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Abstract 

 

This paper analyses the strengths and weaknesses of 
self-organising approaches, such as evolutionary ro-
botics, and direct design approaches, such as behav-
iour-based controllers, for the production of autono-
mous robots’ controllers, and shows how the two 
approaches can be usefully combined. In particular, 
the paper proposes a method for encoding evolved 
neural-network based behaviours into motor schema-
based controllers and then shows how these control-
lers can be modified and combined to produce robots 
capable of solving new tasks. The method has been 
validated in the context of a collective robotics sce-
nario in which a group of physically assembled 
simulated autonomous robots are requested to pro-
duce different forms of coordinated behaviours (e.g., 
coordinated motion, walled-arena exiting, and light 
pursuing). 
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1.   Introduction 
In the field of autonomous robotics, approaches in which 
the controllers are designed by the experimenter, such as 
behaviour-based robotics (Brooks, 1986; Wang, 1991; 
Kube and Zhang, 1993; Arkin, 1998; Balch and Arkin, 
1998; Holland and Melluish, 1999; Krieger et al., 2000; 
Ijspeert et al., 2001; Desai et al., 2001; Fredslund and 
Mataric, 2002; Wang et al., 2003; Barfoot and Clark, 2004), 
and approaches in which some of the characteristics of the 
controllers are developed through automatic procedures, 
such as evolutionary robotics (Nolfi and Floreano, 2000; 
Ward et al., 2001; Quinn et al., 2002; Quinn et al., 2003; 
Spector et al., 2005; Trianni et al., 2006; Baldassarre et al., 
2006; Trianni et al., 2007), are usually seen as two alterna-
tive methods based on partially contrasting principles. This 

paper proposes a method for combining the strengths of 
automatic procedures and direct design methods. In particu-
lar it show how effective solutions discovered through an 
evolutionary technique can be re-coded in motor schema-
based controllers which can be later manipulated and com-
bined to produce new behaviours. 

To accomplish this goal, the research presented here 
compares evolved feed-forward neural-network controllers 
(Cliff et al., 1993; Miglino, 1995; Nolfi and Floreano, 2000) 
with hand-coded motor schema-based controllers (Arkin, 
1989; Arkin, 1998). Artificial neural networks are a formal-
ism widely used to encode robots’ controllers in evolution-
ary robotics research (Nolfi and Floreano, 2000). Feed-
forward neural networks are the simplest type of neural 
controller in which the state of the motors is a function of 
only the current state of the sensors. Feed-forward neural 
controllers have been chosen because they were sufficient 
for the purposes of this study and because they could be 
easily compared with hand-coded motor schema-based con-
trollers. Hand-coded motor-schema based controllers are a 
class of behaviour-based controllers (Brooks, 1986; Arkin, 
1998) based on artificial potential fields which have been 
successfully used with both mobile robots (Arkin, 1989) 
and robotic manipulators Khatib (1986). These types of 
controllers have been chosen because, as feed-forward neu-
ral controllers, they involve a direct mapping between the 
activation of sensors and the commands issued to motors: 
this feature was expected to ease the comparison of the two 
types of controllers. Here the mapping between the two 
classes of controllers will be obtained with suitable mathe-
matical multi-variable functions. The form of these func-
tions will be directly designed, whereas its parameters, de-
pending on the specific goal in hand, will be either hand-
tuned, or obtained through suitable regressions, or searched 
with evolutionary/design hybrid techniques. 

The test of models were conducted in the context of a 
collective robotics scenario (Cao et al., 1997; Kube and 
Bonabeau, 1998; Martinoli, 1999; Dudek et al., 2002; 
Grabowski et al., 2003; Dorigo and Sahin, 2004) in which a 
“swarm” of assembled robots (Mondada et al., 2004) is re-
quested to display a variety of coordinated cooperative be-



haviours and in which each robot has access to only local 
sensory information. 

 

 
Figure 1: The robot that has been reproduced in the simulator used 
to carry out the experiments reported in the paper. 

Beside highlighting the general strengths and weak-
nesses of the two approaches, the paper also shows how: (a) 
the solutions encoded in evolved neural controllers (section 
2 illustrates the methods used for this evolution and section 
3 illustrates the functioning of the evolved controllers) can 
be implemented in motor schema-based controllers (section 
4); (b) the obtained motor schema-based controllers can be 
manually manipulated to identify the key functioning fea-
tures of the evolved solution (section 5); (c) the obtained 
motor schema-based controllers can be modified to obtain 
new controllers able to produce new behaviours (section 6); 
(d) different schema-based controllers obtained from the 
evolved ones can be combined to develop robots able to 
produce more complex behaviours (section 7). 

2.   The experimental set-up 

2.1 The robot 
The research presented here was carried out within a re-
search project, SWARM-BOTS, funded by the European 
Union (IST-FET Program; Dorigo et al., 2004; Mondada et 
al., 2004). The goal of this project was to develop swarm-
bots, that is groups of fully autonomous robots able to 
physically connect and disconnect to form larger robotic 
systems. These systems can assume different physical 
shapes and act to solve problems that cannot be solved by 
single robots. This paper focuses on how a group of robots 
that are already assembled can accomplish common tasks 
such as to coordinate the motion direction in a distributed 
fashion (that is without a leader, cf. Baldassarre et al., 
2006). Other researches carried out within the project stud-
ied how robots can self-assemble and disassemble to ac-

complish collective tasks (Groß et al., 2006; Tuci et al., 
2007). 
 

 
Figure 2: Four simulated robots linked up to form a linear swarm-
bot. Each robot is made up by a chassis (parallelepiped) to whom 
two motorised cylindrical wheels and two small spherical wheels 
are attached (the two passive wheels have different colours, dark 
and light grey, to allow distinguishing the two possible chassis’ 
fronts). The chassis is connected to a cylindrical turret. The black 
segment between the turrets of two robots represents a physical 
link between them. The white line above each robot’s turret, which 
goes from the turret’s centre to a point on its perimeter, indicates 
the direction of traction and, with its size, the intensity of traction. 

Each robot (Figure 1; cf. Mondada et al., 2004) has a cy-
lindrical body with a diameter of 11.6 cm and consists of a 
mobile base (“chassis”), and a main body (“turret”). The 
chassis is endowed with two motors each controlling a track 
and a teethed wheel. A third motor allows the turret and the 
chassis to actively rotate with respect to each other. The 
turret is provided with two grippers, one rigid and one flexi-
ble, that allow the robots to self-assemble and grasp objects. 
Each robot is provided with a number of different sensors 
(Mondada et al., 2004), but only the traction sensor de-
scribed below has been simulated and used in the experi-
ments reported in this paper. 

