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Abstract. The mechanisms underlying learning in classical condition-
ing experiments play a key role in many learning processes of real organ-
isms. This paper presents a novel computational model that incorporates
a biologically plausible hypothesis on the functions that the main nuclei
of the amygdala might play in first and second order classical condi-
tioning tasks. The model proposes that in these experiments the first
and second order conditioned stimuli (CS) are associated both (a) with
the unconditioned stimuli (US) within the basolateral amygdala (BLA),
and (b) directly with the unconditioned responses (UR) through the
connections linking the lateral amygdala (LA) to the central nucleus of
amygdala (CeA). The model, embodied in a simulated robotic rat, is val-
idated by reproducing the results of first and second order conditioning
experiments of both sham-lesioned and BLA-lesioned real rats.

1 Introduction

Individual learning plays a fundamental role in adaptive behavior of organisms,
especially in most sophisticated ones like mammals. Some of the most important
mechanisms underlying learning are those studied in classical (Pavlovian) con-
ditioning experiments. In these experiments an animal experiences a systematic
association between a neutral stimulus, for example a light (the “conditioned
stimulus” or “CS”), and a biologically salient stimulus, for example food (the
“unconditioned stimulus” or “US”), to which it tends to react with an innate
set of responses appropriate for the US, for example orienting and approaching
(the “unconditioned responses” or “UR”). After repeated exposure to couples of
CS-US the animal produces the UR even if CS are presented alone.

Since Pavlov’s pioneering works [1], a lot of research has addressed classical
conditioning phenomena producing a huge amount of behavioral and neural data
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[2]. However, we still lack a comprehensive theory able to explain the full range
of these empirical data. Trying to build detailed biologically plausible computa-
tional models is a necessary step to overcome this knowledge gap. The current
most influential models on classical conditioning, those based on “temporal-
difference reward prediction error” [3, 4] , suffer of several limitations. The main
reason is that they have been developed within the machine learning framework
with the aim of building artificial machines capable of autonomously learning
to perform actions useful for the user. For this reason they are suitable to in-
vestigate instrumental conditioning phenomena – a type of associative learning
based on stimulus-actions associations – but less adequate to explain Pavlovian
phenomena mainly based on stimulus-stimulus associations [5, 6].

A crucial question on classical conditioning regards the nature of the acquired
association between the CS and the UR: is this association direct (CS-UR), as
Pavlov himself seemed to claim [1], or does it pass through the unconditioned
stimuli (CS-US-UR), as Hull [7] suggested? The long-lasting debate on this topic
[2] seems now settled in favor of both hypotheses: in fact, there is now strong
empirical evidence supporting the co-existence of both CS-UR and CS-US as-
sociations [5, 8]. However, a clear understanding of the neural substrates which
might be responsible for these two kinds of associations has yet to be gained. In
particular, none of the computational models of classical conditioning based on
the temporal-difference mechanisms, nor the models which have been proposed
as alternatives to them [5, 6, 9, 10], make any significant claim on this point.

Within the empirical literature, Cardinal et al. [8] formulated an interest-
ing hypothesis on the neural basis of stimulus-stimulus and stimulus-response
Pavlovian associations. According to this hypothesis, the basolateral amygdala
(BLA) stores the CS-US associations, whereas the central nucleus of amygdala
(CeA) receives or stores the CS-UR associations (CS-UR associations encoded
in the cerebellum [11] are not considered here).

This paper presents an original computational model implementing that gen-
eral hypothesis. In particular, it represents the first working model specifying
the different functions played by the main sub-nuclei of amygdala in classical
conditioning. The model, embodied in a simulated robotic rat, is validated by
reproducing the results obtained with some first and second order conditioning
experiments conducted with sham and BLA-lesioned real rats [12].

Sect. 2 presents the target experiment and the simulated experimental setup.
Sect. 3 describes the model’s general functioning and the biological constraints
taken into account. The mathematical details of the model are presented in the
Appendix. Sect. 4 shows the results of the tests of the model and compares them
with those obtained with real rats. Finally, Sect. 5 concludes the paper.

