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Abstract—In the computational literature intrinsic motivations
have been connected to the possibility of developing more
autonomous and versatile agents. Despite the growing theoretical
understanding of the distinction between functions and mecha-
nisms of intrinsic motivations, the implications of the distinc-
tion have not been exploited in specific models. In particular,
knowledge-based mechanisms are widely used to implement
intrinsic motivations signals for the acquisition of competences,
leading to inappropriate learning signals. In this paper we analyse
and compare, with the support of simple grid-world simulations,
different mechanisms that can be used to implement competence
acquisition through intrinsic motivations, describing their limits
and strengths and highlighting which features are best suited for
the acquisition of competence.

I. INTRODUCTION

The concept of intrinsic motivations (IM) [1] has been
introduced during the 1950s in animal psychology to explain
experimental data (e.g. [2], [3], [4]) showing how stimuli not
related to (extrinsic) primary drives were able to provide a
reinforcing value suitable for the acquisition of instrumental
responses.

In the computational literature (e.g. [5], [6], [7], [8], [9])
IM has been linked to the possibility of building autonomous
and versatile agents (especially reinforcement learning – RL
– agents) that are able to self-generate reward signals. In
particular, IM signals can drive the learning of new knowledge
and skills that are not immediately extrinsically reinforced
(i.e. not directly related to main tasks or fitness pressures, for
organisms, or to the user’s needs, for robots and intelligent
machines); later, the acquired abilities will be exploited to
obtain extrinsic rewards [10]. To this purpose, IM signals have
to be transient: they have to persist during the learning process
and disappear when it is completed, so that the system can
move to acquire new knowledge and skills [11].

Depending on the mechanisms they rely upon, IM have been
divided into two main categories: knowledge-based IM (KB-
IM) mechanisms and competence-based IM (CB-IM) mech-
anisms [12]. KB-IM mechanisms generate learning signals
based on the acquisition of knowledge, for example based on

the improvement of the prediction capability of a predictor
(i.e., a forward model of the world). CB-IM mechanisms,
instead, generate learning signals based on the acquisition of
competence, for example based on the capacity of achieving a
certain desired state (e.g., the capacity of an inverse model or
of a state-action controller to achieve a goal state). Importantly,
KB-IM and CB-IM mechanisms can be both used for two
distinct functions [13]: (a) the acquisition of knowledge, for
example the acquisition of better prediction capabilities or
the formation of object representations; (b) the acquisition of
competence, i.e. the capacity to act so as to achieve a state of
the world when it becomes desirable.

Despite the growing theoretical understanding of the differ-
ences between functions and mechanisms of IM (e.g. [13]),
their implications have not been fully exploited in specific
models. In particular, as underlined in [14], KB mechanisms
are widely used to implement IM signals for the acquisition
of competence, leading to inappropriate learning signals.

In this paper we analyse some of the main mechanisms used
to implement IM signals for the acquisition of competences,
describing their limits and strengths and highlighting which
features are best suited for the acquisition of competence. We
support this analysis with simple grid-world simulations that
compare the different mechanisms and allow us to capture the
principles on which those mechanisms are built.

II. KB MECHANISMS

One of the pioneering works on computational IM is
presented in [15]. In this work a RL agent is driven to
explore the environment by a self-generated reward signal.
The mechanism used to implement this signal is a predictor
that models the state transition function: it receives as input
the current state together with the planned action and learns to
predict the next state perceived by the agent. The prediction
error (PE), i.e. the mismatch between the prediction and the
next state, determines the size of the reward signal given to
the system.



However, this kind of signal cannot cope with unpredictable
situations: if it is not possible to anticipate what will be
the future state, or the predictor has limited computational
capabilities, the prediction errors will not disappear thus pro-
viding reward signals to the system that will so get stuck. To
avoid this problem, in [5] a second mechanism was introduced
that generates a reward signal based on the prediction error
improvement (PEI): the signal will be positive only with
an improving predictor while it will approach zero with
unpredictable or too difficult portions of the environment.