In order to carry out the experiments reported in the pa-
per we built a simulator of the robot based on the SDK Vor-
texTM toolkit (Critical Mass Labs, Canada) which allows 
programming realistic simulations of dynamics and colli-
sions of rigid bodies in 3D. Given the high computational 
costs of simulations, only few relevant characteristics of the 
sensors, actuators and body of the robot were simulated; 
moreover the size of the robots and the gravitational accel-
eration coefficient were reduced to have the possibility of 
increasing the simulation time step without having instabili-
ties. 

The motor system of a simulated robot was modelled by 
four wheels connected to the chassis: two lateral motorised 
wheels that modelled the external wheels of the real robot 
and two spherical passive wheels placed at the front and at 
the back to stabilise the ro bot. The chassis was connected 
to the turret, modelled as a cylinder, through a motorised 
joint (Figure 2). The turret was endowed with a gripper 
which was modelled by creating a physical joint between 
the robot and other robots when needed (this joint was ei-
ther rigid – in which case it will be called rigid link in the 
following sections – or possessed a free hinge with a verti-
cal pivot – in which case it will be called flexible link). The 



active and passive wheels had a diameter of respectively 
2.30 and 1.15 cm. The turret had a diameter of 5.8 cm and a 
height of 4.6 cm. 

During evolution, spherical collision models were used 
for all the wheels and for the chassis, as these speeded up 
computations (results equivalent to those reported below 
were obtained by testing the evolved controllers with the 
collision models shown in Figure 2). The gravitational ac-
celeration coefficient was set at 9.8 cm/s2. This low value, 
that caused a low friction of the wheels on the ground, was 
compensated for by setting the maximum torque of the mo-
tors at a low value, 70 dynes cm. The coefficient of friction, 
simulated by Vortex according to the Coulomb model, was 
set at 0.6. The desired speed of the wheels varied within ±5 
rad/s. The desired speed applied to the turret-chassis motor 
was permanently set equal to the difference between the 
desired speed of the left wheel and right wheel times 0.26 
(this setting implies that, when the chassis turns, the turret 
turns in the opposite direction so that its orientation does 
not change with respect to the environment: this greatly 
helps the robots to turn their chassis when they are attached 
to other robots). The state of the sensors and motors, and 
the differential equations used by Vortex to simulate the 
bodies’ dynamics, were updated every 100 ms. 

 
 
 
 
 
 
 
 
 

Figure 3: Traction force detected by the robot traction sensor. The 
parallelepiped represents the chassis. The turret has not been 
drawn for clarity. The large and small grey circles represent re-
spectively the right motorised wheel and the front passive wheel. 
The thin arrow indicates the orientation of the chassis, the bold 
arrow indicates the vector of the traction force that the turret exerts 
on the chassis, and the dotted arrow indicates the angle of traction 
measured clockwise from the back of the robot. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4: Computation of the activation of the “virtual light sen-
sors” on the basis of the activation of the light sensors. The four 
empty squares represent the light sensors placed on the turret. The 
four empty circles represent the virtual light sensors located on the 
chassis. As an example, the dotted arrows depart from the sensors 

that were used to compute the activation of the virtual sensor 
pointed by the heads of the arrows themselves. 

Each robot was provided with a traction sensor placed 
at the turret-chassis junction (Figure 3). This sensor re-
turned the direction (angle with respect to the chassis’ ori-
entation) and the intensity of the force of traction that the 
turret exerted on the chassis. Traction was caused by the 
movements of both the connected robots and the robot’s 
own chassis. Notice that, by being rigidly assembled to 
other robots, the turret of a specific robot physically inte-
grated the forces produced by the other robots on it. As a 
consequence, the traction sensor measured the mismatch 
between the directions of motion of the robot and the direc-
tion of motion of the rest of the group, and hence furnished 
the robots an important communication channel based on 
implicit communication (Quinn et al., 2003; Tummolini et 
al., in press). The intensity of the traction force measured 
the size of this mismatch. To have more realistic simula-
tions, a 2D noise ranging within ±5% of the maximum 
value was added to the traction force seen as a 2D vector. 
 

Motors  
 
 
 
 
 
 
 

Figure 5: The neural controller of each robot consisted of a two-
layer neural network with five input neurons, encoding the direc-
tion and intensity of traction plus a bias signal, and two output 
neurons, encoding the desired speed of the wheel motors. 

Each robot was also endowed with four light sensors. 
These sensors were used to extend the controller in order to 
solve light pursuing tasks (see section 7). The sensors were 
positioned on the perimeter of the turret, and were simu-
lated by using a sampling procedure applied to a real sensor 
(cf. Miglino et al., 1985; the sensors had a high sensitivity 
to the light gradient: their activation was maximum when 
close to the light, exponentially decreased with a decreasing 
distance, and achieved a value of zero at 400 cm). A noise 
ranging within ±5% of the maximum intensity was added to 
the sensors. Shadows were simulated by computing geomet-
rical projections of obstacles in the sensors’ fields. In order 
to provide the robot with information about the light with 
respect to the orientation of the chassis (this greatly eased 
control as the wheels were connected to the chassis), the 
activations of the light sensors were used to compute the 
activation of four “virtual light sensors”. The activation of 
these sensors was computed on the basis of the weighted 
average of the activation of the two light sensors closer to 
the considered virtual sensor, with weights proportional to 
the angular distance of the latter from them (Figure 4). 

         Traction                Bias 



2.2 The neural controller 
Each robot’s controller (Figure 5) consisted of a neural net-
work with five input neurons directly connected to two out-
put neurons. The first four input neurons encoded the trac-
tion direction on the basis of a cosine function and four dif-
ferent “preferred orientations”. In particular, the activation 
xi of the input neuron i was computed as follows: 
 

xi = [cos(ta - tai)]+ · ti 
 
where ta is the traction angle (measured clockwise from the 
robot chassis’ rear), tai is the preferred orientation of the 
input neuron i (set to 0 rad, (1/2)π rad, π rad, and (3/2)π rad 
respectively for the first, second, third and fourth input neu-
ron), cos(.) is the cosine function, [.]+ is the identity func-
tion returning 0 for negative values, and ti is the traction 
intensity normalised in [0, 1]. The last input neuron, x5, was 
a bias neuron always activated with one. 

The activation yj of each of the two output neurons was 
computed on the basis of the activation of the five input 
neurons xi and a sigmoid transfer functions as follows: 

 
pyj = ∑i(wji · xi) 

yj = 1/(1+exp(-pyj)) 
 
where pyj is the activation potential of the output neuron j, 
and exp(.) is the exponential function. The activation of the 
two output neurons was used to set the desired speed of the 
two robot’s wheels by mapping it onto ±5 rad/s and was 
used to set the desired speed of the turret-chassis motor ac-
cording to the mechanism explained in section 2.1. 