2 The target experiment and the simulated environment

The model is validated by reproducing second-order conditioning experiments on
real rats (reported as experiment 1a in [12]). The real experiment was conducted
with 19 BLA-lesioned rats and 27 sham-lesioned rats, measuring the behaviours
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of walking, orienting and “food-cup” (insertion of head in the food dispenser).
Namely, in the first phase both groups were trained for 8 sessions lasting 64 min
each to acquire a first order conditioned behaviour. Each session was formed by
a sequence of trials. In each trial a 10 sec light stimulus was presented, followed
by the delivery of Noyes pellets (food) in the food dispenser. Recordings showed
that both sham and lesioned rats were able to acquire first order conditioned
behaviours. In the second phase the same rats were trained for 3 sessions of
64 min each to acquire a second order conditioned behaviour. A tone stimulus
was presented for 10 sec followed by the light stimulus; every 3 trials a “reminder”
of the light-food association was presented. The key result was that only sham
rats acquired the second order CS-UR association. In accordance with other
empirical evidences (see [8] for a review), these experiments suggest that BLA
plays a fundamental role in the formation of the association between the CS and
the incentive value of the US, and that this association plays a key role in the
acquisition of the CS-UR association in second order conditioning.

The real experiment was simulated through a robotic rat (“ICEAsim”) de-
veloped within the EU project ICEA on the basis of the physics 3D simula-
tor WebotsTM. The model was written in MatlabTM and was interfaced with
ICEAsim through a TCP/IP connection. The robotic setup is shown in Fig. 1.
The environment is formed by a gray-walled chamber, and the stimuli are ex-
pressed by 3 panels (vision is used, as no sound is supported by Webots): food
delivering in the dispenser occurs when the green panel turns on, light when the
yellow one is on, and tone when the red one is on. When one of those stimuli
elicits an orienting response within the controller (see Sect. 3), the rat turns
toward the panel and then approaches it (these behaviors are hardwired). This
behavioural sequence terminates when the rat touches the food-dispenser (that
is assumed to correspond to a food-cup behaviour). Although the “degree of em-

(a) (b)

Fig. 1. (a) A snapshot of the simulator, showing the simulated rat at the centre of the
experimental chamber, the food dispenser (at the rat’s right hand side), the light panel
(behind the rat) and the tone panel (in front of the rat). (b) The architecture of the
model: bold and plain arrows indicate innate and trained connections, respectively.
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bodiment and situatedness” of the setup is rather limited, nevertheless a robotic
test was used because in the future we plan to scale the model to more realis-
tic scenarios (for example, the random-lasting time intervals elapsing between
rats’ orienting and food deliver already started to challenge the robustness of
the associative learning algorithms used).

3 The model

This section presents a general description of the functioning of the model and
the biological constraints that it satisfies, while a detailed mathematical de-
scription of it (included all the equations) is reported in the Appendix. A key
feature of the model (Fig. 1) is the explicit representation of the three major
anatomical components of the amygdala [13]: the lateral amygdala (LA), the
basolateral amygdala (BLA), and the central nucleus of amygdala (CeA). The
model assumes that these components form two functional sub-systems: (1) the
LA-CeA sub-system, which forms S-R associations, and (2) the BLA sub-system,
which forms S-S associations. Note that in the following “neurons” have to be
intended as units whose functioning abstracts the collective functioning of whole
assemblies of real neurons.

The Stimulus-Response Associator (LA-CeA). The LA is the main input of
the amygdala system. It receives afferent connections from various sensory and
associative areas of cortex, from thalamus, and from deeper regions within the
brain-stem, and it sends efferent connections both to BLA and to CeA. The
model has an input layer (INP) of four leaky neurons (inp) activated by four
binary sensors (s) which encode the presence/absence of four stimuli: light (sli),
tone (sto), food sight (sfs) and food taste (sft) (Eq. (1)). LA (la) is formed by
four leaky neurons receiving one-to-one afferent connections from INP (Eq. (2)).

The CeA is one of the main output gates of amygdala. Its efferent connections
innervate regions of the brainstem controlling mainly: (1) body and behavioral
reactions through the hypothalamus and periaqueductal gray [14]; (2) the release
of basic neuromodulators through the ventral tegmental area (dopamine), the
locus coeruleus (norepinephrine), and the raphe nuclei (serotonin) [13, 15, 16].
These neuromodulators play a fundamental role in learning processes but for
simplicity this model considers only dopamine [17] (in particular it ignores the
role that norepinephrine plays in AMG learning [18]). In the model CeA (cea) is
formed by two leaky neurons, one (ceaor) encoding the rat’s orienting behavior,
and one (ceada) connected to the ventral tegmental area (VTA) to produce the
dopamine signal (da) (Eqs. (4) and (5)).

