
Università degli studi di Siena

Dottorato in Scienze Cognitive
Ciclo XVII

An Artificial Life Approach to the
Evolution of Language:
Preliminary experiments

Marco Mirolli

Tutors:

Prof. Cristiano Castelfranchi

Prof. Sandro Nannini



a

ii



A mamma e babbo,

per tutto quello che hanno sempre fatto per me



iv



Abstract

Human language is one of the most complex phenomena that we know. Today’s re-
search on language is subdivided in a number of different disciplines, which study
the various aspects of language indipendently the one to the other and with different
tools, concepts and theoretical frameworks. In this thesis I present some artificial life
simulations which represent a first step into a more unified study of language and its
relationships with human cognition.

Looking at human language from the point of view of artificial life not only provides
new tools for addressing old questions, but also changes the kind of questions we can
and want to address in the first place. First, the artificial life perspective tends to
view any human phenomenon as in continuity with the animal world. This results in a
tendency to consider language, first of all, as a communication system. Secondly, the
artificial life perspective on human language tends to shift the focus of research from
syntax to semantics and pragmatics, and from laboratory-like tasks to the evolutionary
and developmental emergence of language.

The major contributions of this thesis derive from the application of artificial life tools
like neural networks, genetic algorithms, agent-based computational simulations and
the concepts of complex dynamical systems theory to the study of (a) the evolutionary
emergence of a simple communication system and (b) how language can affect cognitive
capacities, in particular categorization.

In the first series of simulations I study two related problems posed by the evolution
of any communication system (language included): (1) how can communication emerge
given that it requires the symultaneous presence of two independent abilities, namely
speaking and hearing, and (2) which are the adaptive factors that can favour the
emergence of a communication system which provides benefits only for one of the two
actors of communication, in this case the hearer.

Regarding the problem of co-evolution between speakers and hearers, my simula-
tions show that the historical emergence of communication can be promoted by what
I have called ’producer biases’, that is, the spontanous tendency of organisms to pro-
duce behaviors (signals) that systematically co-vary with features of the environment
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Abstract

which are relevant for organisms’ survival and reproduction. Furthermore, the detailed
analysis of the simulations also suggest one possible mechanism which can lead to a
producer bias: namely, the cognitive pressure towards good signal production due to
the need for organisms to internally represent stimuli according to adaptively relevant
categories.

With respect to the adaptive problem posed by possible conflicts of interests between
speakers and hearers, I discuss a number of factors that can favour the emergence of a
communication system which benefit only hearers. The first is kin selection: such an
altruistic communication system can emerge if organisms interact preferentially among
kin. The second factor is cultural evolution due to ’docility’: if what the organisms
inherit genetically are not behaviors, but the propensity to learn them from their
parents, then this propensity can be the basis for learning the communication system
irrespective of whether it confers an advantage to the speaker or to the hearer. Finally,
the last factor is talking-to-oneself: if the communication system is not only used in
social contexts, but also individually, in particular as an aid to memory, then the
emergence of communication is favoured because talking-to-oneself poses a selective
pressure towards good signal production.

After having discussed how the evolution of even a very simple communication sys-
tem can be favoured by talking-to-oneself, in the second set of simulations I turn my
attention to the study of the possible consequences of talking to oneself for human cog-
nition. In this context, I develop an original neural network model of early language
acquisition (learning to map the first words with internal representations of their ’ref-
erents’). This model provides the possibility of studying the effects of language on
internal representations of objects, both when the linguistic input comes from other
individuals and when it is self-produced, as in private or inner speech. The results
show that both the social and the private uses of language can improve individual
categorization. This finding supports the idea that language is not only a powerful
communication system, but also a cognitive tool which substantially transforms hu-
man cognition. According to this view, most of the peculiar characteristics of human
cognition depend on the internalization of the social cognitive aids provided by adults
to the developing child through language. In the final part of the thesis I develop this
point by providing some ideas on the possible influences that language can have in
several cognitive domains: learning, abstraction, memory, attention, problem-solving,
voluntary control, and mental life. I consider each of these domains as a possible line
for future research.

Apart from the specific contributions described above, the main goal of this thesis
is to demonstrate that the artificial life approach to language is both feasible and
promising, and can give an important contribution to the scientific understanding of
human beings.
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1. General introduction

1.1. Aims of the thesis

Human language is one of the most fascinating phenomena that we know. And it is
one of the most important characteristics that distinguish human beings from other
animals. In their seminal work on the major transitions in the evolutionary history of
our planet, evolutionary biologists John Maynard-Smith and Eors Szathmary regard
the evolution of language as the last major transition (Maynard-Smith and Szathmary,
1995; Szathmary and Maynard Smith, 1995). Indeed, the evolution of language has
surely played a fundamental role in the subsequent history not only of the human
species, but of the hearth as a whole. Without language we wouldn’t have had the
evolutionary success that we had. In fact, the possession of language is a sine-qua-
non condition for the development of all major human achievements, including human
religion, society, technology and science. Therefore, it would be an important scientific
achievement to clearly understand and explain how language has emerged in human
beings’ evolutionary history.

But studying human language is very difficult, because language is an incredibly
complicated phenomenon which depends on the human brain, on ontogenetic devel-
opment, and on genetic and glossogenetic (cultural) evolution. All those systems are
complex systems, acting at different time scales, which in turn interact with each other
in complex ways. So, it is very unlikely that a single simple explanation can be found
for the emergence of human language. Indeed, it is very unlikely that a single disci-
pline or a single methodology can suffice for understanding all the amazing features of
human language and the mechanisms and factors that generate them.

What we do know is that if we move sufficiently back in time we find ancestors of
human beings that lacked language and that all modern humans, except for pathologies,
have language. But because of the extreme complexity of human language and because
language does not leave fossil traces, we only have speculative theories concerning how
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1. General introduction

and when language has emerged and evolved. In this context, computer simulations
can be of help.

Simulations are computer programs and to express our hypotheses and theories as
computer programs forces us to formulate them in a more explicit, detailed, and com-
plete way than if they are just expressed in words because, otherwise, it would be im-
possible to translate them in a computer program. Furthermore, since a simulation’s
results are the empirical predictions which are derived from the theory incorporated
in the simulation, hypotheses and theories expressed as simulations generate detailed
empirical predictions in a mechanical and, therefore, uncontroversial way. This allows
us to make a profitable use of whatever empirical evidence we do have on the initial
emergence and further evolution of human language.

The general aim of this thesis is to provide preliminary simulative experiments to-
wards the simulation of the evolution of language. The general framework on which
my simulations are based is that of artificial life, which includes the use of neural net-
works as simple models of organisms’ nervous systems, genetic algorithms as models
of evolution by natural selection, and the use of concepts and tools of complex sys-
tems theory. From the theoretical point of view, I will consider language primarily
as a communication system and, secondarily, as an extraordinary cognitive tool which
deeply transforms most of human cognitive functions. Consequently, the simulations I
present will be related to (a) general problems in the evolution of communication and
(b) the role that language can play in human cognition. In particular, the first series
of simulations will deal with the problem of co-evolution between hearers and speakers
and with the adaptive problem posed by altruistic communication, while in the second
set of simulations I will show how language can affect categorization.

All the simulations presented in this work regard simple communication systems
without no syntax or grammar. There are at least two reasons for this, one practical
and another theoretical. The practical reason is simply that studying syntax and
grammar with artificial life simulations is currently very difficult. There are indeed
some interesting works which try to address the evolution of combinatorial systems
in populations of artificial agents, but typically this is done at the cost of ignoring
the neural, semantic and pragmatic aspects of language, which I take to be of the
major importance. The theoretical reason is that taking into account syntax and
grammar seems to be un-necessary for addressing the specific problems I address in
this thesis. On the contrary, at least with respect to the study of the role that language
plays in human cognition, the lack of syntax in my models has a positive theoretical
importance. If in order to have a positive influence on cognition language does not need
to be syntactic, then it is possible that language started to be used as an individual
cognitive aid early in hominid evolution, in particular before the transition from a
holistic, a-syntactic proto-language to the compositional, grammatical language that
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we know today. Hence, in sharp contrast to what is commonly assumed, the use of
language as a cognitive tool might have played an important role in the evolution
of language itself. One of the main goals of this thesis is to provide evidence that
studying the role that language plays in human cognition represents a crucial step in
understanding both the evolution of language and the specific characteristics of human
cognition.

1.2. Thesis outline

The thesis is structured in three parts and comprises 7 chapters plus two appendices.
Part I constitutes an introduction to the thesis. Chapter 2 is devoted to explain-
ing what is artificial life and what are the consequences of adopting an artificial life
approach to the study of language. First of all (Section 2.1), I introduce the field
of artificial life in general terms, as the study of all living phenomena through their
simulation in the computer or their reproduction as physical artifacts. Then (Section
2.2) I try to sort out the general characteristics of artificial life simulations and explain
how and why they are related to the field of complex systems. In Section 2.3 I focus
on the part of artificial life which is most directly related to the cognitive sciences,
that is that part which is devoted to the study of psychological and social phenom-
ena. In this context, I discuss the relationships between artificial life and artificial
intelligence. In Section 2.4 I argue for taking an ethological perspective to language.
This means trying to address, in a coherent manner, four different kinds of questions:
questions about the adaptive functions of language, questions about the neural and
psychological mechanisms that subserve language, questions about the ontogenetical
development of language in the child, and questions about the phylogenetic evolution
of language in our species. In Section 2.5 I discuss the ’artificial’ side of artificial life,
that is the consequences (advantages and limitations) of studying language through
computer simulations. In the next two sections I discuss the two major (most general)
consequences of approaching language from artificial life. First, artificial life, as com-
puter simulations in general, has the potential for decreasing the need for disciplinary
boundaries in the study of language (Section 2.6). Second, artificial life tends to shift
the focus of the research on language from syntax to semantics and pragmatics, and
from synchronic to dyachronic issues (Section 2.7). Finally, in Section 2.8 I introduce
the simulations of part two by briefly discussing what I claim to be the two fundamen-
tal roles that language have played in human evolution: as a powerful communication
system, and as a cognitive tool.
Part II constitutes the core of this thesis, in that it contains my original simulative

work. It is divided in three chapters, each of which addresses a distinct theoretical
question. These three chapters are all structured in the same way. They are opened by
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an introduction and a brief review of the literature (both empirical and computational)
which is relevant for the discussed problem; then the simulations and their results are
presented, and finally the chapters are closed by a discussion. The first two sets of
simulations regard two related general problems posed by the evolution of any commu-
nication system (including language). In Chapter 3 I study the phylogenetic problem
posed by the fact that communication requires two independent but complementary
abilities, namely sending useful signals (speaking) and responding appropriately to
them (hearing). How then can communication emerge given that mutations that can
lead to good speaking or good hearing abilities seem to be adaptively neutral without
the complementary ability being already in place? In Chapter 4 I study the adaptive
problem posed by the fact that most of animals’ communication systems (and a great
part of language use) do not benefit speakers and hearers in the same way. In partic-
ular, I address the following questions: how can communication systems which benefit
only hearers emerge? Why should speaker send useful signals if they do not get any
advantage from doing so? As we will see, one of the possible solutions to this problem is
related to one peculiar characteristic of human language, namely the fact that it is not
only used socially, for communicating with others, but also individually, for talking to
oneself. In Chapter 5 I begin to study the possible consequences that using language
for oneself can have on human cognition. In particular, I develop an original neural
network model of early language (lexical) acquisition with which I study the effects of
private and inner speech on one of the most fundamental cognitive functions, namely
categorization.

In Part III I discuss possible directions for future work. In particular, in Chapter
6 I discuss several of the possible effects that language has on the development of
high-level human cognition, while in Chapter 7 I summarize the major contributions
provided by this work and make some conclusive remarks. Finally, the thesis contains
two appendices in which I give a general introduction (including some technical details)
about neural networks (Appendix A) and genetic algorithms (Appendix B).
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2. Artificial Life and language

Artificial Life is the study of man-made systems that exhibit behaviors char-
acteristic of natural living systems. It complements the traditional biologi-
cal sciences concerned with the analysis of living organisms by attempting
to synthesize life-like behaviors within computers and other artificial me-
dia. By extending the empirical foundation upon which biology is based
beyond the carbon-chain life that has evolved on Earth, Artificial Life can
contribute to theoretical biology by locating life-as-we-know-it within the
larger picture of life-as-it-could-be.
Christopher Langton: Introduction to Artificial Life, p. 1 (Langton, 1989a)

2.1. What is artificial life?

Broadly speaking, artificial life is the study of living phenomena through their simula-
tion in the computer or their reproduction as real, physical artifacts, such as robots.
The birth of artificial life as a field can be estabilished in 1989, when the first Inter-
national Workshop on the Simulation and Synthesis of Living Systems was organized
at at the Los Alamos National Laboratory by Christopher Langton. The goal of that
workshop was to put forward an alternative methodology to the study of life. While
traditional biology is focused on the carbon-based kind of life-forms that exist on our
planet, artificial life’s proposed goal was to concentrate on understanding the general
principles of life through the synthesis of life-like processes in computers and other
artificial media. Since then, the artificial life community has grown a lot and nowadays
it can count on:

• an International Society (International Society for Artificial Life, or ISAL),

• an internet web-site (http://www.alife.org),
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• a bi-annual International Conference (the International Conference on the Simu-
lation and Synthesis of Living Systems, now at the 10th edition: http://www.alifex.org),

• a bi-annual European Conference (the European Conference on Artificial Life, at
the 8th edition: http://www.ecal2005.org),

• an international journal: Artificial Life (published by MIT Press).1

Since the general goal of artificial life is to study ’living systems’ through their repro-
duction in artificial media, the field is obviously very broad and etherogenous, in that
it covers all the spectrum of living phenomena, from the molecular, to the organismic,
to the collective level (some useful introductions to the whole field are Langton, 1989b,
1995; Levy, 1992; Boden, 1996; Bedau, 2003). A great deal of work in artificial life is
in fact related to low-level biological phenomena like molecular self-organization (e.g.
Kauffman, 1993; Breyer et al., 1998), the construction of artificial cells (e.g. Szostak
et al., 2001; Rasmussen et al., 2003), the evolution of the genetic code (e.g. Tak-
agi et al., 2000) and the origin of multicellularity (e.g. Furusawa and Kaneko, 2002).
Another important part of artificial life research is devoted to the study of abstract
properties and principles related to life, like self-replication (e.g. Sipper, 1998; Ono
and Ikegami, 2003), the evolution of complexity (e.g. Adami et al., 2000; Lenski et al.,
2003) and dynamical hierarchies (see Lenaerts et al., 2005). Finally, a good deal of
work on artificial life is devoted to the study of organisms and their behaviors (e.g.
Cliff et al., 1993; Pfeifer and Scheier, 1999; Nolfi and Floreano, 2002) and to collec-
tive and social phenomena like collective problem-solving (e.g. Bonabeau et al., 1999;
Mondada et al., 2004), economic behavior (e.g. Tesfatsion, 2002), and the evolution of
communication and language (two recent reviews are Kirby, 2002; Wagner et al., 2003;
recent interesting collections are Cangelosi and Parisi, 2002; Vogt, 2005; Cangelosi,
2005).

With such a broad spectrum of topics, it is no surprise that the field is also very
variegate in methods, with all kind of models developed in all kinds of media: software
(computer simulations), hardware (robotic experiments) and ’wetware’ (i.e. artificial
cell construction). Notwithstanding this huge etherogeneity, there are also some princi-
ples, concepts and tools which can be considered as the foundamental core of artificial
life research. These include the view of living phenomena as complex, adaptive, dy-
namical systems, which rely on processes of self-organization which in turn give rise

1The bi-annual conference on the Simulation of Adaptive Behavior, the related journal Adaptive
Behavior and the journal Connection Science are other important reference points for the part of
the artificial life community devoted to the study of behaviour. At the national level, the artificial
life community has also been growing significantly in the last few years, as demonstrated by the
institution of an annual Workshop (at the third edition), the constitution of an ’interest group’
within the Italian Association for the Cognitive Sciences, and the recent publication of a special
issue of the journal Sistemi Intelligenti devoted to Artificial Life (Baldassarre et al., 2006).
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to emergent phenomena. As a result, the standard way to study these phenomena
is through agent-based simulations. This is true not only for software ’artificial life’,
but also for those parts of artificial life research which deal with hardware and wet-
ware experiments: in fact also those kinds of researches are generally supported and/or
complemented with agent-based computer simulations. In the next section I will try
to briefly explain the general approach of artificial life, while the rest of this chapter is
devoted to discussing the consequences of adopting the artificial life approach towards
the study of cognition in general and of language in particular.

2.2. Artificial life and complex systems

Despite the great importance that complex systems research has been gaining in the last
decads, there is no commonly accepted definition or classification of complex systems
(Gell-Mann, 1995). A tentative definition could be the following: a complex system
consists of a large number of components, whose mutual interactions produce highly
non-linear behaviors which result in emergent properties. This is no doubt a poor
definition, since the concept of an ’emergent property’ is not much clearer than that of
’complex system’. A review of the philosophical debate on the concept of emergence
is far beyond the scope of this work. Roughly speaking, a system has an emergent
property if that property cannot be predicted/deduced/characterized by even a com-
plete knowledge of the behavior of the components of the system itself. In other words,
even if you have a perfect knowledge of all the properties of all the individual elements
composing a complex system and of the rules that govern the interactions beween those
elements, you still cannot predict the macroscopic behavior of the system as a whole.

The reason of this unpredictability is foundamentally due to the non-linearity of the
interacions between the parts of the system. In fact, non-linear systems are in general
very difficult to study with analytical (mathematical, error-free) tools. Mathemati-
cians and phisicists can solve by analytical means only very simple non-linear system:
in most of the cases, the physicist which deals with non-linear phenomena must recover
to numerical solutions of the model, that is to computer simulations. And the computer
simulation of even very simple non-linear systems is never guaranteed to provide a cor-
rect solution, that is a correct prediction of the state of the system at some future time.
The reason is two-fold. First, non-linearities can make the system infinitely dependent
on initial conditions: even very small differences in the initial conditions can lead to
completely different behaviors of the system, because the differences can be indefenitely
augmented by the non-lineraities. This means that in order to predict correctly the
state of the system at a given time you might need to know infinitely well the initial
state of the system, which is, of course, impossible. Second, the computer is a digital
machine, which can approximate continuous values with only a finite precision. Hence,
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any infinitesime error due to the approximations which are necessarily introduced by
the use of the computer can be augmented indefinitely by the non-linearities.

The non-linearity of the interactions between the elements of a complex system ren-
ders even a deterministic system foundamentally unpredictable. But most of biological
complex systems are (must be considered as) non-deterministic. For example, evolu-
tion by natural selection is a due to a combination of Chance and Necessity, as biologist
Jacques Monod put it (Monod, 1971). The necessity of natural selection must in fact
act upon the variability due to stochastic phenomena (mutations, genetic recombina-
tions and so on). One could philosophically dispute whether the probabilistic nature of
biological phenomena is ’essential’ – that is it is intrinsic to the phenomena themselves
– or just ’epistemic’ – that is due to our incapacity to reach a perfect knowledge of the
world. But nobody can doubt that our scientific study of biological phenomena requires
the introduction of stocasticity. And this constitutes another factor of unpredictabilty
which must be summed up to those due to the non-linearity of complex system phe-
nomena. Notwithstanding all those sources of unpredictability, it is just the existence
of emergent properties which makes complex systems such an interesting subject of
scrutiny. The reason is that in a complex system a global coherence of behavior is
reached despite the local non-linear interactions between the elements.

Complex systems are said to be ’dynamical’ in that their state changes in time.
There are three basic macro-states which a complex system can be in: equilibrium,
self-organization and chaos. A system is at equilibrium when it is in a steady state.
A system is in a chaotic state when the states of its variables (or elements) change
continuously in a completely unpredictable manner. Finally, the most interesting case
is when a complex system is ’at the edge of chaos’ (Langton, 1990), that is in a state
which lies between the equilibrium and chaos. In this condition, a self-organizing
process takes place which often results in the generation of higher level structures,
with possibly interesting (emergent) properties. A classical example is a heated fluid
(Nicolis and Prigogine, 1985). When the heating is small, the fluid fluctuates a little
bit, but remains substantially homogeneous. This is the equilibrium state. If the
difference between the fluid’s temperature and the heating is very large, the fluid
enters a turbulent state, which is chaotic. But if the difference of temperature is in a
intermediate range, the fluid self-organizes into spatially distributed hexagonal cells.
This is the self-organization state, which generates the order at the edge of chaos.

A complex system is ’adaptive’ if it is not only the state of the system that changes in
time, but also the behavior of its elements and the nature of their interactions. When
this happens, a gerarchical organization appears, with the elements at one gerarchical
level constituting, considered as a whole, a single element of a greater system at a
higher level of the gerarchy. In this way, higher-order dynamics appear, which can
lead to still higher order structures. Biological entities are typical complex adaptive
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systems, with biological molecules composing cells, which in turn aggregate into organs,
which constitute organisms, which in turn compose societies and echosystems (Holland,
1995).

The particular properties which characterize complex adaptive systems seem to call
for a particular style of computational modeling: namely, agent-based simulations,
which form the core of artificial life research. An agent-based simulation in fact studies
a domain by simulating active entities – the agents – whose behavior is specified at
a low level. The researcher let the agents autonomously interact between themselves
and with their environment and studies the global properties of the whole multi-agent
system which typically emerges from these low-level local interactions. This style of
computational modeling can be, and in fact is, applied to all kind of biological phenom-
ena, including animal and human behavior. Such an approach is in sharp contrast with
the top-down approach typically adopted in classical artificial intelligence, in which the
analized behavior is typically determined (programmed) by the researcher. In the next
section I will compare in more detail classical artificial intelligence and artificial life as
two approaches to the study of behavior.

2.3. Artificial life vs. artificial intelligence

Traditionally, science has always been trying to understand realty through its system-
atic observation. This is what can be called the ’analitic approach’ to science. But
since the advent of the computer in the late 1940’s a new kind of approach to science
has appeared, one which tries to understand realty by reproducing it. This is what can
be called the ’synthetic approach’ to science. The rationale for the synthetic approach
is twofold. First, there are some aspects of reality that are very difficult to under-
stand by the traditional analytic approach of observing them – or even very difficult
to observe in the first place. Second, once you have built a system that reproduces
some phenomenon of realty, you have a candidate explanation of that phenomenon in
that it is possible – even though by no means certain – that the principles that you
have used to build your artificial system are the same principles that underlie the real
phenomenon and explain it.

The use of the synthetic approach is today very common in many scientific fields.
Science is in fact realizing that almost all aspects of reality are rather difficult to
understand by using (only) the traditional analytic approach. Hence, the simulation of
all kinds of phenomena with the computer has becoming a very important tool assisting
the scientist in his quest for the principles that explain reality. But the synthetic
approach is particularly important in Cognitive Science (Bechtel et al., 1998) as it is
the at the core of one of the disciplines the contributed to its birth, namely Artificial
Intelligence. Artificial Intelligence is in fact the endeveour of understanting cognition
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by trying to construct artificial systems able to demonstrate intelligent behavior.2

From the one hand, artificial life can be considered as a direct descendent of artifi-
cial intelligence, since the former has heredited by the latter the (synthetic) method,
the epistemological justifications, and several of the bold (and deeply controversial)
metaphysical claims.3 On the other hand, since human beings and their behaviors are
phenomena that belong to the living world, artificial intelligence may be considered
just as a part of Artificial life, namely the part that is specifically concerned in the
study of (human) behavior and cognition.

Since this thesis deals with the application of artificial life concepts and methods
to the study of communication and language, from now on I will ignore most of the
work produced in the artificial life community, which has little if any relevance to
the cognitive sciences, and I will focus only on that part of artificial life that deals
with organisms and their behaviors. According to the previous characterization, then,
this thesis should be about artificial intelligence, considered as the part of artificial
life dealing with intelligent behavior. But to say that would be misleading. In fact,
Artificial Life and Artificial Intelligence can also be viewed as two very different (and
competing) approaches to the (synthetic) study of behavior.

From about the mid 1980s on there have been in fact several important attacks to
the basic assumptions made by classical, Good Old Fashioned Artificial Intelligence
(GOFAI).4 The rebuttal of these assumptions has led to the adoption of different prin-
ciples, the use of different methods, and the engagement with different problems. Those
differences have led to a significantly different approach to the construcion of intelli-
gent systems. This new approach can be considered as an alternative to GOFAI and
has been dubbed the ’Artificial Life route to Artificial Intelligence’ (Steels and Brooks,
1994; Steels, 1994).

Considered as competing approaches to the synthetic study of intelligent behavior
Artificial Intelligence and Artificial Life differ in the principles they rest upon, the
methods they adopt and the problems they tend to address. This is a very brief list of

2Of course, I am referring here to the scientific side of artificial intelligence research, which used to
constitute its core during the infancy of both Artificial Intelligece and Cognitive Science. Nowadays
most of artificial intelligence research has a purely engeenering spirit. That is, most of artificial
intelligence systems are constructed for application purposes, with little, if any, scientific goal in
mind. A similar distinction between scientifically vs. technologically oriented research must also
be made for the artificial life field. But, in contrast to what happened to AI, most of artificial life
is still giuded by scientific goals.

3As an example, consider the quote by Chris Langton which open this chapter about ’locating life-as-
we-know-it within the larger picture of life-as-it-could-be’: this view mirrors the idea that artificial
intelligence could be viewed as the study of intelligence in general, without the restriction to our
(human) kind of intelligence (see, for example, Newell and Simon, 1976). In the same vein, the
classical philosophical debate about ’strong’ vs. ’weak’ artificial intelligence which comprehends
the vast literature on the ’Chinese Nation’ (Block, 1978) or the ’Chinese Room’ (Searle, 1980) has
been mirrored by a debate on strong vs. weak artificial life (see, for example, Pattee, 1989 and
Sober, 1992).

4The term GOFAI has been conied by John Haugeland in (Haugeland, 1985).
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those differences:5

• Principles:

– AI considers cognition as the manipulation of symbols according to formal
rules (that is, rules that consider only the form of symbols and not their
meaning); ALife strongly denies this fundamental assumption;

– AI considers cognition as something happening in the head; ALife consid-
ers behavior – and, consequently, cognitive processes – as fundamentally
determined by the interactions between an organism and its environment;

– AI generally ignores any biological characteristics of organisms (nervous
systems, the body, internal organs, genes, environment, echoloy...); ALife
considers them of great importance, and tries to take them into account as
much as possible;

– AI is based on the metaphor that equates the mind to the computer; ALife
refuses this metaphor as profoundly misleading and substitutes the robot to
the computer as the icon of the mind.6

• Methods:

– AI traditionally uses symbolic, rule-based systems, such as BDI (Beliefs-
Desires-Intentions) systems; ALife typically uses non-symbolic systems, such
as artificial neural networks (see Appendix A) and genetic algorithms (see
Appendix B);

– AI typically constructs its systems by top-down, explicit design; ALife uses
a softer, bottom-up approach to the construction of intelligent systems by
exploiting learning, evolution and self-organization;

• Problems:

– AI tends to be exclusively interested in the cognitive aspects of behavior;
ALife is interested in all aspects of behavior, including non-cognitive aspects
such as emotions, motivations, sleeping, and so on;7

5For more comprehensive accounts see Clark (1997, 2001) and Pfeifer and Scheier (1999). See also
Parisi (1999, 2005a). For a different perspective, which stresses the similarities rather than the
differences between artificial intelligence and artificial life, see Castelfranchi (2006).

6See Parisi (2006).
7See, for example, Balkenius (1993); Gadanho and Hallam (2001); Mirolli and Parisi (2003). For a
general discussion, see Parisi (2004).
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– AI is interested only in human-like, high-level cognition; ALife is interested
in the behavior of all organisms, and is currently particularly devoted to the
study of low-level cognition since it is considered to be more primitive and,
conseqently, more fundamental.

– AI has a synchronic view of behavior, that is it is interested only in the mech-
anisms that explain a given intelligent behavior; ALife has also a dyachronic,
genetic, view, that it is interested in understanding also the evolutionary,
developmental and historical genesis of behaviors;

– AI is only interested in understanding how a given behavior is realized
(which are the mechanisms that underlie it); ALife is also interested in
why that behavior is present in the first place (what is its function in the
more general contex of an organism’s life, its adaptive value).

So far I have given a general overview of artificial life and of the basic differences
between artificial life and artificial intelligence as two competitive approaches to the
study of human cognition. In the next sections I will explain, with particular reference
to the study of language, which are the consequences in terms of assumed principles,
adopted methods and addressed problems of endorsing the artificial life approach. In
fact, the artificial life approach has at least four major consequences on the study of
language. In fact it implies: a strong biological stance, the adoption of the synthetic
approach, a radical decrease in the importance of disciplinary boundaries, and a signif-
icant change in the focus of research, that is, in the kind of questions we try to answer.
Let’s consider these points in sequence.

2.4. An ethological perspective to language

Language is of course a biological phenomenon. More specifically, it is a trait of a
particular species of organisms: homo sapiens. This is pretty obvious, but the various
disciplines that have been studying language have often ignored the consequences of
this very simple fact. As artificial life is committed to taking a strong biological stance,
the ultimate goal of the artificial life approach to language is to answer all kinds of
questions one could ask about a biological trait.

The Nobel prize Nikolas Tinbergen, one of the founder of modern ethology, clas-
sified ethological questions in four main categories (Tinbergen, 1963). According to
Tinbergen, animal behavior must be understood from four perspectives:

1. functional: what are the effects of a given behavior on organisms’ survival and
reproduction?

14



2.4. An ethological perspective to language

2. mechanistic: what are the mechanisms (e.g. neural or psychological) which de-
termine the behavior?

3. ontogenetic: what are the genetic and environmental factors that contribute to
the behavior’s development?

4. phylogenetic: how did the behavior evolve during the history of the species?

From the point of view of the study of language, taking this ethological perspecitve,
like artificial life does, has in itself several important consequences.

First, trying to answer the functional question means taking an adaptationist stance
on language, something on which there is no real consensus. For example, the most
eminent living linguist, Noam Chomsky, has been skeptical about the view of language
as an adaptation (see, for example, Chomsky, 1988), and this skepticism has led the
whole filed of (generative) linguistics to almost ignore any kind of adaptive question.
According to Chomsky, language must be considered as an abstract object of inquiry,
without any reference to the adaptive function that it could have played in hominid
evolution. I will discuss this point in more detail in Section 2.8. Here I want just to
emphasize that the artificial life approach, qua an ethological approach to language,
tends to take an adaptivist position, assuming that understanding the adaptive func-
tions of language is a fundamental piece in the understanding of language in general.
Indeed, the major contribution of this thesis is related just to the adaptive question. In
fact, I will provide some original ideas and a computational model for demonstrating
one fundamental but heavily underestimated function of language, namely its role in
improving human cognitive abilities (see Chapter 5 and Chapter 6).

Second, even trying to answer the mechanistic question is not very common. The
literature on the neural bases of language is indeed growing very rapidly, as it is true
for all the neurosciences in general. But most of the disciplines studying language –
like much part of linguistics and psycholinguistics and practically the whole fields of
computational linguistics and historical and social linguistics – deliberately ignore what
is known about the biological bases of language. On the contrary, the artificial life per-
spective assumes that a knowledge of the mechanisms that underlay a given behavior
are of foundamental importance for understanding that behavior. Consequently, artifi-
cial life – at least the kind of artificial life I am arguing for – is committed to taking into
account and include in its models the knowledge which is acquired about the neural
mechanisms underlaying language. This is clearly not an easy task. Language is a very
complex phenomenon produced by the very complex brain of a very complex species
of organisms. In fact, the state of the art on artificial life simulations of language does
not include much knowledge on the neurobiology of language, and, viceversa, it has
still not contributed much to the neuroscientific study of language. Yet, the artificial
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life perspective on language I argue for is still committed to studying the mechanisms
underlying language with biologically founded models, which translates in the committ-
ment to using artificial neural network as control systems of simulated organisms (see
Appendix A). One of the reasons for this is that the models we are currently using are
very simple and their resemblance with real nervous systems is quite poor. Nonethe-
less, the basic principles of functioning – in short, parallel distributed processing – are
modeled, and interesting parallels between the artificial models and real brains can
already be made,8 which supports the general approach and encourages the quest for
more and more biologically inspired models. The work reported in Chapter 3 about
possible producer biases in the evolution of communication is indeed a clear demon-
stration of the importance of using biological inspired models like neural network as
the control systems of artificial organisms. In fact, as we will see later on, the idea of
a producer bias itself has been suggested by the use of neural networks: non-neural
models would have not produced the same simulation results and hence would have
not lead to the same interesting theoretical hypothesis.

Third, the ontogenetic question is clearly of great importance in the study of lan-
guage. Indeed, there has been a quite heated debate in the cognitive sciences about the
relative role of genetic and environmental factors for the development of language in
the child. Linguistists from the Chomskian tradition tend to consider language as an
almost completely innate characteristic of our species, and speak about the ’language
organon’, the ’language faculty’ or the ’language instinct’ (e.g. Pinker, 1994). On the
other hand, the importance of environmental factors and hence of individual learning
in the development of language has always been particularly stressed by connectionist
research (e.g. Elman, 1990; Elman et al., 1996; Christiansen and Chater, 1999). In
continuity with the connectionist tradition, much of artificial life research on language
stresses the importance of cultural transmission, trying to reconduct most of language
properties not to a genetic printout but to the processes of linguistic acquisition in
the child and of cultural evolution in the human societies (e.g. Briscoe, 2002; Kirby,
2002; Steels, 2005). The idea is not to deny the importance of genetic predisposi-
tions for acquiring linguistic competence, but rather to acknowledge the foundamental
contribution of both ontogenetic and glossogenetic9 processes to language evolution.