The architecture of the neural controller illustrated 
above was chosen by testing and comparing the perform-
ance and evolvability of various feed-forward different neu-
ral networks having a variable number of hidden units. Fi-
nally, a neural network with no hidden units was chosen as 
this had a performance comparable to that of the other neu-

ral networks but had a higher evolvability (i.e. the genetic 
algorithm optimised its parameters in fewer generations). 

2.3 The genetic algorithm 
The connection weights of the neural controllers were 
evolved with a genetic algorithm (Nolfi and Floreano, 
2000). Among the various available learning techniques a 
genetic algorithm was chosen because: (a) supervised-
learning algorithms could not be used as the behaviour of 
the single robots leading to efficient collective performance 
was not known a-priori (cf. Yamashita and Tani, 2008); (b) 
reinforcement learning techniques were difficult to apply 
due to the high integration of the required collective behav-
iour and the complex dynamics of the group (cf. Matarić, 
1997); (c) unsupervised learning techniques, based only on 
self-organising principles (cf. Janet et al., 1997), could not 
be used as we wanted to have a criterion with which to 
guide the algorithm to develop specific desired behaviours 
(such as the fitness of genetic algorithm). 

The initial population of the genetic algorithm consisted 
of 100 randomly generated genotypes that encoded the con-
nection weights of 100 corresponding neural controllers. 
Each connection weight was represented in the genotype by 
eight bits that were transformed into a number within ±10. 
Each genotype encoded the connection weights of four 
identical neural controllers which were used to control a 
group of four robots linked up to form the swarm-bot 
shown in Figure 2. Each swarm-bot was tested five times 
(“epochs”), each lasting 150 time steps of 100 ms. The 20 
best genotypes of each generation were allowed to repro-
duce by generating five copies each, with 3% of their bits 
replaced by a new randomly selected value. The evolution-
ary process lasted 100 generations. The evolution was repli-
cated 30 times with different seeds of the random number 
generator (as a consequence these evolutionary runs started 
with different random genotype populations). 
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Figure 6: Average fitness and standard error, measured over 100 tests, of the best controllers of the 30 runs of the evolution. The white bar 
corresponds to the 30th controller, used throughout the paper. 



The swarm-bots were selected for the ability to move as 
fast and as straight as possible. More specifically, the fitness 
of each swarm-bot was computed by first measuring the 
Euclidean distance between the centre of mass of the 
swarm-bot at the beginning and at the end of each one of 
the five epochs, and then by summing the resulting meas-
ures. To normalise the value of the fitness to one, the total 
fitness of one swarm-bot over five epochs was divided by 
the maximum distance travelled by a single robot moving 
straight at maximum speed for 750 (=150×5) steps. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

Figure 7: The graphs show the commands that the controller corre-
sponding to seed 30 issues to the robots’ left motor (a) and right 
motor (b) in correspondence to a traction force having different 
angles and intensities. The vertical axis indicates the activation of 
the motor neurons which cause the robot’s speed and whether its 
moves straight, turns left or turns right. The schematic little picture 
represents a chassis and should aid the “visualization” of the direc-
tion of traction with respect to the chassis itself: the white little 
wheel of the schematic chassis represents the rear of the chassis 
and corresponds to an angle of traction of 0° measured clockwise. 

3.   The evolved controller 
Figure 6 shows the average fitness and standard error of the 
best controllers of the 30 runs of the evolution, measured 
over 100 epochs. All runs produced controllers that lead the 
robots to coordinate so as to allow the group to move fast 

and straight. The rest of the paper focuses on the controller 
corresponding to seed 30. The weights of this controller are 
reported in Table 1. This controller was selected as: (a) it 
had a high performance (its performance was not statisti-
cally different from the controller with the highest perform-
ance, corresponding to seed 20, t-test, p = 0.71); (b) it im-
plied a forward movement of the robots (recall that the ro-
bots have two possible fronts of motion: using the forward 
front eased the analyses); (c) it had a particularly regular 
shape (see Figure 7) that eased the regression process and 
the analysis of the controller (see sections 4 and 5). 

The functioning of the evolved controller at the individ-
ual and collective level is now briefly described (for more 
details see Baldassarre et al., 2004, and Baldassarre et al., 
2006). Direct observation of the collective behaviour of 
robots indicates that: (a) at the beginning of the test they 
start to pull/push in different directions, (b) then they orient 
their chassis in the direction where the majority of the other 
robots are moving, and then (c) they move straight along 
the direction that emerges from the initial negotiation in fine 
coordination with the other robots. The absolute direction 
that emerges from the robots’ negotiation changes in differ-
ent tests depending on the initial orientation of the robots, 
but the robots always converge towards a single direction of 
motion (see Baldassarre et al., 2006, for data). 0 90 180 270 3600
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Table 1: Weights of the neural-network controller emerged in the 
30th evolutionary run. The rows indicate the weights correspond-
ing to the two output units of the neural network whereas the col-
umns indicate the weights corresponding to the input units (I1, I2, 
I3, and I4) having a particular preferential traction direction (trac-
tion from left, front, right and back), and a bias unit (Bias). 
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 I1 
Left 

I2 
Front 

I3 
Right 

I4 
Back 

Bias 

Left motor -10.000 -1.1718 7.5781 -5.0781 6.4843 
Right motor 8.1250 -1.4062 -8.8281 -3.7500 5.3906 

 

In order to understand how the individual controller pro-
duced this behaviour, the activation of its two output units 
corresponding to traction forces having different angles and 
intensities was measured and plotted (Figure 7). The analy-
sis of the resulting graphs reveals that the controller works 
as follows. When the traction comes from the front (about 
180°), the robot is oriented toward a direction that is close 
to the “mean” direction of motion of the other robots. In this 
situation the robot moves straight. When the traction comes 
from the left hand side (about 90°) or the right hand side 
(about 270°) there is a significant mismatch between the 
orientation of the robot and the mean orientation of the 
other robots. In this condition the robot turns toward the 
direction of the traction force, by turning left when the trac-
tion comes from the left hand side and by turning right 
when the traction comes from the right hand side. The 
speed of turning is proportional to the intensity of the trac-
tion force. When traction comes from the rear (about 0°) the 
robot goes straight at maximum speed independently of the 
intensity of traction. This might be due to the fact that when 
the traction comes from the left or the right hand side the 
robot has to respectively turn left or right, so the point cor-



responding to 0° (rear) represents the separation between 
the two different turning behaviours. Overall, the individual 
robot’s behaviour might be characterised as a conformist 
tendency to follow the direction of motion of the rest of the 
group: indeed traction provides an indication of the average 
direction of motion of the other robots. At the group level, 
this tendency rapidly leads the robots to select the same 
direction of motion and to move in a coordinated fashion. 
Note that these individual and collective behaviours have 
the features of a self-organising process based on a positive 
feedback mechanism, likely also characterised by a phase 
transition phenomenon (see Baldassarre, et al. 2004b; Bal-
dassarre, 2008; Turgut et al., 2008, for details). 