A. Testing KB mechanisms for competence acquisition

KB-IM mechanisms generate signals based on the knowl-
edge of the system. In many IM systems this knowledge is the
capacity of a predictor to anticipate future states. We tested
the behaviour of a system driven by the signal of a KB-
IM mechanism similar to the one presented in [5] to verify
if it could drive the acquisition of competence. Note that
such a mechanism is one of the most used IM mechanisms
within the ICDL community. The test used is based on a
very simple simulated environment: a 1x10 grid where a
simulated agent can move leftward and rightward for 5000
time steps. A performed action leads to its intended state with
0.95 probability and to the opposite one with 0.05 probability.

The agent is an actor-critic RL model trained through the
standard TD-learning rule [16]. The input to the system is
the actual position of the agent coded through a vector of 10
binary units (a value of 1 is given to the unit corresponding
to the position of the agent, 0 to the others). All the weights
of the system are initialised to 0.

The critic has a single linear output unit, fully connected
with the input vector, which evaluates the current state. The
learning rate is set to 0.02. The actor has two linear output
units, fully connected with the input vector, which determine
the displacement of the agent on the next time step: if the
activation of the first unit is higher than the one of the second
unit the agent moves leftward, otherwise rightward. A random
noise value uniformly drawn in [-0.2, 0.2] is added to the
activation of the two units. The learning rate is set to 0.8.

The IM reward signal is implemented as the PEI of a one-
step-ahead predictor of future states. The input to the predictor
encodes a combination of the actual position and the planned
action of the agent with a 2x10 binary unit matrix. The output
of the predictor is a vector of 10 linear units, fully connected
with the input units. The weights of the predictor are updated
through a standard delta rule where the position observed after
action execution is used as teaching input. The learning rate
is set to 0.08.

The PE is calculated as the absolute value of the mismatch
between the prediction vector (PV ) at time t−1 and the actual
state vector (S) at time t (j is the vector element index):

PEt =

10∑
j=1

|Sjt − PVjt−1
|

The PEI at time t is calculated as the difference between

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1

2

3

4

5

6

7

8

9

10

Time Steps

P
o
s
it
io

n
s

Examples of
focalisation

Fig. 1. Agent’s position (y-axis) during the simulation (x-axis).

average PE calculated over a period T of 5 time steps:

PEIt =

∑t−T
i=t−(2T−1) PEi

T
−

∑t
i=t−(T−1) PEi

T

B. Results and analysis

Fig. 1 shows the behaviour of the agent during the simu-
lation. The KB reward signal generated by the predictor im-
provement is able to drive the agent to explore the environment
and to focus on different portions of it for relatively long times
(up to 350 time steps).

However, the behaviour of the agent highlights two prob-
lems connected with the use of a pure KB mechanism in
the perspective of competence acquisition. First, as expected,
the system focuses on different areas over time but what it
learns is not very useful in terms of competence. Indeed, the
agent’s actor learns one-step stimulus-response associations
which represent a competence difficult to exploit. Indeed, a
system working at the fine level might in theory learn all
the possible combinations between all possible states and all
possible primitive actions (10x2 in our case): these, which
represent one-step policies, would however be no more useful
for solving future extrinsically rewarded tasks than the original
primitive actions.

Second, because of its architecture the system does not even
cash the acquired one-step policies to form a repertoire of
different skills. Indeed, at different stages of life the agents
learns to associate different actions to the same state. This
problem impairs one of the main functions related to the use
of IM: learning and storing different skills in order to exploit
them in the future to boost learning speed.

Some authors have shown how this type of mechanism,
despite these problems, can be exploited for the acquisition
of competences, for example in [7], [9], [17], [18], [19].
However, in many of these works the KB-IM mechanisms
are used in support of, or are supported by, other learning
processes and aiding mechanisms. For example, in [17], [18]
the IM signal is used to improve the acquisition of behaviours
mainly driven by extrinsic rewards. However, as argued in
[8], [11], designing agents able to acquire competence without
extrinsic rewards is a fundamental step towards having fully
autonomous cumulative learning versatile systems.