In the model, all LA neurons are connected to the orienting neuron of CeA
(ceaor), whereas only the food taste neuron (laft) is connected to the neuromod-
ulator neuron of CeA (ceada). These connectivity allows stimuli representations
of LA to be associated with the orienting behaviour in CeA but not with the
dopamine neuromodulation. This is a key assumption to explain why LA-CeA
associations can learn first order CS-US associations but not second order ones:
conditioned stimuli cannot access the incentive value of rewarding stimuli.
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The connections from LA to CeA are trained on the basis of a Hebb rule. In
particular, the strengthening of connections takes place in the presence of three
conditions (Eq. (6)): (1) a high value of the trace of the LA activation onset
(la tr): the use of the onset makes learning happen only when LA neurons’
activation precedes CeA neurons’ activation, while the use of the trace allows
overcoming the time gap between CS and UR; (2) a high activation of CeA
neurons (ceaor and da); (3) a dopamine level (da) over its threshold (thda).

The Stimulus-Stimulus Associator (BLA). The BLA has afferent connections
from LA and efferent connections to CeA [19, 20]. BLA is also interconnected
with the orbitofrontal cortex and hippocampus, and sends efferent connections
to the nucleus accumbens: all these connections are ignored here (see [21] for a
model where BLA-nucleus accumbens connections play a key role).

In the model, BLA (bla) is formed by four leaky units which receive one-to-
one connections from LA (la) and have all-to-all lateral connections (Eq. (7)).
Only the neuron encoding food taste (blaft) is connected to CeA neurons. This
implies that all neurons of BLA representing stimuli different from the US (blaft)
can exert effects on the CeA output neurons only via lateral stimulus-stimulus
connections with the BLA’s US neuron.

Learning of BLA lateral connections is based on a time-dependent Hebb
algorithm. The key aspect of the algorithm is that it allows both the onset and
the offset of BLA neurons preceding the onset of other BLA neurons to increase
the connection from the former to the latter, provided that dopamine overcomes
its threshold (Eqs. (8), (9), (10)). The sensitivity to the offset of stimuli was
necessary due to the long duration of the CS stimuli, see Sect. 2 (cf. [21] for a
simpler version of the algorithm using only the onset of presynaptic neurons).

4 Results

Figure 2a compares the percentage of times the tone elicits an orienting be-
haviour in real [12] and simulated rats after the second order conditioning phase.
The main result of the experiment has been qualitatively reproduced by the
model: in both real and simulated rats a BLA lesion prevents second order con-
ditioning to take place. The analysis of the detailed functioning of the model
provides an explanation for this result. Figure 2b shows the activations of some
key neurons of: (1) a simulated sham rat during the first order conditioning
phase with the light-food contingency; (2) the same sham rat during the sec-
ond order conditioning phase with the noise-light contingency; (3) a simulated
BLA-lesioned rat during the second order conditioning phase.

Figure 2b, first block, shows the mechanisms underlying first order condition-
ing in a sham simulated rat. At the beginning of the first trial, the appearance of
light activates the light-related BLA neuron (blali). After a while, the appearance
of food activates the food-sight BLA neuron (blafs). The blafs pre-activates the
BLA food-taste neuron (blaft) before the rat actually reaches the food thanks
to a blafs-blaft excitatory connection which is assumed to be learned before
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Fig. 2. (a) Percentage of orienting behaviours of sham (S) and lesioned (L) rats in
response to the tone after second order conditioning: data from real (first two bars) and
simulated rats (last two bars). (b) Stimuli, activations of key neurons, and dopamine
release in 3 conditions: first-order and second-order conditioning phases of a sham rat
(first and second block, respectively), and second-order conditioning phase of a BLA-
lesioned rat. Trials are separated by short vertical dotted lines; thresholds (for orienting
behavior and dopamine learning) are represented as gray horizontal dotted lines.

the conditioning training (see the Appendix). In turn, the blaft triggers both
the orienting behavior via the orienting CeA neuron (ceaor) and the release of
dopamine (da) by the VTA via the CeA neuromodulation neuron. The release
of above-threshold dopamine triggers the learning of both the connection be-
tween the light neuron in LA and the orienting neuron in CeA (implementing
the CS-UR association) and the connections linking the light neuron with the
food sight and food taste neurons in BLA (implementing the CS-US association).
The result is that after a very few trials the blafs and blaft neurons start to be
pre-activated as soon as the light is perceived. This results in an early activation
of both CeA neurons and, consequently, in an early dopamine release and an
early orienting response to the light.