Fourth, the philogenetic question is perhaps the mostly debated one in the artificial
life literature. Indeed, it can be argued that much of the renewed scientific interest in
theories of language evolution and origin is due to the introduction of computater simu-

8Two very interesting exempla related to language are Cangelosi and Parisi (2004) and Sugita and
Tani (2005).

9’Ontogeny’ refers to changes which happen at the level of the individual and at the time scale of
individual development. ’Phylogeny’ refers to changes which happen at the level of the species and
at the time scale of biological evolution. Finally, ’glossogeny’ refers to changes happening at the
level of a population and at the time scale of cultural (historical) evolution.

16



2.5. The synthetic approach

lations – mostly of the artificial life kind – into the field (Christiansen and Kirby, 2003).
This is demonstrated by the huge number of recent publications devoted to studying
the evolution of communication and language through artificial life simulations,10 and
by the impressive percentage of contributes containing computational models which
characterizes the International Conference on the Evolution of Language.11

2.5. The synthetic approach

The great importance of artificial life for the study of the evolution of language derives
principally by the fact that artificial life studies language evolution through computater
simulations. Simulations are important new tools for scientific research, for several
reasons.12 The first reason is that simulations are computer programs, and to express
hypotheses and theories as computer programs forces us to formulate our hypotheses
and theories in an explicit, detailed, and complete way because, otherwise, it would
be impossible to translate them in a running computer program. Expressing theories
in explicit, detailed and complete ways is of great importance in science, especially for
those sciences, like the human sciences, in which theories are usually expressed only
verbally. In fact, theories that are expressed only verbally are often ambiguous, vague
and incomplete. This is particularly true in the evolution of language field. In fact,
because of the extreme complexity of the problem, and because language does not leave
fossil traces, theories about the evolutionary origins of language are necessarily wildly
speculative. So, in this context, using computer simulations for expressing theories and
hypotheses is of great help.

Furthermore, a simulation’s results can be considered as the empirical predictions
which are derived from the theory incorporated in the simulation. Those empirical
predictions are generated in a mechanicam and, therefore, uncontroversial way. This
is also in contrast with verbally expressed theories and speculations, whose empirical
prediction, if derived at all, are often controversial and always debatable. Hence, the
use of computer simulations for the study of the evolution of language is of great value
also because it allows us to make a profitable use of whatever empirical evidence we
do have on the initial emergence and further evolution of human language.

Finally, another great advantage of using simulations in science, and particularly in
10See, for example, the collections Cangelosi and Parisi, 2002 and Briscoe, 2002, and the two recent

special issues of the Journals Connection Science and Adaptive Behavior: Cangelosi, 2005; Vogt,
2005.

11See, for example, the proceedings of the last (6th) edition of the EvoLang conference (Cangelosi
et al., 2006).

12Here I will just give a very brief overview of the advantages of using simulations in science, par-
ticularly for the scientific study of language and its evolution. For a much more comprehensive
discussion, see Parisi (2001b). Other interesting discussions about the role of artificial life in sci-
entific research are Taylor and Jefferson (1994); Bonabeau and Theraulaz (1994); Bedau (1999);
Di Paolo et al. (2000).
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the science of language, derives from the fact that simulations are also virtual labora-
tories. When you run a simulation and reproduce some real phenomenon your job has
not (necessarily) finished. You can also use your simulation for testing in a completely
controlled setting various hypotheses on the mechanisms that underlay the phenom-
enon in question. You can vary the parameters of the simulation and check if and how
the results of the simulation change. In this way you can test which variables the your
phenomenon is dependent on and in which ways. You can run experiments with differ-
ent conditions, thus assessing the importance (necessity and/or sufficience) of various
mechanisms for the generation of your results. You can re-run the simulations taking
new measures in order to better understand the process which led to the final results.
Or you can take the outcome of your simulation – like the best evolved organism of
an evolutionary process – and run a number of behavioral tests for assessing how the
organism solves its task or how much is it able to generalize to novel situations or how
much the solution is robust to noise or to damage and so on and so forth. This is the
meaninig of using a simulation as a virtual laboratory.

The virtual laboratory has two main differences with respect to the real one: one
being an advantage and the other a disadvantage. The advantage is that the virtual
laboratory is much more controllable with respect to the real one. A simulation is
surely ’opaque’ (see Di Paolo et al., 2000), in the sense that it is not immediate to
understand what’s going on in the simulation. Indeed, a big effort is often required for
getting a full understanding of your model’s functioning. But it is clear that you can
have the full access to whatever you might be interested in. You (the programmer) are
the master of your simulation, and so you can ask it whatever question you have in
mind. This is not true for real experiments, in which you can control and manipulate
only a very limited set of variables. Furthermore, in real experiments there are often
many kinds of measures that it would be very important to take but you simply cannot
take. Just think, as an example, at measuring the activation of specific neurons in an
human brain during a given task: you simply cannot take that measure for clear ethical
reasons.

The disadvantage of a simulation with respect to a real laboratory is that the sim-
ulation is a virtual laboratory. You can run whatever kind of virtual experiments and
take every kind of measure, but you can never be sure that the results you obtain
from your simulation correspond to reality. This means that simulations can never
substitute real experiments or empirical data gethering. In other words, the ultimate
jury of any scientific theory is the real, not the virtual, world. Nonetheless, the use of
simulations as virtual experiments is still of foundamental importance, expecially for
those field, like the evolution of language, in which empirical evidence is scarce and
real experiments are too difficult or completely impossible to run. You simply cannott
reload the tape of evolution and see what happened, or what would have happened
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in different scenarios. But you can do that in simulations, and you can use your vir-
tual experiments to guide speculations, real-data-gathering, and the interpretation of
available empirical evidence.

Finally, simulations do not serve only for testing the internal consistency of a theory
and for unfolding the theory’s consequences. Making simulations changes in important
ways the theory construction process itself. In fact, computer simulations can also be
considered as mechanized thought experiments.13 The activity of the researcher when
constructing a simulation and that of the philosopher or the scientist when constructing
a though-experiment are similar. Both are just trying to develop and clarify their
theories. The difference is that the former is aided by the power of the computer, while
the latter can only count on his/her own intelligence.

The thinking activity of the researcher who construct simulations is considerably
transformed by the use of the computer. The construction of the simulation is in fact
rarely a straightforward process in which the researcher builds a theory, implements it
as a computer program, and then runs it and collects the results. The actual process is
much more complicated. The first implementations of a simulation are seldom, if ever,
satisfying because the results obtained are never the ones you expected. This simple
fact is by itself a clear demonstration that the consequences of one’s ideas are seldom
if ever completely transparent. But even more important are the consequences of this
fact. Frustrated by the unsatisfying results provided by the simulation, the researcher
is forced to think about why the implementation of his/her theory did not give the
expected results. This can be due to several reasons, like bugs in the code or all sorts
of technical problems. But one important and very likely possibility is that the theory
incorporated in the simulation were not correct: in other words, the consequences of the
ideas implemented by the researcher are not the ones that the researcher supposed to
be. This situation challanges the researcher to think better, and the continuous going
back and forth between the computer and the ’drawing board’, though sometimes quite
frustrating, is often also very rewarding. In fact, it not only improves the understanding
of one’s own theory in a way that could hardly be reached with an un-aided thought
experiment. It also provides new insights and new ideas which are often fundamental
for the improvement of the theory itself. Again, the research presented in Chapter 3
is a very good example of a situation in which it is this continuous interaction with
the simulation which permitted me to generate a novel hypothesis (and its related
empirical predictions) on the evolutionary origins of communication.

Of course, simulations have also several potential problems. The first, perhaps trivial,
but very concrete, is that simulations are computer programs, and computer programs

13Classical examples of thought experiments are Cartesio’s evil demon, Putnam’s twin-hearth (Put-
nam, 1975) and Searle’s chinese room (Searle, 1980). For a discussion of thought experiments
in science, see Kuhn (1977). For discussions of artificial life as a way of mechanizing thought
experiments, see Dennett (1994); Bedau (1998); Di Paolo et al. (2000).
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can have bugs. Though this problem may have not much theoretical relevance, it
surely has a practical one. More effort should be put in the development of standard
computational tools to be reused in the community. This could not only diminish
the time wasted in debugging, but it would also prevent the quite unlikely, but still
possible and more dangerous cases in which the simulation does give the expected
results not because the theory is correct but because of the presence of bugs in its
implementation.14

Another potential problem of simulations is due to the fact that they are fun. Creat-
ing ’artificial life’ is really fascinating and the researcher can risk to make a simulation
just for its own sake. Obviously, there is nothing wrong in writing programs just for
fun: the problem rises when the program is supposed to be written for providing a
contribution to science. The best way for avoiding this risk is to pay attention to
already existing theories and empirical data on the subject you are dealing with, and
to start writing the code only after you have a clear idea about what are the scientific
problems you want to address through your simulation.

Another possible risk of working with simulations is that of not being clear about the
goals you have in contructing your model. Since artificial life implies the construction of
artifacts that are supposed to reproduce reality, it is easy to start thinking about those
artifacts as potential applications. This makes often difficult to sort out whether a given
simulation is supposed to be judged from the scientific or from the technological point
of view, that is, according to how much it helps us in the understanding of reality
or according to how much it can help us in the construction of useful applications.
Again, as far as one wants to contribute to scientific knowledge, a good practice is to
clearly relate the simulative work to the scientific problems the simulation is supposed
to investigate.

Finally, I want to spend a few words on a possible misunderstanding about the role
of simulations in science. Sometimes there is a resistence in the scientific community
not abituated to computer simulations in accepting them as relevant tools for scientific
inquiry. This is often due to the fact that simulations appear very abstract with
respect to the real world. But this is not a good argument, in se, against simulations.
Simulations do in fact simplify with respect to reality but this is true for all theories in
science. Scientific theories let us better understand the extreme complexity of empirical
phenomena just because they abstract with respect to reality and try to capture the
essential mechanisms and processes that lie behind the phenomena and explain them.

14This is one of the reasons why most of the simulations reported in this thesis have been run twice,
using both code written by myself and two open-source libraries, one for the neural networks
(micronet, developed by Stefano Ghirlanda and available on request), and the other for genetic
algorithms (GALib, available from http://lancet.mit.edu/ga). This is also the reason why at the
ISTC of Rome, together with Gianluca Massera e Federico Cecconi, we are develping a new fast,
modular, easily-extendable and open-source neural network library, called Neural Net FrameWork
(NNFW). The code can be downloaded from the project’s web page: http://nnfw.berlios.de.
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The real problem is that simulations, and theories in general, should make the correct
abstractions, that is, they should include the critical entities and factors that explain
the phenomena of interest, and leave the rest out. But this, for simulations as for
scientific theories in general, can only be judged in each particular case.

2.6. Diminishing the role of disciplinary boundaries

Another important implication of studying language through artificial life models is
that artificial life, as computer simulations in general, tends to diminish the role of
disciplinary boundaries. The study of language is divided in a great number of different
disciplines, each of which is devoted to the study of only one or a very few aspects of
language. For example, Chomskyan linguistics studies formal aspects of language like
phonetics and syntax; historical linguistics studies the historical languages and their
change in time; psycholinguistics studies how language is processed and, partially, the
interactions between language processing and other cognitive functions like memory
or attention; neurolinguistics studies the biological (neural) basis of language and its
pathologies; and so on and so forth.

The fragmentation in the scientific study of language represents a foundamental
problem for at least two reasons (Parisi, 2001a). Firstly, different disciplines do not only
study different aspects of langauge, but they also tend to use radically different kinds
of data, methods and concepts. As a result, disciplinary boundaries are particularly
strong and difficult to bridge and this situation is clearly unsatisfying. Language is
a unitary phenomenon. Therefore, if the various disciplines that study its different
aspects ignore each other and do not communicate and collaborate, our knowledge of
the whole phenomenon cannot but be partial and fragmented.

But the major problem is that language, like many other natural phenomena, espe-
cially the biological ones, is a complex phenomenon, whose aspects influence each other
in complex ways and hence depend substantially the one on the other. Consequently,
studying an aspect of language while ignoring all the others is probably misleading. In
fact, it is likely that the correct understanding of even one single aspect of language
(like, for istance, syntax) is impossible (or, at least, extremely difficult) without con-
sidering its relationships with the other aspects (for instance, the biological basis of
syntax, its development, its emergence in the history of humans and so on). From this
point of view, studying language from an artificial life perspective can represent an
important progress. Simulations allow the researcher to consider, if not all, at least
several different aspects of a given phenomenon. This makes it possible to study the
interactions between those different aspects, on which probably depend the general
properties of the phenomenon as a whole.

Consider the four Tinbergen’s questions discussed in the previous section. Those
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four questions are clearly related, in that they depend the one from the other. Just
for giving an example related to language, the mechanisms underlying the acquisition
and use of language have evidently played a major role in its phylogenetic emergence.
Conversely, those same mechanisms have evolved themselves, probably in co-evolution
with language. Hence, in order to understand them it is very likely that we need to un-
derstand the phylogenetic process which made them the way they are now. The same
can be said about the relationships between the biological mechanisms that underlay
language and the ontogenetic development of the child. Again, it is very likely that an
explanation of the adaptive functions of language depends on understanding the phylo-
genetic co-evolution of the language capacity, the human brain, and other anatomical
mechanisms that make language possible, like the human vocal tract. Furthermore,
as I argue in Chapter 5, another important font of information for understanding the
adaptive function of language is the role of language in the overall development of the
child. And so on and so forth. In general, it is quite reasonable to bet – I would say
it is almost certain – that the explanation of any aspect of a complex phenomenon
like human language is to be found in some other aspect of the same phenomenon.
Consequently, strict disciplinary boundaries cannot but constitute a serious problem.

Nonetheless, it is undeniable that there are good reasons for disciplines to exist.
Apart from sociological factors, like the important role of academic disciplines in struc-
turing the scientific world (journals, societies, departments etc.), the main reason for
disciplines to exist is simply that dividing the scientific study of reality in disciplines
and sub-disciplines has been necessary for the development of scientific knowledge it-
self. It is clear in fact that the development of modern science has been facilitated,
or even made possible, by the distinction among different kinds of phenomena and by
the disciplinary practice of studying just one particular kind of phenomena focusing on
only a small class of potential causes. Furthermore, disciplines seem to be necessary
just because of the limitations of the human mind: with the increase of available sci-
entific knowledge, it has become impossible for a single researcher to know everything.
And even if one would be aware of all the facts that are necessary for explaining a given
phenomenon, it would be extremely difficult for s/he to take all of them into account
at the same time when studying that phenomenon. The human mind is simply limited.
And this is another reason why computer simulations, especially of the artificial life
kind, can be of help. In fact, the computer is not as limited as the human mind. It
can process a huge amount of information coming from different fields without get-
ting puzzled, overloaded or confused. Of course, the computer cannot substitute the
researcher, who has to develop, run and analize the simulation. But in a simulation
is the computer who has to manage all the factors that the researcher has put in it,
including the interactions between those factors.

But probably the most contribution that simulations can give to solving the problem
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posed by disciplinary boundaries is that they can play the role of the lingua franca in
which researchers belonging to different disciplines can start talking to each other.
As I noted above, cross-disciplinary studies are difficult because different disciplines
tend to work within different experimental frameworks, use different instruments, and
deal with different kinds of data. But computer simulations can be (and are indeed)
used for all kind of phenomena. Hence, they are a unifying method which can favour
collaborations between different disciplines. In fact, since individual minds keep on
being limited, it is necessary that researchers coming from different fields collaborate.
And (artificial life) simulations have the potential to play a major role in making such
collaborations possible.

2.7. Changing the focus of the research on language

Approaching language from an artificial life perspective does not only limit the impor-
tance of disciplinary boundaries, it also changes the focus of research (Parisi, 1997). If,
on the one hand, the various disciplines tend to study different aspects of language, on
the other hand it is also true that certain aspects receive more attention, while other
are less investigated, if not almost ingnored. For example, the major focus of most of
the studies on language is syntax (how complex linguistic forms are generated through
the combination of more simple forms) while semantics (the meaning of linguistic ex-
pressions) and pragmatics (the contexts in which and the functions for which linguistic
forms are used) are almost ignored.

Studying language through artificial life tends to revert this asimmetry. Artificial life
simulations – at least of the kind I am arguing for – do not deal with syntactical aspects
of language to a great extent. They focus mostly on semantical and pragmatic aspects:
the reason is that in an artificial life simulation you can study linguistic signs together
with the brain that produces them, the context in which signs are produced, the adap-
tive advantages that communication gives and so on. Furthermore, most of traditional
research on language assumes only a synchronic perspective: that is, it deals only with
what language is now (either at an individual or at a social level), and what are the
mechanisms that can explain it now, where ’now’ means in the contemporary adult. In
contrast with this, the biological perspective of artificial life attributes a great impor-
tance also to dyachronic factors, that is, to how a given phenomenon changes through
time. As discussed previously, in fact, two of the four Timbergen’s questions regard
dyachronic aspects: phylogenesis and onthogenesis. As a consequence, artificial life
is mostly interested in the study of language origins and evolution, language ontoge-
netic development, and the cultural mechanisms that underlay the changes in historical
natural languages.

The importance attributed to dyachronic mechanisms is related to the epistemologi-
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cal approach known as ’genetic epistemology’ after the work of developmental psychol-
ogist Jean Piaget (Piaget, 1972). The basic idea here is that diachronnic aspects do
not constitute only important objects of inquiry in themselves. They are also acknowl-
edged to be foundamental for the understanding of the phenomenon under scrutiny –
in our case, language – as a whole. In other words, it is assumed that it is extremely
difficult – if not impossible – to understand language, both at the social and at the
individual level, without understanding how (and why) language has become what it
is now, both in the philogenetic and in the ontogenetic sense.

Obviously, I do not want to sell artificial life as the real and only solution for each and
every problem. In fact, it must be admitted that many of the problems that affect the
more traditional study of language affect also the study of language through artificial
life. In particular, the intrinsic complexity of language makes it extremely difficult, at
least today, to take into account, simultaneously, all of its important aspects. In other
words, even the artificial life researcher must focus on some specific aspects, ignoring
or (over-)simplifying all the rest. It is true that, contrary to the traditional methods
used by the sciences of language, a simulation can potentially include a great number
of different factors related to different kinds of empirical evidcence (as argued by Parisi,
2001b). But it is also true that this theoretical possibility is quite difficult to realize
in practice. The reason is twofold. First, as discussed above, the researcher who do
the simulation is not, and can hardly be, an expert in all the disciplines related to
language. Consequently, he or she comes to ignore a great number of relevant facts
simply because (s)he does’t know them. Second, the state of the art in computational
models of the nervous system (neural networks), natural selection (genetic algorithms)
and the interactions between organisms and their environment (embodied and robotic
simulations) is still in its infancy, and it does not yet allow for very complex sim-
ulations. In fact, when constructing a simulation, the researcher encounters a huge
and frustrating number of both scientific and technical problems, like the lack of good
models of temporal processing in neural networks, or the lack of powerful and plausible
learning algorithms, or the limits of current genetic algorithms. Furthermore, another
extremely relevant practical problem is constituted by the great amount of computa-
tional time that is required for artificial life simulations. And the richer your model,
the longer it takes your simulation. Consequently, all these problem do not allow the
researcher to include in the simulations all the aspects that (s)he would like to.

Still, artificial life simulations are already giving a foundamental constribution to all
the biological sciences, and in particular to the study of communication and language.
Furthermore, the importance of simulations is likely to increase in the future as the
available computational power increases, technical problems are solved, more complex
and biologically plausible models of nervous systems, natural selection and embodied
cognition are developed, and new collaborations between artificial life researchers and
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more traditional scholars take place.

2.8. Setting the stage: the adaptive function(s) of

language

The first point to be clarified when discussing the evolution of language is whether we
are to take and adaptationist stance or not, since doubts on the value of an adaptivist
perspective on language have been casted by eminent linguists, like Noam Chomsky
(Chomsky, 1972, 1975, 1988) and Massimo Piatteli-Palarini (Piattelli-Palmarini, 1989).
Adaptation is the process by which an organism changes in order to fit its environment.
An adaptationist account of a trait is one which investigates the role of natural (and
cultural) selection in the process of adaptation. Basically, the idea is to sort out
the pressures which, by acting on genetic and cultural transmission, favour organisms
which are more adapted to their environment, such that over time a population of such
organisms comes to fit its environment rather well. A pan-adaptivist view is one in
which all aspects of an organism are considered as adaptations for specific aspects of
the organism’s environment.

Adaptationists aprroaches have been criticized by the eminent biologist Stephen
J. Gould, who, in a series of publications, strongly argued against the risk of pan-
adaptivism, that is the assumption that every biological trait is to be considered as
an adaptation. In this contest, two concepts were proposed as possible anthagonist
to adaptations: ’sprandels’ (Gould and Lewontin, 1979) and ’exaptations’ (Gould and
Vrba, 1982). The term sprandel is related to the role of architectural constrains in
shaping the ways in which organisms develop and evolve: ontogenetic development
is in fact subject to the laws of growth and form (Thompson, 1917), which restrict in
foundamental ways the search space on which natural selection can act. For this reason,
particular structures that might appear to be designed for some specific purpose can
in fact be the result of architectural constrains on an organism’s development: these
are sprandels. Exaptations are traits that, after having evolved as sprandels or as
adaptations, are put to a new use by the organism that possess them. In other words,
the function that an exaptation serves in a given moment is not the function that trait
have served (if any) during its own evolution.

Chomsky and Piattelli-Palmarini have criticized adaptationist approaches to the
study of language appelling, in a more or less explicit way, to the views of language as
an sprandel or as an exaptation. These are a few significant quotations:

We know very little about what happens when 1010 neurons are crammed
into something the size of a basketball, with further conditions imposed by
the specific manner in which this system developed over time. It would be a
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serious error to suppose that all properties, or the interesting properties of
the structures that evolved, can be explained in terms of natural selection.
(Chomsky, 1975, pag. 59)

The answers may well lie not so much in the theory of natural selection as
in molecular biology, in the study of what kinds of physical systems can
develop under the conditions of life on earth. (Chomsky, 1988, pag. 167)

... innate, very specific, and highly abstract structures governing language
and cognition may be seen as spandrels, that is, biological traits that have
become central to our whole existence, but which may well have arisen
for some purely architectural or structural reason ... or as a by-product
of evolutionary pressures driven by other functions. (Piattelli-Palmarini,
1989, pag. 19)

Since no concrete and specific proposals have been made about which could be the
physical (architecureal or structural) constrains that would render language the result
of the laws of form and development, the quoted statements appear nothing more than
the result of a profound suspiciousness in the power of evolutionary explanations in
general. This is confirmed by the following early statement by Chomsky:

...it is safe to attribute this development [of language] to natural selection,
so long as we realize that there is no substance to this assertion, that
it amounts to nothing more than a belief that there is some naturalistic
explanation for these phenomena. (Chomsky, 1972, pag. 97)

This supsiciousness is probably due to some general misconceptions about evolution-
ary biology, and, in particular, about the relative roles of natural selection, sprandels
and exaptation in evolution (for a similar discussion, see Pinker, 2003). Gould’s no-
tions of sprandels and exaptations (together with the notion of evolution happening
through ’punctuated equilibria’ rather than through gradual adaptation, see Gould and
Eldredge, 1993) have often been popularized, firstly by Gould himself, as substantial
revolutions in evolutionary theory. This has had the effect of forming a strong mis-
conception, outside the field of biology, about the presumed vacuousness of adaptive
thinking. This view is completely misleading. Rather then having disconfirmed Dar-
win’s theory of evolution by natural selection or having redimesioned its importance,
Gould’s ideas are better considered just as little emendaments of the same theory. In
fact, they have been accepted within evolutionary biology as just other factors to be
considered within the adaptivist framework (for a detailed and comprehensive discus-
sion on this topic see Dennett, 1995).

Nobody in evolutionary biology (nor in the field of language evolution) is a pan-
adaptivist. Everyone agrees that there are traits in organisms whose explanation is to
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be found in developmental or physical or architectural constrains, and others which are
just due to genetic drift. Nonetheless, it must be ackowledged that adaptationist think-
ing has a foundamental and un-sostitutable importance in biology.15 Indeed, natural
selection remains the only known force which is be able to produce complex adaptive
design: that is, an organism’s feature which manifests non-random organization and
which permits to achieve improbable goals that increase the organism’s chances of sur-
vival and reproduction (beside Dennett, 1995, see also Williams, 1966 and Dawkins,
1986).

Human language – and the brain and other anatomical organs which are required
for acquiring and using it – is no doubt a very complex and non-random human trait.
Furthermore, it is clearly at the core of humans’ adaptive style. Hence, it is not only
reasonable, but perhaps compelling, to take the adaptive stance and try to understand
the adaptive function (or functions) which drove language evolution. The famous paper
by Pinker and Bloom on Behavioural and Brain Sciences (Pinker and Bloom, 1990),
which is largely accepted as the catalyst of the renewed scientific interest in language
evolution (see Christiansen and Kirby, 2003), was indeed just an elaboration of this
point: language is complex and only natural selection can explain complex design. And
in fact, this is the only general reply one can make to the quoted assertions of Chomsky
and Piattelli-Palmarini. Indeed, attributing the evolution of language to natural selec-
tion is, by itself, nothing more than believing that there is a naturalistic explanation
of language. But the contrary is also true: denying the role of natural selection in
language evolution is just denying (or refusing to cosider) any naturalistic explanation
for it!16 For this reason, I will assume, as everybody in the field, that language is an
adaptation. But the agreement that language evolved for natural selection is just the
starting point in trying to understand language evolution. The follwiong step is to ask:
what is the adaptive role of language?

The adaptive question is surely of the most importance, if one takes an evolutionary
perspectiveon language. So it is somewhat surprising that in the literature on language
evolution there is not much debate on this topic. The reason is that it is perhaps com-
monly assumed that the function of language is communication. According to what
can be called the ’standard’ or ’received’ view, language is nothing but a very com-
plex and powerfull communication system. What else could it be? It is interesting to
note that the most famous opponent to this view has been, again, Noam Chomsky,
who polemically argued that language might rather be a representational system. This
view of language as a representational system rather than a communication system has

15As evolutionary biologist Christian Dobzhansky stated, “Nothing in biology makes sense except in
the light of evolution” (Dobzhansky, 1973).

16Recently Chomsky seems to have lowered his skepticism on evolutionary explanations of language,
as testified by the recent paper he has published in the journal Science together with the two
eminent evolutionary biologists Marc Hauser and Tecumseh Fitch (Hauser et al., 2002).
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been developed within a evolutionary framework by linguist Derek Bickerton (Bick-
erton, 1990, 1998). The basic idea is that language is, before than anything else, a
representational system, serving the function of enabling complex individual reason-
ing. According to this account, the use of language for communication was just an
exaptation from this primitive function. This exaptation would have happened when
the mental (cerebral) apparatus dealing with what Bickerton calls ’theta analysis’17

became connected to the brain regions governing the motor control of the vocal tract.
I will not discuss the (several) weaknesses of Bickerton’s account in general (for

such a discussion see, for example, Hurford, 2002). What is of interest here is the
plausibility of the idea of language as primarily a representational system, as opposed
to a communication system. The most obvious problem of this idea is that a great part
of the features that characterize language seem to be clearly due to its communicative
function. For example, most of the features of language which are related to syntax
seem to be due to the need of communicating complex ’conceptual’ structures over a
sequential and noise channel. There seems to be no reason for the existence of things
like the duality of patterning, the anaphor-antecedent relationships, the rules for word-
order, case marking, passivization etc. in a system for internal representation. On the
contrary, all those feature of language clearly play an important role in communicating
complex situations over a serial channel (a similar argument has been made also by
Pinker, 2003).

In other words, language today is a fundamental tool for communication and many
of its aspects are clearly functional to this role. As a consequence, it seems undeniable
that the communicative function of language has playied a fundamental role in language
evolution, and cannott be considered just as a late exaptation. It is for this reason
that a comparative approach to language, such as the one proposed by biologists Mark
Hauser and Tecumseth Fitch (Hauser, 1996; Hauser et al., 2002; Hauser and Fitch,
2003; Fitch, 2005), is necessary. In other words, as language is no doubt primarily
a communication system, it is important to consider both the properties of language
which are shared with other animals’ communication systems and those which are not.
The simulations presented in Chapter 3 and Chapter 4 are devoted to the study of
two problems raised by the evolution of communication in general, including language
considered as a communication system.

On the other hand, language, in moder human, has not only a communicative func-
tion, but also an individual function: it is used for talking to oneself, as a cognitive
aid. Indeed, during development, the use of language for oneself is manifest and im-
pressive: it has been reported that children from 3 to 10 years of age use language for
themselves 20-60% of the time (Berk, 1994). Furthermore, talking-to-oneself do not
disappear in adulthood, but it is just internalized, becoming inner speech. Such an im-

17the representation of ’who did what to who with what’.
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pressive individual use of language calls for an explanation. Back in the 1930s russian
psychologist Lev Vygotsky provided strong arguments for the view that language is not
only a communication system but also a cognitive tool, something that transforms the
psychological functions of the pre-linguistic child in the higher-level cognitive functions
of the adult (Vygotsky, 1978).

I will argue for the importance of language as a cognitive tool in Chapter 5. Here
I just want to note that in the literature on language evolution this role is heavily
underestimated, if not completely ignored. Indeed, the main contribution of this thesis
to the evolution of language dabate is to point to the possible role of talking-to-oneself
in language evolution. The basic idea is simple: the best way for thinking about
the adaptive role of language during its evoluiton is to look at the functions that
language plays in moder humans. And just as the importance of language as a system
for communication cannot be ignored, so it cannot be ignored the role that language
plays nowadays both in cognitive development and as a cognitive tool in adult life.
Consequently, I suggest, if we want to understand language evolution we must try to
think about the possible role that talking to oneself might have played in language
evolution. In other words, beside classical questions like ’when, where and how did
language evolve’, we must also address questions like the following. When did the use
of language as a cognitive tool begin? What role did it play in hominid evolution?
Did this individual adaptive function of language have any consequence on the design
features of language itself? Which? And so on and so forth.
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3. Producer biases in the evolution
of communication

3.1. Two problems in the evolution of

communication

The emergence of communication (including the emergencec of language) requires the
co-evolution of both good speakers and good hearers. Good speakers are individuals
that produce signals that systematically co-vary with situations that are relevant for
survival and reproduction. Good hearers are individuals that react to signals in ways
that are appropriate to the situations with which signals systematically co-vary. If
hearers do not respond appropriately to the signals produced by the speakers, there
is no reason for speakers to emit appropriate signals. In other words, good speakers
without good hearers are useless because signals are not understood and reacted to
appropriately. Conversely, if speakers do not produce the appropriate signals in the
appropriate circumstances, there are no useful signals for hearers to understand. In
other words, good hearers without good speakers are meaningless because one cannot
react appropriately to signals that do not co-vary with any relevant feature of the
world.

This simple fact renders the emergence of communication tricky for two related but
independent reasons. The first reason has to do with the historical paths that can
lead to a communication system, that is to the phylogenetic question of Tinbergen
(see 2.4). The second reason has to do with the adaptive advantage of communication
itself, that is to the functional question. The phylogenetic problem can be conceived
as a kind of chicken-egg problem: how might hearers appear if spekers are not already
there sending useful signals? And, conversely, how might speakers appear if hearers
are not already there understanding what they can say? More concretely: how can
communication evolve if the traits necessary to its emergence - namely, good speaking
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and good hearing capabilities - taken in isolation are adaptively neutral in that they do
not, by themselves, increase the reproductive chances of the individuals that possess
them?

But besides the phylogenetic problem, the complementarity between hearers and
speakers implies an adaptive problem, a problem of altruism. In fact, not all communi-
cation systems provide advantages to both actors of communication, that is, speakers
and hearers. Generally speaking, with respect to adaptiveness, communicative systems
can be broadly classified in three categories, according to who is advantaged by com-
municative interactions: only the speaker, only the hearer, or both. Communicative
interactions that advantage both the actors of communication are typically those in
which the speaker and the hearer have common interests and have to coordinate their
behaviours (like in group hunting). Communicative interactions that advantage only
the speaker are instances of manipulation (like in commands or in aggressive displays
made for convincing the hearer to leave some contended resource to the speaker). Fi-
nally, communicative interactions that advantage only the hearer are typically those
in which the speaker informs the hearer about some feature of the the environment
which is relevant for the latter (like in alarm or food calls). If communication clearly
advantages both the actors of communicative interactions, its evolution poses only
the above-mentioned co-evolutionary problem. But in those communication systems
in which only one actor of communication is advantaged the problem of co-evolution
generates an adaptive problem due to the altruistic character of these kinds of com-
munication. Why should a speaker produce good signals if only the hearer is benefited
by communication? Conversely, why should a hearer respond appropriately to signals
if this provides benefits only to the speaker? How could such communication systems
evolve?

I have addressed both the phylogenetic and the adaptive problem within the same
simulative scenario, but since the two problems are at least logically separated I have
divided their treatment in two chapters. The present chapter is devoted to the phylo-
genetic problem, while the next deals with the adaptive one.

