prior responsibilities much smaller than the
latter (cf. eq. 10 and eq. 12).



Table 1: Performance of the one-expert and four-expert

systems in the three experiments with one, two, and three

handle positions.

Experiment 1 exp. 4 exp.
One condition, right 100% 100%
Two conditions, right 14.06% 98.44%
Two conditions, left 82.81% 90.62%
Three conditions, right 93.75%
Three conditions, left 90.62%
Three conditions, centre 98.43%
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Figure 3: (a) Cumulated reward of the one-expert and

four-expert models for the experiment with one handle

position. (b) Cumulated reward of the one-expert and

four-expert models for the experiment with two handle

positions.

3.4 Noise generator

To foster exploration, we used a technique of noise
generation which is more easily tunable than the
method proposed in Doya (2000) for continuous re-
inforcement learning, and allows taking into account
the fact that the inertia of the arm tends to average
out white noise (see Caligiore et al., inpr for more de-
tails on this technique; cf. Peters and Schaal, 2008
for alternative methods).

In what follows, the global motor command pro-
duced by the actor a, is mapped to the desired an-
gles (equilibrium point) sent to muscles, denoted with
EP, the noisy global actor motor command, an, is
mapped into the noisy equilibrium point issued to
the muscle models, denoted with EPn, and the cur-
rent joint angles are denoted with Jt.

Mathematically, the noisy EP issued to muscle
models at time t, EPnt, is computed as follows (mea-
sure unit expressed in neural space as the distance
between two close units):

Nb
t = (1 − σ) ·Nn

t−1 + σ ·Nrand

Nn
t = Nb

t/
∣

∣

∣

∣

∣

∣
Nb

t

∣

∣

∣

∣

∣

∣
if 1 <

∣

∣

∣

∣

∣

∣
Nb

t

∣

∣

∣

∣

∣

∣
else Nn

t = Nb
t

Nt = Nn
t · Nmax (14)

EPnr
t = A ·EPr

t + (1 − A) ·Nt

EPn
t = EPnr

t + Jt−1

where Nb
t is a buffer vector, σ (set to 0.05) is a pa-

rameter which allows progressively updating Nb
t on
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Figure 4: (a) Y-axis: performance of the four-expert

model (black bars) and the one-expert model (gray bars)

in the experiment with one handle (two bars at the left)

and two handles (two bars at the right: average for the

two handle positions). (b) Y-axis: performance of the

four-expert model (black bars) and the one-expert model

(gray bars) in the experiment with two handles, mea-

sured separaterly for the handle at the left (two bars at

the right) and at the right (two bars at the left).

the basis of the noise vector Nrand (whose elements
are uniformly drawn in [-1, +1]), Nn

t is a two-element
noise vector with size normalised in [0, 1], Nt is a
noise vector with maximum size Nmax (Nmax = 10),
EPr

t is the desired equilibrium point vector produced
by the actor but expressed with respect to a reference
frame centred on (relative to) the previous joint an-
gles Jt−1, A is a variable changed in [0.1, 0.9], EPn

t

is the noisy EP vector issued to the muscle mod-
els. Briefly, the rationale of eq. 14 is that the delay
mechanism with which Nn

t is updated on the ba-
sis of Nrand assures that the direction and intensity
with which noise “pulls” the arm away form the cur-
rent posture Jt−1 changes gradually, so solving the
problem of inertia averaging noise out. Nmax allows
regulating the maximum exploration range due to
such noise. A is the “ability” of the actor increased
linearly from 0.1 to 0.9 during training.

4. Results

The performance of the hierarchical model with four
experts was compared with one model having only
one expert and representing a system with linear
computational capabilities. The two systems were
tested in three experiments requiring to reach a cup-
handle in various conditions (see Fig. 1): (c) an
experiment requiring to reach the cup-handle posi-
tioned only in one position: at the left of the robot.
(b) a similar experiment requiring to reach the cup-
handle in two positions: at the left or at the right
of the robot; (a) a similar experiment requiring to
reach to the cup-handle in three positions: the han-
dle either at the left, or at the right, or in front of
the robot. This experiment was run only with the
four-expert model as the one-expert model could not
tackle this task (as shown by the fact that it failed
the easier task with two handles, see below).