In a different work [17], Schmidhuber implemented a sys-
tem provided with a fixed reward value for the achievement of
a desired state in addition to the reward signal generated by
the predictor. However, this is not a good solution for at least
two reasons: (a) if the reward is extrinsic, this is not in line
with the idea of providing systems with IM to improve their
autonomy and versatility; (b) as described in [21], providing
a fixed reward signal would drive the system to get stuck on
the rewarding activity, preventing it from learning different
abilities and forming an rich repertoire of actions.

Oudeyer et al. [7], in one of the most influential works on
IM applied to robot learning, focus on competence acquisition
using a system based on the KB mechanism described in
Sec. II-A. However, they used the predictor to predict few
(three) high-level abstract important states (visual detection
of an object; activation of a biting sensor; perception of
an oscillating object). These high-level states represent few
relevant states among a huge number of non-interesting states,
and each of them can be achieved only with sequences of
actions. In doing so, the authors, although not explicitly,
deviate from the type of KB-IM mechanism they refer to and
make an important step towards the CB-IM mechanisms we
illustrate in Sec. III.

In summary, if one takes into account these extensions, KB-
IM mechanisms can be important means to acquire compe-
tence. However, because of the two problems described above
and for reasons and results indicated in Sec. III and Sec. IV,
we think there is opportunity for important improvements.

III. GOALS AND HIERARCHIES

In the two sub-sections below we describe two solutions for
coping with the two problems of KB mechanisms highlighted
in Sec. II-B, thus moving towards more suitable mechanisms
for the acquisition of competence through IM.

A. Goals

If we are simply interested in widening the knowledge of a
system (e.g. its ability to predict), we do not need a specific
target in the learning process: everything that is not expected
(predicted) is relevant for the system.

On the other hand, if we are looking at competence acquisi-
tion we have to carry out an important conceptual shift: while
knowledge can be generic, competence is always competence
in doing something. In particular, when we are trying to learn
a new competence, what we are doing is improving our ability
to reach a specific target state (or set of states) that we are
considering important for some reasons: that specific target
state is a goal (see Sec. V for a discussion on the possible
origin of goals). A key implication is that if we look at the
skills necessary for the achievement of a goal we need to
shift from low-level motor primitives to temporally-extended
activities. This is, for example, the key insight incorporated
in the option theory [20] (see [6] for an example of the use
of options with IM). The system can thus focus on acquiring
multi-step policies directed to accomplish few critical goals,
so avoiding the first of the two problems described in Sec. II-B

related to focusing on learning every possible state-action
combination.

If we translate this conceptual shift to the computational
framework described in Sec. II, we have to reconsider the
implementation of the IM signal. What the predictor has
to anticipate is no longer any possible next state, but the
achievement of the goal: given the actual state and the next
performed action the predictor has to learn if the system
will reach such a goal. In this way a reward signal (RS) is
not generated at every time step, but only when the goal is
achieved and on the basis of the PE of this achievement (cf.
[6]):

RS = 1− P

or in the case of the PEI:

RS = (1− Pt−1)− (1− Pt)

where P is the prediction, with a continuos value in [0, 1].

B. Hierarchical architectures

The architectural limits described in Sec. II-B, which pre-
vent systems from cashing learned skills, do not allow the
accumulation of different competences to be exploited in
the future. To cope with this problem a good solution is to
implement systems endowed with a hierarchical architecture
able to retain previously learned abilities while discovering
and acquiring new ones (see [22] for a review).