The reminder of this chapter is structured as follows. In Section 3.2 I first discuss
the stance that evolutionary biologists typically take on the problem of co-evolution
between hearers and speakers. Then, I introduce an idea which has been raised by the
recent artificial life literature: the idea that the evolutionary emergence of communica-
tion can be favoured by a ’cognitive pressure’ toward spontaneous good signal produc-
tion. In Section 3.3 I describe my own artificial life model. In Section 3.4 I present the
results of the basic simulation and discuss my hypotheses concerning the factors that
can affect the emergence of communication in the model. The next two sections are de-
voted to the careful investigation of the validity of the proposed hypotheses. In Section
3.5 I study the evolutionary dynamics of a single run of the simulation by considering
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the population as a dynamical system moving in a multi-dimensional genotypic space.
In Section 3.6 the results of the standard, base-line simulation are compared with those
of two new simulations, which play the role of control-experiments. Finally, in Section
3.7 I discuss the relevance of the presented work with respect to both previous artificial
life work and to the biological literature on the evolution of communication.

3.2. Relevant literature

3.2.1. The biological view

The recent biological literature on communication has focused mostly on manipulative
communication, due to the controversial but deeply influential work of Dawkins and
Krebs (Dawkins and Krebs, 1978).1 Those authors gave a definition of communica-
tion which identified it with manipulative behavior. According to Dawkins and Krebs
communication occurs "when an animal, the actor, does something which appears to
be the result of selection to influence the sense organs of another animal, the reactor,
so that the reactor’s behaviour changes to the advantage of the actor". This theoreti-
cal framework was put forward as a reaction to the general view of communication of
early ethologists (see, for example, Tinbergen, 1952) according to which the function
of communicative signals was to insure the survival of the group or the species. This
species-centered view of natural selection was challenged by the gene-centered view
according to which the basic unit of selection must be the smallest unit of reproduc-
tion, that is the gene. Therefore, any advantage that a trait might produce for the
species, the group, or even the individual, must be understood in terms of the selective
advantage of ’egoistic genes’ (Dawkins, 1976). Hence, the definition of Dawkins and
Krebs: a view of communication as manipulation seemed to be more in line with the
new gene-centered view than the old, cooperative view of early ethologists.

The historical importance of Dawkins and Krebs’ framework is probably due to the
fact that it has ever been the only comprehensive theoretical framework on the topic,
and one which has produced a number of interesting empirical predictions (Hauser,
1996). Nonetheless, the identification of communication with manipulation seems to be
unjustified both theoretically and empirically. The theoretical point is that the problem
of the evolution of communication is symmetrical: pure adaptive reasoning implies that
just as the signaller must get an advantage for sending information, the receiver must
also get an advantage in order to respond to signals. Empirically, just as there are
communication systems in which the result of the communicative interaction seems to
benefit only the signaller, such as the aggressive displays produced when competing for
1The very brief historical sketch on the biological thought regarding the evolution of communication
made in the present and next paragraph follows the discussion of Hauser (1996), especially section
2.2.
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some resources or begging calls produced by new-borns for receiving extra feeding from
parents, there are also communication systems which seem to provide benefit to both
the actors of communication, such as mating calls or signals emitted during cooperative
endeavours like group hunting, and communication systems which seem to benefit only
the receiver, such as the food or alarm calls produced by many species.

While the communication-as-manipulation framework is well-suited for dealing with
the first kind of communication systems, it seems less useful when dealing with coop-
erative communication and completely misleading when dealing with communication
systems which seem to benefit the receiver. Indeed, the definition of communication
of Dawkins and Krebs was criticized by several authors but the reply of Krebs and
Dawkins (Krebs and Dawkins, 1984) was to accept some of the critics as just little
amendments to the basic framework, and their way of framing the problem of the evo-
lution of communication as the evolution of manipulation has been informing most of
both the theoretical and empirical biological literature (again, see Hauser, 1996).

The influence of the idea of communication as manipulation is manifest in the treat-
ment of the problem I am dealing with here, that is the problem of co-evolution between
speakers and hearers. A weel known possible solution to this problem has in fact been
given through the notion of the exploitation of the sensory (or receiver) bias (Ryan,
1990, 1993; Maynard Smith and Harper, 2003). The basic idea is that in order to
manipulate the receiver, the speaker could exploit some behavioral bias. If some envi-
ronmental feature triggers a specific behaviour in some organism that has an adaptive
value for another one, the latter can produce signals that resemble that environmental
feature in order to manipulate the behavior of the former for its own interests. This
idea is certainly sound and can probably explain the evolution of several manipulative
communication systems. But it seems much less adequate for explaining the emergence
of communication systems which seem to advantage the hearer, like, for example, the
alarm calls of vervet monkeys (Struhsaker, 1967; Cheney and Seyfarth, 1990) or the
food calls of honey bees (Frisch, 1967; Seeley, 1992). It seems more reasonable that
this kind of communication systems could emerge from an opposite mechanism, what
we can call the exploitation of a producer bias. If organisms have some bias to produce
behaviours that systematically co-vary with features of the environment which have
an adaptive value, those behaviors can be used by other organisms as cues for their
own purposes. In this way, the biased behaviors become signals, the organisms that
exploit them become hearers and the individuals that produce them become speakers.
Is the idea of a producer bias reasonable? Where could such producer biases come
from? Some recent work in the artificial life field has provided a possible candidate:
the signalling behavior of organisms could be biased in a positive way by the need for
internally categorize experience in adaptive ways.
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3.2.2. Computational modeling

Very little has been done in the artificial life field for studying the problem of co-
evolution of signalling and receiving capacities (for a recent review of this literature,
see Wagner et al., 2003). This is odd, since artificial life simulations could give an
important contribution to the study of this kind of problems. The mathematical and
game-theoretic approaches which are standardly adopted in theoretical biology are in
fact not well suited for studying topics like behavioural biases, because they typically
abstract away from details of behaviour which are not directly relevant to communica-
tion. Conversely, artificial life simulations are particularly well suited for studying this
kind of problems since in an artificial life simulation communication is typically stud-
ied in a broader contest, which can include any kind of non-communicative behavior.
Furthermore, artificial life simulations often include both genetic algorithms as models
of evolution and neural networks as models of the nervous system of organisms. This
makes it possible to study within the same simulation not only the adaptive function of
communicative behaviours, but also its philogenesys and the neural mechanisms that
underly it (that is three of the four Tinbergen’s questions).2

In an artificial life model similar to the one presented here, Cangelosi and Parisi
(1998) were able to evolve a communication system which benefits only hearers in
a population of ecological neural networks.3 Discussing their surprising result, those
authors suggested that even though in their model there was no advantage for speakers
to produce useful signals, communication could evolve thanks to the link between
communicative behavior and other cognitive abilities. The argument runs as follows.
In order to behave adaptively, organisms need to internally categorize experiences in
ways that are relevant for their survival. As a consequence, if communicative behaviors
depend on internal representations of experience, which is true in Cangelosi and Parisi’s
simulations and is assumed to be true also in real organisms, then produced signals
will tend to be correlated to adaptively useful categories. As a result, the evolution
of good signallers might be explained as a by-product of their independently evolving
ability to categorize the environment.

The same idea has been re-stated by Marocco et al. (2003), who tried to evolve
a communication system in a population of neural networks controlling a robot arm

2Some artificial life simulation have included also individual learning (see, for example, Kvasnicka and
Pospichal, 1999 and Smith, 2002), in a way that would permit to study also the fourth Tinbergen’s
question, that is the ontogenesys of a trait. However, up to now this has been done by excluding
the study of adaptation. In fact, in most of these studies the fitness of the organisms corresponds
directly to communicative success (but see Munroe and Cangelosi, 2002 for an exception; the
’docility’ simulations presented in the next chapter are the only other exception, to my knowledge,
to this rule).

3With ’ecological neural networks’ I mean simulations in which the neural networks are considered
as the control system of artificial organisms living in an environment and interacting with it and
between themselves (see Parisi et al., 1990; Parisi, 1999).
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Figure 3.1: The environment

whose task was to categorize objects by physically interacting with them. But in
that work the supposed cognitive pressure towards good communication was not suffi-
cient for the evolution of communication. In fact, Marocco et al. had to introduce in
their simulation also a very strong kin-selective pressure (see nex chapter) and had to
make networks pre-adapt to solve the task before introducing inter-agent communica-
tion. Furthermore, notwithstanding those facilitations, a good communication system
evolved only in 7 out of 10 replications of the simulation.

Indeed, I think that the idea of the ’cognitive pressure’ on good signal production
is sound, but it is not sufficient for explaining the results of Cangelosi and Parisi
(1998) for two reasons: first, the cognitive pressure can produce only an individual
tendency to produce good signals, but cannot explain why signals are shared in the
population; second, the emergence of a good communication system does not explain
its evolutionary stability, that is why the communicating population is not invaded
by mutant individuals that cheat conspecifics by producing misleading signals. The
simulations and analyses presented in this chapter are intended to make clarity on
these topics. Do the need for categorizing experience in adaptive ways constitute
a drive toward good individual signalling behavior? What else is needed for good
communication to emerge at the level of the population? And do these factors, by
themselves, render the communication system evolutionary stable?

3.3. The model

The model consists in a population of 100 organisms living in a one-dimensional envi-
ronment (a corridor, shown in figure 3.1a). An individual’s behavior is controlled by a
neural network and its fitness is a function of the number of movements the individual
makes and the number and type of mushrooms it eats during its life. There are 420
possible mushrooms, each different from all the others in its perceptual properties, en-
coded as strings of 10 bits in the visual input units of an organisms neural network.
Half of the mushrooms are edible, in that they increase the fitness of the organism that
eats them, while the other half are poisonous, in that they decrease fitness. The archi-
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Figure 3.2: The neural network. Arrows represent connections from all the neurons of
the sending group to all the neurons of the receiving group

tecture of the neural networks is shown in figure 3.2b: it includes 10 visual input units,
2 communicative input units, 2 hidden units, 1 motor output unit and 2 communicative
output units. Networks connection weights are encoded as real values in the range [-4,
4] in the genome of the organisms. The visual range of our organisms is limited in that
the visual input units encode a mushroom’s properties only if the organism is in the
cell immediately preceding the mushroom cell, otherwise the organism sees nothing,
i.e., the activation of all visual input units is set to 0. The motor output unit of the
network has a step activation function which determines whether the organism moves
one step forward (if the activation is 1) or stays still (if the activation is 0). In our
model signals consist in the two-dimensional vectors of the activations (in [-1, 1]) of
the communicative output units of an organism (the speaker), which are copied in the
communicative input units of another organism (the hearer).

Each individual of each generation lives for 420 trials, one for each mushroom. In
each trial the individual is put in the start cell of the corridor, one of the mushrooms
is put at the end of the corridor, and another individual is chosen randomly from the
population to act as speaker. The speaker is placed near the mushroom and emits a
signal through its communicative output units which is received by the tested organism
(the hearer) through its communicative input units. The trial ends either if the hearer
reaches the mushroom and eats it or after 11 input-output cycles, which guarantees that
the hearer will never eat it. Fitness is calculated according to the following formula:

f(x) =
ane − bnp − nm

norm
(3.1)

where ne and np are, respectively, the number of edible and poisonous mushrooms
eaten by x, nm is the number of movements made by x, a and b are two constants (set
to 30 and 5, respectively), and norm is the normalization factor (maximum possible
fitness) which equals 4200.
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After all the individuals of one generation have lived their lives, the next generation is
created by selecting individuals with a probability proportional to their fitness (using
the roulette wheel method with windowing), making them reproduce sexually (with
double-point crossover), and mutating the genes (connection weights) of the offspring
with a probability of 0,1% (for an explanation of the genetic algorithm, see Appendix
B and Mitchell, 1996).

Simulations run for 2000 generations, during which I calculate various statistics, the
most important ones being average fitness and what I call ’communication system qual-
ity’. For a communication system to be good, three conditions must apply: (a) objects
belonging to the same category must be signalled in similar ways, (b) objects belong-
ing to different categories must be signalled in different ways, and (c) all individuals
must signal in the same way, meaning that the system is shared in the population. In
the model, signals are two-dimensional vectors, which can be represented as points in a
two-dimensional space, whose coordinates are the activations of the two communicative
output units of speakers. Hence, the communication system of a population consists of
two clouds of points: the points that represent the signals emitted by all the organisms
in presence of all edible mushrooms and the points corresponding to the signals emit-
ted in presence of all poisonous mushrooms. Condition (a) above is satisfied if the two
clouds are small (meaning that mushrooms of the same category are signaled in similar
ways). Condition (b) is satisfied if the two clouds are distant from one another (mean-
ing that mushrooms belonging to different categories are signaled in different ways).
Condition (c), which regards the sharedness of the communication system, is implicitly
satisfied by the other two conditions, since the clouds represent the communication
system of the entire population. Our communication system quality is calculated as
the average between the two measures that make a communication system good: (1)
the mean distance of the points of each cloud from the cloud’s geometrical centre, and
(2) the distance between the geometrical centres of the two clouds.4

4Basically, the way I calculate communication system quality is just the same way in which we can
calculate the quality of a categorization process in a neural network, as disccussed in Appendix
A, with only two differences. First, here we take the vectors of the communicative output units as
the points which constitute the clouds, while in measuring categorization we take the vectors of
the hidden units. Second, in the case of communication clouds are social, in that they include the
signals (points) produced by all the organisms of one population, while the quality of categoriza-
tion is (generally) an individual property. That is, the internal representations of objects which
constitute the clouds belong all to the same individual.
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Figure 3.3: Average fitness (gray line) and communication system quality (black line)
of 10 replications of the simulation.

3.4. Cognitive and Genetic Factors in the Evolution

of Communication

In my simulation’s scenario the emergence of a good communication system would
provide an advantage only to hearers. A hearer who receive good signals could in fact
use the received information for deciding whether to approach mushrooms signaled as
’edible’ or to stay still in the case the received signal stands for ’poisonous’. This would
prevent the hearer to waste its energy by approaching poisonous mushrooms and thus
would increase its fitness. For speakers, however, there is no benefit whatsoever in
producing good signals. On the contrary, since individuals compete for reproduction,
producing good signals is a purely altruistic trait in that, by giving an advantage to
competitors, it indirectly decreases the reproductive chances of the good signaller.

The results of 10 out of 50 replications of the simulation are shown in figure 3.3. The
results are quite surprising: average fitness and communication system quality fluctuate
cyclically between very low and very high values. This means that communication
emerges continually but it is also continually disrupted. As this very unstable pattern
is present in all the replications of the simulation, the mechanisms that generate it
must be very strong and reliable. What are these mechanisms?

The sudden drops in the communication system quality can be explained as conse-
quences of the altruistic character of communication. Once a good communication sys-
tem has emerged in the population bad speakers will be selected against good speakers
because they will act as cheaters: they take advantage of the good signals they receive
while misleading other organisms by producing bad signals. The result is that cheaters
rapidly invade the population with the consequence of a sudden decrease in the quality
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of the communication system. But why a good communication system should emerge
in the first place or re-emerge after being disrupted? The reason, I argue, lies in two
factors that are constantly at work, pushing the communication system towards good
quality.

The first factor is the ’cognitive pressure’ suggested by Cangelosi and Parisi (1998).
In order to survive and reproduce organisms must categorize perceived mushrooms
according to their quality, moving forward in the corridor when they perceive edible
mushrooms and staying still when they perceive poisonous mushrooms. For produc-
ing this kind of behavior, mushrooms must be appropriately categorized in the neural
networks hidden units. In other words, in order for an organism to behave efficiently,
its network’s connection weights must be such that mushrooms belonging to the same
category elicit similar activation patterns in the hidden units (similar internal repre-
sentations), while mushrooms belonging to different categories elicit different internal
representations. But the signal emitted by an organism when perceiving of a mush-
room directly depends on the internal representation elicited in the hidden units by the
mushroom. This means that the adaptive pressure to appropriately categorize mush-
rooms causes a pressure to produce good signals. Mushrooms belonging to the same
category elicit similar internal representations, which, in turn, tend to elicit similar sig-
nals. Vice versa, mushrooms belonging to different categories elicit different internal
representations which tend to elicit different signals.

However, this cognitive explanation of the spontaneous emergence of a good commu-
nication system is not enough. The cognitive pressure can in fact explain only the fact
that each individual tends to produce good signals, that is, signals that systematically
co-vary with the category of perceived mushrooms. It cannot explain why the commu-
nication system is shared in the population, that is, why different individuals tend to
produce similar signals. But signals sharedness is necessary for good communication,
and is indeed considered in our measure of the communication system quality. (Remem-
ber that the measure is taken at the populational level, considering the signals emitted
by all individuals). In order to explain the sharedness of the communication system
we need to introduce another factor, namely genetic convergence. In fact, if organisms
have similar genes they will tend to have similar (categorical) internal representations
and to produce similar signals. Genetic similarity can in turn be explained by genetic
convergence due to selection. Only the fittest individuals reproduce in each generation.
As a consequence, their genes will tend to spread in the population reducing genetic
diversity.
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(a) (b)

Figure 3.4: (a) Average fitness (gray line) and communication system quality (black
line) of one replication of the simulation. (b) Zooming in the 200 generations (from
generation 400 to generation 600) enclosed in the dotted lines of graph (a). The dashed
lines of graph (b) divide macro-evolutionary phase, while the dot-dashed lines subdivide
this evolutionary period in the 11 sub-phases described in table 3.1. See text for details

3.5. Analyzing evolutionary dynamics

3.5.1. Understanding evolutionary dynamics by zooming in

evolution

In the previous section I have given a possible explanation of the continuous rise and
fall of communication in my model. This explanation is based on three factors: (1)
the cognitive pressure toward spontaneous individual good signalling, (2) the genetic
pressure towards the sharedness of the communication system due to the convergence
of the population and (3) the pressure against good (shared) signalling produced by
the altruistic character of communication. In order to test this analysis of the complex
evolutionary dynamics demonstrated by the simulation, I took a single run of the
simulation, selected a part of it (from generation 400 to generation 600), and tried
to analyze this part in detail. Figure 3.4 shows the process of zooming in the 200
generation I selected. I choose this particular part of this particular run for my analysis
because, looking at the dynamics of average fitness and communication system quality,
it seemed to clearly exemplify the typical cycle of rise and fall of communication which
repeats itself continually in all the runs.

As can be seen from the picture, I have divided those 200 generation in 11 sub-parts
by the identification of evolutionary transitions. These transitions consist in significant
changes in average fitness and/or communication system quality. For the sake of clarity,
I have grouped these sub-parts in 4 macro-evolutionary phases which can be described
as follows:
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Phase a (generations 400-444): Communication system quality is low and commu-
nicative input is ignored, resulting in an average fitness of about 0.55, which is
the maximum value that can be reached without the aid of communication;

Phase b (generations 445-480): Communication system quality improves because of
the cognitive and genetic pressures towards good communication;

Phase c (generations 481-519): Good signalling starts to be exploited and fitness
increases until it reaches almost maximum value;

Phase d (generations 520-541): Bad speakers are selected against good ones because
they cheat others and invade the population: the result is a sudden decrease in
the communication system quality and, consequently, fitness.

Once the communication system quality has reached its minimum it starts to grow
again, thanks to the cognitive and genetic pressures (second occurrence of phase b:
generations 542-561). This lasts until the quality of the communication system reaches
a very high value, communication re-starts to be exploited, and fitness increases again
(second occurrence of Phase d: generations 562-600). A more detailed analysis of the
phenomenology of this 200 generations is the following:

1. The communication system is bad (signals do not convey information on the
quality of mushrooms) and, therefore, it is ignored (generations 400-444).

2. The communication system improves gradually (generations 445-480). Since
there is no selective pressure towards good communication and signals are ig-
nored, this increase in communication system quality seems to be due to the
neutral evolution produced by the two hypothesized factors, that is, the cogni-
tive pressure and the genetic convergence of the population.

3. Once signals have become potentially informative, mutants appear that exploit
them. The exploitation of communication results in higher fitness and the ’good-
hearing’ genes rapidly spread in the population (generations 481-485).

4. For a few generations (486-495) the population remains in a sub-optimal situation
in which communication is good but is only partially exploited.

5. Other mutations result in a better capacity to exploit communication, which
translates into another rapid evolutionary phase, leading to the full exploitation
of communication by all individuals (generations 496-500).

6. For about 20 generations (501-519) communication stays good and is fully ex-
ploited, resulting in an optimal average fitness.

44



3.5. Analyzing evolutionary dynamics

7. Individuals appear that produce ’bad’ signals, which means either signals that
do not differentiate between poisonous and edible mushrooms or signals that do
contain information about the quality of the mushrooms but encode it in a way
which is different from that currently used in the population. Those mutating
individuals are cheaters, in that they do not inform reliably the others about
the quality of mushrooms. Cheaters tend to have higher fitness and invade the
population, resulting in a decrease of both communication system quality and
average fitness (generations 520-541).

8. After having reached its minimum, the quality of the communication system
increases again because of neutral evolution due to the cognitive and genetic
pressures. In the meantime, average fitness keeps on decreasing. This suggests
that organisms keep on reacting to signals in the same way as they were used to,
while the emerging communication system has changed. In other words, edible
and poisonous mushrooms are signalled in a reliable way, but in a way that is
different with respect to the communication system which was present before the
invasion of the population by cheaters.

9. For a very few generations (556-561) the communication system is good but
’misinterpreted’, and average fitness is very low.

10. As mutating individuals appear that can interpret correctly the signals emitted
by others, they obtain very high fitness and their genes spread rapidly in the
population, resulting in a fast evolutionary phase (generations 562-580) during
which average fitness improves dramatically.

11. Finally, during the last 20 generations (581-600) the communication system re-
mains good and is partially exploited by the individuals.

This analysis of the 200 generations I am dealing with here is summarized in table 3.1,
where I have classified the evolutionary phases just described as phases of equilibrium
(E), of neutral evolution (NE) and of fast evolution (FE). The reason for doing so is that
the theory of punctuated equilibria (Eldredge and Gould, 1972; Gould and Eldredge,
1993) seems to apply quite well to our simulations: there are equilibrium phases during
which fitness does not substantially change, punctuated by phases of rapid evolution
(in which fitness either rapidly increases due to the exploitation of communication or
rapidly decreases because cheaters invade the population). Furthermore, as I will ex-
plain below, the rapid increases in fitness are made possible by the neutral evolution of
good communication due to genetic drift, the linking between non-communicative and
communicative behaviours in the organisms’ neural networks, and genetic convergence
of the population.
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phase generations description kind
1 400-444 communication is bad and ignored E
2 445-480 communication improves gradually NE
3 481-485 fitness improves rapidly FE
4 486-495 communication is good and partially exploited E
5 496-500 fitness improves rapidly FE
6 501-519 communication is fully exploited E
7 520-541 communication system quality and fitness decrease FE
8 541-555 fitness decreases but communication improves NE
9 556-561 communication is good but not understood E
10 562-580 fitness improves rapidly FE
11 581-600 communication is good and partially exploited E

Table 3.1: Evolutionary stages of the analysed simulation (E = equilibrium, NE =
neutral evolution, FE = fast evolution)

3.5.2. The population as a dynamical system

In order to understand which are the mechanisms that underlie the rich evolution-
ary dynamics described in the previous section, I have applied a (sofistication of the)
method presented by Burtsev (2004). An evolving population can be represented as
a cloud of points in a multi-dimensional genotype space. In our case, each dimension
corresponds to one of the 32 neural networks’ connection weights (encoded as real val-
ues in the genome). The points correspond to the individuals of the population and
each point’s coordinates are the values of their genes (weights). In order to understand
how the population moves in its space we can consider the centroid of the population,
that is the geometrical centre of the points representing the individuals of each gener-
ation. From the dynamical systems point of view, the centroid is a system moving in
discrete time (time-steps correspond to generations), in a 32-dimensional continuous
space (with each dimension bounded in [–4;4]), with a very complex evolution operator
(which is implicitly defined by the rules which govern individual life and the selection,
reproduction, and mutation operators) and highly stochastic: there is stochasticity in
the individuals’ interactions and in all the genetic algorithm’s operators.

One way to start understanding the trajectory of this dynamical system is to create
a bitmap in which the grey scale represents the displacement of the system for different
time delays. The x axis represents generations, while the y axis represents time delays:
for each point in the bitmap, the level of grey represents the distance between the
centroid at generation x and the centroid at generation x + y. The rationale for doing
so is that such a figure can indicate how the system moves in time. Figure 3.5 represents
six basic kinds of movements that a two-dimensional system can perform together with
the corresponding bitmaps.
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(a) fixed point (b) random walk (c) limit cycle

(d) around an attractor (e) attractor, jump and back (f) jump between attractors

Figure 3.5: 6 kinds of movement of a two-dimensional dynamical system (top), and
the respective diagrams of the displacement after delays (bottom). (a) A fixed point
generates a white diagram, because the displacement is always null. (b) A random
walk generates a gray diagram, which tends to get darker in the upper part. (c) A
limit cycle generates a dark diagram with horizontal white lines, with the distance
between the lines corresponding to the period. (d) An erratic movement around an
attractor generates a uniform light gray diagram. (e) A point which moves around an
attractor, jumps away and then returns generates an oblique and a vertical dark line
(corresponding to the jump) on a light gray diagram. (f) A jump between two attractors
generates two light grey triangles, corresponding to the periods in which the point is
around the two attractors, divided by a darker parallelogram, which corresponds to
the distance between the two attractors
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(a) all-weights (b) non-communicative

(c) communicative-input (d) communicative-output

Figure 3.6: Diagrams of the displacement of the centroid of the population after delays
for the entire system (a) and the three functional sub-systems: non-communicative (b),
communicative-input (c) and communicative-output weights (d). Lines divide the 200
generations under analysis in the evolutionary phases described in table 3.1. See text
for details.

Figure 3.6a shows the bitmap for the centroid of the population in the 200 generations
we are analyzing. Since even in this very limited evolutionary period the system has a
quite complicated phenomenology, summarized in table 3.1, it is no surprise that the
bitmap representing the trajectory of the population is much more confused than any
of the bitmaps in figure 3.5. Nonetheless, the fact that small discontinuities between
grey regions seem to appear in correspondence with the evolutionary stages that we
have recognized (see table 3.1) is promising.

As different transitions between the stages would presumably depend on different
sets of genes, I modified the method of Burstev (2004) in the following way. I di-
vided the system in three functional sub-systems: non-communicative, communicative-
output, and communicative-input. In order to do that, I grouped genes according to
their roles in communication (see figure 3.8), and re-analyzed the population as repre-
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sented by three centroids, one for each functional group of connection weights (genes).
and created a bitmap for each of them. The bitmaps for the non-communicative,
communicative-input, and communicative-output sub-systems are shown in figure 3.6b,
c, and d, respectively. The division of the system in functional sub-systems appears
to be rewarding: the new graphs are much clearer than the preceding one, and give us
useful insight into the dynamics of the system.

If we look at the bitmap of the non-communicative centroid we see that:

• Before generation 480 (that is, during phases 1 and 2 described in table 3.1) the
centroid is slightly moving around an attractor.

• At generation 480 there is a sudden jump to another attractor, where the system
stays for about 20 generations. The fast evolution of phase 3 is due to this
transition of the non-communicative centroid from an attractor which does not
permit the (partial) exploitation of communication to one which does.

• Between generation 495 and generation 500 the system makes another (smaller)
jump to a third attractor, in which the population can fully exploit communica-
tion (this explains the fast evolution of phase 5).

• Finally, still another jump to a different location in the non-communicative ge-
netic space appears just before generation 580, that is, during the fast evolution
of phase 10 which permits the population to exploit communication again.

Even clearer is the reading of the bitmap regarding the communicative-input popula-
tional centroid (figure 3.6c). During the 200 generations under analysis, this centroid
occupies mainly three different locations in its space (the first during generations 400-
480, the second during generations 481-560, the third during generations 580-600), with
two clear transitions:

• The first transition is the sudden jump happening at generation 480, which per-
mits (together with the jump of the non-communicative centroid discussed above)
the fast evolution of phase 3.

• The second transition is more gradual and happens between generation 560 and
generation 580. During this transition, which determines the fast evolution of
phase 10, the population re-adapts its communicative-input weights (together
with the non-communicative weights) so that individuals can exploit communi-
cation again.

Finally, figure 3.6d shows the bitmap regarding the communicative-output connection
weights. The reading of this figure also is quite straightforward. The centroid of the
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communicative-output genes clearly occupies three distinct locations in between gen-
erations 400-445, 480-520, and 555-600, while passing through two gradual transition
phases:

• The first transition, between generation 445 and 480, corresponds to the neu-
tral evolution of phase 2, during which communication system quality gradually
increases.

• The second transition, between generation 520 and 555, corresponds to phases
7 and 8 during which communication is disrupted by the invasion of cheaters
(phase 7) and then improves again due to neutral evolution (phase 8).

Overall, the bitmaps of the dynamics of the three functional subsystems in which we
have divided the genome provided the following insights:

• during phase 1 the population is moving (apparently randomly) in a region of
the non-communicative genes space which is neutral with respect to fitness;

• during phase 2 the population moves (for a neutral evolution in which a role
is played by both the cognitive and genetic pressures discussed above) towards
a location in the communicative-output genes space in which communication is
good;

• the rapid evolution of phase 3 is due to selective pressures in both the non-
communicative and communicative-input genes which result in the almost sudden
jump of the population in regions of the space which permit the exploitation of
communication;

• the other rapid increase in average fitness happening in phase 5 is due to another
jump of the population which takes place only in the non-communicative genetic
sub-space;

• the rapid decrease of fitness during phases 7 and 8 is due to the displacement of
the communicative-output centroid from a point which determines good commu-
nication to another one, passing through regions in which communication system
quality is low, which determines the inability of individuals to correctly interpret
received signals;

• finally, the rapid evolution of phase 10 is due to the displacement of both the
non-communicative and the communicative-input centroids which allows the re-
adaptation of the population to the new communication system.
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3.5.3. Analyses

The interpretation of the population as a dynamical system and the visualization of
the displacements of three functional subsystems in their respective genetic spaces
has given us various insights about the evolutionary dynamics of the system we are
analysing. But we can go even further. In order to do that, I have collected a number
of statistics and plotted them together in figure 3.7.

Figure 3.7a shows the variances of non-communicative, communicative-input and
communicative-output genes as they change during the 200 generations under analysis.
Genetic variance for each weight x (Vx) is calculated, standardly, according to the
following formula:

Vx =

∑N
i=1(w̄x − wi

x)
2

N
(3.2)

where N is the number of individuals in the population (i.e. 100), w̄xis the mean value
for weight x and wi

x is the weight x of the ith individual. Consequently, the variances
(V k) for the three categories (k ∈ K) of weights (non-communicative, communicative-
input, and communicative-output weights) are calculated as follows:

V k =

∑Nk

x=1 Vx

Nknorm
(3.3)

where Nk is the number of weights of the kth category (i.e. 28, 4 and 4 for non-
communicative, communicative-input and communicative-output weights, respectively),
Vx is the variance on weight x ∈ k and norm is the normalization factor, so that V k is
in [0;1].

Figure 3.7b shows the displacement of the three functional centroids (non-communicative,
communicative-input and communicative-output) between generation x and generation
x− 1. Formally, I plotted the following function:

y(k) = dist(Ck
x , Ck

x−1) (3.4)

where k is the plotted category (non-communicative, communicative-input and communicative-
output), Ck

i is the centroid of category k at generation i, and dist(a, b) is the standard
euclidean distance between points a and b.

Figure 3.7c represents the evolution of the populational communication system. As
discussed above, as signals are represented by points in the two-dimensional space
of the communicative-output units of organisms, the communication system can be
represented as the two populational centroids of the points that represents signals
emitted in response to edible mushrooms and signals emitted in response to poisonous
ones, respectively. In figure 3.7c I have plotted the two coordinates of the two centroids
of the signals used for edible and poisonous mushrooms.
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Figure 3.7d shows the comparison between four values: the quality of the pop-
ulational communication system, the average quality of individuals’ communication
systems, the quality of the populational representation system and the average quality
of individuals’ representation systems. As discussed above, the communication system
quality that I have discussed so far is calculated on the centroids of signals emitted by
all the individuals of one generation for all the edible and poisonous mushrooms. But
we can also calculate the quality of the individuals’ communication systems: for each
individual we calculate its communication system quality by considering the centroids
of the signals emitted by that individual. By averaging those quantities over all indi-
viduals in a population we can look at the quality of individual communication systems
regardless of the sharedness of communication in the population.

Just as the signal emitted by an individual for a given mushroom is the two-
dimensional point whose coordinates are the activations of the two communicative
output units of that individual for that mushroom. Consequently, the internal rep-
resentation of that individual for that mushroom is the point whose coordinates are
the activations of the individual’s hidden units when it sees the mushroom. We can
calculate both populational and average individual representation qualities just in the
same way as we calculate communication system quality, but considering the points
represented by the individuals’ internal representations of mushrooms in their hidden
units instead of those represented by the signals emitted through the communicative
output units.

The last two images of figure 3.7 show the evolution of the genes of the best indi-
vidual of each generation (figure 3.7e) and of the populational centroid (figure 3.7f).
The two images are bitmaps, where each point represent in a gray-scale the value of
one of the 32 genes (connection weights) of a given generation. As usual, genes are
grouped according to their functional role (non-communicative, communicative-input,
and communicative-output).

3.5.4. Results

In this section, we will try to understand in detail the mechanisms that underlie the
11 evolutionary phases we have singled out (see table 3.1) by looking at the various
statistics described in the previous section and plotted in figure 3.7.