As in the target experiment, during the second order conditioning phase the
rats are exposed to sequences of four trials composed by three tone-light presen-
tations and one light-food “reminder”. Thanks to the CS-US BLA association
acquired during the first phase, in sham rats (Fig. 2b, second block) the presenta-
tion of light immediately triggers both orienting behavior and dopamine release.
This ability of light to trigger dopamine release permits the acquisition of the
second-order association between the tone and the URs (orienting response and
dopamine release) in a manner which is completely analogous to what happens
in the first-order conditioning with respect to light.

On the other hand, second order conditioning cannot take place in BLA-
lesioned rats (Fig. 2b, third block). The reason is that in this case light can trigger
only the orienting response via the connection linking the light representation in
LA with the orienting neuron in CeA (the direct CS-UR association), but not the
dopamine release, which requires the activation of the food-taste representation
in either BLA (which is lesioned) or LA (which is activated only when food is
effectively eaten). As a result, since synaptic modification depends on dopamine,
no learning can takes place during second-order conditioning.
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5 Conclusions

This paper presented an original computational model of the basic brain mecha-
nisms underlying classical conditioning phenomena. The architecture and func-
tioning of the model was constrained on the basis of neural empirical data on
the amygdala. The fundamental assumption underlying the model is that the as-
sociation between conditioned stimuli (CS) and unconditioned responses (UR)
formed in classical conditioning experiments is due to two related but distinct
mechanisms: (1) stimulus-stimulus associations (CS-US-UR) involving uncondi-
tioned stimuli (US) stored in the BLA; (2) direct stimulus-response associations
(CS-UR) stored in the LA-CeA neural pathway.

The model was embedded in a simulated robotic rat and was validated by
reproducing the behaviours exhibited by both sham and BLA-lesioned rats in
first and second order conditioning experiments. In particular, as in real rats,
while after training the simulated sham rats react with UR (orienting) to both
first and second order CS, BLA-lesioned simulated rats associate UR only to
first order CS, but not to second order CS. The model is able to reproduce and
explain these results thanks to the fundamental aforementioned assumption.
During first order conditioning sham rats acquire both the direct CS-UR and
the indirect CS-US-UR association. It is the first order CS-US association within
BLA which permits the acquisition of the second order association as it allows
the CS to reactivate the appetitive value of the US even when the US is absent.
In contrast, BLA-lesioned rats can acquire direct first order CS-UR associations
stored in the LA-CeA neural pathway but they cannot acquire the second order
association because the first order CS has not access to the appetitive value of
the US. To the best of the authors knowledge, this is the first model to propose
such a specific computational hypothesis regarding the double association CS-US
and CS-UR in classical conditioning.

Notwithstanding its strengths, the model suffers at least two significant lim-
itations. First, the whole behavioral sequence triggered by the activation of the
orienting neuron in CeA (orienting, approaching, and food-cup) is fully hard-
wired. For this reason, the model cannot reproduce the results on CeA-lesioned
rats which are reported in the same article of the experiment targeted here [12].
Second, in contrast to most existing models of classical conditioning [9, 6, 5], the
current model does not implement any mechanism for reproducing the exact
timing of dopamine release observed in real animals. For this reason the model
cannot reproduce another fundamental aspect of classical conditioning, that is
extinction (the ability to re-learn not to respond to the CS if it stops to be fol-
lowed by the US). We are currently working on improved versions of the present
model for tackling both these limits.

Appendix: Mathematical details of the model

Throughout the Appendix, τx denotes the decay rate of a leaky quantity x,
the sub-index ·p denotes the activation potential of the corresponding neuron,
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symbols X, x, and x are used respectively to denote matrices, vectors and scalars,
the function ϕ is defined as ϕ[x] = max[0, x] and the function χ as χ[x] = 1if x ≥
0 else χ = 0. The values of parameters are listed at the end of the Appendix.

LA-CeA: Functioning and Learning. INP (inp) processes the input signal from
sensors s = (sli, sto, sfs, sft)

′ with a leak function:

τinp · ˙inp = −inp + s . (1)

LA is formed by four leaky neurons (la) activated as follows:

τla · ˙lap = −lap + winp,la · inp , la = ϕ[tanh[lap]] (2)

where winp,la is the fixed weight of the connections from IMP to LA. The “double
leak” processing of signals implemented by IMP and LA is used to smooth the
derivative of LA (see Eq. (3)).