(a) (b)

Figure 5: (a) Trajectories followed by the one-expert

model to reach the handle at the right, in the experiment

with one handle, in 64 trials when the initial position of

the hand is set on the 8×8 vertexes of a regular grid over-

lapped with the joint space. (b) Trajectories followed by

the four-expert model to reach the handle at the right,

in the experiment with one handle, with the same initial

64 hand positions.

Fig. 3 shows the performance during training of
the two models measured as the cumulated reward
in the two experiments with one and two handle posi-
tions. Table 1 and Fig. 4a show the results of a test
on the performance of the two systems after they
were trained in these two experiments. This test
measured the percentage of times, out of 64, when
the hand reached the target with the hand initial
position set on the 8 × 8 vertexes of a regular grid
overlapped with the joint space. Note that other
experiments run with different random-number gen-
erator seeds had qualitatively similar results.

4.1 Experiment with one handle

Fig. 3 shows that the one-expert model learns faster
than the four-expert model. This is due to the fact
that it does not need to train the gating networks be-
fore training the specific critic/actor experts to solve
the task. The performance of the four-expert model,
however, after some time becomes similar to the per-
formance of the one-expert model, as indicated by
the fact that the derivative of the two curves in Fig. 3
become the same, and as confirmed by the test re-
ported in Fig. 4a and in Table 1. The experiments
also show that the four-expert model learns to solve
the task using only one expert.

4.2 Experiment with two handles: encoding

of skills in different experts

Fig. 3 shows that in the two handle experiment af-
ter an initial transient the four-expert model out-
performs the four-expert model. Its superiority is
also indicated by the results of the test on the after-
learning performance reported in Table 1 and Fig. 4.
Data reported in Table 1 and Fig. 4 also indicate that
the one-expert model focussed its resources on reach-
ing the left handle (performance: 82.81%) and had a

poorer performance with the right handle (14.06%).
This indicates that the task is non-linear and so can-
not be fully solved by the one-expert model formed
by a critic and an actor based only on one linear
function approximator, even if the system is forced
to adopt this solution by the lack of other neural
resources. On the contrary, the four-expert model
succeeds to solve the task by employing two differ-
ent experts for both the critic and the actor. This
indicates that the four-expert model is both capable
of discriminating the two conditions at the level of
the gating networks and to exploit each of the two
experts to solve the task in one particular condition.
Fig. 5 shows some examples of trajectories exhibited
by the two models.

4.3 Experiment with three handles: encod-

ing of skills in the same experts

In the experiment with three handle positions, the
actor and critic of the four-expert model both learn
to use the same expert for the left and central hanlde
and a different expert for the right handle. The rea-
son of this is that the arm needs to execute very
similar movements to reach both the left and central
handle (in fact if the straight hand moves towards
the cup it can touch both handles).

Interestingly, Fig. 6 shows that at the beginning
of the experiment with three handle positions both
the critic and actor start to use different experts for
the three handles. With the progression of learn-
ing, however, the actor starts to use the expert used
for the central handle also to reach the left handle
(second expert), and the evaluator does the opposite
(third expert). This shows that the actor and critic
gating networks have the capacity to use the same
expert if the conditions where the task is pursued
require similar sensorimotor mappings.

5. Conclusions and future work

This article presented a hierarchical modular rein-
forcement leaning model that when acquires different
skills is capable of assigning responsibilities to differ-
ent expert controllers on the basis of: (a) the differ-
ent sensorimotor mappings required by the skills; (b)
the computational capability of experts. The tests
show how the model is capable of autonomously learn
to use only one expert for same or similar skills, and
more experts for relatively different skills. Thanks
to this property, and the fact that the model is hi-
erarchical, is based on a neural biologically-plausible
RL model (actor-critic model), and can work with
continuous actions and states, it can be used to
study developmental processes in future work (e.g.,
see Berthier et al., 2005). In particular, the results
presented here give preliminary indications that the
model can indeed be used to investigate the assimi-



(a)

(b)

Figure 6: (a) Moving average (1000 steps window) of the

activation of the actor selector output units (y axis) of

the four-expert model during learning (x-axis), when the

system pursues the left handle. (b) Same data for the

evaluator when the system pursues the central handle.

lation/accomodation processes proposed by Piaget.
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