Even though phase 1 is an evolutionary stable phase, in which neither fitness nor
communication system quality change significantly, during this phase the populational
centroid moves slightly in the non-communicative genetic sub-space, while it does not
move significantly in the other two sub-spaces (figure 3.7b). This continuous displace-
ment of the non-communicative centroid during phase 1, already visible in the bitmap
of figure 3.6b, is due to the competition between a few genotypes which have different
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Evolutionary dynamics during generations 400-600. (a) Average variances
of the non-communicative, communicative-input and communicative-output genes. (b)
Displacement of the non-communicative, communicative-input and communicative-
output populational centroids. (c) Coordinates of the two centroids of the signals used
for edible and poisonous mushrooms. (d) Quality of the communication and represen-
tation systems of the population and average quality of individuals’ systems. (e) Gray-
scale bitmap of the genes of the best individual of each generation and (f) of the pop-
ulational centroid (genes are grouped as non-communicative (non-C), communicative-
input (C-in) and communicative-output (C-out)). The lines on or under the graphs
correspond to the evolutionary phases described in table 3.1.
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non-communicative genes, but are phenotypically quite similar in that they provide
comparable fitness. This is shown by the fact that during this period some of the
non-communicative genes of the best individuals change continually (specifically genes
number 2, 14, 17, 19, 20, 21 and 22, see figure 3.7e), resulting in corresponding changes
in the populational centroid (figure 3.7f). The simultaneous presence of competing
genotypes during this phase is demonstrated also by the existence of some genetic
variance in the non-communicative genes (figure 3.7a).

Phase 2 is characterized by the slow increase in the communication system quality
of the population. How and why does this happen? During this phase, the activity
in the non-communicative genetic space due to the competition between genotypes
with equivalent fitness goes on, as demonstrated by the graphs of figure 3.7a, b, e
and f. However, during this competition the best individual of the population starts
to have a different communicative-output gene (the first one, see figure 3.7e). As a
consequence, the communicative-output populational centroid starts to slowly displace
itself (figure 3.7b) until the population has converged on the new value of the mu-
tated gene (figure 3.7f). Remember that during this phase signals are ignored because
they are uninformative; as a result, there is no selective pressure whatsoever regard-
ing communicative-output genes. Hence, the new communicative-output gene spreads
in the population just for genetic drift. Notwithstanding the variability in the non-
communicative genes, the population has already converged at the level of internal
representation: the populational representation quality is in fact very good, almost as
good as individual categorization quality (figure 3.7d). This convergence on categorized
and shared representations of mushrooms makes it possible for the spreading in the
population of the new communicative-output gene to bring about a simultaneous in-
crease in both individual and populational communication system quality. In fact, the
new communicative-output gene just makes it manifest in the communicative-output
units (in particular in the first unit, see figure 3.7c) the categorization of mushrooms
which is already present in the hidden units.

Phase 3 is characterized by the sudden increase in the average fitness of the pop-
ulation. This is achieved by two sudden jumps of the populational centroid which
permit to the individuals to exploit, even only partially, the good communication sys-
tem which now exists. The first jump happens in the non-communicative sub-space
and is visible in the high peak in the displacement of the non-communicative centroid
at generation 480 (figure 3.7b). Evidently, in this generation one individual was born
with a mutation in the non-communicative units that allows it to correctly interpret
the signals emitted by other. This individual obtains a much higher fitness than all
the other individuals of its generation and its genes immediately spread in the next
generation. As a result, the competition between non-communicative genotypes with
comparable fitness stops immediately (this is visible in the immediate stabilization of
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both the best and centroid’s non-communicative weights, figure 3.7e and f), and the
population suddenly converges to the new non-communicative genotype (see the sud-
den drop in the non-communicative genetic variance in figure 3.7a). The second jump
happens in the communicative-input space after a few generations, which is visible in
the peak of the displacement of the communicative-input centroid (figure 3.7b) and in
the sudden change of the first communicative-input genes of the populational centroid
(figure 3.7f) which follows, after a few generations, the same change in the genotype of
the best individual of the population (figure 3.7e).

Phase 4 is an equilibrium phase, during which nothing important happens. The
only interesting thing to be noted is the continuous alternation in the best individual’s
last (communicative-output) gene (figure 3.7e). This alternation clearly explains the
relatively high genetic variance in the communicative-output genes during all the 200
generations we are discussing here (figure 3.7a). Evidently, two alleles of the last gene
co-exist in the population throughout all this period, due to the fact that during this
period this gene has no effect on fitness nor on communication system quality. This
co-existence is demonstrated by the fact that during all the period we are discussing
the populational centroid has not one of either ’alleles’ for that gene, but rather a mean
between the two (figure 3.7f). This means that about half of the population possess
one of the two alleles while the other half possesses the other.

During phase 5 there is a second sudden increase in average fitness. This is due to
the rapid displacement of the non-communicative populational centroid (figure 3.7b).
In particular, this phase starts with a mutation in the first (non-communicative) gene
which allows the mutant individual to fully exploit communication and hence have
higher fitness (figure 3.7e), and ends when the population has converged on that gene
(figure 3.7f) and all organisms can thus obtain almost maximum fitness.

Phase 6 is extremely stable, and nothing interesting happens until a new mutation
occurs in the first communicative-output genes which makes the mutant individual
produce signals which are different from those of all the other organisms in the popu-
lation. At the very beginning of phase 7, we see that the best individual happens to
be one with a new allele for that gene (figure 3.7e). This new allele starts to spread
in the population, even though slowly, because individuals that possess it cheat the
others. When they act as speakers, they produce the signal that is interpreted as
meaning ’edible’ when there is a poisonous mushroom and the signal interpreted as
meaning ’poisonous’ when there is an edible mushroom. As a consequence, hearers are
mislead and obtain lower fitness. The fact that the new allele makes individuals invert
their signals, and does not simply make individuals produce signals that do not distin-
guish between edible and poisonous mushroom is demonstrated by the following fact.
While during phase 7 the quality of the populational communication system decreases,
the quality of individual communication systems slightly increases (figure 3.7d). This
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means that the organisms with the new alleles in the first communicative-output gene
produce, individually, even better signals than those with the old alleles, but the new
signals have opposite meaning with respect to the old ones.

When the new allele has spread in half of the population, the communication system
quality of the population has reached its minimum. In fact, half of the organisms signal
’edible’ with a high value in the first communicative-output unit and ’poisonous’ with
a low value in the same unit, as in the preceding generations, while the other half,
with the new allele, does the opposite, signalling ’edible’ with a low value in the first
communicative-output unit and ’poisonous’ with a low value. This explains why at
generation 540 the mean value of the first communicative-output unit is 0 for signals
emitted for both edible and poisonous mushrooms (figure 3.7c), while individual com-
munication system quality is quite high (figure 3.7d). The presence of two opposite
alleles in the population of the first communicative-output gene explains also the peak
in the genetic variance in the communicative-output genes (figure 3.7a). Now there is
high variance not only in the last non-communicative gene but also in the first one,
which produces a variance that is about twice as great as that of preceding genera-
tions. Finally, the simultaneous presence of the two alleles is also demonstrated by the
following fact. While the first communicative-output gene of the populational centroid
changes from a very low value (blue) through the mean value (0, represented by green)
to a very high value (red, see figure 3.7f), the best individuals have always either the
blue allele or the red one (figure 3.7e). This means that the change in the populational
centroid is due to a change in the proportion of the presence of the two competing
alleles in the population.

Phase 8 is just a continuation of phase 7. The population keeps on moving in the
communicative-output space (figure 3.7b) towards convergence on the new allele for the
first communicative-output gene (figure 3.7a) because this gene keeps on providing a
relative selective advantage due to cheating. As a result, populational communication
system quality starts to increase again (figure 3.7d), as the population converge to the
new signalling behavior: low values in the first communicative-output unit for ’edible’
and high values for ’poisonous’ (figure 3.7c).

The reason why average fitness keeps on decreasing during phase 8 while communi-
cation system quality increases is just the same that explains the convergence of the
population to the new allele for the first communicative-output gene. Even though the
new communicative-output gene makes speakers produce good signals, those signals
are misinterpreted by hearers, which have communicative-input genes adapted to the
previous (opposite) communication system. As a result, average fitness maintains itself
in its minimum value for a few generations (phase 9).

During phase 10 a series of mutations occur that allow the population to re-adapt to
the new communication system. Chronologically, changes in the fourth, second, and
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first communicative-input genes and in the last non-communicative gene of the best
individuals (figure 3.7e) are rapidly followed by analogous changes in the populational
centroid (figure 3.7f). This makes the populational centroid rapidly displace itself in
both the communicative-input and non-communicative sub-spaces (figure 3.7b). At
generation 580 the population has converged in both the communicative-input and
non-communicative genetic spaces (figure 3.7a), and phase 11 starts, during which the
system is stable and nothing relevant happens.

3.6. The no-cognitive-pressure and

no-communication simulations

In the previous section I have analyzed in detail the evolutionary dynamics of 200
generations of a single run of our simulation in order to understand the evolution-
ary pressures that underlay the complex behavior it manifested. This analysis clearly
confirmed my hypotheses on the causes underlying the continuous rise and fall of com-
munication (and, consequently, of fitness) in the model. But even if the analysis has
been proved to be correct for the evolutionary period I have studied, we cannot still be
sure that the same is true for all the periods of all the replications of the same simu-
lation. In other words, the analysis of a single run is not enough for the extrapolation
of general principles. In order to test whether the tendency towards the emergence of
communication due to cognitive and genetic pressures is general, I compare the average
results of 50 replications of the simulation I have discussed so far (which from now on
I will call the base-line simulation) with those of two new simulations, which I call the
no-cognitive-pressure and the no-communication simulations.

3.6.1. Simulations

The no-cognitive-pressure simulation runs exactly as the base-line one except for the
architecture of organisms’ neural networks (figure 3.8b). The difference is that the
neural networks of the no-cognitive-pressure simulation have two groups of hidden
units (composed by 2 neurons each). The first group receives connections from both
the visual and the communicative input units and send connections to the motor output
units. The second group receives connections from the visual input units and sends
connections to the communicative output units. In this way I artificially avoid any
impact of categorization on communicative behaviour: since the communicative output
does not depend on the same neurons on which the motor output does, with the new
architecture there cannot be any cognitive pressure towards good signal production.

Organisms of the no-communication simulation have the same neural network as the
one used in the base-line simulation (figure 3.8a) but in this case communication is
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Figure 3.8: Comparison between the neural network used in the base-line and no-
communication simulations (a) with that used in the no-cognitive pressure simula-
tion (b). Connection weights are grouped according to their roles in communica-
tion: non-communicative (thick arrows), communicative-output (thin arrows) and
communicative-input (broken arrows).

not allowed. In other words, in this simulation the organisms never act as speakers.
Consequently, tested individuals never receive any communicative input. Under such
conditions the only way for an individual to behave correctly is to move towards the
mushroom until the mushroom is close enough to be clearly perceived. At that point,
the organism can decide whether to eat the mushroom or refrain from doing so ac-
cording to the perceived mushroom’s quality. As a consequence, the maximum fitness
that can be obtained by the individuals of the no-communication simulation is 0.55
because these individuals must always pay the cost of moving towards mushrooms.
This cost could be avoided, when mushrooms happen to be poisonous, by organisms
that receive reliable signals (in the simulations with communication). Note that in the
no-communication simulation the communicative weights (those that link the commu-
nicative input and output units with the hidden units) are never used. Hence, they
are adaptively neutral and subject to genetic drift. Nonetheless, we can still test what
signals are produced by the networks located near to a mushroom and, consequently,
measure the communication system quality of the no-communication simulation even
if the communication system is never used.

3.6.2. Results

Figure 3.9 shows the results of the 3 simulations (base-line, no-communication, and
no-cognitive-pressure) in terms of communication system quality (a) and average fit-
ness (b). The results, averaged over 50 replications of each simulation, clearly sup-
port the hypothesis regarding the cognitive pressure towards the emergence of a good
communication system. The communication system quality in the no-communication
simulation is quite high (about 0.5, see figure 3.9a), in particular, significantly higher
then in the base-line simulation. This means that the need to categorize mushrooms
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(a) (b)

Figure 3.9: Communication system quality (a) and average fitness (b) of the base-
line, no-communication and no-cognitive-pressure simulations. Average results of 50
replications.

and the genetic convergence of the population are sufficient to produce a good com-
munication system even in a population in which communication is not allowed and
the communicative-output weights are subject to genetic drift. Furthermore, the fact
that the quality of the communication system in the no-communication condition is
considerably higher than in the base-line condition (about 0.35) means that, if signals
are used, there is a direct selective pressure against good speaking, due to the altruistic
character of communication.

The results of the no-cognitive-pressure simulation confirm our analysis. If we pre-
vent any influence of cognition on signal production by manipulating the architecture
of the neural network, a good communication system never emerges. This results in an
average communication system quality of about 0.2, which is considerably lower than
that of the base-line condition.

The results in terms of average fitness (figure 3.9b) are quite clear. In both the no-
communication and the no-cognitive-pressure simulations fitness reaches the maximum
value reachable by organisms which cannot get any benefit from communication: in
the first case because communication is not allowed, in the second case because signals
are useless and cannot be exploited. Since the organisms of the base-line simulation
can sometimes take advantage of communication, their average fitness is a little (but
not much) higher.

In order to directly measure the genetic similarity of the population I have also an-
alyzed the genetic variance of the connection weights during evolution, dividing them
into the three functional categories used in the analysis of the populational dynamics
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of section 3.5.2: non-communicative, communicative-input, and communicative-output
weights (see figure 3.8). The reason for doing this is twofold. First, I wanted to deter-
mine the genetic convergence of the population, which is necessary, according to my
hypothesis, for explaining the sharedness of the communication system which sponta-
neously emerges in the base-line simulation. Second, since my explanation postulates
different genetic pressures on different sets of genes, I wanted to determine whether
those different genetic pressures would result in different genetic variances (variances
are calculated according to formula 3.3).

In figure 3.10a I have plotted the variances of non-communicative and communicative-
output weights of the base-line simulation (as usual, I show the average results of 50
replications). There is indeed a considerable genetic convergence since both variances
are very low, which explains the sharedness of the spontaneously emerging communi-
cation system. But the communicative-output weights have a much higher variance
(about 0.1) than the non-communicative weights (about 0.01). The explanation is
to be found in the selective pressure against good signal production due to the al-
truistic character of communication. The cheaters which invade the population when
the communication system is good are those organisms that, due to mutations, have
communicative-output weights that are different from those on which the population
has converged and which, consequently, let them produce misleading signals. In other
words, the variance of the communicative-output weights is higher than the variance
of the non-communicative weights because each time the population has genetically
converged and the quality of the communication is high, there is a strong and reliable
pressure to possess communicative-output genes that differ from those of the population
in order to cheat competitors.

This analysis is further confirmed by the comparison between the variances on the
communicative-output genes in the three conditions: base-line, no-communication, and
no-cognitive-pressures (figure 3.10b). The three different values reflect the different
pressures on those genes in the three conditions. In the no-cognitive-pressure simulation
there is no spontaneous tendency to produce a good communication system, and the
low variance of communicative-output weights (about 0.03) is explained by the genetic
convergence of the population. The fact that the variance of communicative-output
weights in the no-communication condition is higher (about 0.06) and tends to grow
after reaching its minimum is due to the fact that in that simulation there is no pressure
whatsoever on the communicative-output genes, so they are subject to genetic drift.
On the contrary, in the no-cognitive-pressure simulation there is some mild pressure to
generate bad signals. Nonetheless, the variance of the communicative-output genes is
still higher in the base-line simulation than in the no-communication simulation. This
confirms the hypothesis that when communication is used there is a reliable selective
pressure against good speakers, resulting in a pressure against the genetic convergence
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(a) (b)

Figure 3.10: Average variances on the non-communicative and communicative-output
weights of the base-line simulations (a) and average variances on the communicative-
output weights of the base-line, no-communication and no-cognitive-pressure simula-
tions (b). Average results of 50 replications of the simulations.

on the communicative-output weights: mutations on those genes that generate cheaters
are rewarded by selection and spread in the population.

3.7. Discussion

In this chapter I have presented a simple artificial life model of the evolution of com-
munication which demonstrates a quite unusual behavior: a sort of limit cycle, present
in all the replications of the simulation, in which both average fitness and the quality
of the communication system continually oscillate between very low and very high val-
ues. In order to understand the mechanisms that underlay this striking result, I used
two methods. First, I have isolated a typical cycle of rise and fall of communication
happening in one replication of the simulation and I have analyzed the evolutionary
dynamics during this period. Second, I have compared the average results of the base-
line simulation with other two simulations in which I have disabled communication
(no-communication simulation) or I have changed the neural networks which control
the behavior of artificial organisms (no-cognitive-pressure simulation). The results of
both analyses clearly demonstrate the proposed hypothesis. The selective pressure
against good signalling due to the altruistic character of the simulated communication
system (a food call) is contrasted by the continuous emergence of spontaneous good
signalling in the population due to two factors: (a) the need of categorizing stimuli in
adaptively relevant ways and (b) the genetic convergence of the population. In this
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section, I discuss the relevance of the presented work with respect to previous artificial
life literature (3.7.1) and to the biological literature on the evolution of communication
(3.7.2).

3.7.1. Artificial life simulations

The work I have just presented clearly demonstrates the soundness of the hypothesis
proposed by Cangelosi and Parisi (1998) that the emergence of communication can be
favoured by a cognitive pressure towards spontaneous good signalling. Indeed, I have
shown that the cognitive pressure due to the need to categorize stimuli in adaptive ways
acts only as the individual level. The sharedness of the communication system between
different individuals of the same population is due to another factor, namely the genetic
convergence of the population itself. But while in the simulations by Cangelosi and
Parisi the cognitive and genetic pressures were enough for communication to evolve
and remain stable, in my simulations the emerged communication system is continually
disrupted by the invasion of the population by cheaters. What is the explanation of
this important difference? And, more importantly, is the cognitive pressure towards
good communication sufficient for the evolutionary stability of communication?

The cognitive pressure cannot be sufficient for the evolutionary stability of a commu-
nication system which gives benefits only to one actor of communicative interactions
(in this case the hearer). As demonstrated by my simulations, the reason is that a
population in which there is a good communication system of this altruistic kind is
always subject to the invasion of cheating individuals which benefit from the received
signals but do not reciprocate (or lie, thus misleading competing individuals), unless
some other factor does not prevent this to happen. In the next chapter I will present
other simulations showing three of the several possible factors which can prevent the
invasion of cheaters in a communicative population: kin selection (Hamilton, 1964),
the social learning of the communication system through docility (Simon, 1990) and
the use of signals not only for communication but also for individuals purposes, for
example as memory aids (see also Chapter 5 and Chapter 6). Other possible factors
are sexual selection through the handicap principle (Zahavi, 1975; Welder and Gra-
ham, 2001; Grafen, 1990; Bullock, 1998) or reciprocal altruism (Trivers, 1971; Axelrod,
1981). Why, then, does the communication system in Cangelosi and Parisi (1998) seem
to be evolutionary stable even though in those simulations none of the factors discussed
above were present?

A possible answer lies in the genetic algorithm used by Cangelosi and Parisi, in
particular in their peculiar mutation operator. As in the present work, in Cangelosi
and Parisi (1998) neural networks’ connection weights are codified in the genome of
organisms as real values. But in that work weights are initialized in the range [–1; 1]
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and each weight has a probability of 10% of being mutated by adding to the current
value a random number in [–1; 1]. As a result, weights have no limits. This peculiar way
of implementing the mutation operator might prevent the invasion of cheaters for the
following reason. As demonstrated by the analysis of evolutionary dynamics, during the
periods in which the communication system quality is low, received signals are ignored.
Consequently, communication-output connection weights are under genetic drift in that
they do not affect the fitness of any organism: neither that of the speakers, which is
never influenced by its own produced signals, nor that of the hearers, since they ignore
incoming signals. But a genetic drift without any limits on the connection weights
is likely to produce weights of high absolute values. And a mutation which changes
a weight’s value by adding a random number in the interval [–1; 1] will tend to be
behaviorally uninfluential for weights with high absolute values. This is especially true
for the signalling behavior of the organisms simulated in Cangelosi and Parisi (1998),
since the transmission function of ’linguistic’ neurons in that simulation is the step
function, whose value can be changed only by changing the sign of the input received
by the neurons. The consequence is that once a good communication system has
emerged as a result of cognitive and genetic pressures, cheaters cannot emerge because
mutations on the communication-output connection weights are completely neutral in
that they cannot affect signaling behavior.

On the contrary, in our simulations mutations can change radically the value of
connection weights (the mutated value is substituted by a random value always in the
same range), so cheaters can emerge when a mutation to one of the communicative-
output connection weights changes the signalling behavior of an organism. The same is
true for the robotic experiment of Marocco et al. (2003), in which connection weights
are coded as strings of 8 bits and mutations act on single bits. In this way, all the bits
coding for a single weight can change simultaneously, and, in general, a mutation in
one single bit (for example in the bit coding for the weight’s sign) can have a radical
effect on the value of the weight and, consequently, on communicative behavior. And
in fact, in the work of Marocco et al. the cognitive pressure towards good signalling is
not sufficient for the emergence of communication.

The mutation operator used in Cangelosi and Parisi (1998) has two fundamental
problems, one theoretical and one practical. Theoretically, it seems to be not biologi-
cally plausible. In real organisms, mutations can happen in various different ways (see
Maki, 2002) and they can always have any kind of effect on the mutating gene (from
no effect to the substitution of the codified protein). Hence, there seems to be no bio-
logical analogous to the mechanism, present in the simulations of Cangelosi and Parisi,
which prevents a gene which has been subject to genetic drift from having non-neutral
mutations. Pragmatically, the reason for not adopting the kind of mutation operator
used in Cangelosi and Parisi (1998) is that it is too easily subject to falling in local
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maxima. In general, during a genetic search, some parts of the genome tend to evolve
early and other lately. This happens either because some part of the genome code for
a trait which is a precondition for the evolution of the trait coded from other parts
or simply because of chance. With a mutation system like the one we are discussing,
the genetic drift of the genes which are not functional during a given evolutionary
phase can prevent the subsequent adaptive evolution of those genes just because they
have reached values whose absolute value is too high with respect to the range on
which mutations act. Consequently, this kind of mutation operator can compromise
the evolutionary process.

From this analysis I can conclude that the cognitive pressure towards good individual
signalling and the genetic pressure towards sharedness of signals can constitute a bias
towards the emergence of communication. On the other hand, they cannot guarantee,
by themselves, the evolutionary stability of the communication system in the cases in
which communicative interactions favour only hearers.

3.7.2. Evolution of communication

The fact that communication requires two independent capabilities, speaking (produc-
ing useful signals) and hearing (understanding perceived signals), poses two related
problems: an adaptive problem and a phylogenetic problem. The adaptive problem
is a problem of altruism: why should speakers produce good signals if they gain no
benefit in doing so? And, conversely, why should hearers respond adequately to sig-
nals if they don’t receive any advantage from that? Notwithstanding the emphasis of
biological literature on manipulative communication, the situation seems to be com-
pletely symmetrical, both theoretically and empirically. And the presence of natural
communication systems that seem not to benefit both speakers and hearers needs to be
explained either by kin selection or by the handicap principle or by some other means
(see next chapter).

But besides the adaptive problem there is also the phylogenetic problem: what
evolutionary paths can lead to the emergence of communication systems, since speaking
and hearing abilities are complementary and hence adaptively neutral if they are not
both present at the same time? The biological literature has provided a partial answer
to this question with the concept of a sensory (or producer) bias: if some stimuli
trigger in some organism a behavioural response that advantages another organism,
the latter can produce signals that resemble those stimuli in order to manipulate the
behavior of the former. In this way, the problem of co-evolution is bypassed through
the exploitation of behavioral biases in the receivers which are assumed to be present
for reasons other than communication.

In this chapter I have proposed the complementary idea of the exploitation of a
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producer bias. This idea has been neglected so far just because the biological literature
has been biased itself by the conception of communication as manipulation. The idea
of a producer bias is the following. If organisms have some bias to produce behaviours
that systematically co-vary with relevant features of the environment, those behaviors
can be used by other organisms as cues for their own purposes. In this way, the biased
behaviors become signals, the organisms that exploit them become hearers and the
individuals that produce them become speakers.

Just as the exploitation of receiver biases is probably the mechanism by which most
manipulative communication systems have evolved, the exploitation of producer biases
can have played an analogous role in the historical emergence of most communication
systems which benefit (principally) hearers, like alarm and food calls. Furthermore,
the simulations presented here suggest also one possible mechanism which can lead
to producer biases: namely, the cognitive pressure due to the need for organisms to
internally represent stimuli according to adaptively relevant categories. In fact, as my
simulations have shown, good categorization of stimula can result in the spontaneous
production of good signals which can be exploited by hearers.

But is the hypothesis of a ’cognitive pressure’ towards good signalling behavior plau-
sible? Does it hold only for our simulations or is it a possible candidate for explaining
the evolutionary emergence of real communication systems? I think that the hypoth-
esis is indeed plausible and that it should be taken in consideration when trying to
explain the evolutionary emergence of animal communication systems, in particular
those which seem to benefit principally receivers. After all, the only assumption which
needs to be made for my hypothesis to work is the link, in organisms’ brains, between
communicative and non-communicative behaviors. In fact, if such a link exists, then
the need for individuals to categorize the environment in adaptive ways will gener-
ate a bias towards the production of useful signals. And this assumption seems quite
reasonable: what should signals reflect if not what an organism has in mind?

This hypothesis is also empirically testable. One way to test it is the following. Take
an animal capable of sending signals. Train it to send a signal in at least two situations
which differ from the point of view of the animal’s survival (like in presence of edible
vs. poisonous items, as in our simulation, or for asking two significantly different kinds
of things, like food vs. a partner). The hypothesis on the cognitive pressure on good
signalling predicts that the animal will tend to spontaneously differentiate between the
signals emitted in the two different situations.

It is of the most importance that a first confirmation of this prediction can indeed
already be found in recent empirical experiments on Japanese monkeys performed by
Hihara et al. (Hihara et al., 2003). In these experiments a monkey was trained to
produce a generic call in two different conditions: (a) for receiving food and (b) for
receiving a tool with which it could reach a distant food. Surprisingly, without any
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reward for doing so, the trained monkey started to spontaneously differentiate the
sounds emitted in the two conditions. The authors of the experiments interpret their
striking finding as the result of a change, in the monkey, from emotional to intentional
vocalizations. But the spontaneuos differentiation of monkey’s calls can be explained,
less speculatively, by the simple fact that in the two conditions the monkey’s brain was
in two different states: one corresponding to the need for a piece of food and the other
corresponding to the need of a tool with which to reach the food. As predicted by
my hypothesis, different internal states, be they ’conscious’ (as Hihara et al. suggest),
’intentional’ or ’emotional’, tend to produce different (communicative) behaviors. To
put it shortly: what you have in mind will influence what you say. In other words,
the signals an organism produces will tend to reflect the way in which the organism
categorizes its experience.
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emergence of communication

4.1. Altruism in the evolution of communication and

language

In the previous chapter I have dealt with one of the two fundamental problems that
the emergence of communication poses from an evolutionary point of view, namely the
phylogenetic problem of the co-evolution between speakers and hearers. But besides
the phylogenetic problem the complementarity between hearers and speakers implies
also an adaptive problem, a problem of altruism. In particular, for any communi-
cation system which does not benefit both the actors of communication, it must be
explained how communication could emerge and remain stable notwithstanding its al-
truistic character. Why should speakers send useful (informative) signals if they do not
increase their reproductive chances by doing so? And, conversely, why should hearers
react appropriataly to received (manipulative) signals if this does not increase their
reproductive success? In fact, the simulations presented in the previous chapter have
demonstrated that if communicative interactions benefit only hearers, then a commu-
nication system does not emerge under normal conditions, or, when it does, it is always
disrupted because of the invasion of the population by cheaters.

The problem of altruism is of the major importance in the literature on the evolution
of communication since a great number of animals’ communication systems seem to be
essentially altruistic, be they manipulative (like several aggressive or mating displays)
or informative (like alarm or food calls). This problem is also relevant for the evolution
of language (see, for example, Dessalles, 2000; Fitch, 2004) because language seems to
be particularly sophisticated for informing conspecifics about relevant features of the
environment and, most importantly, human beings seem to be particularly prone to
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provide each other useful information through language.
By developing the model presented in the previous chapter I will show that a com-

munication system which confers advantages only to hearers but not to speakers can
evolve in at least three conditions. The first condition is that the speaker and the
hearer share the same or similar genes. In these circumstances communication emerges
because the altruistic genes of the speaker are maintained in the population through
the advantages conferred by the communicative behavior of speakers to hearers that
possess the same (or similar) genes. In other words, altruistic communication can
emerge in kin-related groups as a result of kin selection (Hamilton, 1964).

A second condition in which communication emerges even if it is advantageous only
to the hearer is a condition in which the communication system is culturally rather
than biologically transmitted. If what the organisms inherit genetically is not the
communication system itself but only the propensity to learn from others, then this
propensity – which, following Herbert Simon (1990), I call ’docility’ – can be the basis
for learning the communication system from individuals that already know it. Most
importantly, this can happen irrespectively of whether in any particular context of use
communication confers an advantage to the speaker or to the hearer.

A third condition for the emergence of a communication system which is useful
only for the hearer exploits another peculiar characteristic of human language. Unlike
animal communication systems, human language is used not only for social commu-
nication, i.e., when the speaker and the hearer are two different individuals, but also
for talking to oneself, that is, when the speaker and the hearer are the same individ-
ual (I will develop this topic in more detail in Chapter 5). This use of language for
oneself may have been present in the very early evolutionary stages of language and it
may have represented an evolutionary pressure for its emergence. In the last simula-
tion I will show that a useful shared communication system can biologically evolve in
groups of genetically unrelated individuals if signals are used as a memory aids, i.e.,
to allow an individual to keep in memory useful pieces of information which have been
communicated by other individuals.

4.2. Relevant literature

4.2.1. The biological view

As discussed in the previous chapter, the recent biological literature on communication
has been deeply influenced by the controversial definition of communication by Dawkins
and Krebs according to which communication is a form of manipulation. But any form
of manipulation implies that there is an individual which gets manipulated, and which,
therefore, provides advantages to another individual without receiving any benefit from
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doing so. As a result, the two main questions that biologists have been asking about
the evolution of communication concern adaptive factors: (a) why should hearers let
themselves be manipulated by speakers? And, (b) is there anything that can guarantee
the reliability of manipulative signals, so that they can be informative and hence useful
also for the hearers? Theoretically, the answer to question (a) has been kin selection
theory (Hamilton, 1964), while the answer to question (b) has been the handicap
principle (Zahavi, 1975, see also Grafen 1990).

According to kin selection theory, an altruistic behaviour can evolve if it is prefer-
entially directed towards kin related individuals. In fact, in this case the individuals
that are advantaged by the altruistic behavior will tend to share the same genes of the
altruist, including the genes that determine the altruistic behavior itself. This kind of
reasoning can be formalized: an altruistic trait can spread in a population as far as

c < br (4.1)

where c is the cost of the altruistic behavior for the individual who performs it, b

is the benefit for the receiver and r is the coefficient of kin-relatedness between the
performer and the receiver of the behavior. Kin selection theory can explain, for
example, the evolution of begging calls produced by new-borns for receiving extra
feeding from parents: as far as the cost for the parent to provide un-necessary food is
not greater than the benefit for the new-borns multiplied by the relatedness coefficient,
which in sexual species is 0.5 between parents and siblings, the manipulative signalling
behavior of the new-borns can spread in the population.

On the other hand, some forms of manipulative signalling behaviors, namely those
in which the signaller tries to convince the receiver of its strength (like in mating or
aggressive displays), can evolve even among non-kin because their reliability can be
guaranteed by the handicap principle. According to the handicap principle, honest
signalling can evolve if signals are costly. Typically, in both mating and aggressive
displays the message that has to be passed regards the strength and value of the
signaller. The function of these signals is to convince the receiver to either mate with
the signaller or to flee without fighting. If the signal are costly, in particular more costly
for weak individuals than for strong ones (Grafen, 1990), then they will be honest,
because only really valuable individuals can afford to pay the costs of signalling.

Both kin selection and the handicap principle have been suggested to have played an
important role in the evolution of language. For example, making an explicit reference
to the handicap principle, Dessalles has argued that human language evolved as an
advertizing display for finding good allies in an a social context in which the capacity
to form strong coalitions was of the major importance (Dessalles, 2000). Fitch has
criticized explanations of the altruistic uses of language which make reference to sexual
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selection through the handicap principle on the ground that they tend to make wrong
predictions. In fact, the standard outcomes of sexual selection are (a) strong differences
between the genders in the expression of the trait and (b) a relationship between the
expression of the trait and puberty. In other words, a sexually selected trait tends to
be expressed principally (if not exclusively) by males and tends to appear when the
male reaches sexual maturity. On the contrary, language is learned by children very
soon and much earlier then puberty, and, most importantly, there are no differences
in linguistic performance between the sexes (indeed, females seem to be even slightly
better than males). Hence, Fitch argues that sexual selection cannot have played a
major role in language evolution. Rather, according to Fitch kin selection might have
played an important role in that it can explain the evolution of altruistic communication
without making the wrong predictions which seem to be implied by the theory of sexual
selection through the handicap principle.