For example, the architecture in [8] is formed by different
modules (experts), each focusing on learning a specific goal,
and a selector that decides which expert will guide action and
learn at each time step based on a CB-IM signal (see [14]
for a thorough discussion of this, and [23] for a hierarchical
architecture using similar IM mechanisms). In this way, the
single expert can learn and retain the acquired competence
while different competences are acquired by other experts.
See [6] for another notable example of a model capable
of acquiring multiple skills based on IM and a hierarchical
architecture.

IV. TESTING IM SIGNALS FOR COMPETENCE ACQUISITION
ASSUMING A HIERARCHICAL ARCHITECTURE

In this section we focus on mechanisms that can provide
a proper signal for the selector of a hierarchical architecture
similar to the one introduced in Sec. III-B. We first analyse
signals determined by the PE and then those determined by
the PEI. Although PE signals suffer from the unpredictability
problem discussed in Sec. II, we believe that they can still play
a significant role in driving competence acquisition. Indeed,
not all environments present a relevant stochasticity and in
some setups it is reasonable to assume that some goals are
learnable by the system (e.g., self-determined goals, see Sec.
V). Moreover, signals based on PE are more robust than those
based on the PEI (as it is explained below in relation to Fig. 2
and Fig. 3).

To test these mechanisms we used the same simple scenario
described in Sec. II-A, with some modifications. The agent



now has a goal, that is reaching the final position of the 1x10
grid. The simulation is run for a maximum of 100,000 trials,
where each trial ends when the goal is reached or after a time-
out of 20 time steps. At the beginning of every trial, the agent
is positioned randomly on the 1x10 grid between positions 1
and 9; position 10 is the goal.

As we are interested in finding IM learning signals that
can be used within hierarchical architectures, but at the same
time we want to keep the simulations simple and focused
on comparing different signals, we consider the actor-critic
architecture of the previous system as one of the experts of an
hypothetical hierarchical architecture. In this condition, what is
needed to acquire a repertoire of skills is that the selector trains
an expert to achieve high competence in accomplishing a goal
(e.g., the goal considered here) and then, when no additional
IM reward signal is generated, it selects a different expert to
accomplish other goals. To capture this process using only
one expert, we set a threshold (0.01) for the reward signal
related to the goal, and when the signal goes below such
threshold we stop the learning process. This mimics in an
abstract fashion the fact that the selector finds more reward
in selecting a different expert/goal and thus stops training
the only expert forming our system. When the threshold is
reached, we test the competence of the expert in reaching the
goal by positioning the agent on every position of the grid
(except the target position) for 30 times. In this way we test if
the signal generated by the IM mechanism is able to guarantee
the learning of a satisfying competence related to the goal.

The main problem related to the acquisition of competence
based on KB reward signals is the decoupling between the
ability of the predictor and the level of acquired competence
(or: rate of prediction improvement and rate of competence
improvement). This leads to the possibility that the predictor
learns, and hence decreases the leaning signal, before the agent
has acquired a full competence in achieving the goal. For this
reason, we tested the IM mechanisms illustrated below with
different learning rates for the predictors (the rates ranged in
[0.002, 0.8]).

For all the mechanisms, the output of the predictor is
a single linear unit fully connected with the input units.
Connection weights are updated as described in Sec. II-A.
The achievement of the final goal, or the failure to do so, are
used as teaching input encoded with 1 and 0, respectively. The
reward signal (RS) at time t is calculated as the average of
PE calculated during a period T of 25 time steps:

PEt =

∑i=t
i=t−(T−1) PEi

T

We tested three different mechanisms, which vary in the
composition of the input to the predictor. Critically, the type
of input is one of the differences that make the mechanism
a KB-IM mechanism (measuring knowledge) or a CB-IM
mechanism (measuring competence).

1) KB goal-oriented predictor: The first IM mechanism is
similar to what we can find in [7], [9]: a predictor getting the
input typical of the KB-IM mechanisms described in Sec. II-A
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Fig. 2. Competence achieved by the agent in reaching the goal (y-axis)
when driven by the PE signal generated by the three different IM mechanisms,
corresponding to different learning rates of the predictor (x-axis).