Notwithstanding this analysis revealed important fea-
tures of the evolved solution, it did not allow us to fully 
clarify the role of other characteristics. In particular, it did 
not allow clarifying the functional role, if any, of the fol-
lowing characteristics of the evolved controllers: (a) the 
tendency of the robots to persevere in their direction of mo-
tion when the traction comes from their rear (“stubborn-
ness”; see Figure 7); (b) the tendency of the robots to move 
forward at maximum speed with traction forces coming 
from the front (see Figure 7); (c) the left/right asymmetry of 
some evolved controllers having high fitness (this implied 
that the effects of traction forces coming from the left or the 
right and side were different in these controllers, data not 
shown). As we will see, the method described in section 4 
allowed us to better understand these features of the 
evolved controllers. 

4.   Mapping evolved neural-
controllers into motor schema-
based controllers 
This section describes how it is possible to re-code the sen-
sory-motor mapping implemented by the evolved neural 
controller into a suitable motor schema-based controller 
encoded as a multi-variable equation. Motor-schema based 
controllers (Arkin, 1989), initially developed by Khatib 
(1986) in particular in relation to robotic manipulators, are a 
type of controllers used in behaviour-based robotics 
(Brooks, 1986; Arkin, 1998) in which the control modules 
responsible for producing different elementary behaviours 
are expressed as mathematical equations which generate 
artificial potential fields capable of guiding robots’ move-
ments. For example, in the case of a robot engaged in a 
navigation task, if graphically visualised with a gradient 
graph the potential field generated by a motor schema-based 
controller might indicate: (a) the robot’s direction of motion 
in the various positions in space, e.g. pointing away from 
obstacles and other robots, and pointing towards a naviga-
tion goal; (b) the robot’s speed related to the distance to 
such objects. A key aspect of the motor schema-based ap-
proach is that it allows generating behaviours derived from 
various sources (e.g. various obstacles, resources, etc.) as a 
weighted sum of the different potential fields. An applica-
tion of this principle will be shown in section 7. 

To recode the neural controller into a motor schema-
based controller a strategy was followed which should be 
also applicable to other problems which can be solved with 
feed-forward neural controllers. The strategy is based on the 
selection of a suitable nonlinear mathematical function and 
the use of a statistical regression technique to estimate its 
parameters on the basis of data sampled from the input-
output mapping of the original neural controller. The selec-
tion of the mathematical function is the most delicate pas-
sage of the procedure. Here this selection was performed by 
trying to satisfy the following constraints: (a) the function 
should be mainly formed by summations and multiplica-
tions of Gaussian and sigmoid functions: this is an impor-
tant point as these functions allow forming functional bases 
which on one side are suitable for statistical regressions 
(e.g. due to their overall simplicity, symmetry or 
monotonicity), and on the other side allow building univer-
sal function approximators (see Cybenko, 1989, and Park 
and Sandberg, 1991, for the sigmoid and Gaussian bases, 
respectively); (b) the capacity of the function of approxi-
mating the function expressed by the controller of interest 
(this capacity can be measured by the residual error of the 
regression); (c) the presence of parameters that allow ma-
nipulating with ease the aspects of interest of the behaviour 
exhibited by the controller (see sections 5 and 6 for exam-
ples of this; in this respect, consider that having more pa-
rameters than the original controller – as it happened in the 
example shown here where the approximation function has 
16 parameters vs. the 10 parameters corresponding to the 
weights of the original neural controller – might allow ren-
dering the various aspects of the controller independent 
between them and hence more easily modifiable). These 
criteria should allow applying the procedure also to prob-
lems different from those reported here to the extent that 
they have a similar complexity. The estimation of the func-
tion parameters reported below was performed with a Least 
Mean Square nonlinear regression using the Nonlinear Re-
gression Toolbox of MatlabTM. 

The parameters’ estimation was based on the input-
output vector couples produced by the best evolved neural 
controller corresponding to the 30th run of the evolutionary 
experiment (Table 1). These input-output vector couples 
were sampled by systematically varying the input pattern of 
the evolved network and by computing the corresponding 
output pattern. The input pattern was varied by sampling the 
angle and intensity of traction over 41 values each. This 
sampling process produced two input-output data sets, one 
for the left motor and one for the right motor, each com-
posed of 41*41=1681 elements. These two data sets are 
graphically displayed in Figure 7 and, partially, in Figure 
8a. 

As a first possible candidate function for the regression, 
we selected a Gaussian function with one independent vari-
able corresponding to the angle of traction, multiplied by a 
three-degree polynomial function with one independent 
variable corresponding to the intensity of traction: 
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where wds, the dependent variable of the function, is the 
wheel’s desired speed ranging over [-1, 1], ta is the traction 
angle ranging over [0, 1], ti is the traction intensity ranging 
over [0, 1], b1-b7 are the parameters of the function which 
were estimated separately for the left and right wheel. The 
values of the parameters obtained through the regression for 
the two wheels are shown in Table 2. The Mean Square 
Error of the regression for the left and right wheels was 
respectively 0.0035 and 0.0030. The mapping performed by 
the function on the basis of the tuned parameters is shown 
in Figure 8b (compare it with Figure 8a relative to the 
evolved controller). 

Table 2: Parameters of the “Gaussian controller” (equation (1)) 
estimated with a Least Mean Square nonlinear regression. 

 b1 b2 b3 b4 b5 b6 b7 
Left 0,723 0,032 2,008 0,962 -4,266 2,033 1,013
Right 0,291 0,034 2,023 0,787 -4,192 2,191 1,011
 

In order to improve the approximation, and to have pa-
rameters which allow an independent regulation of control-
lers’ “stubbornness” and asymmetry, a second function was 
designed. This was composed by the product of three Sig-
moid functions, two depending on the traction angle and 
one depending on the traction intensity: 
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By using this function the Mean Square Error of the re-
gressions for the left and right motor were respectively 
0.0004 and 0.0007. The mapping performed by the function 
on the basis of the estimated parameters (see Table 3) is 
shown in Figure 8c. 