4.2.2. Computational modeling

Most of the artificial life literature which has dealt with adaptive problems in the
evolution of communication has mainly disccussed one of the two hypotheses proposed
by biologists: namely, that altruistic communication can evolve due to kin selection
or to the handicap principle. In particular, models by Ackley and Littman (1994) and
Oliphant (1996) have shown that a communication system which is advantageous only
for hearers does not emerge under ’normal conditions’, that is with random assortment
between communicating individuals. The reason for this, they argued, lies just in the
altruistic character of this kind of communication. On the other hand, if assortment
is not random, then communication can emerge. In particular, in both models a good
communication system could emerge if the population was spatialized, in the sense that
individuals occupied specific places in space and both communicative interactions and
reproduction were local. In order to explain their results, both Ackley and Littman
and Oliphant appelled to kin-selection. In particular, they argued that in spatialized
populations communicating organisms will tend to be kin-related. Hence, under these
conditions altruistic genes can emerge because altruistic agents will tend to benefit
other altruistic agents.

Di Paolo (1999) has criticized the interpretation given by those authors of their own
results. By formally analysing kin relatedness in a model similar to that used by Ackley
and Littman and Oliphant, he has shown that kin selection cannot fully explain the
effects that spatialization has on the emergence of a communication system. Instead,
spatial organization by itself, together with other factors such as discreteness and
stochasticity, can play a major role in the emergence of cooperative communication.
The role of spatial factors in the emergence of simple, altruistic signalling systems is
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also discussed in Noble et al. (2001), together with other ecological factors such as
the presence of noise. Noble et al. discuss also previous work by Bullok (1998) which
demonstrated, through a simple artificial life model, how the handicap principle could
lead to the evolution of honest signalling in a manipulative communication system.

As discussed in the previous chapter, Cangelosi and Parisi (1998) were able to evolve
an altruistic communication system in a population of ecological neural networks. They
suggested that the evolution of good signallers in their model had to be explained as
a by-product of the independently evolving ability to categorize the environment. But
as demonstrated both by my simulations and by those of Marocco et al. (2003), the
cognitive pressure towards good signalling cannot be the whole story. In fact, as I
have discussed at lenght in the previous chapter, the cognitive pressure towards good
signalling can constitute a produced bias, which might solve the phylogenetic problem
of co-evolution of speakers and hearers. But it is not sufficient for solving the adaptive
problem. In fact, it cannot prevent the population to be invaded by cheaters which
profit of the benefits of communication but do not reciprocate.

4.3. Simulations

If, in the base-line simulation of the previous chapter, the quality of the communication
system decreases because of the altruistic character of speaking, then language quality
should not decreased if we add to the base-line simulation some adaptive factor that
makes it possible for altruistic behaviours to evolve. In this section I present three vari-
ations of the same simulation which test three different adaptive factors: kin selection,
docility, and talking-to-oneself.

4.3.1. Kin selection

As discussed above, kin selection has already been claimed to play a role in other models
of the evolution of communication (Ackley and Littman, 1994; Oliphant, 1996), but
this hypothesis has never been tested directly. In fact previous works assumed that
kin selection was the at work due to the spatialization of the organisms interactions
and reproduction, an assumption which has been criticized by Di Paolo (1999). So, I
decided test the power of kin selection directly, through the manipulation of individuals’
interactions. In particular, I varied the probability that communicative interactions
happen among close kin. The rationale for doing so is the following. Close kin tend to
share the same genes. So, the higher the probability to speak to a close kin, the higher
the chances that the altruistic behavior of producing good signals is preserved because
it tends to confer an advantage to organisms with the same genes and hence with the
same altruistic behavior.
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Figure 4.1: Comparison between the base-line and of 4 kin selection simulations with
different values of p (1%, 5%, 10% and 100%): (a) communication system quality and
(b) average fitness. Average results of 10 replications of the simulations

The kin selection simulation runs as the base-line one, but for the following differ-
ence. In this simulation 50 out of the 100 individuals in each generation are males
and 50 are females. For each breeding cycle, one male and one female are selected
for reproduction with the roulette selection algorithm (see Appendix B) and the pair
generates two offspring, one male and one female, with different cross-over points and
different mutations on connection weights. This breeding method makes sure that each
organism of the population has at least one full sibling. So, I implemented kin selec-
tion by varying the probability p with which in any trial the speaker is one of the full
siblings of the hearer (with probability 1− p the speaker is not one of the hearers full
siblings, but it can be a half sibling). I run several different simulations with different
values of p. Figure 4.1 compares the results of the base-line simulation with those of
the kin-simulations with p = 1%, 5%, 10% and 100%.

The results of the simulations are very clear: the higher the probability p of speaking
to a close kin, the higher both the quality of the communication system and average
fitness. Vice-versa, the lower this probability, the lower the communication system
quality and the average fitness of the population. With p = 0.01, the results are
practically the same as those of the base-line simulation. The fact that the results
of the simulation with p = 0.1 are not very different from those with p = 1 should
cause no surprise. After all, p determines only the probability that the speaker is a full
sibling of the hearer, but even when this is not the case, the speaker can share the same
genes of the hearer either because it is a half sibling or simply because of the genetic
convergence of the population discussed (and demonstrated) in the previous chapter.
In fact, augmenting the kin selection factor has just the effect of adding an additional
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selective pressure for the stabilization of the communication-output genes: in other
words, kin selection simply strengthens a genetic pressure towards the emergence of
communication which was already present also in the base-line simulation.

4.3.2. Docility

The preceding simulations have shown that the kind of communication system we
are dealing with here is altruistic and, as such, it fails to emerge through genetic
evolution unless under kin selection conditions. One of the specific properties of human
language with respect to animal communication systems is that human language is
culturally, not genetically, transmitted. Could this property have an influence on the
emergence of the kind of (altruistic) use of communication we are dealing with here?
In 1990 Herbert Simon proposed an original hypothesis on the evolution of altruistic
behaviour in humans which was based on the notion of ’docility’ (Simon, 1990). Docility
refers to the human propensity to socially learn, either through imitation or thanks
to explicit teaching, how to behave. This propensity is biologically inherited in our
species. Furthermore, it is so strong that we can make the hypothesis that there has
been a strong adaptive pressure during hominid evolution for the emergence of such
a trait. (Consider the advantages that could derive from an innate predisposition to
learn to imitate the behaviour of others in a context of highly social primates that are
evolving the capacity of tool making and tool use, for instance).

But for an individual to determine the contribution to its fitness of each behaviour
which the individual is learning from others would be extremely hard, if not completely
impossible. As a consequence, a docile organism will tend to learn whichever behaviour
it will be taught, be it egoistic or altruistic, provided that the overall advantages of
learning from others are higher than the disadvantages. According to Simon’s docility
theory, in a population of docile individuals an altruistic behaviour can evolve if the
following three conditions are satisfied: 1) there is some advantage d in being disposed
to learn from others, i.e., in being docile; 2) organisms are not able to evaluate the
contribution of each particular behavior that they learn from others to their own fitness;
3) the advantage d of being docile is greater than the cost c of the altruistic behaviour.

As the use of communication that we are dealing with here is altruistic and as human
language is culturally transmitted (although on a genetic species-specific basis), it is
interesting to test whether Simon’s explanation of altruism seems to be applicable to
language evolution. In order to do so, I run a new simulation, the docility simulation,
in which the connection weights of all individuals are always random at birth and are
not inherited from parents. Instead, the genome of these organisms is constituted by
one only gene, encoded as an integer number, which specifies an individual’s docility,
implemented as the number of learning trials for that particular individual. In the first
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generation each individual is assigned a random value in the interval [0; 200] for this
gene and this value is genetically transmitted with a 2% probability of being changed
by adding or subtracting a random number in the range [–100; 100]. In any case,
docility is forced to stay in the interval [0; 500].

The life of organisms in this simulation is divided into two periods: infancy and
adulthood. During infancy, the organism is supposed to follow its parent and learn from
its parent how to behave in different situations. Its inherited docility gene determines
the number of back-propagation learning cycles to which the infant exposes itself.
Learning is imitative in that the teaching input of the back-propagation algorithm is
the output of the infant’s parent (Hutchins and Hazlehurst, 1995; Denaro and Parisi,
1997). Since there are three kinds of situations which organisms are exposed to during
their life, there are three different learning conditions: (1) comprehension learning, (2)
decision learning, and (3) naming learning. Comprehension learning takes place when
the organism is distant from a mushroom and has to decide whether to move or not to
move according only to the signal it receives from another organism. Decision learning
takes place when the organism is near the mushroom and its decision whether to move
or not to move into the mushroom cell and eat the mushroom depends on both the
visual input from the mushroom and the linguistic input. Finally, naming learning
takes place when the organism acts as a speaker: the organism receives the perceptual
properties of a mushroom as input and it has to produce a signal. In short, the number
of learning cycles for each organism is determined by the organisms inherited docility
and for each learning cycle this is what happens:

1. one of the three learning situations is randomly chosen together with one of the
420 mushrooms;

2. the appropriate input is given both to the learner and to its parent;

3. both the organisms output and its parents output are calculated;

4. the output of the parent is given to the child as the teaching input with some
added random noise (a random value chosen in the interval [–0.25; 0.25] is added
to the teaching input);

5. finally, the child’s connection weights are changed according to the back-propagation
algorithm (with a learning rate of 0.3 and a momentum of 0.8).

At the end of infancy an individual starts its adult life, which is identical to that of
the genetic (base-line) simulation.

Figure 4.2 shows language quality, average fitness, and average value of the docility
gene in this simulation. Since in this simulation organisms are born with random
connection weights, they are bound to behave randomly unless they learn from their
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Figure 4.2: Communication system quality, average fitness and average value of the
docility gene of the docility simulation. Average results of 10 replications of the simu-
lation

parents. The fact that the teachers of any given generation are the selected organisms
of the previous generation guarantees that what is learnt is a good behavior. On the
other hand, the fact that some noise is always present in the cultural transmission of
behavior guarantees that there is some added variability which is necessary for cultural
evolution to take place.

The results show that the average value of the docility gene rises very quickly until
it reaches almost its maximum value (figure 4.2, dotted line). Since organisms with a
good foraging behavior tend to be also good speakers because of the cognitive pressure
towards language emergence, young organisms will learn not only to discriminate edible
from poisonous mushrooms, but also to produce good signals. Most importantly, be-
cause of the fact that the behavior of these organisms is culturally learnt, the invasion
of the population by cheaters is prevented. Only individuals which are not very docile
can produce bad signals, but those individuals cannot learn how to behave efficiently
and therefore they will tend have a lower fitness than more docile (and altruistic) indi-
vidual. As a result, to the increase in the average value of the docility gene corresponds
a parallel increase in the quality of the communication system produced by the organ-
isms, which reaches after about 200 generations the very high value of about 0.8 (figure
4.2, thick line). As it turns out, the correlation between docility and language quality
is very high: 0,967. Finally, since the organisms of this simulation can exploit all the
advantages provided by a good communication system, their average fitness reaches
almost the maximum possible value (figure 4.2, thin line).
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4.3.3. Talking to oneself

In all the simulations described so far we have assumed that signals are used for social
communication purposes, that is, in situations in which the emitter and the receiver of
signals are two different individuals. But for human beings language can have useful
functions even in situations in which the emitter and the receiver of a signal are the
same individual, i.e., when an individual talks to herself. The particular function
that I will consider here is language as an aid for memory. The initial situation is
identical to that of the preceding simulations. An individual is placed in the start cell
of the corridor, another randomly chosen individual is placed near the mushroom and it
generates a signal which is heard by the first individual. On the basis of this signal the
first individual can decide whether to approach the mushroom or refrain from doing so.
However, since it takes 10 cycles to reach the mushroom, the signal must be available
to the first individual in all these cycles in order for the individual to know what to
do in each successive cycle. In the preceding simulations this problem was solved by
assuming that the second individual, the speaker, continued to emit the signal until
the end of the trial. In the present simulation the situation is different. The emitter
of the signal emits the signal only in the first cycle and then it goes away. All the first
individual can do in this situation is to try to remember the signal by repeating the
signal to itself until the mushroom is reached. In the first cycle, when the signal arrives
from the conspecific, the individual responds to the signal not only by either moving
one cell forward toward the mushroom or avoiding doing so, but also by producing a
signal using its own linguistic output units. In the next cycles, the individual hears
this self-produced signal and responds to it.

Will a a good communication system evolve in these conditions? Notice that in the
base-line simulation the communication system was very unstable because there were
both cognitive and genetic pressure for its emergence and a strong selective pressure
against good communication due to its altruistic character. In the present simulation,
in which individuals talk to themselves, they have an interest in producing good signals
because sometime they are the receivers of their own produced signals. Therefore
emitters that produce good signals will tend to have more chances to reproduce than
emitters of bad signals because the emitters of good signals can remember correctly
the information received about the quality of the mushroom present at the end of
the corridor. This effect is independent from kin-relatedness (it might be interpreted
as kin-relatedness in a single individual). Hence, talking to oneself may constitute
a selective pressure for the emergence of good communication even in populations
in which language is exchanged between pairs of non-kin-related individuals. This
prediction is confirmed by the results of the talking-to-oneself simulation. Figure 4.3
compares average fitness and communication system quality in the baseline and the
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Figure 4.3: Comparison between the base-line (BL) and the talking-to-oneself (TTO)
simulations with respect to average fitness and quality of the communication system.
Average results of 10 replications of both simulations

talking-to-oneself simulations. The communication system quality in the talking-to-
oneself simulation is more stable and significantly higher than that of the baseline
simulation: the range of fluctuation of the quality of the communication system is in
fact [0.45; 0.55] and [0.25; 0.45], respectively. As a result, the average fitness of the
population is higher and more stable in the talking-to-oneself condition than in the
baseline condition: fluctuation range is [0.8; 0.95] and [0.5; 0.8], respectively.

4.4. Discussion

For communication to emerge biologically it must involve some selective advantage
for both the emitters and the receivers of signals. Communication requires both good
speakers, i.e., individuals that emit the appropriate signals in the appropriate circum-
stances, and good hearers, i.e., individuals that respond appropriately to the signals
that are produced by the speakers. But good speakers emerge only if it is advanta-
geous for them to produce the appropriate signals in the appropriate circumstances,
and good hearers emerge only if it is advantageous for them to respond appropriately
to these signals.

If signals provide the hearer with useful information, then the production of signals
by the speaker is an altruistic behaviour provided that the behaviour with which the
hearer responds to the signals have no useful consequences for the speaker and do
not increase the speaker’s reproductive chances. In fact, our simulations show that if
communication benefits the hearer but not the speaker it fails to emerge. Individuals
that happen to be good speakers may increase the reproductive chances of hearers
which benefit from the linguistic signals produced by the speakers but which, when
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it is their turn to function as speakers, may turn out not be good speakers. In this
manner, although it would be generally useful, a stable shared communication does
not evolve.

Indeed, the results of our base-line simulation support this analysis and replicate
the results of other simulations of the emergence of altruistic communication systems
(Ackley and Littman, 1994; Oliphant, 1996; Marocco et al., 2003). The simulations
analyses of the previous chapters have shown that the structural coupling between
categorization abilities and communicative behavior can indeed favour the emergence
of communication, as suggested by Cangelosi and Parisi (1998), but cannot account
for the stability of the communication system. In fact, an altruistic communication
system is bound to be disrupted by the invasion of cheaters which benefit from received
signals but do not reciprocate, if no other mechanism prevents this to happen. In the
simulations presented in this chapter I have tested three possible mechanisms.

The first mechanism is kin selection. The kin selection simulations show that, in
accordance with kin selection theory, the probability that the speaker and the hearer
share the same genes directly affects the stability of a communication system which
benefits the hearer but not the speaker. Animal signals mostly communicate informa-
tion about the sender of the signal – its location, species, identity, emotional state,
intentions and attitudes –, not information about the external environment. Clearly,
there are exceptions, like food and alarm calls, but human language clearly is the most
sophisticated communication system for communicating information about the exter-
nal environment. While kin selection is likely one of the major factors in the evolution
of social insects communication systems (like the famous honey-bees dance: see Frisch,
1967), it is not clear what could have been the role of kin selection in the evolution
of primate (including human) communication. Surely, hominid evolution took place in
small, kin-related groups, and the long juvenile period of humans may have contributed
to a substantial increase in the probability that communicative interactions took place
between kin related individuals (see Fitch, 2004 for similar lines of reasoning). As our
kin selection simulations demonstrate, if this is the case, then the increase in genetic
relatedness between the speaker and the hearer might have been one factor, among
many others, which favoured the evolution of (the altruistic use of) language.

However, if language is restricted to kin-related groups its usefulness appears to
be limited. Language becomes much more useful if it represents a vehicle of com-
munication and interaction among larger groups of genetically unrelated individuals.
Language that benefits the hearer but not the speaker may emerge in larger groups
of unrelated individuals if it is culturally rather than biologically transmitted. Cul-
tural transmission is learning from others. Human beings appear to have a genetically
inherited tendency to learn from others whatever behavior others may care to teach
them. This docility evolves because it confers an advantage to the individual that
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possesses it: a docile individual can learn from others behaviours which would be more
difficult to learn by directly interacting with the non-social world. These behaviours
generally tend to increase the reproductive chances of the learning individual but in
some circumstances and in some of their uses they may benefit others. But for docile
organisms, learning from others tends to be blind, in the sense that the learning indi-
vidual cannot easily distinguish between what is beneficial for himself or herself and
what is beneficial for others, especially because this kind of learning takes place mostly
when the individual is young. Thus, altruistic behaviours, including the altruistic use
of language we are dealing with here, can emerge as a cultural by-product of the ge-
netically evolving docility of a population. Studying the influence of cultural learning
on language emergence is one of the major themes in the literature on computational
models of language evolution (see, for example, Hutchins and Hazlehurst, 1995; Batali,
1998; Hurford, 1999; Kirby, 2000; Steels and Kaplan, 2002). But none of the previous
computational models of language evolution tested the hypothesis that the evolution
of cultural transmission could have favoured the emergence of an altruistic use of lan-
guage. The docility simulation shows exactly this. It shows that linguistic docility,
that is, a tendency to learn language from others, can emerge biologically and be bi-
ologically transmitted. If this is the case, the homogenization of linguistic behaviour
induced by cultural transmission can favour the (cultural) emergence of an altruistic
use of language.

Finally, a third mechanism may explain the emergence of a language that benefits
the hearer and not the speaker in groups of genetically unrelated individuals even if
the language is biologically and not culturally transmitted and evolved. This third
mechanism is using the language not only to communicate with others but also to
communicate with oneself. Generally, there is a tendency to think that language was
used by humans to communicate with oneself only when language was already well
developed and was sophisticated and complex; hence, quite recently compared with
the first appearance of a proto-language. However, this is not necessarily the case.
Even a very simple proto-language, for example, a language made up of single words
(or holophrases), may be used to talk to oneself, for example as an aid for memory,
with advantages for the individual that uses the language in this way. Based on this
hypothesis, my talking-to-oneself simulation shows that signals that benefit the hearer
but not the speaker can emerge biologically among genetically unrelated individuals
if the hearer has to repeat the signals to himself or herself in order to keep them in
memory. When one speaks to another individual and the signals benefit the hearer but
not the speaker, the speaker acts altruistically and may benefit a hearer who is a poor
speaker. This, as we have seen, is an obstacle for the biological emergence of language.
But if the hearer has to repeat the signals to himself or herself in order to keep them in
memory, then there is a positive selective pressure towards good speaking abilities. In
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fact, in talking-to-oneself the same individual is both speaker and hearer. Hence, the
advantage of understanding linguistic signals can only be exploited if it is accompanied
with good productive capacities.

Using language as an aid to memory can be advantageous for at least two reasons:
(a) delegating the memory function to the linguistic system can leave the sensory-
motor system free to process other information useful for acting in the environment
while linguistically remembering previous information, and (b) linguistic signals may
occupy less space in memory than the raw information they refer to. It might also
be the case that another peculiar characteristics of human language, namely the fact
that it uses displaced signals (Hockett, 1960), has become possible only after hominids
had improved their memory by talking to themselves (for the possible role of linguistic
memory in the evolutionary origin of language, see Aboitiz and Garcia, 1997). Fur-
thermore, as I will discuss in the next chapters, the use of the linguistic system as an
aid to memory is only an example of the many possible individual uses of the social
communication system (Vygotsky, 1978; Jackendoff, 1996; Clark, 1998). In general,
the use of language as an aid to cognition might have played an important role in lan-
guage evolution. The talking-to-oneself simulation is just a very simple demonstration
that this could be the case. In the next chapter, I will discuss the role of language
in human cognition in more detail, and I will start studying this role by providing a
computational model of the effects of language on categorization.
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The natural laws of perception most clearly observed in the receptive processes
of the higher animals undergo basic changes due to the inclusion of speech
in human perception, and human perception thus acquires an entirely new
character.
Vygotsky and Luria: Tool and symbol in child development, p. 126 (Vy-
gotsky and Luria, 1994)

5.1. Language and cognition

5.1.1. The classical view

What is the role of language in human cognition? This is one of the most important
questions we have to answer if we want to understand the human mind in general.
The standard view of classical cognitive sciences on this topic can be reassumed in two
statements: (a) cognition is, generally speaking, ’linguistic’ in itself, in that it consists
in the manipulation of linguage-like structures (propositions) according to formal rules;
(b) the essential function of natural language is just to express the contents of thought,
hence natural language does not affect cognition in any substantial way.

The view of cognition as symbol manipulation is at the very heart of classical cogni-
tive science, constituting the common assumption on which at least three of the sub-
disciplines that gave birth to cognitive science were based: artificial intelligence (i.e.
the symbol system hypothesis: Newell and Simon, 1976), cognitive psychology (i.e. the
language of thought hypothesis: Fodor, 1975) and cognitive-science-related philosophy
of mind (i.e. the computational theory of mind: Putnam, 1963). If one considers cog-
nition as fundamentally linguistic, there is no reason for considering language anything
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more than a very complex and powerfull communication system. And in fact, this is
something that has been seldom if ever questioned within classical cognitive science.

5.1.2. Challanges to the classical view

In the last twenty years the basic assumption of classical cognitive science has been
questioned from several perspectives in such ways that now we are substantially re-
thinking our view of cognition. A number of philosophical arguments have been put
forward against the view of cognition as symbol manipulation, some of which I found
compelling (see, for example, Dennett, 1978; Churchland, 1981), while others just mis-
leading (see, for example, Searle, 1980; Penrose, 1989). But untill concrete alternative
views had not been proposed, advocators of the view of cognition as symbol manip-
ulation could still claim that their hypothesis was “the only game in town” (Fodor,
1975).

The publication, in 1986, of the two volume Parallel Distributed Processing by
Rumehlart, McClelland and the PDP group (Rumelhart et al., 1986) is to be con-
sidered a milestone in cognitive science history. In fact, it provided for the first time a
concrete and rather detailed account of cognition which was proposed as an alternative
to the symbol manipulation paradigm. According to this alternative view cognition is
not the manipulation of symbols according to formal rules, but rather the parallel and
distribute processing of sub-symbolic information: that is the transformation of purely
quantitative values (the vectors of the activations of groups of units) through other
quantitative values (the connection weights linking the groups of units).1

The connectionist framework, with respect to the symbol-manipulation one, had
at least two advantages. First, it was more biologically plausible, being directly in-
spired by the knowledge of our own control system, that is the brain, in contrast to
being inspired by the computer, which is not the product of natural selection but an
human-made artifact. Second, connectionist networks have several properties which
are similar to those demonstrated by natural cognitive systems (humans) but which
are not possessed by classical symbolic systems. For example, in contrast to symbolic
systems, neural networks are robust both to damage and to noisy input: if you present
a network noisy input the performance of the network degrades gracefully, and the
same is true if you destroy (lesion) some of the units or the connections of the network.
In contrast, a catastrophic failure of the functioning of symbolic systems is the typical
result if you damage some part of the system or provide noise. Furthermore, neural

1For a very brief introduction to neural networks, see Appendix A. For more general introduc-
tions, the best place to start is probably still the PDP book, which is generally considered as the
’bible’ of connectionism. A good technical introduction is Floreano and Mattiussi (2002), while for
discussions on the theoretical relevance of connectionsism for cognitive science see, for example,
Smolensky (1988); Clark (1989); Bechtel and Abrahamsen (1991).
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networks, as natural cognitive systems and unlike symbolic ones, typically general-
ize quite well to novel, unexperienced stimuli. Neural networks are also particularly
well adapted to problems that require the resolution of a number of (possible con-
flicting) constrains in parallel. And most if not all of natural cognitive tasks such as
object recognition, planning, and sensory-motor coordination seem to be problems of
this kind. Furthermore, the kind of distributed representations neural networks have
seems to be much more realistic than the classical symbolic representations. It is in
fact quite clear that our categories are not completely clear-cut as those of symbolic
systems; rather, categories seem to be delimited in somewhat vague and flexible ways
(consider the notion of family resemblance (Wittgenstein, 1953) or the prototype the-
ory of concepts (Rosch, 1973)). As I explain in Appendix A, connectionist models are
especially well suited to accommodating graded notions of category membership of this
kind. Furthermore, since representations are coded as patterns of activations of vec-
tors of neural units, relationships between representations are coded in the similarities
and differences between these patterns. This results in another fundamental property.
Since the internal properties of a representation in a neural network carry information
on what the representation is about, a neural networks memory retrieval can be (and
in fact is) content-based. In contrast, local, symbolic representations are completely
conventional and hence they are not content-addressable.

Another fundamental attack to the classical framework of cognition as symbol ma-
nipulation came in the early 1990s by the field known as behavior-based robotics,
particularly from the work of Rodney Brooks (Brooks, 1990, 1991). Brooks’ arguments
against symbolic processing approaches to artificial intelligence derived from a kind
of biological considerations slightly different from the ones which prompted connec-
tionist research. While classical artificial intelligence focused on high-level cognitive
capacities like playing chess, rational problem-solving or logical reasoning, natural in-
telligence has evolved for solving more basic, low-level tasks, like real-world perception,
sensory-motor coordination or navigation. And these are clearly the kind of tasks we
are particularly good at, in contrast with high-level cognitive capacities which are
both philogenetically and ontogenetically older, and quite difficult to acquire during
development. But the symbolic systems constructed for solving high-level problems
resulted to be completely un-adapted for dealing with more basic cognitive capacities,
and for fundamental, rather than accidental reasons. For example, they suffered what
has been called the frame problem, which can be stated as follows (for a more accu-
rate discussion, see Dennett, 1987). Since the number of possible logical inferences
that can be made at any time when dealing with the real world are infinite, trying
to accomplish real-world task through symbolic systems requires distinguishing what
are the inferences that are relevant, and therefore must be made, from those which
are irrelevant, and therefore must be ignored. This has proven to be an un-solvable
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problem for traditional symbolic artificial intelligence. In order to decide which are
the inferences that must be made, a symbolic system must first decided which are the
relevant things which must be taken into account for taking that decision, and so on
and so forth. In other words, faced with real world problems, a symbolic system gets
easily stuck because there is no clear way for avoiding the evaluation of an infinite
number of true but completely irrelevant statements. The problem is that symbolic
systems are particularly good at truth-preserving, logical reasoning, but very bad at
practical reasoning, which is exactly what is needed when dealing with a complex and
constantly changing environment.

In order to construct robots able to interact effectively with the physical world,
Brooks argued, we need to get rid of the symbolic paradigm, which is based on complex
reasoning on complex representations. On the contrary, we must make the best use of
simple control mechanisms which exploit the continuous interactions between a robot
and its environment, because this is exactly what real organisms do all the time. In
other words, organisms do not have to work on complex representation for solving their
real-world problems just because their interactions with the environment are constant
and on-line. As a consequence, they can “use the environment as its own best model”
(Brooks, 1991).

Hence, if connectionism pointed to the sub-symbolic character of cognitive processes,
the new robotics pointed to the fact that cognitive processes are always ’embodied’,
’situated’ and (partially) ’distributed’ in an organism’s environment. They are embod-
ied in that the body and its physical properties are determinant for the way a given
task is solved. They are situated because the constrains provided by the environment
can act also as opportunities for the task’s solution. And they are partially distributed
because they do not happen only inside an organism’s head, but they substantially
depend on the organisms environment, which, especially in the human case, includes
also artefacts and other agents.

Finally, another challenge to the classical, symbolic approach to cognition came from
dynamical systems theory. Proponents of the dynamical hypothesis argue that cogni-
tion should not be considered in computational terms, but rather through differential
equations, and using dynamical systems concepts like equilibrium points, cyclic behav-
iour, attractors, bifurcations and so on. In other words, cognition must be understood
by interpreting a cognitive system as a point moving in a multi-dimensional space, and
by sorting out the kind of trajectory that the system takes and which are the laws that
govern that trajectory (see Smith and Thelen, 1993; Port and van Gelder, 1995; van
Gelder, 1998; Beer, 2000).

The concepts and tools of connectionism, robotics and dynamical system theory,
together with original studies in developmental psychology (i.e. Thelen et al., 2001),
neuroscience (i.e. Churchland et al., 1994; Kelso, 1995) and anthropological and so-
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ciocultural studies (i.e., Hutchins, 1995), opened up several lively areas of research,
especially of the synthetic kind: artificial life, the simulation of adaptive behaviour,
evolutionary and developmental robotics and so on. The overall result is that we are
now rethinking substantially our view of cognition. In particular, the fundamental
assumption of classical cognitive science that cognition is the manipulation of sym-
bols according to formal rules is being replaced by a view according to which the
mechanisms that explain cognitive behaviours are non-symbolic or sub-symbolic, and
cognition consists in the adaptation of the agent to its environment, which in turn
depends heavily on the dynamics of the interactions between the agent, including its
body, and the environment it lives in, including artefacts and other agents (Bechtel
et al., 1998; Clark, 2001).

5.1.3. Language as a cognitive tool

Apart from the works of connectionsists, which address high-level classical topics but
without taking into account ’embodiment’ and ’situatedness’, the new cognitive sci-
ence has been so far concerned mostly – if not exclusively – on low level behavior,
such as perception, learning, sensory-motor coordination, navigation, and so on. The
question remains whether the same broad framework can scale up to explain also the
higher forms of cognition demonstrated by humans such as problem solving, complex
reasoning, and planning, or if in order to explain characteristic human cognition we
must go back to the symbol manipulation paradigm. From the point of view of the
new cognitive science, the most promising way of addressing the question, I argue, is to
consider language not only as a communication system, but also as a kind of cognitive
tool. In fact, as I will argue, the learning and use of language substantially transforms
the adaptive pattern of human beings, and is at the roots of the development of higher
cognitive functions.

The view of language as something that transforms all human psychological processes
dates back as early as the 1930s, with the work of Russian scholar Lev Vygotsky (Vy-
gotsky, 1962, 1978). According to Vygotsky, the most important moment in child
development is that in which the child starts to use language not only as a social com-
munication systems, but also as a tool for controlling her own actions and congnitive
processes. The idea is the following. When the child is challanged by a task which she
cannot solve but through the help of an adult or a more skilled peer, she asks for help,
which typically takes the form of linguistic help. Later on, when the child is facing the
same or a similar task all alone, she can reharse the social linguistic aid which helped
her succeeding in the problem. This is what is called ’private speech’, which, according
to Vygotsky, plays a fundamental role in the development of all human psychological
processes.
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The linguistic social aid coming from adults takes several different forms. Social lan-
guage helps a child in learning how to categorize experiences, in focusing her attention
to important aspects of the environment, in remebering useful information, in inhibit-
ing un-useful, spontaneous behavior, in dividing problems in easier sub-problems and
constructing plans for solving complex tasks, and so on and so forth. When the child
is talking to herself she is just making to herself what others used to do to her, that is,
providing all sorts of cognitive aids through linguistic utterances. Once the child has
mastered this linguistic self-aid, private speech tends to disappear, but only apparently.
In fact, it is just abbreviated and internalized, becoming inner speech. Hence, most
of adult human cognitive processes are linguistically mediated, in that they depend on
the use of language for oneself.

This Vygotskyan view of language as a cognitive tool has been largely ignored in
mainstream cognitive science. The principal reason is perhaps that the Vygotskyian
works began to be translated in english only in the 1960s, when developmental psychol-
ogy was already dominated by the more individualistic theory of Jean Piaget, which
denied any substantial role to socio-cultural factors in cognitive develppment. Re-
cently, the idea of language as a cognitive tool has beeing raising increasing interest
in the cognitive-science-oriented philosophy of mind (Carruthers and Boucher, 1998).
For example, Daniel Dennett (Dennett, 1991, 1993, 1995) has argued that the human
mind, included its most striking and difficult to explaing property, consciousness, de-
pends principally not on innate cognitive abilities, but on the way human plastic brains
are ’re-programmed’ by the effects of cultural input coming through language. Andy
Clark (Clark, 1997, 1998, 2005) developed further those Dennettian ideas by providing
several arguments about how animal-like, embodied, situated and sub-symbolic cogni-
tive processes can be augmented by the learning and use of linguistic signs. According
to Clark, language is not only a communication system, but also a kind of “external
artifact whose current adaptive value is partially constituted by its role in re-shaping
the kinds of computational space that our biological brains must negotiate in order to
solve certain types of problems, or to carry out certain complex problems.” (Clark,
1998, pag. 163)

Apart from the philosophical ideas of Dennett and Clark, the Vygotskyan view of
language as a cognitive tool has recently been raising increasing interest in empirical
cognitive sciences (see, for example, Diaz and Berk, 1992; Gentner and Goldin-Meadow,
2003a). In the next section I will review some of the empirical evidence that has recently
been gained in favour of the Vygotskyan theory, and the very few computational models
related to the topic. In the rest of the chapter, I will present an original model with
which I start to study the vygotskyian idea of inner speech as the internalization
of linguistic social aid, in particular with respect to one of the most basic cognitive
function, namely, categorization.
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5.2. State of the art

Before reviewing the empirical eviedince in support of the view of language as a cog-
nitive tool, a caveat must be made. In fact, this view is sometimes confounded with a
related but different view. This is the so called ’Sapir-Whorf’ hypothesis, according to
which the particular language one speaks affects the way one thinks.2 This Whorfian
hypothesis is compatible with the position I am endorsing but is more limited. Indeed,
the influence of a particular natural language on the way one conceptualizes her world
is a possible (but not necessary) consequence of the Vygotskyian hypothesis that the
possession and use of language in general, as a culturally acquired symbol system,
deeply transforms human cognitive functions. Even though there is indeed a consid-
erable amount of empirical literature on the whorfian hypothesis, I will not discuss it
here. The reason is twofold: first, the debate on this issue is still open, with some
empirical evidence indicating differences in cognitive performance realted to linguistic
diversity (see, for example, Hunt and Agnoli, 1991; Levinson et al., 2002; Majid et al.,
2004), while other denying this effect (see, for Pinker, 1994; Li and Gleitman, 2002; for
general reviews on the the whorfian hypothesis, see Bowerman and Levinson, 2001 and
Gleitman and Papafragou, 2005). Second, as I have said above the claim that language
in general (whatever the particular natural language one has) improves cognition can
and must be separated by the Sapir-Whorf hypothesis.3

5.2.1. Empirical evidence

What about the empirical evidence on the view of language as a cognitive tool?
Notwithstanding the relative dis-interest for this idea in mainstream cognitive sciences,
the idea has not completely disappeared and several different and un-related lines of
research are providing more and more empirical support for it.