(i.e., the actual state and planned action) but used to predict
the achievement of a goal rather than any state.

2) CB one-state-ahead predictor: This predictor is a CB-
IM mechanism. Differently from KB mechanisms, it does
not have actions as input: the only input to the predictor is
the actual position of the agent. In this way the prediction
is directly connected to the competence of the system in
reaching the final goal from the position that precedes the
target one. Indeed, the prediction can improve only if the
competence improves: in particular, only if the policy chooses
an action in the state before the goal with an increasingly
higher confidence. The effect of this is that the reward signal
persists until there is competence to acquire. This kind of
mechanism is analogous to what has been used, for example,
in [6].

3) CB first-state predictor: This mechanisms establishes a
stronger coupling between the learning of the predictor and
the ability of the agent to reach the goal. The mechanism is
inspired to what done in [24] where an IM signal is generated
on the basis of the expansion of the region of the state space
from which an options succeeds to achieve its goal. The input
to the predictor is the first state encountered by the agent when
randomly initialised at the beginning of each trial. This input
determines a prediction that the goal will be achieved within
the fixed time corresponding to the time out of the trial. This
prediction is verified at the end of the trial (the success or
failure are used as teaching input). In this way, the prediction
is strictly connected to the capacity of the agent to achieve
the goal from any possible initial state, and for this reason it
can be considered a better measure of the competence of the
system.

A. Results and analysis

Fig. 2 shows the competence achieved by the system when
the reward signal generated by the three different IM mech-
anisms goes under the threshold. The data are an average of
20 replications of each experiment.

With very low values of the learning rate (between 0.002
and 0.008) all the mechanisms are able to guarantee high
competence in the achievement of the goal before terminating
learning. However, when we raise the values of the learning



rate the three mechanisms determine different results in the
level of competence acquired by the system. In particular,
when driven by the KB mechanism, the achieved competence
is very sensitive to the learning rate of the predictor: the
higher the learning rate, the faster the predictor learns to
anticipate the achievement of the goal, the sooner the learning
process will stop. Even with low values of the learning rate
(between 0.02 and 0.08) few presentations of that stimulus-
response association are sufficient to significantly improve the
knowledge of the predictor: in this way the reward signal
becomes very low and the system terminates learning without
having acquired a reliable competence. This result shows how
KB mechanisms tend to produce signals which are inadequate
for the acquisition of competence.

The signal generated by the CB one-step-ahead predictor is
more robust to the variation of learning rates: indeed, now the
system is able to reach a higher competence than with the KB
mechanism. However, also in this case increasing the value of
the learning rate determines a drop in competence acquisition,
especially with high learning rates (between 0.2 and 0.8). The
reason is that although the learning of the predictor is more
closely coupled to the competence of the agent in achieving
the target position, the signal generated by this mechanism
is a good measure of the agent competence in achieving the
goal only from the states before the goal itself. This is a
limitation because, especially for complex sequences, it is
possible for a system to have learnt to systematically reach the
goal from positions close to it but still be unable to reach with
sufficient ability those positions. For this reason, also the signal
generated by this type of CB-IM mechanism is inadequate
to properly drive competence acquisition, although it can be
considered an improvement in relation to KB mechanism.

The signal determined by the CB first-state predictor mech-
anism is able to drive the system in achieving high level of
competence independently of the learning rate values: even
with high values it guarantees the acquisition of a competence
level higher than 90%. The reason of these results is the
fact that the improvement of the prediction ability of this
mechanism is fully coupled with the ability of the agent to
reach the goal from any possible starting position. In this way,
the predictor is able to anticipate the achievement of the goal
only when the whole sequence of actions that lead to the target
position has been learned by the agent. The signal generated
by this mechanism can be considered a good measure of the
competence of the agent and for this reason this mechanism
seems the most suitable for the acquisition of competence
through IM.