Table 3: Parameters of the “Sigmoid controller” (equation (2)) 
estimated with a Least Mean Square nonlinear regression. 

 b1 b2 b3 b4 b5 b6 b7 b8 
Left 0,118 0,030 0,458 0,022 0,650 0,107 1,099 1,005
Right 0,549 0,025 0,901 0,030 0,627 0,122 1,092 1,001
 

The estimated parameters of the “Sigmoid function con-
troller” (Table 3) were rounded as reported in Table 4 in 
order to simplify their manipulation and the interpretation 
of the effects of such manipulations on the robots’ behav-
iour illustrated in the next sections (the important parame-
ters b1 and b3 were rounded in such a way that the “sides” 
of the two Sigmoid functions sensitive to the traction angle 
were all at a distance of 0.05 from either one of the two 
critical values of traction force’s angle, 0 and 0.5, respec-
tively corresponding to 0° and 180°; b2 and b4, regulating 
the pendence of the same two functions, were rounded to 
10-2; the less sensitive parameters b5-b7, regulating the 
Sigmoid function dependent on traction intensity, and b8, 

regulating the level of the overall function, were rounded to 
10-1). Figure 8d displays the mapping obtained on the basis 
of the function resulting from these rounding. 
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Figure 8: The sensory-motor mapping performed by four different 
controllers: (a) the evolved neural controller; (b) the Gaussian 
controller; (c) the Sigmoid controller; (d) the Rounded Sigmoid 
controller. Each graph encodes the desired speed of the two motors 
(y-axis) for traction forces with different directions (x-axis). Thick 
and thin lines encode the desired speed of respectively the left and 
right motor. The 11 curves in each graph correspond to desired 
speed of traction with different intensities (from –1 to +1 in inter-
vals of 0.2). 

 
Figure 9 compares the mean and standard error of the 

performance of the four controllers (i.e. respectively the 
neural-network controller, the “Gaussian controller”, the 
“Sigmoid controller”, and the “Rounded Sigmoid control-
ler”) in 100 trials of the coordinated motion task used to 
evolve the neural controller. The results show that the 
evolved neural controller outperforms the three equation-
based controllers: the difference of performance between 
the former and each one of the latters is statistically signifi-
cant (t-test, p < 0.01 in all cases). This implies that small 
differences in the sensory-motor mapping (as mentioned 
above, the residual errors after the regressions were very 
low) play a significant role in robots’ behaviour. 

Table 4: Rounded parameters of the “Sigmoid controller” (equa-
tion (2)) estimated with a Least Mean Square nonlinear regression.  

 b1 b2 b3 b4 b5 b6 b7 b8 
Left 0.05 0.03 0.45 0.02 0.60 0.10 1.00 1.00 
Right 0.55 0.02 0.95 0.03 0.60 0.10 1.00 1.00 

 
As the Rounded Sigmoid controller had a performance 

higher than the Sigmoid controller and the Gaussian con-
troller (even if not statistically significant: t-test, p > 0.1 in 
both statistical comparisons), and moreover, differently 
from the latter two, it had some parameters that allowed 
changing important aspects of the robots’ behaviour (see 
next section), it was used in all experiments presented in the 
remaining sections of the paper. Section 7 will show the 
artificial potential field generated by this controller. 
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Figure 9: Average performance and standard error measured over 
100 trials of robots provided with the evolved neural controller 
and the three equation-based controllers described in the text.  

5. Manipulating the motor schema-
based controller to identify crucial 
aspects of the evolved controller 
This section describes the results of the manipulations of the 
Rounded Sigmoid controller developed in the previous sec-
tion which were carried out to understand the role played by 
the various aspects of the mathematical function that it im-
plements (see Figure 7). This analysis focused on the as-
pects of the controller that the experiments described in 
section 3 suggested to be important with respect to the co-
ordinated behaviour displayed by the whole swarm-bot, 
namely: conformism/stubbornness with respect to traction 
from the rear, reaction to traction from the front, and sym-
metry/asymmetry of reaction to traction from the left and 
right hand side. 

The effects of the manipulation of the controller on the 
swarm-bot’s behaviour were measured in terms of the aver-
age distance covered by it in 100 trials (the same measure 
used in section 4). The results are summarised in Figure 10. 
The histogram bar “D” indicates the performance observed 
by the unmodified Rounded Sigmoid controller. The histo-
gram bars A-E indicate the performance of controllers that 
have increasing levels (from left to right) of conformism to 
traction forces coming from the rear. The level of conform-
ism was regulated by setting the parameters b1 of the left 
wheel and b3 of the right wheel, that establish the reactivity 
of respectively the left and right motor to traction from the 
rear, to the couples of values: {0.20, 0.80}, {0.15, 0.85}, 
{0.10, 0.90}, {0.05, 0.95}, and {0.00, 1.00} (the effects of 
these parameters on the mathematical function implemented 
by the controller are indicated by the oblique arrows on the 
graphs reported under the respective bars in the histogram 
of Figure 10). The performance of controllers correspond-
ing to bars A, B, C, and E is statistically lower when com-
pared to performance of the unchanged Sigmoid, bar D (t-
test, p < 0.05 in all cases). The increase of performance 
from controller A to D indicates that increasing levels of 
conformism with respect to traction forces coming from the 
rear improve the capacity of the robots to coordinate 
quickly: the reason is that the controllers react more readily 
to mismatches with respect to the group’s motion. The low 
performance of controller E (the one with the highest con-
formism), can be explained by considering that in this case 
the left wheel erroneously slows down when the traction 
comes from 350° or more and, similarly, the right wheel 
erroneously slows down when the traction comes from 10° 
or less (see oblique arrows on graph under bar E). These 
results suggest that our previous interpretations correctly 
attributed a central role to conformism and that stubborn-
ness for traction forces coming from the rear does not play 
an important functional role (as it was erroneously sug-
gested in a previous work, Baldassarre et al. 2003, before 
conducting this analysis). 

Tests F-G, compared with test D, analyse the effects of 
manipulations that increase the interval in which robots 
exhibit a tendency to move forward at maximum speed for 



traction forces coming from the front (see the vertical ar-
rows on the graphs under the respective bars). These ma-
nipulations were performed by setting parameters b3 of left 
right wheel and b1 of right wheel to the values {0.35, 0.65} 
for F and {0.25, 0.75} for G (note that in the case of D they 
were set at {0.45, 0.55}). The fact that performance of con-
troller F does not statistically differ from the unchanged 
controller D (t-test, p = 0.96) indicates that the response to 
traction forces coming from the front is not as important as 
the lack of conformist behaviour for traction forces coming 
from the rear. Performance is impaired only if such ten-
dency is extended to an excessively wide range of traction 
forces coming from the front, as in the case of controller G 
(its performance is statistically lower than that of D, t-test, p 
< 0.05), likely because in this case the capability of the con-
troller to suitably respond to traction forces coming from 
the left or from the right hand side is impaired. 