The first line of evidence comes from developmental studies on private speech (for a
review, see Diaz and Berk, 1992 and Berk, 2001). First of all, it has been shown that
private speech does indeed represents a quantitatively very important phenomenon.
Depending on the situation, it accounts for 20 to 60% of linguistic production of children
from 3 to 10 years of age (Berk, 1994). Also the process of internalization – that is,
the path from private to inner speech – has gained empirical support. For example,
it has been shown that the decline of audible task-relevant private speech corresponds
to the increase in the visible signs of inner speech, like un-understandable muttering

2For recent discussions of the whorfian hypothesis see the recent book edited by Dendre Gentner and
Susan Goldwin-Meadow (Gentner and Goldin-Meadow, 2003a), especially the editors’ introduction
(Gentner and Goldin-Meadow, 2003b).

3Indeed, if I had to, I would argue in favour of the whorfian stance, for both theoretical and em-
pirical reasons (I find the evidence for a particular language influencing cognitive processes more
compelling than that against the hypothesis), but I will not discuss the matter any longer here.
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and lip and tongue movements (Frauenglass and Diaz, 1985; Berk and Landau, 1993;
Duncan and Pratt, 1997). Furthermore, the Vygotskyian idea that private speech has
a social origin has also been supported by several investigations: a good correlation
between children’s social and private remarks has in fact been found (Berk and Garvin,
1984); private speech seems to be favoured by rich social contexts (Ramirez, 1992),
and its frequency decreses when children are isolated (Berk and Landau, 1993). Most
importantly, there is growing empirical evidence confirming the Vygotskyan hypothesis
that private speech plays a fundamental role in the development of children’s cognitive
abilities. It has been shown that the amount of private speech a child is engaged in
when trying to solve a challanging task can predict future performance on that kind of
task or, more generally, future gains in problme-solving competence (Bivens and Berk,
1990; Azmitia, 1992; Behrend et al., 1992). Finally, there is evidence that private
and inner speech play an important role in the development of self-regulation: a good
correlation has been found between the ability to focus one’s attention to a given task
and (a) the amount of task-relevant utterances (Berk and Landau, 1993), and (b) the
speed with which those audible utterances are transformed in silent ones, that is, in
inner speech (Bivens and Berk, 1990).

Another important line of research has repetedly and consistently demonstrated that
language can facilitate category learning. Several studies with subjects of different
ages (from 9 months old children to adults) have in fact demonstrated that providing
linguistic input to somebody who is learning to categorize objects can substantially ease
and speed up the learning process (see, for example, Waxman and Markow, 1995; Nazzi
and Gopnik, 2001; Lupyan, 2006). These findings strongly suggest that labels have the
function of ’inviting’ category formation by guiding our attention onto ’meaningful’
aspects of our environment and by providing important cues about how to categorize
them.

Language clearly plays a major role in our highly abstract, logico-mathematical abil-
ities. This has been demonstrated by several studies, especially by the work of Dehaene
(Dehaene, 1997). A vast amount of empirical evidence (of various kinds) supports the
idea that our mathematical skills are based on two functionally and anathomiocally
distinct systems: (a) an innate ’number sense’, shared with other animals and pre-
linguistic infants, which allw us to appriciate changes in quantity, relative quantities,
and a very few absolute quantities (one, two and three, probably); (b) a culturally
acquired system which depends on language, and allow us to consider exact quantities
other than 1, 2 and 3, and consequently to develop all other complex mathematical
skills. Here is some of the empirical evidence supporting this view. A first line of
evidence comes from a study of bilinguals which are asked to make either exact or
approximate sums of two-digits numbers. In the approximate condition (select which
of two candidates is closer to the result of the given sum), switching the language
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between the training and the testing session did not affect performance, while in the
exact condition (select which of two close candidates is equal to the given sum) it did.
In particular, subjects responded slower if the language in which they were tested was
different from the one in which they were trained compared to the condition in which
the test language was the same as the training one (Dehaene et al., 1999). Another
line of evidence comes from comparining the memory capacities for numers of speakers
of different languages. In particular, Chinese speakers, whose names for number are
very short, can memorize perfectly well 7 single digits, while English speakers have
a 50% chance of failure in the same task (Dehaene, 1997). Another line of evidence
comes from neuropsychological studies: for example, patients with lesions to their left-
hemisphere are not able to do even very simple exact calculations (like 2 + 2) while
they can do approximate ones (for example, if asked which between 3 and 9 is closer
to 2 + 2 they would reliably choose the former). Finally, neuroimaging studies seem
to provide other support to the same idea (Dehaene et al., 1999): exact arithmetical
tasks activate language related areas of the left frontal lobe, while approximate tasks
activate bilateral ares of the parietal lobes related to visuo-spatial cognition.

Another important way in which language seems to improve our cognitive abilities is
by providing the resources for combining different, otherwise encapsulated, kinds of in-
formation in order to solve a given task. This seems to be the best explanation of a set
of experiments on spatial reasoning. Rats and up to 2 years old children have proven
to have interesting similar limitations in their spatial reasoning. If they are shown the
location of food (or of an interesting object) in a rectangular room and then they are
disoriented, they are able to re-orient themselves only with respect to the shape of the
room, but they do not take into account the colour of the walls, notwithstanding the
fact that both rats and young children are able, in other tasks, to respond selectively
to colour information (Cheng, 1986; Hermer and Spelke, 1994). On the other hand,
human adults tested under similar conditions are able to integrate spatial and colour
information quite easily in order to solve the task (Hermer and Spelke, 1994). Interest-
ingly, developmental studies have shown that the acquisition of the capacity to perform
correctly in this task is closely related to the acquisition of spatial terms: children who
are able to produce utterances conjoining spatial and color terms (i.e. who can de-
scribe something as, say, ’to the right of the long green wall’) are also able to solve
the problem. While those who do not display this kind of word use do not outperform
rats (Hermer-Vazquez et al., 2001). Most importantly, adult’s good performance has
proven to be due to language use (for oneself). In another set of experiments, adults
have been asked to solve the same task while performing one of two other tasks. The
first one involved the repetition of speech played over headphones, while the second one
involved the repetition, with the hands, of a rhythm played over headphones. While
rhythm shadowing caused only a general degradation in performance but did not pre-
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vent subjects to integrate both geometrical and nongeometrical information, speech
shadowing caused adults’ performance to degradate at the level of young children and
rats (Hermer-Vazquez et al., 1999). Taken all together, these and other4 experiments
clearly suggest that using language for oneself is what enables humans to put together
different kinds of otherwise encapsulated information for solving complex tasks.

Another fundamental role that language has in the development of human cognition
is related to working memory. Both psychological and neuroscientific evidence demon-
strates that humans have at least two distinct working memory systems. the first
one is a multi-modal system which we share with non-human primates. The second
one is linguistic, and hence species-specific (see, for example, Baddeley, 1992; Petrides
et al., 1993; Becker and Morris, 1999). Recent neuro-imaging studies have also been
discovering the neural basis of these memory systems, suggesting that the linguistic
memory system is subserved by moslty left-hemispheric areas which underlay normal
(audible) speech (see, for example, Gruber, 2002; for a detailed review see Gruber and
Goschke, 2004). Furthermore, verbal memory seems to be more efficient and flexible
than the older multi-modal system, and therefore it seems to function as the predom-
inant reharsal mechanism. For example, a number of studies using different experi-
mental paradigms have consistently shown that articulatory suppression significantly
increases the difficulty of a task by making the retrieval of the taks goal difficult (see,
for example, Baddeley et al., 2001; Emerson and Miyake, 2003; Miyake et al., 2004).
This suggests that it is inner speech that is normally used for retrieving and activating
relevant information for solving a given task. More generally, these kind of evidences
support the Vygotskyan idea that inner speech, in the form of self-instructions, plays
a major role in self-control and the voluntary control of action.

Besides providing an efficient means for remembering task information (the goal you
are pursuing), language can help the development of voluntary control also as a power-
ful means of abstraction. Recent studies on language-trained chimanzee seem to provide
this kind of evidence (Boysen et al., 1996). Boysen and her collegues presented chimps
with two bowls containing different numbers of candies. The animal is given the bowl
which it doesn’t point to. Hence, to get the most rewarding result the chimp has to
point to the bowl containing the smaller number of candies. Surprisingly, chimps never
learned to do this. But if the same chimps, who had previously been taught symbols
referring to numerals, were presented with numerical symbols instead of candies, they
quickly learned to point to the smaller numerical symbol in order to get the larger
quantity of candies. This result seems to demonstrate that the use of (numerical) sym-
bols can enable chimps to master their otherwise overwhelming food-related responses.
And this is possible just because of the abstractness of the symbols. When presented

4For a more comprehensive review, see Spelke (2003), who discuss in detail also the role of language
in human-like numerical competence.
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with symbols the chimps can just focus on the information which is relevant for solving
the task. On the contrary, when presented with real food the richness of the sensory
stimulus prevents them to inhibit their responses in order to reason on the strategy to
adopt.

The role of language as a fundamental tool for engaging in abstract problem-solving
has been even more clearly demonstrated in the contest of relational matching, with
studies on both humans and chimps (for a review, see Gentner, 2003). In two series
of experiments with children, Gentner and her collegues (Rattermann and Gentner,
1998; Loewenstein and Gentner, 2005) clearly demonstrated that the use of relational
language helps children to solve analogical (relational) mapping tasks across a wide
range of ages and task difficulty. Indeed, Gentner et al. provided also evidence for the
Vygotskyan hypothesis that the linguistic aid undergoes a process of internalization:
while younger children need to be provided with relational language even for solving
simple tasks, older children do not, but they need linguistic help if confronted with more
difficult tasks. These studies clearly point to the importance of language for reasoning
on abstract (relational) properties of the world. In fact, acquiring and using a name
for describing a relational pattern helps the child to abstract that pattern from the
concrete context in which it has been experienced and thus it increases the probability
that the same abstract pattern is recognized the next time it is encountered. In other
words, labeling an abstract5 property changes the perceptual apparatus of a child, in
that it can render that property perceivable instead of discoverable.

But the most impressive evidence for this view comes, again, from empirical works
on chimanzees (Thompson et al., 1997, see also Oden et al., 2001). Chimps (as several
other animals) can learn quite easly to succeed in a match-to-sample task: that is,
to choose, among two different objects, the one of the same kind of the given sample
(given an A as the sample, the chimp has to choose an A gainst a B). But normal
(non-linguistically-enculturated) chimps were not able to learn and solve a relational-
matching task: that is, to choose, among two pairs of objects, the one whose objects
are in the same relation as the ones of the sample pair (given an AA as the sample, the
chimp has to choose a BB pair against a CD one). Most strikingly, chimps which had
been previously trained to use two different symbols for the two relations ’sameness’
and ’difference’ were able to solve the relational-matching task. Note that in order to
solve the relational-matching task chimps must apply the same/different distinction at
the relational level, that is, at the level of the relation between objects. So, in order to
solve this second-order problem (judging relations between relations) all it is needed
is to reduce it to a first order one (judging relations between objects), which we know
chimps are able to solve. And this is exactly what language training seems to do:

5In this case, the abstract property is relational, but the point can be generalized to any kind of
abstract labels.
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practicing with relational symbols seems to change chimps’ perception. Linguistically
trained chimps are able to ’see’ the relation holding between two objects so that they
have just to decide whether two perceived relations are same or different (beside the
original paper of Thompson and collegues, see Clark, 2005 for a similar analysis of the
same experiments). This, I think, is just what Vygotsky and Luria meant in the passage
quoted at the beginning of this chapter: language learning transforms perception in
that it makes those categories which are ’labeled’ by language directly visible to the
language user. The result is that the language user can apply his cognitive processes
not only on simple perceptual experiences, but also upon the ’concepts’ themselves,
which are made perceivable through the labels.

I consider the interpretations I just gave of the exeriments cited above quite inter-
esting, but they are surely also somehow vague and metaphorical. Science needs more
rigour and hence more concrete models of the mechianisms which are supposed to ex-
plain the effects of language on cognition which have been discovered experimentally.
The work I will present in this chapter represents just the first attempt to provide a
computational model of the effects of language on categorization.

5.2.2. Computational modeling

In the last years there have been a very few attempts to studying the relationships be-
tween language and cognition through computational modeling. As we have seen above,
classical artificial intelligence used to consider language either at the core of thought
or as simply a means of communication (or both), with the consequence of denying
any effect of language on other cognitive capacities. The advent of connectionism
brought substantial new ideas about cognition, but most of the effort of connection-
ist researchers was put in trying to demonstrate how neural networks could perform
’classical’ tasks as well as (or better than) classical symbolic, rule-based systems. As
a result, the great majority of neural network modeling on language has focused on
classical topics such as learning and understanding of grammatical forms (see, for ex-
ample, Elman (1990); Plunkett et al. (1992); MacWhinney (1998); Christiansen and
Chater (1999)).6

On the other hand, the new approaches of situated and embodied cognition replaced
the study of high-level cognitive functions with that of low-level behaviors, with the
result of almost completely abandoning the study of language, let alone the study
of the relationships between language and cognition. In the last ten years there has
been a considerable amount of computational work on language evolution inside the
artificial life community, but most of these works have been focusing on the auto-

6But see chapter 14 of Rumelhart et al. (1986), the ’bible’ of connectionism, and O’Brien and Opie
(2002) for two interesting discussions, from the connectionist perspective, of the relationships
between language and cognition very similar to the one which I present here.
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organization of communication systems in populations of individuals and have almost
completely neglected the possible roles that these communication systems could play
in the cognitive capacities of individual agents. There are just a very few exceptions,
all of which regard, in one way or the other, the role that language can play in the
learning of categories.

For example, Schyns (1991) and Lupyan (2005) have shown with neural network sim-
ulations how linguistic label can simplify category learning. In fact, providing neural
netowrks with labels accompanying perceptually presented objects during learning has
been shown to speed up category learning (Schyns, 1991) or to improve internal repre-
sentation of obejects, specifically of those categories of objects which are more difficult
to learn (Lupyan, 2005).

Steels and Belpaeme (2005) have shown how the self-organization of a linguistic sys-
tem between a collection of agents can co-evolve with the process of categorization
of perceptual experiences because of the structual coupling between the ’conceptual’
and the ’linguistic’ systems. In other words, while a populational linguistic system
self-organize, agents’ conceptual systems adapt themselves in order to maximize com-
municative success.

Using an artificial life framework similar to the one presented in the previus chap-
ters, Cangelosi and collegues (Cangelosi and Harnad, 2000; Cangelosi et al., 2000) have
shown how organisms with language can learn to categorize their experience in adap-
tive ways not only through genetic evolution or individual learning by trial and error,
but also through social learning, with what they have called ’ symbolic theft’. In the
symbolic theft condition learning happens thanks to (a) the prehexisting ability to
categorize some stimula and (b) the exposition to others’ language, which incorporates
the information on how to categorize new experiences. The results of those simulations
have shown that symbolic theft can give an adaptive advantage with respect to stan-
dard phylogenetic or individual learning in that it is both significantly faster and less
dangerous (you don’t risk to suffer the cost of errors).

Other simulations by Steels (Steels, 2003) have shown that using language for oneself
can also be used to boostrap the developent of language itself towards higher levels of
complexity. Discussing one of his computatoinal experiments in which agents had
to evolve a compositional language, Steels reports that posing attention to the self-
produced linguistic utterances proved to be necessary for a population of agents to
develop a linguistic system with case grammar.

Finally, the simulations discussed in the previous chapter have shown that the use of
a simple signalling system not only for communicative purposes but also for talking-to-
oneself can facilitate the evolutionary emergence of the communication system itself. In
particular, the reported simulations demonstrated that linguistic signals which benefit
the hearer but not the speaker do not evolve if they are only used for communication
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while they do evolve if the hearer has to repeat the signals to himself or herself as an
aid to memory.

In the remaining part of this chapter I will present an original neural network model
which I built up for clarifying and developing the interesting speculations on the idea of
language as a cognitive tool which I have reviewed so far. In particular, I have started
with the study of the effects on language on one of the most fundamental cognitive
functions, namely categorization. More specifically, the model I am going to present
in the next section is going to assess the effect on the internal representations of per-
ceived objects produced by the acquisition of the mapping between learned categories
of objects with the labels that name those categories.

5.3. A neural network model of early language

acquisition

5.3.1. The model

During her first year of life, the child learns to control her movements, to make appropri-
ate sensory-motor mappings, to categorize perceptual experiences, and to reproduce her
own sounds and the linguistic sounds which are present in her environment. Notwith-
standing all these progresses, this phase of child development is called pre-linguistic
because in her first 10-12 months the child does not show any strictly linguistic com-
petence, that is, she is able neither to understand nor to meaningfully produce words.
It is only around the end of her first year that the child learns to connect the linguistic
sounds that have become familiar to her with their meanings as indicated by the fact
that she reacts correctly to linguistic stimuli and she produces words in the appropriate
circumstances.

Early language acquisition can be considered to involve three sub-tasks (Kit, 2002):
the acquisition of linguistic forms, the acquisition of non-linguistic sensory-motor map-
pings, and the association between linguistic forms and specific sensory-motor map-
pings, which become the meanings of the linguistic forms. Behavioral evidence (Wax-
man, 2004) suggests that the acquisition of linguistic forms and the acquisition of
sensory-motor mappings run quite independently until the end of the first year. Only
after the child has acquired a certain ability to map sensory inputs into motor outputs
and to categorize experiences, on one side, and to recognize and produce linguistic
forms, on the other side, the third task, the association of linguistic forms with specific
sensory-motor mappings, can begin. The model of early language learning presented
here is based on this kind of behavioral evidence.

The neural network used in this simulations is modular. It is constituted by two
sub-networks with three layers each, which I call the sensory-motor sub-network and
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Figure 5.1: The modular neural network

the linguistic sub-network. The hidden layers of the two sub-networks are recipro-
cally connected by two matrices of connection weights so that the linguistic and the
sensory-motor systems can interact with each other (figure 5.1). The sensory-motor
sub-network has 16 bipolar input units (each unit’s activation can be either –1 or 1)
which encode the properties of perceived objects, 2 hidden units (with continuous ac-
tivation in the interval [–1; 1]), and 2 output units which encode the action performed
by the network in response to an object. The activation of the two output units is
thresholded to be either –1 or 1, so that there are only four possible actions: <–1;
–1>, <–1; 1>, <1; –1>, <1; 1>. The network’s environment consists of 480 objects,
belonging to 4 categories of 120 exemplars each. There are four prototype vectors, one
for each category, and the perceptual properties of objects are generated by flipping 4
bites of the prototype which the object belongs to.7

The linguistic sub-network has 2 input units encoding incoming linguistic signals, 2
hidden units, and 2 output units which represent emitted sounds. All the units of the
linguistic sub-network have continuous activations in the interval [–1; 1]. The linguistic
environment is constituted by 4 words, which can be interpreted as the names of the
four kinds of objects or of the appropriate actions to be performed upon them. Since
words are pronounced in different ways by different persons and by the same person
at different times, the acoustic inputs are created by changing slightly 4 prototype
vectors, one for each word (<–0.5; –0.5>, <–0.5; 0.5>, <0.5; –0.5>, <0.5; 0.5>). For
reasons of symmetry, there are 120 instances of each word. Each instance is produced
by changing both values of the corresponding prototype vector by an amount randomly
chosen in the range [–0.25; 0.25] .

7The four prototype vectors are: <–1; –1; –1; –1; –1; –1; –1; –1; 1; 1; 1; 1; 1; 1; 1; 1>; <–1; –1; –1;
–1; 1; 1; 1; 1; –1; –1; –1; –1; 1; 1; 1; 1>; <–1; –1; 1; 1; –1; –1; 1; 1; –1; –1; 1; 1; –1; –1; 1; 1> and
<–1; 1; –1; 1; –1; 1; –1; 1; –1; 1; –1; 1; –1; 1; –1; 1>
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The entire network passes through two successive stages of learning which are meant
to correspond approximately to child’s learning from birth to 1 year and to her learning
from 1 year on, respectively. In the first stage of learning the two sub-networks are
trained independently to accomplish two different tasks. The sensory-motor network
learns to categorize objects while the linguistic network learns to repeat or imitate
words. At the end of this first stage the connections between the hidden layers of the
two sub-networks become functional and in the second stage of learning the network
learns to associate words with the categories of objects which they refer to.

At the beginning the network is initialised with random connection weights in the
range [–0.5; 0.5]. Then, 4500 cycles of backpropagation learning (with a learning rate
of 0.2) are run in the following way. For the sensory-motor sub-network, one of the 480
different objects is randomly chosen, its perceptual properties are encoded in the input
units of the sensory-motor network, the response of the network is calculated, and the
correct action is provided to the network as teaching input (correct responses are <–1;
–1>, <–1; 1>, <1; –1> and <1; 1> for objects belonging to category A, B, C and D,
respectively). For the linguistic sub-network, one of the 480 possible instances of words
is randomly chosen and encoded in the linguistic input units, the sound produced by
the linguistic network in response to this heard sound is calculated, and the same sound
heard as input is given as teaching input (in other words, the linguistic network has to
accomplish an autoassociative task).

During this first stage of learning, the connections that link the hidden layers of the
two sub-networks are non-functional. After 1000 cycles of back-propagation learning,
the inter-network connections become functional and in the second stage of learning
their weights are modified so that the network learns to associate the internal repre-
sentations of objects (the vectors of activation of the sensory-motor hidden layer) with
the internal representations of the appropriate words (the vectors of activation of the
linguistic hidden layer), and vice versa. This second phase of learning runs as follow.
One of the 480 objects is chosen randomly, together with one of the 120 instantiations
of the word that designates the category which the object belongs to. The object and
the word are given as input to the sensory-motor network and to the linguistic network,
respectively. Then, the vectors of activation of the two hidden layers are calculated
and two cycles of the delta rule learning algorithm are applied by considering the two
hidden layers with the connection weights in between them as two distinct perceptrons:
one perceptron has the sensory-motor hidden layer as its input layer and the linguistic
hidden layer as its output layer; the other perceptron has the linguistic hidden layer
as its input layer and the sensory-motor hidden layer as its output layer. The delta
rule is applied by using the vector of activation observed in the linguistic hidden layer
as teaching input for the first perceptron and the vector of activation observed in the
sensory-motor hidden layer as teaching input for the second perceptron. This procedure
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is applied 500 times with a learning rate of 0.2.

5.3.2. Results

Before studying the effects of labels on categorization we had to validate the model
by assessing performance, that is by checking whether our neural network had learned
the language it was exposed to. In order to do that, we run two pre-linguistic tests –
categorization and linguistic imitation – and two linguistic tests – naming and com-
prehension.

In the categorization test the sensory-motor network is given an object as input
and its performance is calculated as the difference between its action response and
the right one (according to the objects category). In the linguistic imitation test the
linguistic network is given the instantiation of a word as input and performance is how
much the network is able to reproduce the heard sound in its linguistic output. In the
naming test we give the network one of the 480 objects as input, activation spreads
to the sensory-motor hidden units, then to the linguistic hidden units, and finally
to the linguistic output units. We calculate the network’s performance with respect
to the vector prototype of the word that designates the category of the perceived
object. The comprehension test is symmetrical to the naming one. In this test, we
give the network an instantiation of a word as input and let the activation spread
from the linguistic input units to the linguistic hidden units, then to the sensory-motor
hidden units and finally to the motor output units of the sensory-motor networks. The
network’s performance is calculated with respect to the response that is appropriate to
the meaning of the word, that is, to the action to be produced in response to objects
of the category which the heard word refers to.

For each of the four behavioral test I plot the number of errors produced by the net-
work (figure 5.2). The two non-linguistic tests (categorization and linguistic imitation,
figure 5.2a) are run at the beginning of the simulation (cycle number 0) and after the
first stage of learning (cycle number 4500), while the two linguistic tests (naming and
comprehension, figure 5.2b) are run before the second stage of learning (cycle number
4500) and after all learning has taken place (cycle number 5000).

The network learns both to perform the correct action in response to a perceived
object and to imitate the linguistic sounds it hears: for both tasks the number of errors
decreases from about 360 (which represent about the 75% of the 480 total objects) at
the beginning of the simulation, to 0, that is no error at all, at the end of the first stage
of learning. Even the second stage of learning is very successful: while at the end of
the first stage of learning the network gives wrong responses about the 75% of the time
in both the linguistic tests, at the end of the second stage the network has acquired a
perfect linguistic competence in that it always names objects correctly and responds
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(a) (b)

Figure 5.2: (a) Number of errors in the categorization and linguistic imitation tasks
before (0) and after (4500) the first stage of learning. (b) Number of errors in the
naming and comprehension tasks before (4500) and after (5000) the second stage of
learning.

appropriately to all the linguistic signals which are present in its environment.

5.4. How language affects categorization

5.4.1. Private and inner speech

An important characteristic of human language is that it is used not only for communi-
cating with others but also for communicating with oneself. Indeed, the use of language
for oneself starts as soon as language is acquired, and represents a great amount of lin-
guistic production. This fact is well-known at least from the 1920s, thanks to the work
of developmental psychologist Jean Piaget, who called children’s talking-to-themselves
’egocentric speech’. In trying to explain this very puzzling evidence, Piaget appelled
to the notion of an egocentric cognitive phase. According to Piaget, talking to oneself
was just a by-product of the immaturity of the social competence of the child which
played no significan role in child development itself.

Russian psychologist Lev Vygotsky gave a rather different, and much more convinc-
ing, explanation of the same phenomenon (Vygotsky, 1962). According to Vygotsky
private speech is not a pre-social phenomenon, but a post-social one. It is not meaning-
less for child’s development. On the contrary, it is of the most importance. And it does
not completely disappear, but is gets transformed by being internalized. Vygotsky’s
theory can be summarized in the following way. When the child is talked to by her par-
ents and other adults (or even elder children), linguistic stimuli helps her in a number
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of ways: they help her learn new concepts, they help her remember relevant experiences
or facts, they guide her attention to important aspects of the environment, they help
her solving difficult tasks and so on. Consequently, when the child starts talking to
herself, she is just trying to do to herself, through imitation, what others used to do to
her, that is, helping her through linguistic stimuli. In other words, children’s private
speech is an effect of rendering intra-personal the inter-personal linguistic social aid.
Furthermore, as the child grows up and seems to talk to herself less frequently, the
disappearence of private speech is only apparent: in fact, talking to oneself is just be-
ing internalized, thus becoming inner speech. Finally, this process of internalization of
the linguistic social aid is of the most importance, in that it marks the transition from
elementary, animal-like, cognition, to the high-level cognitive capacities characteristic
of humans (Vygotsky, 1978).

5.4.2. Analyzing internal representations

As I wanted to test whether those Vygotskyian ideas could hold even with respect to
a basic cognitive function like categorization, I analyzed the internal representations
of perceived objects under 5 different conditions, which I call (a) no-learning, (b) no-
language, (c) social language, (d) private speech and (e) inner speech. In my neural
network, the internal representation of a perceived object is the activation pattern
that is evoked be the sight of that object in the sensory-motor hidden units. We can
represent internal activation patterns as points in an abstract space with the same
number of dimensions as the number of units in the corresponding internal layer of
units and with each dimension representing the level of activation of the corresponding
unit (in the range [–1; 1]). A particular internal activation pattern will be represented
by a specific point in the abstract space located in the appropriate position with respect
of each dimension, reflecting the activation level of each unit in the pattern. All the
different members of a specific category of objects, say, all the different apples, will be
represented by a cloud of points.8 At the very beginning of learning the connection
weights of both modules are random. Consequently, the cloud of points representing
the internal activation patterns evoked by the different, say, apples will be very large
and it will largely overlap with the clouds of points representing other categories of
objects. This is what is actually observed (see figure 5.3a).

After learning, the internal representations of object belonging to the same category
form much better clouds, that is, clouds which are much smaller, do not overlap with
other clouds, and have a considerable distance between their respective centers (figure
5.3b). The clouds of both the no-learning and no-language conditions are calculated
by giving to the network only the perceptual properties of the object (figure 5.4a).
8For a more detailed explanation of the concept of a ’category cloud’ and of how we can measure it,
see Appendix A.
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5. Language as an aid to categorization

Figure 5.3: Internal representations of objects (category clouds) in the conditions of
no-learning (a), no-language (b), social language (c), private speech (d), and inner
speech (e). See text for details.

Figure 5.4: Experimental conditions for testing internal representations: (a) no-
learning and no-language; (b) social language, (c) private speech, and (d) and inner
speech. The process of activation is divided up into a sequence of discrete time steps.
Numbers indicate connections that are involved in each time step. See text for details.
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5.4. How language affects categorization

In order to test whether social language affects internal representations of object I
calculated categories clouds by making the network perceive objects accompanied by
instances of the words that name them (figure 5.4b). The results, shown in figure
5.3c, demonstrate that language improves categorization in that the clouds of different
categories are both smaller and more distant the one to the other than the clouds of
objects unaccompanied by language.

In order to study whether language can improve categorization not only if it is
used socially, but also individually, I simulated the two ways in which humans talk-to-
themselves: externally, as in private speech, and internally, as in inner speech. In the
private speech condition (figure 5.4c) the individual encounters an object and prior to
responding to it the individual produces the word that designates the object. Then the
individual hears the sound that he or she has produced so that he or she can respond to
an internal representation of the object which is influenced by the heard, self-produced
sound.

In the inner speech condition (figure 5.4d) when the individual sees the object he
or she does not produce any externally audible sound. However, the sight of the
object evokes in the individual not only the internal representation of the object but
also, through the connections leading from the sensory-motor module to the linguistic
module, the internal representation of the word that designates the object. Through
the connections leading from the linguistic module to the sensory-motor module, this
internal representation of the sound that designates the object can influence the internal
representation of the object in the sensory-motor module.

The results of the both the private language and the inner language conditions
(figure 5.3d and e, respectively) confirm the prediction that talking to oneself improves
categorization as much as the perception of the commenting of the world provided by
other individuals. In fact, in both cases we see that there is about as much improvement
in the internal representations of perceived objects as in the condition in which the
sound that designates the object is provided by another individual. Indeed, the clouds
of the two talking-to-oneself conditions are just a little bigger and less distant from
each other than in the social language condition. The reason for this is just that in the
social language condition internal representations on the sensory-motor hidden units
are calculated by summing up the information coming from two suorces: that coming
from the visual input units plus that coming from the linguistic hidden units. On
the other hand, in both the two talking-to-oneself conditions, clouds are calculated by
providing to the sensory-motor hidden units only the signal coming from the linguistic
hidden units after talking-to-oneself, either externally or internally, has happened. In
other words, after the visual stimulus has triggered the network response, it is removed
so that the network responds only to the self-produced labels. This corresponds to
a child seeing an object, producing its label (either loudly or just internally), and
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reacting to the self-produced labels without attending to the visual stimulus any more!
In fact, if we test internal representation in a condition in which clouds depend not
only on self-produced labels, but also on the visual stimulus, even the slight advantage
of the social language condition with respect to the two talking-to-oneself condition
completely disappears (results not shown).

5.5. Discussion

5.5.1. Language and categorization

In this chapter I have described a neural network model of early language acquisition.
The model assumes that during her first year of life the child separately learns vari-
ous sensory-motor mappings (reaching, manipulating, categorizing objects) and various
sound-related abilities (recognizing sounds, repeating her own sounds and the sounds
produced by others). It is only at the end of the first year that language learning
begins. The two separate networks that are responsible, respectively, for the sensory-
motor mappings and for the sound-related abilities become functionally connected,
and language learning consists in learning the connection weights linking the two net-
works. These weights allow the child to produce linguistic sounds in the appropriate
circumstances and to react appropriately to the linguistic sounds produced by other
individuals.

But language changes the way in which the child categorizes reality. Input-output
mappings require categorization. Categorization is to make the internal representations
(patterns of activation in the network’s internal units) of different inputs more similar if
the different inputs must be responded to with the same action, and more different if the
inputs must be responded to with different actions (Harnad et al., 1995; Di Ferdinando
and Parisi, 2004). All organisms categorize reality. And infants categorize reality
during their first year in order to generate the appropriate input/output mappings. My
model shows that language can influence cognition by inducing better categorization
of non-linguistic inputs.