B. Improvement in the prediction error signals

In order to have a more precise analysis of the different
mechanisms, we tested the KB predictor and the CB first-state
predictor (the CB one-step-ahead predictor can be considered
an imperfect CB mechanism) also for the generation of a
reward signal based on the PEI . Because of the differences of
this signal with respect to the PE signal (noisier and weaker),
we changed some of the conditions of the experiment. The
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Fig. 3. Comparison between the competence achieved by the system in
reaching the goal (Y axis) when driven by the improvement in prediction error
signal generated by KB and CB mechanisms at the varying of the learning
rate of the predictor (X axis)

threshold for the signal was set to 0.001 while the PE was
calculated as an average over a period T of 75 trials. The PEI
was calculated as described in Sec. II-A.

Fig. 3 shows the average results of 20 replications of each
experiment. Even using the PEI as the reward signal, when
driven by the KB mechanism the competence achieved by the
system suffers from the variations of the learning rates of the
predictor, decreasing in a sensible way for values higher than
0.02. These results confirm the analysis of Sec. IV: KB-IM
mechanisms produce inadequate signals for the acquisition of
competence through IM.

When driven by the signal generated by the CB-IM mech-
anism, the system reaches a higher performance. Although
PEI is more sensitive to the variations of the learning rate, the
CB first-step predictor is able to allow the system to achieve
competence levels higher than 90%, except for very high learn-
ing rate values. This confirms the fact that the learning of this
type of mechanism is strictly connected to the improvement
of the competence of the system in achieving desired goals.
For this reason, it can be considered a good solution for the
generation of an IM reward signal for competence acquisition.

V. CONCLUSIONS AND FUTURE WORK

In this work we investigated which are the IM mechanisms
that are best suited for guiding the acquisition of competence.
In Sec. II we showed how systems driven by signals deter-
mined by every unpredicted state are not able to learn useful
policies for the achievement of competence. In Sec. III-A
and Sec. IV we highlighted and verified how shifting to a
goal-directed perspective is a fundamental passage for the
achievement of competence acquisition through IM.

Our analysis, supported by simple simulations, highlights
how KB-IM mechanisms generate signals that are not fully
suitable for competence acquisition. In contrast, CB-IM mech-
anisms, and in particular CB predictors whose learning devel-
opment is fully coupled with the competence of the system,
generate reward signals that guarantee the acquisition of skills.

Implementing hierarchical architectures, as described in
Sec. III-B, is another key element for the achievement of
competence acquisition through IM. A crucial point related to



this is the possibility for an agent to autonomously set its own
goals. In this work we did not investigate this problem, but
this is certainly a core topic for future research. An hypothesis
that we suggest is the possibility of using KB-IM mechanisms,
for example predictors of sensor activation (similar to those
of [9], [21]), to signal unexpected changes in the environment
and highlight interesting states that could become the desired
goals of the system. However, detailed ways to implement this
solution need to be further investigated.

Looking at different types of reward signals for guiding the
acquisition of competence, we underlined how the error of a
predictor is a robust signal that can be suitable for competence
acquisition. However, this signal suffers from the well know
problem of getting stuck in unpredictable situations (Sec. II).
The prediction error improvement provides a solution to this
problem but at the same time generates a small signal that is
easily corrupted by noise and this can negatively influence the
learning process.

A different solution to the problem of unpredictability is
given by using the TD-error signal generated by the critic of
an actor-critic architecture as an IM reward signal [8] (see
also [14]). Note that this type of signal suffers from the same
signal-noise problem of the PEI . To properly analyse these
issues the implementation of a hierarchical architecture is
necessary, which was not done here because of the aim of
this work.

Future research will have to focus on the implementation
of a goal-directed hierarchical architecture to better analyse
a wider range of IM mechanisms and test the impact of
different reward signals in the development of complex agents
that deal with complex environments. Moreover, a hierarchical
architecture would possibly allow one to fully attest how CB
mechanisms overcame KB mechanisms in producing a proper
reward signal for competence acquisition through IM.
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