The trace of LA neurons (la tr) is a leak function of the positive value of the
derivative of their activation ( ˙la):

τla tr · ˙la trp = −la trp + bla tr · ϕ[ ˙la] , la tr = ϕ[tanh[la trp]] (3)

where bla tr is an amplification coefficient.
CeA is formed by two leaky neurons (cea) activated as follows:

τcea · ˙ceap = −ceap + Wla,cea · la + Wbla,cea · bla (4)

cea = ϕ[tanh[ceap]]

VTA is formed by a dopamine leaky neuron (da) which activates as follows:

τda · ḋap = −dap + blda + wcea,da · cea , da = ϕ[tanh[dap]] (5)

where blda is the dopamine baseline.
The weights of the LA-CeA connections (Wla,cea) are updated with a three-

element Hebb rule involving CeA, LA’s trace and dopamine:

∆Wla,cea = ηla,cea · (χ[da − thda] · da) · cea · la tr
′ · (1 − |Wla,cea|) (6)

where ηla,cea is a learning rate, the term (χ[da− thda] ·da) implies that learning
takes place only when da ≥ thda, and the term (1 − |Wbla|) keeps the weights
in the range [−1, 1].

BLA: Functioning and Learning. BLA is formed by four leaky neurons (bla)
activated as follows:

τbla · ˙blap = −blap + Wbla · bla + (wla,bla · la + cbla · la tr) (7)

bla = ϕ[tanh[blap]]

where cla tr is an amplification coefficient. According to this equation, with a
transient constant input signal the activation of a BLA neuron presents a high
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initial peak (due to la tr) followed by a lower constant value (due to la) and then
by a smooth descent to 0 (due to the leak after the signal end): this activation
has a derivative suitable for BLA learning (see below).

In order to train lateral connections of BLA, a trace of the derivative of the
activation of BLA neurons bla tr is computed as follows:

τbla tr · ˙bla trp = −bla trp + · ˙bla . (8)

Small values of this trace are ignored in the learning algorithm by consider-
ing the “cut trace” bla tr cut defined as: bla tr cut = bla tr if |bla tr| <

thbla tr else bla tr cut = 0. Given the activation dynamics of BLA (Eq. (7)),
the corresponding derivative (and, with some delay, its trace) presents: (1) an
initial peak at signal onset; (2) a negative peak at the end of the signal onset;
(3) a negative peak at the signal offset. The key point of the learning algorithm
of BLA is that a connection between two neurons is potentiated in coincidence
of a negative peak of the presynaptic neuron and a positive peak of the postsy-
naptic neuron. These two events mark a pre-synaptic-onset/post-synaptic-onset
sequence (or a pre-synaptic-offset/post-synaptic-onset one). The matrix S, re-
ported below, captures these conditions for all couples of neurons:

S = χ[bla tr cut] · χ[−bla tr cut]′ − χ[−bla tr cut] · χ[bla tr cut]′ . (9)

Denoting with pre and post the presynaptic and postsynaptic neurons, S has an
entry equal to 1 when bla tr copre < 0 and bla tr copost > 0, equal to −1 when
bla tr copre < 0 and bla tr copost > 0, and equal to 0 otherwise. The learning
rule of lateral connections is then:

∆Wbla = ηbla · χ[da − thda]da · (ltpbla · ϕ[S] + ltdbla · ϕ[−S])(1 − |Wbla|)
(10)

where ηbla is a learning rate, ltpbla is a long time potentiation coefficient, and
ltdbla is a short term depression coefficient.

Model’s Parameters. The model’s parameters were set as follows: τinp = τla =
τbla = 500 ms, τla tr = τbla tr = 5000 ms, τcea = 100 ms, τda = 50 ms,
winp,la = 10, bla tr = 1000, wla,bla = 0.5, cbla = 60, blda = 0.3, thda = 0.6,
thla tr = 0.00001, ηbla = 0.0005, ηla,cea = 0.15, ltpbla = 1.0, ltdbla = 0.3. Some
connections, assumed to be innate or pre-learned, are clumped to 1 (l=learned):

wblafs,ft = 1, wcea,da = (1, 0), Wla,cea =

(

l l l 1
l l 1 1

)

, Wbla,cea =

(

l l l 1
l l l 1

)

. The

model’s equations were integrated with the Euler method with a 50 ms step.
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