This model can also be considered as a general model of the integration of multiple
sensory-motor mappings in the brain. Much activity in the brain consists in exploit-
ing the co-variations observed in experience to establish correlations between different
sensory-motor mappings. For example, visual-motor mappings are correlated with
proprioceptive-motor and tactile-motor mappings in such a way that given one type of
input the brain can predict the other one. Language is but one example of this type
of integration between different sensory-motor mappings. In particular, it is the inte-
gration between various non-linguistic sensory-motor mappings and the sensory-motor
mapping from heard sound to pronounced sounds. Given a visual input from an object,
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the brain generates the internal representation of the word (sound) that designates the
object. Or, given a word (sound), the brain generates the internal representation of
the visually or haptically perceived object designated by the word.

However, language is somewhat different from other types of integration between
different sensory-motor mappings. While other correlations between different sensory-
motor mappings are not arbitrary, language is arbitrary, and this may require a species-
specific genetically inherited basis for language learning. Given a visual input from
a new object, the brain can predict how the visually perceived object would feel if
touched. In contrast, given a new object the brain cannot predict what is the word
that designates the object or, given a new word, the brain cannot predict which ob-
ject is designated by the word. Furthermore, variations in how the same word is
pronounced do not predict variations in the object designated by the word. Another
important difference between language and other types of integration between different
sensory-motor mappings is that the overall space of variation of heard or pronounced
linguistic signals appears to be much smaller than the space of variation of the objects
or actions that are designated by the linguistic signals. This is particularly important
for categorization because it might contribute to explaining why language makes our
sensory-motor categories more distinctive and more compact.

But the most important point to be made here is that language can be conceived as
a system which is specifically devoted to the kind of mapping that can give the kind
of advantage on categorization that our model has demonstrated. In fact, we know
that acoustic input is very early distinguished by an human brain in linguistic and
non-linguistic, and the two different kind of input are furtherly processed by different
parts of the brain. And the mapping between, for example, visual and non-linguistic
acoustic input is not systematic, at least not as systematic as the mapping between the
visual and the linguistic acoustic input. It is certainly true that I sometime perceive,
for example, the visual apparence of a dog together with its barking. But only a
very small fraction of the visual categories that I have do have specific non-linguistic
sounds systematically related to them, and, vice-versa, only a small fraction of the non-
linguistic acoustic categories that I have do have specific visual odbjects systematically
related to them. On the contrary, the linguistic system is devoted to the systematic
mapping of words to the representations of categories of stimuli in other parts of the
brain. So, generally speaking, each category we can have in mind has a specific word
– or a collection of words, like a sentence or a discourse – for naming it. Conversely,
words refer systematically to specific aspects of the sensory-motor experience of an
individual – or to abstractions of that experience. This systematicity in the mapping
between sensory-motor experiences and arbitrary labels is exactly what produces the
kind of effect on categorization that we have seen in our simulation.

In short, I do think that perceiving any two distinct kinds of information which
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relate to the same category of objects do facilitate the categorization process. This
will presumibly produce a better internal representation than in the case in which the
information on the presence of the object comes from one single sensory modality. But
this effect on categories is particularly important for the linguistic system because the
mapping between the linguistic system and the other sensory-motor sytems is arbitrary
and systematic, while in other cases it its either non-arbitrary or non-systematic or
both.

Finally, in a vocal acoustic language the sensory-motor mapping from heard to pro-
nounced words can easily become a circular or closed circuit. When one sees an object,
the visual input from the object does not only generate the internal representation of
the word that designates the object but it can generate the actual sound of the word
through private or inner speech. In this chapter I have also provided a first neural
netowork model of private and inner speech. The results of the analysis of internal
representations show clearly that the advantage given by heard labels for categoriza-
tion is mantained even when the individual talk-to-herself, both in private and in inner
speech. These results support the Vygotskyian idea that talking-to-oneself constitutes
a fundamental process of child development, in which the child internalizes the lin-
guistic social aid. This work coonstitutes the first running computational model which
supports this general Vygotskyian view for one of the most basic cognitive function,
that is categorization. As I will discuss in the next chapter, the goal of this line of
research is to develop further the model in order to understand the effect that language
can have in the development of most – if not all – human cognitive functions.

5.5.2. Implications for language evolution

Human language has evolved. If we go back sufficiently in time we find ancestors of
present-day humans who did not have language. What is less clear is how and why
language has evolved. If any capacity has evolved one can ask what adaptive advan-
tages the possession of that capacity conferred to the individuals that possessed the
capacity over other individuals that lacked it. This should not imply a pan-adaptivist
view of evolution. Novelties can appear evolutionarily not because they are adaptive
but because they are inherited together with characteristics that are adaptive, or they
can be almost necessary by-products of already existing adaptive characteristics, or
for chance reasons. And even adaptive characteristics may not evolve if the concerned
organism is not pre-adapted to them, i.e., if the organism does not already possess
other characteristics that make the evolutionary emergence of the new characteristics
possible. However, although these various limitations to a pan-adaptivist view of evo-
lution are all appropriate and correct, still it is at least heuristically useful to ask what
the possible advantages of an evolved characteristic are because this may allow us to

104



5.5. Discussion

explore various possible evolutionary scenarios that can be compared with what we
actually know about the past.

In the case of language it seems clear that language may have evolved because it
conferred social advantages by dramatically improving communicative capabilities of
human beings which in turn improved coordination among different individuals. The
idea that language is just a very complex and powerful communication system can
indeed be considered as the standard view in the debate on language evolution (see
Section 2.8).

However, another less often explored possibility is that human language may have
evolved (also) because it made the cognitive functioning of single individuals more ef-
fective. Unlike animal communication systems human language can be used not only
socially but also individually. It can be used to communicate with other individuals,
by asking them information or providing them with information or by asking them to
do one thing or another, but it can also be used to talk to oneself, to comment on
what one sees, to put ones predictions, explanatory hypotheses, and plans into words.
These individual uses of language can result in more effective behaviours on the part of
the individual even when the individual is acting alone, and this may have represented
a reproductive advantage and a selective pressure for the emergence of language. In
the literature on language evolution the individual functions of language tend either
to be ignored or to be thought to have appeared much more recently than it would be
required if these uses were to represent a selective pressure for the very beginning of
human language. It is assumed that human beings have learned to talk to themselves
when their language was already completely developed and indistinguishable from the
language spoken by present-day humans. The initial selective pressures for the emer-
gence of language were social. When language was already evolved and fully modern,
humans found that it could be usefully used to talk to oneself and not only to talk to
others. But it is not clear that this is necessarily so. In fact, it is possible that even a
very simple form of proto-language, consisting of words (or holophrases) that correlate
with relevant experiences, can give important individual advantages once it is used not
only for communication but also for talking-to-oneself.

The simulations presented in this chapter have shown that using language for oneself
can improve an individuals categorization of the world. I argue that human language
may have emerged not only due to social pressures, i.e., because language made it
possible to have more sophisticated forms of social communication and coordination,
but also due the advantages that language conferred on the cognitive functioning of
the single individual when it is used for talking to oneself, either aloud or internally.
Since these advantages can be demonstrated even with a very simple language lacking
any syntax, I conclude that it is not necessary for language to be as sophisticated
and complete as present-day language to provide individual cognitive advantages but
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that these advantages were probably already present in the very early stages of the
evolutionary emergence of human language.
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6. The influences of language on
human cognition

The internalization of socially rooted and historically developed activities is
the distinguishing feature of human psychology, the basis of the qualitative
leap from animal to human psychology.
Vygotsky: Mind in Society, pag. 57 (Vygotsky, 1978)

6.1. Introduction

A crucial, but often neglected, characteristic of human language is that language is
used not only for communicating with others but also for communicating with oneself,
i.e., for thinking, whereas we don’t have evidence for this type of use in animal commu-
nication systems. Inputs to an individual’s linguistic network can come from another
individual’s linguistic network but they can also come from the individuals own lin-
guistic network: the individual talks to itself. If the sounds are actually (physically)
produced by the individuals phono-articulatory movements and actually heard by the
sensory units of the individuals linguistic network, we call it private speech. If the
loop does not include the organisms peripheral motor and sensory organs but is more
internal, we call it inner speech (Chapter 5). Inner speech is faster than private speech,
and has also some structural differences which can have important consequences for
certain purposes, but in both cases a number of interesting effects on the individuals
cognitive activity can be observed.

As I have discussed in the previous chapter, one could think that using language to
talk to oneself is a late development in human evolution and it presupposes an already
complex language. However, some of the simulations presented in this thesis have
demonstrated that a full blow syntactic and compositional language is not necessary
for benefiting from talking to oneself. In fact, the simulations of Chapter 4 have shown
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that talking to oneself can be a selective pressure for the evolutionary emergence of a
very simple communicative system if the linguistic signals are used by the individual
to keep in memory some information which has been received from another individual.
Furthermore, the simulations of Chapter 5 have demonstrated that learning labels for
already acquired ’concepts’ can improve an individual’s categorization ability. Hence,
both these simulations suggest that using language for oneself can have advantages for
the individual even if the language is very simple, and that these individual advantages,
once discovered by evolving hominids, might have played a role in the subsequent
evolution of language itself.

Using language to talk to oneself has a number of important consequences for human
cognition. Indeed, it can be argued that it constitutes a (the) fundamental step in the
development of most, if not all, human high-level cognitive functions. In this chapter
I will provide some ideas on the effects that the acquisition and use of language can
have on the following cognitive abilities: learning, abstraction, memory, attention,
problem-solving, voluntary control, and mental life.

6.2. Learning

The importance of labels on individual learning is surely the most studied effect of
language on cognition. In particular, as we have seen in Section 5.2, the few attempts
of studying the relationships between language and cognition by computational mod-
eling have been almost exclusively focused on the role of language in category learning
(Schyns, 1991; Lupyan, 2005; Cangelosi and Harnad, 2000; Steels and Belpaeme, 2005).
Nonetheless, the field is only at its very beginnings and much more work has still to
be done in order to provide a full account of the mechanisms that underlie the role
played by language in learning. I argue that the facilitatory effect of labels on category
learning derives from the following two mechanisms: (a) linguistic inputs constitute ad-
ditional stimula that focus the learner’s attention to the specific aspects of perception
that are relevant for categorization itself; (b) language itself can sometime represent
the only ground in which the learner can develop the discriminative capacities that
constitute categorization. Let’s consider these two points in order.

Hearing the same linguistic stimulus, let’s say the word ’red’, when perceiving red
cars, red apples and red flowers facilitates – or may even induce – the acknowledge-
ment that all those different stimula have something in common, namely the red color.
In neural network terms, this means that the occurrence of the same pattern in the
acoustic input group of neurons – namely the pattern that correspond to the word ’red’
– increases the similarity of the internal representations of all red stimula, and this in
turn can help – or induce – the network itself to learning that all those stimula belong,
in some respect, to the same category, namely that of red things. A similar point has
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already been made in the emirical literature on the topic (see, for example, Waxman,
2004). But, in my view, this is not the whole story. The point is that perception de-
pends in a fundamental way to action: to categorize means to produce a given behavior
A when perceiving a certain class of stimula and another behavior B when perceiving
another class of stimula. It is the need to respond appropriately (and discriminatively)
that makes an organism perceive the first class of stimula as different from the second
one (similar action-based views of cognition have been developed, among others, by
Di Ferdinando and Parisi, 2004; Gallese and Lakoff, 2005). So, when dealing with a
categorization process, we must always ask the following question: which is the differ-
ential behavior exibited by an agent that makes us say that the agent is categorizing
some experiences as belonging to the same category and other experiences as belonging
to another category? I argue that, for many of human’s categories, the answer is just:
the production of different words ! In other words, I am claiming that in many cases
the human neural network learns to represents some patterns of inputs (for example
those produced by red cars, red apples and red flowers) as similar to each other and dif-
ferent to other patterns (those produced by white cars, apples and flowers) principally
because it is learning to produce, through its phono-articuilatory output units, the
same (or different) action, which consists in the production of the same (or different)
word: ’red’ (or ’white’). This is not to deny that there is some internal ’appreciation’
of different colours, nor that there is no genetical tendency to discriminate colours: we
all know, from direct experience, that we have different appreciation of redness and
whiteness, and we know from scientific investigations that there is some genetically
based capacity to discriminate colours in certain ways. The point is that part of the
specific way a particular human being categorizes experiences (in this case, related to
colour) is in fact due to the way s/he learns to name them. In other words, according
to this view, the amazing amount of categories that humans can have is in great part
due to the role played by language in providing a behavioral ground for categorization.

Furthermore, the fact that human language is culturally learnt – at least the part
of language which principally incorporates a category system, that is lexicon – does
not only facilitate children’s learning of categories, but has also another important
consequence: it guarantees that learnt categories are more and more useful in the
individual’s adaptation to the environment. In fact, being culturally transmitted, the
categorical distinctions embedded in language undergo a process of cultural evolution,
which rises dramatically the likelihood for those distinctions to be adaptive. This
could be tested with a simulation. My prediction is that a population of individuals
interacting with their environment and possessing a cummunication system which is
culturally transmitted and evolved would develop better categories than a population of
individuals whose adaptation depends exclusively on genetic evolution and individual
learning. The quality of the category system could be indirectly measured as the
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level of adaptation to the environment that the category system permits. The better
adaptation of a population with a culturally trasmitted language would be explained
by two factors: (a) the fact that the learning of the communication system influences
positively the learning of the category system and (b) the fact that the category system
itself can undergo a process of cultural evolution through which new adaptive ways of
categorizing experience discovered by single individuals can spread in the population as
a result of their embedding in the linguistic system. In other words, the acquisition of
a linguistic system makes it possible for an individual to exploit the experience of other
individuals, both living and long dead, and acquire more easily more useful categories.

6.3. Abstraction

The model presented in Chapter 5 has shown that language can have an important ef-
fect on the internal representations of sensory stimuli which is independent on learning.
In fact, my simulations have shown that learning the mapping between pre-linguistically
learned concepts and linguistic labels changes the internal representations of objects.
The reason is that the internal representations of the non-linguistic network, which
prepare the motor outputs with which the non-linguistic network will respond to its
sensory inputs, tend to be influenced not only by the sensory inputs to the non-linguistic
network but also by the linguistic network. This has the effect that the non-linguistic
networks categories tend to become better categories, in the sense that the clouds of
internal representations of objects belonging to different categories become smaller and
more distant from each other. And since an organism’s categories influence the organ-
isms behaviour by making it easier for the organism to select the appropriate action
in response to sensory inputs, an organism endowed with language will have a more
effective behaviour.

This effect of labels on internal categorization has further important consequences, as
can be seen if one considers the effects of language on categorization with respect to the
process of abstraction. In fact, categorization requires abstraction. In order to respond
in the same way to different stimuli which belong to the same category you need to
abstract from their differences. And, viceversa, in order to respond in different ways
to similar stimuli which belong to different categories you have to abstract from their
similarities. Reducing the size of a category’s cloud is just improving the first kind of
abstraction (ignoring differences bewteen intra-category stimuli), while increasing the
distance between clouds is just improving the second kind of abstraction (ignoring the
similarities between inter-category stimuli).

The model presented in the previous chapter had one important simplification: in
that model, each object had one and only one specific action associated with it. This is
a clear limitation becuase for real organisms the same object can typically evoke several
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different responses, depending on the context. For example, an apple can be eaten,
thrown, gifted, and so on. In other words, depending on the context, the same object
can be categorized in different ways – in the apple example, as food, as a contundent
thing, or as something that another individual would appreciate. This means that
the internal representation of an object must be multi-functional, in the sense that it
must allow the organism to consider the same object as belonging to different categories
depending on the circumstances. My hypothesis is that linguistic labels help organisms
to abstract from the ways in which an object can be categorized which are not relevant
from the current situation, and to focus only on the categorization which is relevant.

Furthermore, labels can also induce hierarchical categorization. Actions can be hi-
erarchically organized in the sense that two sets of sensory inputs can be responded
to by two different actions, and therefore they constitute two distinct clouds of points,
but there is a third action with which the organism responds to both sets of sensory
inputs. Therefore there is a third cloud of points that includes both the first and second
clouds of points. Language can favour the creation of hierarchies of clouds of points
just because it provides hierarchies of labels: there are two linguistic signals, e.g., ’dog’
and ’cat’", that correspond to two distinct clouds of points, and there is third linguis-
tic signal, ’pet’, that evokes the point located centrally in the larger cloud of points
including the ’dog’ cloud and the ’cat’ cloud. Recall the behavioral studies on monkeys
discussed in Section 5.2, which have demonstrated that chimps that have been not
linguistically trained cannot discriminate between relations of relations, while chimps
that have learnt a symbolic system which include words for relations can (Thompson
et al., 1997). This suggests that training in linguistic tasks changes the way an agent
perceives the world. The interactions with the world of a linguistically trained animal
is mediated by linguistic forms, which render some of the aspects of experience more
salient than others. Furthermore, this process is recursive: once you have learnt to
see the world in certain ways you can also discover new, more abstract patterns. For
example, recognizing that sometimes you are looking at the colour of objects while in
other occasions you are looking at their form may allow the development of more and
more abstract concepts, like the concepts of ’colour’ and ’form’. In other words, while
a non-linguistically trained animal which is able to react appropriately to stimuli of
different colours (red vs. yellow) has surely different representations of those stimuli, it
probably doesn’t have the concept of ’redness’ vs. ’yellowness’. And it surely doesn’t
have the more abstract concepts of ’colour’ vs. ’form’, not to speak about the still
more abstract concept of ’property’ (of which ’colour’ and ’form’ are two instances).
Our abilities of constructing more and more abstract categories depends on our ability
to label discovered categories and hence to reason on the categories themselves.
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6.4. Memory

Another example of the importance of language for cognition concerns memory. One
way of simulating short-term memory with neural networks consists in copying the
activation pattern of a networks internal units in a special set of memory units and
then connecting the memory units to the internal units in order to allow the network to
retrieve the memory traces (see Elman, 1990 and Appendix A). This kind of short-term
memory mechanism is present in both the non-linguistic part of our brain – represented
in my model by the non-linguistic sensory-motor network – and in the linguistic part –
represented by the linguistic network (Baddeley, 1992; Petrides et al., 1993; Becker and
Morris, 1999). However, in contrast with what happens in my simplified model, in real
brains the non-linguistic and the linguistic networks have a significantly different size.
Specifically, the non-linguistic network is much greater than the linguistic one, in terms
of the number of units and connections of which the two networks are composed. This
simple fact provides a clear advantage for the specifically human linguistic memory sys-
tem with respect to the older non-linguistic memory system which we share with other
animals. It is in fact generally easier to remember words than the actual sensory-motor
experiences to which words are associated. Hence,an individual possessing language
can work more easily with linguistic (sound) information and translate this information
into the associated non-linguistic information when necessary. Furthermore, possessing
a linguistic memory system in addition to the older sensory-motor one has a second,
fundamental advantage: delegating the memory function to the linguistic system leaves
the sensory-motor system free to process other kinds of information which are useful
for acting in the environment while linguistically remembering previous information.

These advantages of the possession of a linguistic memory for short-term processes
extend also to long-term memory. Instead of memorizing full experiences a human being
can label them and memorize their verbal description. Thanks to the abstracting power
of language, what is to be remembered for us are just the most relevant features of a
given experience. And thanks to the small size of the linguistic network those relevant
features are coded in a very efficient way, so that they can be easily memorized and
recalled. It is thanks to the possibility of this linguistic coding, memorizing, and
recolling that human beings are able to recall events which happened in their very
distant past. This hypothesis could also explain why our memories never go too far.
Typically, the first rememberings never date back before about the third or fourth year
of life. This is just the age at which private speech begins to appear in the child (Berk,
1994). I argue that we can’t recall anything about our first three or four years of life
because in those years we haven’t learnt to label our own experiences and to memorize
them in verbal form yet.

Finally, the improvement of memory which is made possible by language might be a
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pre-requisite for the development of another peculiar characteristic of human language,
namely displacement. Animal signals tend to be deictic, that is, they communicate
information which is only true given the current state of the sender and the receiver
of the signal and their current location in space. Human language can communicate
information about other places and other moments in time. I argue that the use of
language for memorizing relevant information might have constituted a pre-requisite
for the evolution of displaced communication. In other words, according to this view
it is because we can memorize and recall relevant information in an extremely efficient
way through language that we are able to communicate about things which are not
present here and now. Furthermore, the linguistic coding of memories makes them
ready to be communicated whenever the necessity to do so arises.

6.5. Attention

Language can also be a mechanism for directing attention to specific portions of the
input arriving from the environment and for articulating or analyzing complex sensory
inputs. All organisms need selective attention mechanisms since all organisms live in
environments that send to their sensory organs many different inputs at the same time,
and the organism must select which of these inputs to process in order to generate
a response, while ignoring all the other inputs. Language can be such a selective
attention mechanism. When an individual sees a complex scene, a word originating
from another individual which accompanies the perception of the complex scene can
help the individual to isolate some particular component of the complex scene and to
respond to this component, ignoring the other components. This is a consequence of the
co-variation of specific sounds with specific non-linguistic inputs: the same co-variation
which gives linguistic sounds their meanings. Language can also help the individual
to articulate a complex perceived scene into its elements. A sentence is a collection of
linguistic sounds (words) each of which co-varies with a different component or aspect
of a complex scene so that the sentence makes it easier for the individual that hears
the sentence to isolate these different components and aspects and to respond to them
more effectively.

Objects can have different properties that are relevant for different purposes and
actions on the part of the organism. For example, objects can be of different sizes,
shapes, colours, etc. These different properties are probably all included in the object’s
internal representation in the sensory-motor module. Language includes signals that
evoke these distinct properties of objects rather than the entire object (this is the usual
function of adjectives. These signals can direct the organism’s attention to some specific
property of an object rather than to the entire object. For example, the linguistic signal
’big’ which accompanies the signal ’dog’ directs the attention of the hearer (or of the
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speaker if the signal is self-generated by the organism) to one specific property of the
dog.

Since one and the same property can be possessed by different objects, for example
both dogs and cats can be big, one can hypothesize that linguistic signals evoking
internal representations of properties, e.g., ’big’, rather than of objects, e.g., ’dog’,
create a new type of clouds in the internal units of the sensory-motor module, i.e.,
clouds that include portions of the internal activation patterns evoked by different
objects that belong to different clouds at the object level.

My hypothesis is that these clouds at the property level constitute a cognitive analysis
of sensory inputs which is not accessible to organisms without language or with a
language which does not include these type of linguistic signals. These linguistic signals,
e.g., adjectives, by inducing a cognitive analysis of sensory inputs, allow an organism
to respond in a more sophisticated way to these inputs. (Adverbs can play the same
role with respect to verbs designating actions as adjectives with respect to linguistic
signals designating objects.)

6.6. Problem solving

In human beings language does not mediate only the learning of categories, or, more
generally, of knowledge, as discussed above. It also mediates the learning of abilities.
Consider the case of a difficult practical problem, whose solution requires, for example,
a complex sequence of actions. The discovery of such a solution may be too difficult to
be found with classical trial and error learning. A child who has learnt language can
nonetheless be instructed, through linguistic commands, about the sequence of actions
that must be performed to solve the problem. Linguistic instructions can enable the
child to produce the appropriate behavior in the appropriate circumstances, at least
when the helping adult is present. But the importance of language does not stop here.
If the problem’s solution is really complex, as we have supposed, it is extremely un-
likely that the child can learn it in the few times she is helped by adults. But learning
sequences of words it is much easier than learning compelx sequences of actions (see
Section 6.4). If the child learns the words’ sequence that enables her in the problem’s
solution, she can recall that sequence when needed thus guiding herself through the
solution of the problem. This kind of linguistic auto-stimulation can successively follow
the internalization process which is characteristic of talking-to-oneself. Furthermore,
since verbal instructions about how to solve a complex problem can be passed, tho-
rugh language, from an individual to another, they can undergo a process of cultural
evolution, during which they can be refined and improved. Hence, through this learn-
ing process mediated by language the child is able to learn the solution of extremely
difficult problems whose learning is precluded, not in principle, but in practice, to
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organisms that lack language.
But throught this process of internalization of the linguistic social aid the child does

not only learn to solve specific complex tasks. She also learns the more general practice
of including language in problem solving. This has effect of dramatically improving
problem-solving abilities themselves. In fact, through the introduction of language,
problem solving can benefit from all the above-mentioned advantages provided by lan-
guage plus a few others. First, through language the child can introduce in the possible
problem solution objects which are not immediately present to her attention. On the
contrary, non-linguistic animal’s problem solving is very much stimulus-driven. Second,
language dramatically improves the human capacity to make predictions: in particular,
to predict the consequences of one’s own actions. Predictions becomes in fact more
complex and more articulated if they are linguistically labeled, and the individual
which has labeled his predictions can also work more effectively with them. She can
recall them more easily, she can more easily compare the different predicted outcomes
of different actions for deciding which action to produce, and she can more easily con-
catenate sequences of possible-actions and their relative predicted-consequences in a
way which enables her to construct a plan for actions. In this way, language makes
problem solving easier, more effective and more reasoned. And, again, linguistically
labeled predictions and plans can be easily shared and discussed with others, making
the overall predicting and planning capacity of single individuals and of groups even
more effective.

6.7. Voluntary control

Another fundamental consequence of the internalization of linguistic stimulation for
the purpose of guiding one’s actions is the development of voluntary control. Animal’s
ability to voluntary control their own actions is very limited. Non-human animals
are fundamentally stimulus-driven: besides the already-mentioned limitation in their
capacity to include non-perceived object in their problem-solving, they are also eas-
ily distracted by non-relevant stimuli, in that they can hardly inhibit their istinctual
responses to highly motivating stimuli. Of course, under the same conditions human
beings experience the same kind of difficulties, but we are able to overcome them in
ways which are not accessible to other animals. We can control our behavior, we can
focus on our tasks, and we can inhibit our istinctual responses to even the most moti-
vating stimuli. And we develop these abilities, I argue, through the internalization of
the incitaments, suggestions, and commands which we receive from other individuals
– most notably, our parents – during our infancy.

The idea is once more the same. The behavior of the child is constantly controlled,
through linguistic stimulation, by other people: during all our infancy, we are contin-
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ually instructed about all kinds of do’s (wash your hand, clean your teeth, do your
home-works...) and dont’s (don’t get dirty, don’t eat sweeties, don’t watch too much
TV...). Once an individual has experienced the positive effects of being guided by lin-
guistic stimuli produced by other individuals, she learns, by imitation, to linguistically
stimulate herself in the same situations in order to produce the same effects. That is,
she starts to talk to herself as a means for control her own behavior. It is in this way,
I argue, that we learn to make ourself do what we know is important but we don’t like
much to do and, conversely, to prevent ourselves from doing what we are motivated
to do but we know we shouldn’t. This is what, later on, we call voluntary control, or
Will. And, again, this is still another demonstration of the idea expressed by Vygotsky
in the quotation reported at the beginning of this section. It is “the internalization
of socially rooted and historically developed activies”, typically mediated by language,
which provides the individual human mind with new foundamental cognitive abilities
which are absent in “animal psychology”.

6.8. Mental life

Finally, by endorsing a Vygotskyan perspective on an idea which have been recently
put forward by Daniel Dennett (1991), I argue that language plays a major role in the
most striking and peculiar characteristic of human mind, that is, human mental life.
Human beings have a very rich mental life which includes visual and motor images,
rememberings, dreams, hallucinations and so on. Mental life can be considered as the
self-generation of one’s own input (Parisi, 2005b). For example, mental images are self-
generated input (typically visual input, but we can imagine any kind of sensory-input,
including the proprioceptive one) which generally we have not recently received but
is actively produced by the nervous system itself. Rememberings are self-generated
input which we know we have not received recently but we also know that we have
received in the past. Dreams are self-generated inputs that occur when one is asleep.
Hallucinations are self-generated input that we erroneously believe is coming from the
external environment, and so on. The first and most obvious reason why language
plays a fundamental role in human mental life is simply because a significant part of
our self-generated input is linguistic: in other words, a large part of our mental life
is constituted by internally talking to oneself, that is, by inner speech. But I think
that the role of language in mental life goes beyond this. In what follows I will try to
explain why.

Learning to self-generate one’s own input might depend on learning to predict the
consequences of one’s own actions. By learning to self-generating one’s own input
externally one can learn how to control one’s own behaviour. Afterwards, this capability
can become internal by means of the association of the context to the sensory-motor

118



6.8. Mental life

traces of the effects of one’s own actions. In other words, after I have learnt to induce
to myself a sensory-motor experience by manipulating the external environment, I can
learn to do the same internally, by predicting the sensory-motor experience I would
have if I would do the appropriate actions. This is a possible explanation of how we
learn to internally self-generate our own input. Indeed, it is possible that we learn to
do that first of all with words, and then we can transfer this ability to all the other
modalities. The reason is that language constitutes the easiest domain for learning to
predict the consequences of one’s actions.

The linguistic system is different from the other sensorymotor systems because in
the linguistic system the mapping between the input and the output is far more direct,
complete and stable than in other systems. In other words, when you produce a sound
you can also predict very reliably the acoustic input that you will receive as a result.
This is not true for other kinds of sensory-motor systems. In fact, it is true only for
very simple movements (you can reliably predict the proprioceptive input given some
motor command). And in fact we know that there are many circuits devoted to this
kind of prediction (called internal models, see Wolpert et al., 1995). One of the most
basic functions of these circuits is probably to provide self-generated proprioceptive
feed-back in cases in which the real feed-back would be too slow for the behaviour
to occur properly (see, for example, Clark and Grush, 1999). But the input which
is self-generated by internal models is just proprioceptive, so it is useful just in the
sensory-motor coordination of the organism itself, but not for other more complex
kinds of activity.

The situation for the linguistic system is completely different, for several reasons.
First, the linguistic input which we will receive as a consequence of our phono-articulatory
actions is almost completely determined by the phono-articulatory action itself. Sec-
ond, these consequences of our actions are always present (we cannot but hear what we
say), and, thanks to the importance of language for our cognition, we always pay atten-
tion to linguistic input. This makes learning to predict our own linguistic stimuli given
our linguistic action very straightforward. Furthermore, linguistic tokens have mean-
ings, in the sense that they are associated with other sensory-motor experiences which
are relevant to the organism and which they tend to restore. This simple fact renders
the self-generation of linguistic stimuli particularly important in that self-generating
a word will cause the self-generation of the non-linguistic sensory-motor experience
which is associated to that word. In other words, both the association between the
phono-articulatory movements and the resulting acoustic sounds and the association
between a given sound (word) and its meaning (that is the sensorymotor experience
associated with that word) are very systematic, reliable, and almost immediate for a
developing child. This makes it easy for the child to learn to self-generate his or her
own (non-linguistic) input by simply producing the words which are associated to the
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particular sensorymotor experience he or she wants to have.
On the other hand, how could a non-linguistic animal self-induce some experience?

On the one side, it can self-generate proprioceptive inputs by its internal models. On
the other side, it can control the input it receives by (overtly) directing its attention
towards the desired objects. But how could it learn to direct its attention towards
something which is not in the immediate surroundings? And hence, how could it learn
to have mental images or rememberings, that is, to self-generate the experience of
something which is not present here and now?

There is no real (external) action you can do in order to let you perceive the image
of the Coliseum if you are not in front of it or very close to it. So there is no way in
which you can internalize this ability by just thinking about that same action and self-
generating (predicting) the consequences of it. But if you have learnt to associate the
stimulus of the Coliseum and the word ’Coliseum’ so that hearing that word will tend to
re-activate the internal experience of seeing the Coliseum, then you just need to produce
the word by yourself and listen to what you have produced and you can re-experience
the Coliseum. Furthermore, since it is very easy to predict the acoustic effects of your
phono-articulatory movements, the whole process can be easily internalized: the next
time you want to re-experience the image of the Coliseum, just think about producing
its name, and this will immediately trigger the desired internal image.
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In this thesis I have presented artificial life simulations related (a) to general problems
on the evolution of communication systems (including language), and (b) to the effects
that acquiring and using language have on the development of human cognition. Here
I will just summarize the major contributions that this thesis has given with respect
to those two topics.

With respect to the evolution of communication, I addressed two related problems,
a phylogenetic problem and an adaptive problem. The phylogenetic problem is the fol-
lowing: how can communication emerge in a species’ phylogenetic history, given that
the two abilities that communication requires – that is, speaking and hearing – are
complementary? Traditional evolutionary thinking on this problem has focused on a
possible solution to this problem which refers to the exhistence of receiver biases. But
this seems to be a viable solution only for fundamentally manipulative communication
systems. My original proposal is that the evolution of communication systems which
provide benefits principally to hearers can be explained by an opposit (but possibly
complementary) mechanism: the exploitation of preducer biases. In particular, my
simulations have shown how the need for evolving organisms to categorize their envi-
ronment in adaptive ways might result in a spontanous tendency, in speakers, to pro-
duce usefull signals, that is signals that systematically co-vary with adaptively relevant
features of the environment. Recent empirical studies demonstrating the spontaneous
differentiation of vocalizations in monkeys which were trained to produce general calls
in two different conditions seem to provide an empirical support of my hypothesis.
Of course, much more empirical evidence is needed for assessing the real empirical
importance of this idea.