Tests H-K were conducted to analyse the effects of 
asymmetries between the reactions of left and right motors 
to tractions coming respectively from the left and the right 
hand side of the robots. The controllers of tests H-J were 
obtained by changing in various ways the parameter b1 and 

b3 of the two wheels, with respect to the control condition 
D, so as to obtain different types of asymmetries (see values 
directly in Figure 10; the asymmetries of the controllers 
with respect to D are indicated by the vertical arrows on the 
respective lower diagrams). The performance of the three 
controllers was not statistically different from the perform-
ance of the controller D (t-test, p = 0.92, p = 0.09, p = 0.11, 
respectively). This indicates that small asymmetries produce 
little effects on performance. Performance significantly de-
teriorates (but surprisingly not so much) only with strong 
asymmetries such as that of test K: in this case the reactivity 
of the controller to traction forces coming from the left hand 
side of the robot was eliminated altogether. 

Altogether these results explain why the five best-
performing neural controllers evolved with different ran-
dom number-generator seeds (3, 12, 20, 22, and 30, see 
Figure 6) vary significantly with respect to the reactivity to 
traction forces coming from the front and with respect to 
asymmetry, while they all have a high reactivity (conform-
ism) to traction forces coming from the left or right hand 
side (especially near the rear), at least for one of the two 
motors (data not reported).  
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Figure 10: Average performance and standard error over 100 tests of controllers obtained by manipulating the Rounded Sig-
moid controller. The function implemented by each controller is visually rendered by a small graph vertically below the re-
spective bar of the histogram (same scale and conventions of Figure 8). The two couples of numbers under each bar indicate 
the parameters b1-b3 of the left wheel (first couple of numbers) and b1-b3 of the right wheel (second couple of numbers). The 
black bar (D) refers to the unchanged controller; dark grey bars (A, B, C, E) and light grey bars (F, G) refer to controllers 
used to study the effects of different levels of subbornness/conformism for traction forces coming from respectively the ro-
bots’ rear or front; white bars (H-K) refer to controllers used to study the effects of different levels of asymmetry. Arrows on 
the small graphs highlight relevant aspects of the functions implemented by the controllers (see text). 
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6.   Developing controllers that ex-
hibit new behaviours 
This section describes the results obtained by modifying the 
parameter of the Rounded Sigmoid controller in order to 
develop swarm-bots that display new types of behaviours. 
In particular, these experiments exemplify how new behav-
iours can be obtained either through direct modification of 
the parameters of the hand-coded controller or through an 
Iterated Evolutionary Computation (IEC) technique (see 
Takagi, 2001, for a review). The two examples used to il-
lustrate this point, reported in sections 6.1 and 6.2, are both 
related to behaviours based on self-organising mechanisms 
guiding the whole system. In this respect, the results not 
only show how the hand-tuned controller might allow de-
veloping new potentially useful behaviours, but they also 
indicate that the technique proposed in this paper allows 
studying self-organising processes in collective robotic sys-
tems. 

IEC is an evolutionary technique in which the selec-
tion of the best individuals is not performed automatically, 
on the basis of a formalised selection criterion, but rather by 
the experimenter, on the basis of the visual inspection of the 
behaviour exhibited by the robots. IEC methods have an 
important advantage with respect to automatic evolutionary 
procedures consisting in the fact that they do not require 
identifying a detailed “effective selection criterion” (i.e. a 
fitness function which maximises not only final effective 
solutions of the problems, but also approximate solutions in 
early stages of the evolutionary process which represent 
necessary steps to build the final solutions, cf. Nolfi and 
Floreano, 2000). Moreover, by exploiting human ability to 
judge behaviours, IEC methods allow evolving behaviour 
on the basis of abstract selective criteria, such as “display-
ing interesting behaviours” or “display synchronised behav-
iours”, that are difficult to formalise (Funes et al., 2004). On 
the side of the drawbacks, IEC techniques require the ex-
perimenter to evaluate the behaviour of all the produced 
controllers and so are extremely time consuming and in 
practise can be applied only to problems with limited search 
spaces, that is involving limited numbers of free parameters. 

6.1 Synchronised periodic behaviours 
In a first experiment we tried to develop swarm-bots able to 
display synchronised periodic behaviours (Strogatz, 2003) 
relying on self-organising principles (Camazine et al., 2001; 
Baldassarre, et al. 2004b; Baldassarre, 2008; Turgut et al., 
2008) by varying the evolved solution through an IEC tech-
nique. According to Strogatz (2003), synchronised periodic 
behaviours rely on two specific self-organising mecha-
nisms: (a) an intrinsic tendency of the elements composing 
the collective system to generate a periodic behaviour; (b) a 
tendency of the elements to slow down or to accelerate the 
frequency of their periodic behaviour on the basis of phase 
mismatches. In this respect, we wanted to verify if it was 
possible to obtain behaviours relying upon such mecha-

nisms through a IEC procedure directly applied to the 
Rounded Sigmoid controller. The experimental set-up used 
for this experiment involved 10 robots linked to form a lin-
ear structure. 
 

Table 5: Parameters of the controller obtained with an Interactive 
Evolutionary Computation technique which lead the robots to 
exhibit a periodic synchronised behaviour at the group level. 

 b1 b2 b3 b4 b5 b6 b7 b8 
Left 0.038 0.040 0.462 0.020 0.618 0.083 0.975 0.541
Right 0.535 0.025 0.924 0.003 0.607 0.085 0.992 0.981
 

The specific IEC technique used here was imple-
mented by first defining the goal of the exercise in an in-
tended generic form (cf. Funes et al., 2004), in our case 
“trying to obtain a periodic behaviour in a group of assem-
bled robots”, and then by performing multiple times the 
following three operations until the obtained behaviours 
were “satisfactory”: (a) varying the free parameters of the 
neural controllers by clicking on a corresponding button of 
the graphic interface of the simulator; (b) observing the 
behaviour displayed by the robots after the variation of the 
free parameters; (c) deciding whether to retain or discard 
the behavioural variant so obtained by suitably clicking 
either one of two buttons of the graphic interface. The pro-
gram introduced the variations of the parameters by adding 
a random number, drawn with a uniform probability distri-
bution over the interval [-0.05, 0.05], to each parameter of 
the controller and then by truncating their values, if needed, 
within the range [0.0, 1.0]. 

By following this procedure, it was indeed possible to 
quickly obtain a new variation of the controller that, once 
embodied in the 10 robots, allowed them to produce a peri-
odic behaviour and to quickly synchronize their move-
ments. Figure 11 illustrates a typical behaviour obtained at 
the end of this procedure (notice how the individual robots 
start with different randomly assigned orientations). The 
analysis of the graphs, and the visual inspection of the ro-
bots’ behaviour, indicates that: (a) at the individual level the 
controller tends to produce periodic behaviour that consists 
in producing a circular trajectory by turning counter-
clockwise (Figure 11a); (b) robots display a conformist ten-
dency which leads each robot to turn with a larger or 
smaller orientation variation depending on whether the per-
ceived traction force comes from respectively the same or 
from the opposite direction with respect to the direction of 
turning: this implies that robots tend to accelerate or decel-
erate their circling behaviour on the basis of the mismatch 
between their phase and the phase of the rest of the group 
(Figure 11b); (c) as a result of these accelerations and de-
celerations, robots rapidly converge into a stable state in 
which their motions are synchronised and in which the in-
tensity of traction forces become close to null. Notice how 
the points (a) and (b) indicate that the synchronised periodic 
behaviour observed at the group level actually relies on the 
self-organising mechanisms hypothesised by Strogatz 
(2003) (for other examples and analyses of behaviours 



based on self-organising principles, and relevant for collec-
tive robotics, see: Reynolds, 1987; Kube and Zhang, 1993; 
Beckers et al., 1994; Holland and Melluish, 1999; Krieger 
et al., 2000; Baldassarre et al., 2006; Baldassarre, 2008). 
Also notice how these results indicate that the tendency of 
the robots to modify the frequency of their circling behav-
iour in order to “catch up” or to “wait for” the rest of the 
group relies upon the same conformist tendency that was 
used by evolved robots to display coordinated movements 
along a single direction. 

 

(a)  

(b)

-1
-0,8
-0,6
-0,4
-0,2

0
0,2
0,4
0,6
0,8

1

0 100 200 300
Cycles

Si
ne

 o
f o

rie
nt

at
io

n 
an

gl
es

 

Figure 11: (a) Trajectories followed by ten robots assembled to 
form a linear swarm-bot during a test lasting 300 cycles, when 
guided by the Rounded Sigmoid controller modified through an 
IEC procedure. Each line corresponds to the trajectory followed by 
the barycentre of one robot. (b) Synchronization of the periodic 
circling behaviour displayed by the ten robots in the same test: the 
curves show the sine (y-axis) of the chassis’ absolute orientation 
angle of the ten robots in 300 time steps (x-axis). 

The analysis of the parameters of the new controllers, 
reported in Table 5, suggests that the most important varia-
tion of the controller’s parameters with respect to their 
original values (cf. Table 4), consists in the variation of 
parameter b8 associated with the average speed of the left 
wheel. This variation is responsible for the intrinsic ten-
dency of the robots to produce a circling behaviour. Indeed, 
even if all parameters were reset, with the exception of pa-
rameter b8 associated with the average speed of the left 
wheel, to the original values reported in Table 4, the robots 
still displayed the synchronised periodic behaviour. 

6.2 Coordinated behaviours allowing a 
swarm-bot to exit from an arena 
In a second experiment, we aimed at improving the swarm-
bot’s capability of exiting an arena surrounded by walls and 
with narrow ways out, by directly modifying the parameters 
of the Rounded Sigmoid controller. In this experiment the 
swarm-bot consisted of eight robots assembled through 
flexible links into a circular structure (Figure 12; a “flexible 

link” was simulated with two segments, each rigidly con-
nected to a robot, connected between them through a pas-
sive hinge joint with one degree of freedom pivoting on the 
vertical axis). The environment included four walls which 
formed a square arena having four narrow passages located 
at the four corners. As the width of the passages was 
smaller than the diameter of the swarm-bot (when it had a 
regular circular shape), the swarm-bot had to appropriately 
deform its shape to effectively exit the arena (see Figure 
12a). 
 

(a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

Figure 12: (a) A swarm-bot deforms its structure and succeeds in 
exiting a walled arena with four narrow passages. (b) The traces 
left by a swarm-bot engaged in exiting the arena. 

As described in Baldassarre et al. (2003), swarm-bots 
provided with the evolved neural controller described in 
Sections 2 and 3 display an ability to generalise their coor-
dinated motion in situations in which they are connected 
through flexible links; moreover, they spontaneously ex-
hibit a coordinated obstacle avoidance behaviour as a result 
of the traction forces produced by the collisions between the 
robots’ turrets and obstacles. As a result of the combination 
of these abilities, plus the spontaneous deformation of the 
swarm-bots’ shape caused by the robots’ collisions with 
walls, the evolved swarm-bot already displayed a good abil-
ity to solve the task described above (see Figure 12b). The 



swarm-bot maintained these capabilities also when 
equipped with the Rounded Sigmoid controller. In particu-
lar, the swarm-bot provided with such controller managed 
to exit the arena in 33.5% of cases when tested for 200 trials 
lasting 3000 cycles each. 

To modify the Rounded Sigmoid controller so as to en-
hance swarm-bot’s ability to exit from the arena we tried to 
increase the level of stubbornness of the controller. The 
reason of this choice was the hypothesis that a higher level 
of stubbornness would have reduced tendency of robots to 
avoid obstacles which in turn would have increased the 
swarm-bot tendency to deform its shape, as a result of the 
collision with obstacles, so as to conform its shape to the 
characteristic of the passage and exit the arena more easily. 

To verify this hypothesis, the test illustrated above was 
repeated with the Rounded Sigmoid controller where b1 of 
the left wheel was set at 0.10 and b3 of the right wheel was 
set at 0.90. The result of the test confirmed the hypothesis: 
the modified controller outperformed the baseline controller 
by exiting the arena 52% of times (t-test, p < 0.01). 

This experiment shows how the hand-coded controller 
allows directly modifying its parameters so as to have a 
particular desired behaviour at the group level. This can be 
done, as it usually happens for hand-coded controllers, be-
cause it is sometimes possible to have a sufficiently accu-
rate intuition about the causal relationship existing between 
the parameters of the controller, the behaviour of the single 
robots, and the behaviour of the whole group. 

7.   Using the motor schema-based 
controller as a building block in be-
haviour-based controllers 
The Rounded Sigmoid controller developed for coordinated 
motion tasks could also be used as a building block to de-
sign controllers capable of solving more complex tasks. To 
illustrate this more in detail, we considered an experimental 
set-up where a linear swarm-bot formed by four robots as-
sembled to form a linear structure had to coordinate to 
move in space and search and approach a light target. In 
previous research this behaviour was evolved from scratch 
(Baldassarre et al., 2004; given that swarm-bots as those 
used here exhibit spontaneous obstacle avoidance, as illus-
trated in section 6, this work used this behaviour to tackle a 
light searching task in a maze). This section shows how the 
whole behaviour can be implemented by using a modular 
architecture formed by two motor schemas, each based on 
the Rounded Sigmoid controller, producing respectively a 
coordinated motion behaviour and a coordinated light pur-
suing behaviour. 