The other problem I addressed with respect to the evolution of communication is
the following: how can communication systems which provide benefits only to one of
the actors of communication, in particular the hearer, evolve? More specifically, why
should speakers produce useful signals if they do not get any benefits in doing so? This
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question has been raised both with respect to the evolution of animal communication
systems and with respect to the evolution of language, and has been addressed both
through ’classical’ verbal theories and mathematical modeling techniques and through
computational models. The contributions of my artificial life simulations to this topic
have been the following. First of all, I have demonstrated that the evolution of al-
truistic communication cannot be fully explained, as had been suggested by previous
models, by the supposed cognitive pressure towards spontaneous good signal produc-
tion. As I have shown, this cognitive pressure can act as a producer bias thus solving
the phylogenetic problem of speaker-hearer coevolution, but it cannott solve, in itself,
the adaptive problem. In particular, it cannott prevent the disruption of the commu-
nication system produced by the invasion of cheaters. Second, I have provided three
distinct mechanisms which could explain the evolution of altruistic communication.
The first mechanism is kin selection. If communicative interactions tend to happen
principally among kin, then altruistic communication can emerge because kin tend to
share genes, and hence altruistic speakers will tend to advantage hearers which possess
the same altruistic genes. Kin selection seems to be the best candidate solution for
explaining most of animals’ communication systems, but it is still not clear which role
could have it played in the evolution of human language. On the contrary, the other
two mechanims which I have provided for explainig the evolution of altruistic (uses of)
communication are specifically related to two characteristics of human language: the
fact that it is, at least in part, culturally transmitted and the fact that it is used not
only for social communication but also for talking to oneself. My docility simulation has
shown that if organisms do not inherit behaviors directly, but only the genetic predis-
position to learn from others, then the altruistic use of communication can emerge as a
by-product of the evolution of organisms’ docility, that is, of the organisms’ tendency to
being taught how to behave from others. Finally, my talking-to-oneself simulation has
shown that if signals are used not only for social communication but also individually,
in particular as memory aids, then the emergence of communication is favoured because
talking-to-oneself poses a direct selective pressure towards good signal production.

The recognition that talking to oneself could have palyed a role in language evolution
drove me to study the possible effects that using language for oneself can have on
human cognition. In this context, I have first provided an original neural network
model of early language aquisition (learning to map the first words with the first
concepts). Then, I have provided a simple model of private and inner speech. Finally,
I have shown how language, be it social, private or inner, can aid one of the most
basic cognitive functions, namely categorization. Furthermore, I have discussed other
possible consequences of the acquisition and use of language for the development of
human cognition. In particular, I have developed several original ideas about the
role of language in improving (or even generating) the following human capacities:
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learning, abstraction, memory, attention, problem-solving, voluntary control of action,
and mental life.

Notwithstanding its fundamental importance, the role of language as a cognitive tool
has been almost neglected both in mainstream cognitive science and in the literature
on language evolution. As I have argued, this topic is of the most importance because
considering language (also) as a cognitive tool seems to provide the missing link for ad-
dressing the high-level cognitive capacities which characterize the human mind within
the emerging framework in the cognitive sciences which considers cognition as “envi-
ronmentally embedded, corporeally embodied, and neurally embrained.” (van Gelder,
1999, pag. 244) Again, much more work needs to be done in order to understand the
relashionships between language and cognition, both from the empirical and from the
computational modeling point of view. I just hope that this thesis has provided both
enough arguments for convincing the cognitive science community of the fundamental
importance of this topic and some useful ideas for possible directions of future research.

Finally, with respect to the debate on the evolution of language, my major contribu-
tion has been to provide substantial arguments to the point that the use of language
as a cognitive tool might have played an important role in the evolution of language
itself. In fact, most of the advantages provided by talking to oneself do not seem to
require a syntactic language, but just the ’symbolic’ capacity to associate ’meanings’
(inteded as internal representations of significant experiences) with labels. Hence, it
is reasonable that the discovery of individual, cognitive uses of language could have
happened quite early in language evolution. In particular, before the transition from
an holistic proto-language to the full-blow compositional language of modern humans.
Trying to sort out what could have been the consequences of this early use of language
for oneself in the subsequent evolution of language is still another important topic for
future research.
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A. Neural Networks

A.1. Natural and artificial neural networks

Artificial neural networks can be considered as very simplyfied models of the func-
tioning of the brain, and, more generally, of the nervous system. The structure of
the nervous system is quite well known. The basic, fundamental units of the nervous
system are neurons, which are special types of cells capable of trasmitting elettrical sig-
nals. The numeber of neurons in the human brain is about 1011-1012, and each neuron
is connected to about 103-104 other neurons. There are a number of different kinds of
neurons, but there is a general structure that underly all of them. This structure can
be divided in four parts, namely the dendrites, the soma, the and the axon. The
electrical signal emmitted by neurons are called action potentials or spikes and are
constituted by rapid, binary, electical impulses with a duration of about 1ms. They
are initiated in a specialized region at the origin of the axon and propagate along it.
When the action potential reaches the end of the axon, it triggers the emission of some
chemicals, called neurotransmitters, which are realised in the space between the
axon and the dendrite of another neuron, which is called the synaptic cleft (the con-
nection between two neurons are called synapses). The neurotrasmitters bind to the
receptors of the post-synaptic neuron and cause, through a chain of events, either the
depolarization or the hyperpolarization of the membrane of the receiving neuron.
A depolarization corresponds to an excitation in that it favors the emission of a spike
in the post-synaptic neuron, while a hyperpolarization corresponds to an inhibition
in that it oppose spike emission. Changes in the polarization of the neurons propagate
passively from the dendrites to the cell body, where their effects are integrated. If at
the origin of the axon the depolarization reaches a certain threshold, an action poten-
tial is generated. After the spike, there is a brief refractory period in which the neuron
is slightly hyperpolarized and cannot generate another action potential (for a detailed
account, see Kandel et al., 1995).
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There are several classes of neural models, that simulte neurons and neural networks
at any scale and with any level of sophistication: from the detailed models of single
neurons that simulate the effects of particular chemicals on ionic channels (which are
the mechanisms through which the membran potential changes), to neural networks
consisting of several thousand of abstract, idealized neurons (for an overview, see Flo-
reano and Mattiussi, 2002). In the work presented in this thesis I have used probably
the most common neural network models, which are very abstract and highly simplified
ones,1 but can be used to model interesting phenomena at the behavioral level.

An artificial neural nework is a collection of artificial neurons or nodes, linked to
each other by connection weights, real numbers that correspond to the number and
strenght of synapses between two neurons. Connection weights can be either posi-
tive, corresponding to excitatory synapses or negative, corresponding to inhibitory
synapses. At anyh given moment the state of a neuron is represented by its activ-
ity (or activation), which correspond to the average firing rate of as real neuron. A
neuron’s activity is a function of the sum of the excitatory and inhibitory inputs that
comes from all other neurons connected to it. The value of each excitation or inhi-
bition arriving to a (post-synaptic) neuron through a connection is in turn calculated
by multiplying the activity of the pre-synaptic neuron by the weight of the connection
that link the two neurons. In sum, at any given moment, the activation ai of a given
neuron is given by the following formula:

ai = f(
∑

wijaj)

where wij is the connection weight that connect the jth neuron, with activation aj,
to neuron i, and f(x) is the so called activation function, which determines how
the neuron reacts to stimulation. There are a number of possible activation functions,
some of which are depicted in figure A.1.

Neurons in neural networks are usually clustered in layers or groups, with two
layers being either fully connected to each other (meaning that every neuron of the

1This simplification is necessary both for pragmatic and for theoretical reasons. From the pragmatic
side, the simulation of populations organisms living in and interacting with an environment and
evolving over thousand of generation can be very computationally expensive, and the use of more
detailed models of neural networks could render the computational time too long. From the
theoretical side, suffice it to say that semplification is just a necessary practice in science: the point
is to do the right simplifications. Since the work presented here is not intented as a contribution
to neuroscience but rather to cognitive science, I endorse the standard assumption that what is
important from the behavioral point of view is how the network as a whole process information by
the reciprocal influences of neurons, rather than the details of these influences. I am quite sure that
in the future we will understand that some of these details are in fact important for understanding
the behavior of the network as a whole, but this is something I leave to the (computational)
neuroscientist to discover. In the meanwhile, the general trend in artificial life research (as in any
science in general) is to try and go as far as possible with simple models, which are usually complex
enough to work with.
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Figure A.1: Some examples of neurons’ activation functions. Linear: y = x. Step: y =
segno(x)+1

2
. Sigmoid (or logistic): y = 1

1+e−x . Hyperbolic tangent (tanh): y = tanh(x).

sending group is connected to every neuron of the receiving group) or not connected
at all. The number of groups, the number of neurons in each group and the pattern of
connectivity between groups constitutes the architecture of a neural network. There
are three kinds of neurons (and of groups of neurons): input, hidden and output
neurons. Typically, groups of input units are connected to groups of hidden units which
are in turn connected to groups of output units. Input units’ activation depends on
some event outside the neural network itself: in a classical connectionist network these
activations are given by the researcher, while in a typical artificial life simulation the
activation of the input units depend either on something outside the agent (the external
environment) or on something in the body of the agent (the internal environment).
The activation pattern of the input units, together with the weights that connect
the input units to the hidden units, determine the activation pattern of the hidden
units. Similarly, the activation pattern of the hidden units, together with the weights
that connect the hidden units to the output units, determine the activation pattern
of the output units. The output units represent the netwrok’s response to the given
input: in a classical connectionist network, this is again interpreted by the researcher
as some high-level behavior, while in a typical artificial life simulation the output units
correspond to the muscles of the agent, which determine agent’s movements.
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A.2. Learning algorithms

The way a neural network responds to inputs depends on (a) its architecture and
(b), the connection weights. If some of the weights of a given neural network are
changed, then its behavior will change. A fundamental feature of neural networks is
their capacity to learn, that is, their capacity to adjust connection weights in such a
way that the overall behavior gets better (according to some criterion)2. A number
of learning algorithms have been developed in the leterature. Here, I will present just
three of them, which are probably the most popular ones: the hebbian rule, the delta
rule and the back-propagation of error.

In his most-famous book The Organization of Behavior, Donald Hebb proposed a
possible rule for synaptic modification according to which the strenght of the connection
between two units will be increased whenever the two units happen to fire together
(Hebb, 1949). In neural network research, this is what is called the Hebb(ian) rule and
can be formulated as follows:

∆wij = ηaiaj

where ∆wij represents the change in the weight that connect neuron j with neuron
i, ai and aj are the activations of neurons i and j, respectively, and η is the learning
rate, typically a number in the range [0; 1] which determines the rate of change of the
connection.

This rule has the problem that if the activations of neurons are positive numbers
(which is usually the case), then connections between neurons are bound to increase
indefinitely. In order to solve this problem, a number of variations of this basic learning
rule have been developed, among which the pre-synaptic rule:

∆wij = ηai (aj − aj)

the post-synaptic rule:

∆wij = η (ai − ai) aj

and the co-variation rule:

∆wij = η (ai − ai) (aj − aj)

2The change in connection weights of a neural network correspond to the increase or decrease of the
number of synaptic connection (and their efficacy) that happens between two connected neurons
of the real brain due to brain activity. These changes are the mechanisms that underlie brain’s
plasticity, that is, the capacity of brains to continually adapt to new circumstances.
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where ai and aj represent the mean activations of the units i and j, respectively. The
use of those rules guarantees that the weights do not increase indefinetely since they
will be decrease every time the activation of the sending or receiving neurons is lower
than usual (pre- and post- synaptic rules, respectively), or the differences between the
mean and the present activations of the two neurons are of different sign (co-variation
rule). Though not as powerful as other learning rules, all those variations of the Hebb
rule are very interesting because (a) they are local, that is they work with information
which is directly available at the synapsis between two nodes; and (b) the long term
potentiation (LTP) and long term depression (LTD) seem to be based on mechanisms
that instantiate exactly those rules (Rolls and Treves, 1998).

The delta-rule is a supervised learning algorithm that can be applied to percep-
trons. A perceptron is a neural network composed of a single layer of weights which
connect directly the input units with the output units, without any hidden group of
units between them. A supervised learning algorithm is one in which the connection
weights are adjusted as a function of some measure of the network’s performance. In
a typical supervised learning algorithm the researcher knows what is the correct net-
work’s response to a given input and use this knowledge to calculate an error measure
between this correct response (also called the teaching input) and the actual output
of the network. The learning rule is such that it tries to minimize the error, which
is typically calculated as the mean squared error across all output nodes. The
delta-rule is formulated as follows:

∆wij = η (ti − ai) aj

where ti is the teaching input for unit i. In this way, the weight between two neurons
is increased if the actual response of the output unit is minor than the desired one, it
is decreased if the activation of the output unit is greater than the desired one, and
is left unchanged if the actual output matches the desired one. Furthermore, absolute
value of the change between two units is proportional both to the discrepancy from
the actual and desired output and to the activation of the input unit which send the
connection, so that weights that contributed more to the error will be changed more.

Nothwithstanding its simplicity, the delta-rule is very powerful, since it can been
shown that it guaratees to find a matrix of weights which minimizes the total squared
error for a given set of input-output mappings, provided that the learning rate is small
enough and the input-output pairs are presented in a random order. The problem
is that it is applicable only to perceptrons, which have severe limitations. The ab-
sence of hidden layers of neurons prevents in fact perceptrons to perform input-output
mappings which are not-linearly separable.3 The demonstration of this shortcoming

3A linearly separable mapping is one in which points in the n-dimensional input space which must be
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of perceptrons, provided in 1969 by Marving Minsky and Seymour Papert in their fa-
mouse Perceptron (Minsky and Papert, 1969), together with the lack of a learning rule
for multi-layer networks, was the cause of the loss of interest for neural networks in
the cognitive science community during the 1970s. On the other hand, a multy-layer
netowrk can compute any number of arbitrary input-output mappings, provided a suf-
ficient number of hidden units. Consequently, the development of learning algorithms
for multy-layer networks has been a major breakthrough in neural network research.
The first and most popular of this algorithms is the back-propagation of error. It can
be considered as a generalization of the delta-rule in which the error on the output
unit is back-propagated the hidden units. In this way, also the weights connecting the
input to the hidden nodes can be changed so that global error is decreased.

The back-propagation is a very powerful learning rule but it has some problems, both
theoretical and practical. First of all, it is not local, in that the back-propagation of
error to the hidden units requires the global knowledge of the activations (indeed of the
errors) of all output neurons. This is implausible from the biological point of view, since
no mechanism has been found in the real brain that could support the transmission of
such global information. Second, the provision of the teaching input to the network
for each input pattern is in itself very problematic since it is not clear where such
an information could come from in most of real life situations.4 Finally, when neural
networks are used in artificial life research, there is no ’correct output’ for any given
input. In this kind of research, in fact, what is important are not individual input-
output mappings, but the macro-behavior generated by the continuous interactions
between the agent and its environment. Consequently, the researcher cannot know
what is the best output for an input pattern. In such situations, the connection weights
can still be adapted to solve the task at hand by the use of a genetic algorithm (see
Appindix B). This is the standard approach in most of artificial life research, and, in
particular, of evolutionary robotics (Nolfi and Floreano, 2000).

A.3. Different kinds of networks

The neural networks described so far are just one of the various kind of neural networks
used in artificial life research, namely feed-forward, discrete time, continuous-
activation neural networks. In feed-forward networks the information flow goes al-

responded to in different ways can be separated by an hyperplane (that is, by a plane of dimension
n− 1).

4Indeed, there are some kind of learning situations in which the presence of the teaching input
is not so problematic. One example is instructional learning, in which the discent learn and is
corrected by a real teacher. Another is learning to predict, in particular, to predict the perceptual
consequences of one’s own actions: in this case the teaching input is provided by the environment
itself, since the consequence of one given action is the actual input pattern received by the network
after it has produced that action.
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ways in the same direction, that is, from input to output. This makes this networks
completely reactive, in the sense that the response of the network in any given mo-
ment is completely determined by external stimula arriving to the network as input
pattern (plus the connection weights, of course). As a consequence, feed-forward net-
works cannot process information distributed over time, nor produce a sequence of
responses given just a single stimulation. This is a very serious limitation because the
new ’embodied’ cognitive science (see 5.1.2) is realizing that time is something very
important for real organisms. Time is important not only because some information
collected at time tx can be useful at some later time ty = tx + ∆t, which requires some
sort of memory, but also in the collection of information itself: the information which
is relevant for an organism’s behavior usually almost never present to the organism’s
senses all at once; rather, it consists of a sequence of perceptual events distributed over
time. As a result, an important task for present and future artificial life research is
that of studying more complex neural networks which are able to internally process
time. Some of those networks are briefly reviewed here.

A class of neural network which can integrate information over time is composed by
recurrent networks (figure ??), which are caharacterized by the presence of recurrent
connections. Recurrent connections are connections that link either units at the same
level (such as in Simple Recurrent Networks or Elman Networks, see Elman, 1990), or
units of one higher level with those of a lower one (such as in Jordan nets, see Jordan,
1989).5

There are other ways to allow networks to process information over time which are
not based on the presence of recurrences in the architecture of the network. One
possibility is to directly introduce time in the way the neural network process the
information. For example, Time-Delayed neural networks (Lang and Waibel, 1990)
are networks in which the time at which a given neuron influences another one depends
on the delay of the connection that link the two neurons : for example, a three time-
steps delay in a connection that links one input neuron to one hidden neuron means
that the information regarding the state of that input at time t0 will reach the hidden
neuron only at time t3.

Another kind of networks which are able to process time information are dynamic
neural networks (Nolfi and Marocco, 2001), characterized by neurons with the following
activation function:

at = γf
(
it

)
+ (1− γ) at−1

where at and at−1 are the activations of the neuron at time t and t− 1, respectively,

5With ’level’ I refer to the number of passes (vector transformations) that has to be done inside the
network for reaching a given layer of neurons. In this respect, the ’lowest’ level is that of input
units while the highest is that of output units.
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f(x) is a standard activation function, typically the logistic one, it is the net input
received by the neuron at time t (that is the weighted sum of the inputs arriving from
the neuron’s incoming connections) and γ is a parameter of the neuron codified as a
real number in the range [0; 1] In particular, the parameter γ determines the neuron’s
dynamics: the lower its value, the less reactive the neuron is to incoming signals and
the slower it is in changing its activation. In the extreme case of γ = 0, the the neuron’s
activation never changes as a function of incoming inputs and remains always equal to
its initial value. On the contrary, for γ = 1 the neuron is a typical neuron, without
any internal dynamics.

Another class of neural networks which are becoming popular in artificial life research
are the continuous time recurrent neural networks or CTRNNs (Beer, 1995). Those
networks combine recurrent connections with a continuous-time dynamics, typically
implemented in the digital computer thorugh the application of the Euler method for
the solution of the following differential equation, that determine neurons’ activation
changes:

da

dt
=

1

τ
(−a + f(i) + gI)

where a is the activation of the neuron, τ is the neuron’s constant of decay, f(x) is the
classical activation function (typically the logistic), i is again the net input arriving to
the neuron g is the gain and I is the intensity of the input perturbation. The reason
for the presence of the factor gI is that in a typical CTRNN the input units are treated
just as all the other units and their activation is determined by both the input arriving
from the other neurons and the external input (represented by I and whose relative
influence is determined by the gain factor g).

Finally, there are a number of even more biologically-oriented neural network models,
for which the activation of the nodes are not represented as continuous values but, as
happens in real neurons, are just yes-or-no inpulses, usually called spikes. Though
these models are very interesting for their biological plausibility, they are both very
difficult to analize and quite computationally expensive, so they are not commonly
used in the artificial life community (but see Di Paolo, 2002; Floreano et al., 2005).

A.4. Representations (Space-state semantics)

The functioning of a neural network consists in the transformation of patterns of ac-
tivation across different groups of units performed by the connection weights of the
network. The pattern of activation of the input units is trasformed by the synaptic
weights connecting the input units to the hidden units into the pattern of activation of
the hidden units, which is in turn transformed by the weights that connect the hidden
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to the output units into the pattern of activation of the output units. If the pattern
of activation in the input units corresponds to the network’s perceptual state and the
pattern of activation of the output units is the network’s response to a given input, the
pattern of activation of the hidden units can be considered as the network’s internal
representation of its perceptual state. Mathematically, this internal representation
is constituted by a N -dimensional vector, namely, the vector of the activations of the
N hidden units. Just as a two-dimensional vector can be conceived as a point in a two-
dimensional Cartesian spece, with the two values of the vector corresponding to the
two coordinates of the point in the space, an N -dimensional vector can be considered as
a point in an N -dimensional hyper-space, whith each value of the vector corresponding
to the N coordinates of the point in the hyper-space. So, the internal representation
of a given input in a neural network is a point in the N -dimensional representational
space of the network, with each neuron in the hidden layer constituting one dimen-
sion and its activation given the input corresponding to the point’s coordinate of that
dimension. Since spaces have metrics, we can now calculate differences between two
internal representations (and, consequently, similarities): the difference between the
representations of two input patterns U and V is just the distance between the two
points representing the inputs in the hidden units space. The formula is the following:

d =

√∑
(ui − vi)

2

where d is the distance between the two points (that is the difference between the
two representations) and ui and vi are the activations of the ith hidden unit given U

and V , respectively.

The geometrical interpretation of internal representations also gives a concrete (op-
erational) meaning to the concept of prototype. The prototipical representation of a
given set of patterns corresponds to the baricentre of the points representing all the
patterns: that is, the point whose coordinate, for each dimension, corresponds to the
mean of the coordinates for that dimension of all the points representing the input
patterns. Consequently, the prototypicity of a given representation can be calculated
as the distance between the representation and the prototype itself.

Furthermore, we can conceptualize the process of categorization in neural networks
in the following way. To categorize for a neural network means to respond to a set
of input patterns with a given output pattern and to another set of input patterns
with another output pattern.6 Since the output of a neural network depends on the
vector of the activations of the hidden units (together with the weights that connect the
hidden to the output units), in order for a neural network to perform the appropriate

6This is a simplification that holds for classical neural networks; for embodied neural networks it
means to produce different sequences of output patterns that constitute different actions.
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categorization it has to partition its hidden units space, which is its representational
space, in a useful manner. Specifically, this space must be partitioned so that each
category is represented in one region of the space. In other words, all the input patterns
that must be responded to in the same way must be represented as points close the
one to the others, while input patterns that must be responeded to in different ways
correspond to points distant the one to the others. We can also provide a measure of
the quality of the categorization. The quality of a categorization depends on (a) how
much patterns belonging to one category are represented as similar and (b) how much
patterns belonging to different categories are represented as different. We can measure
(a) as the average for all categories of the mean distance between each point belonging
to one category and the category prototype; a measure for (b) is the average on all
couples of categories of the distances between the categories’ prototypes. If we want to
have one single value as a measure of categorization quality we can either take the mean
or the product of the two values (a) and (b), which must be previously normalized in
[0; 1].
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B.1. Natural and artificial selection

Genetic algorithms are a class of computational techniques inspired by the process of
evolution by natural selection, which is the main explanatory principle for understand-
ing the complexity of the living world.1 The basic principle of evolution by natural
selection is indeed quite simple. In order for evolution to take place, all you need is a
population of individuals with:

1. heredity of traits (offsprings resemble parents);

2. variability in the traits (the process of eredity is not perfect and each individual
is slightly different from the others);

3. scarcity of resources (the environment cannot support all individuals of the pop-
ulation).

If these conditions hold, then some traits will happen to be more adaptive to the
environment than others, meaning that the individuals who possess those traits will
tend to survive more and to produce more offsprings compared to individuals who
possess other traits – simply because the environment does not support an indefinite
grow of the population (3). As a consequence, given that traits are inheritable (1),
more adaptive traits will spread in the population. And provided that heredity is not
perfect (2), the constant introduction of new variants will assure that the process will
keep on going indefinitely, producing individuals that are more and more adapted to
their environment. This simple mix of Chance – that is the constant introduction of
1Other factors that play a role in evolution are, for example, genetic drift, genetic flow, phisical
constrains and catastrophic events. Apart from Darwin’s On the origin of the Species by means
of natural selection (Darwin, 1859) two very good introductions of adaptationist thinking are
Dawkins (1976) and Dennett (1995). In particular, Dennett’s book discusses and clarifies, among
many other things, most of the controversial points of evolutionary thinking in biology.
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random variations in the population – and Necessity – that is the selective reproduction
of those traits that are more adaptive to the environment (Monod, 1971) – can explain
the complexities of the living world without the appell to a purposefull designer, that
is God.

In the natural world, both the heritability and the variability of traits depend on
organisms’ reproduction system. Every cell of an organism contains the organism’s
DNA, which can be considered as a set of instructions for making a copy of that or-
ganism. The functional blocks of DNA, that is the single instructions for the copying
of organisms are the genes. The collection of all the genetic material of an organism
is its genome, while the specific genes contained in the genome are the organism’s
genotype. The phenotype is the organism’s itself, which is constructed during de-
velopment by following the instructions contained in its genome. The reason why
organisms resemble their parents is that they inherit their parent’s genes. The major
reason of the variability in a population is that the copying process of the parent’s
genotype is never perfect: errors in the transcription of the genetyc material are called
mutations. Another important factor of variability is due to the recombination
of genetic material (or cross-over) which happens during sexual reproduction: the
offspring inherit part of the genes from one parent and part from the other, with the
result that the genotype of the new-born is a new combination of those of the parents,
different from both. The adaptivity of an organism to its environment is often called
its fitness, which can be considered as the probability for the orgnaism to survive and
reproduce.

B.2. Algorithms

There are a number of computational techniques that are inspired by natural selection,
such as evolutionary strategies (Back et al., 1991), evolutionary programming (Fogel
et al., 1966) and genetic programming (Koza, 1992). While those techniques were
invented in order to solve specific problems, genetic algorithms were developed by
John Holland in order to study the process of adaptation by means of its simulation
in the computer (Holland, 1975). Genetic algorithms can be implemented in many
different ways, but the basic idea is always the same. First of all, you have to define
the task that you want to solve by providing a fitness function, which will measure
the adequateness of candidate solutions to the problem. Then, you have to specify
a genetic representation of your candidate solutions. In particular, if you use the
genetic algorithm for evolving populations of neural networks, as in the simulations
presented in this work, you have to decide:

• which parts of the neural network will remain fixed and which will be encode in
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the genome. Some of the things you can evolve are the network’s architecture, the
connection weights, nodes’ parameters such as activation functions, time-delays
or time constants and network’s learning algorithms or leraning parameters such
as the learning rate or the number of learning epochs the network is to be trained
(as in the ’docility’ simulation of Chapter 4);

• what is the genetic enconding, that is how the parameters of the network you
want to evolve are encoded in the genome. Usually the parameters are represented
either as binary strings (binary encoding) or as vectors of real values (real-valued
encoding), but there are other possibilities, such as treating the genome as a tree,
of which the parameters are the branches (tree encoding);

• what is the genotype-phenotype mapping, that is how the genome (however en-
coded) produce the actual candidate solution to the problem. This depends
strongly on the genetic encoding: in the simplest case you just use the values of
the genes (encoded as binary strings or real values) as the network’s connection
weights; if you want to evolve not only the connection weights but also the net-
work’s architecture, you have to develop a more elaborate genotype-phenotype
mappings, which can also involve some kind of developmental phase (see Can-
gelosi et al., 2003).

Once you have defined both the fitness function and the genetic representation, you
construct a population of candidate solutions to the problem with random genes. The
candidate solutions are the individuals of the population. They are tested on the
problem and their fitness is calculated according to the specified fitness formula.

Selection schemes

After all individuals of one generation have been tested, the selection scheme de-
termines which individuals are selected for reproduction according to the individuals’
fitnesses. A number of possible selection schemes have been used, among which the
most popular are the roulette wheel, the rank and the tournament selection schemes.

In the roulette wheel method one creates a roulette wheel such that for each individ-
ual the size of its slice of the roulette wheel is proportional to the individuals fitness and,
for each wheel spin, the individual selected for reproduction is the one under the wheel
marker. In this way, the probability of reproduction for each individual corresponds
to the fitness of the individual divided by the average fitness of the population. This
fitness-proportionate selection scheme can have the problem of premature convergence:
at the beginning of the simulation the variance in the fitness is usually very high and
the fittest individuals will tend to spread in the population very fastly; furthermore,
when the population has converged — meaning that all individuals in the population
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are very similar to each other — all the individuals will tend to have appoximatly the
same fitness value, and this will prevent the population to evolve further, since the
selection scheme proportionate to fitness will tend to select individuals randomly. A
possible solution to this problem is to perform what is called the windowing method
before applying the roulette wheel selection scheme. Windowing consists in subtract-
ing the fitness value of the worst individual of the population from all the individuals’
fitnesses, so that each individual will have a fitness value between 0 and the fitness
value of the best individual minus the fitness value of the worst individual. This is
done in order to maintain a reasonable selective pressure even when the average fitness
reaches a high value and the differences in fitness between individuals are very low.

The rank selection scheme consists in selecting individuals with a probability which
is not proportional to their fitness, but which depends on the ranking of the individuals
in the population. In the most simple and common rank method, one sorts the individ-
uals according to their fitness and then selects the N best individuals for reproduction.
This method avoids the population to converge too quickly by both preventing that
the fittest individuals spread too quickly at the beginning of evolution, when the fit-
ness variance is high, and keeping high selection pressure afterwords, when the fitness
variance is low.

The tournament method can be described as follows: choose two individual randomly
from the population, select the fittest for reproduction, return the two individuals to the
population so that they can be choosen again and repeate the procedure untill you have
selected the right number of individuals. This procedure produces a selective pressure
similar to that produced by the rank method, but is usually less computationally
expensive in that it avoids the sorting of the entire population, which can be very
time-consuming.

Reproduction

Reproduction can be either sexual or a-sexual. The difference between these two re-
production schemes lies in the fact that the former include the application of cross-over
between the genomes of two parents, while the latter is based on the cloning of single
genomes. The simplest kind of cross-over is the single-point one (figure B.1a): take two
selected individuals; choose randomly one point for dividing the genomes of the two in
two parts; generate one offspring by taking the first part of the genome from the first
parent and the second part from the second parent and onother by taking the first part
from the second parent and second part from the first parent. One problem in the use
of single-point cross-over is that it treats different points in the genome differently: in
particular, the end-points of the genome strings are treated differently from the central
ones in that they always will be exchanged. One solution is to adopt a double-point
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(a) (b)

Figure B.1: Examples of single-point (a) and double-points (b) cross-over

cross-over (figure B.1b): two points are randomly selected and the segments which are
exchanged are the two between those two points. Applying double-point cross-over is
like treating the genome as a circle, so that there is no difference in the probability of
cross-over between the centre and the periphery of the genome.

After having produced the right number of genomes by either cloning individuals
or by applying cross-over between pairs of parents, mutations are applied to those
genomes with a certain probability. There are a various ways of mutating a genes,
which depend on the genetic representations one has chosen. If the genetic encoding is
binary, mutations consist in changing the binary value; if genes consist of real values,
then one can either replace the mutating gene with a randomly chosen value or change
the current value by adding to it a random value in a certain range.

Whatever the selection and reproduction schemes chosen, one can prevent that good
solutions are lost by not being selected or being distroyed by cross-over and mutation
by retaining the best individual (or the best N individuals) and assuring that they
are included into the next generation without any modification. This practice is called
elitism and can greatly improve the effectiveness of the evolutionary search for good
solutions.2

2The two best introductions to genetic algorithms are Mitchell (1996), a very good introduction to
the field which considers in detail the use of genetic algorithms in scientific modelling, and Goldberg
(1989), a more detailed and comprehensive account with an application-oriented perspective.
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B.3. The geometrical interpretation of evolution

Genetic algorithms, like any other machine leraning simulation technique, can be con-
sidered as a means for finding some solution to a given problem. The algorithm per-
forms a search for the optimal solution in what is called the search space. As neural
networks’ internal representations of input can be conceived as points in the multi-
dimensional state-space defined by the vector of activations of the hidden units (see
Appendix A), each candidate solution of a genetic algorithm can be considered as a
point in the multi-dimensional search-space defined by the genome, where each dimen-
sion corresponds to the value of one gene. The metric of the search space depends on
the genetic representation of candidate solutions: if genes are encoded as real values,
the difference between two genotypes can be calculated as the distance between the
two points that represent them, while if the enconding is binary, the difference can be
calculated as the Hamming distance, that is the number of genes for which the two
genotypes have different bits.

To each point of the search space — that is to each possible genotype — corresponds a
fitness value. The fitness landscape is the representation of the search space against
the fitness of the genotypes that ’inhabit’ it. If genotypes have N genes, then the
search space will have N dimensions, one for each gene, while the dimensions of the
fitness landscape will be N + 1, where the last dimension corresponds to the genotypes’
fitness (figure B.2). The conformation of fitness landscapes is what determinates the
dynamics of the genetic algorithm in that what the genetic algorithm does is to move
population along that landscape in particular ways in order to find the highest peak,
which represent the optimal solution to the problem. The most difficult problem is
to avoid getting stuck in local peaks, defined as points in the search space which
correspond to a sub-optimal fitness but from which any small movement results in a
lower fitness.

As explained in Appendix A, the point whose coordinates correspond to the mean
values of a set of points is the geometric baricentre of the set, which can be considered
as the prototype of set itself. If we consider the set of points which correspond to
all the individuals in a given population, we can measure the genetic variability of
the population as the mean distance of all individuals of the population from the
populational baricentre. Finally, we can apply the same procedure also to sub-sets
of the genome which encode aspects of the phenotype which we are interested in: by
comparing the genetic variability of different parts of the genome we can analyse the
different selective pressures that act on different aspects of phenotypes.
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Figure B.2: An example of a fitness landscape for genotypes composed by only two
genes (g1 and g2).
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