The first motor schema, capable of performing coordi-
nated motion, was implemented by using the unmodified 
Rounded Sigmoid controller described in section 4. The 
second motor schema, capable of performing coordinate 
light-pursuing, was implemented by using a copy of the 
same Rounded Sigmoid controller that took as input the 
direction and intensity of the light (encoded as illustrated in 

section 2.1) instead of the direction and intensity of the trac-
tion force. The reason why the Rounded Sigmoid controller, 
suitable for producing a coordinated motion behaviour, 
could be re-used to produce a light pursuing behaviour is 
that both behaviours represent a form of taxis, that is behav-
iours that drive the robots toward a certain direction on the 
horizontal plane. 

The arbitration between the two motor schemas of the 
controller was accomplished by averaging the output pro-
duced by them. This is a typical solution adopted for motor 
schema-based controllers (cf. Arkin, 1989; Arkin, 1998; 
note that other solutions have been proposed within the be-
haviour-based robotics literature, such as the hierarchical 
arbitration mechanism used in the popular subsumption 
architecture, Brooks, 1986). Note that a sort of averaging 
arbitration mechanism also emerged in the neural control-
lers evolved from scratch (cf. Baldassarre et al., 2004). 
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Figure 13: Performance (y-axis) of the evolved neural-network 
controller (light grey bars) and of the double motor schema-based 
controller (dark grey bars) in a coordinated motion test (“Move-
ment”) and in a light approaching test (“Light”). Each histogram 
bar reports the average performance and the standard error of the 
controllers obtained in 100 trials. The data relative to the evolved 
neural controllers are those produced by the experiments described 
in detail in Baldassarre et al. (2004). 

Visual inspection of the behaviour exhibited by robots 
provided with this modular controller indicates that when 
robots do not perceive the light, they display a smooth co-
ordinated motion behaviour. As soon as robots start to de-
tect the light, that is as soon as the distance between them 
and the light is below 400 cm and they are not shadowed by 
other robots, they starts moving toward the direction of the 
light. This motion generates traction forces that are detected 
by the other robots of the group (in particular by those in 
shadow) so that they turn accordingly and the whole group 
ends up moving toward the light in a finely coordinated 
fashion. 

In order to quantify the performance of this behaviour, 
the new motor schema-based controller was tested with and 
without the light target, and the results obtained by robots 
provided with the double motor schema-based controller we 
compared with those obtained with neural controllers 
evolved from scratch (data from Baldassarre et al., 2004). 
As shown in Figure 13, in both tests the performance of the 



double motor schema-based controller is rather good but 
lower than the performance displayed by the evolved neural 
controller (t-tests, p < 0.01). 

To analyse the role of each of the two motor schema 
controllers and to understand how the average of their out-
put could produce an effective behaviour, we plotted the 
potential gradient fields generated by the coordinated mo-
tion schema-based controller alone (Figure 14a), the coor-
dinated light-pursuing schema-based controller alone (Fig-
ure 14b), and by the combination of the two schema-based 
controllers arbitrated by averaging their output patterns 
(Figure 14c). As specified above, the two schema-based 
controllers were implemented by using two Rounded Sig-
moid controllers which respectively received as input the 
direction and the intensity of traction and the direction and 
intensity of light. 

Concerning the coordinated motion controller Figure 
14a shows the motor reactions produced by the controller 
for traction forces with different intensities and directions. 
Each arrow of the graph represents the controller reaction to 
a certain intensity and direction of traction. In particular, a 
certain intensity of traction is proportional to the closeness 
of the position of the arrow to the centre of the graph, 
whereas the direction of traction is represented by the direc-
tion going from the arrow position to such centre. The 
length and the orientation of each arrow represent, respec-
tively, the change of position and the change of orientation 
of the robot that is produced by setting (for 0.75 s) the de-
sired speed of its two wheels to the values produced by the 
controller with the intensity and direction of traction corre-
sponding to the arrow position. This analysis confirms that, 
as indicated in section 3, when traction comes from the ro-
bot’s front or rear, or when its intensity is low, the robot 
tends to move straight. On the contrary, when traction 
comes from either the robot’s left or right hand side, and the 
intensity of the traction is significant, the robot tends to turn 
toward the direction of the traction (by consequently also 
reducing the extent of the displacement). 

In relation to the coordinated light-pursuing behaviour, 
Figure 14b shows the reactions produced by the controller 
for different sensory states corresponding to different orien-
tations and distances of the light target. The distance (which 
was varied within the range of [0, 141] cm) of the light tar-
get is represented by the distance of the arrow position from 
the centre of the north-wall side of the graph, whereas the 
direction of the light target is represented by the direction 
going from the arrow position to such centre. Analogously 
to what done for the previous graph, the reaction of the con-
troller is indicated by the length and the orientation of the 
arrows. These represent, respectively, the change of posi-
tion and the change of orientation of the robot produced in 
0.75 s by setting the desired speed of the two wheels to the 
value produced by the controller with a light position and 
distance corresponding to the arrow position. The graph 
show that a robot moves fast towards the light when this is 
located in front of it, whereas it turns toward the direction 
of the light when this is located on its left or right hand side. 

 

(a)  

(b)  

(c)  
 

Figure 14: Potential fields generated by different motor sche-
mas built on the basis of the Rounded Sigmoid controller. (a) Mo-
tor schema able to produce group coordination behaviours. (b) 
Motor schema able to produce light approaching behaviours. (c) 
Controller formed by the two motor schemas shown in graphs “a” 
and “b” arbitrated by averaging their output patterns. 



 
Finally, with regards to the overall controller, Figure 

14c shows the average of the output patterns produced by 
the two behaviours for different direction and intensities of 
the traction (represented, as in the case of Figure 14a, with 
respect to a traction coming from the centre of the graph) 
and different orientations and distances of the light target 
(imagined to be positioned, as in the case of Figure 14a, at 
the centre of the north side of the graph). The graph shows 
how the tendency to navigate towards the light target and 
the tendency to align with the rest of the group are smoothly 
integrated in the resulting potential field. For example, in 
the outer portions of the graph, which correspond to a situa-
tion in which the robot is rather aligned with the rest of the 
group (signalled by a low traction intensity), the reaction of 
the robot mainly take into account the direction of the light. 
Conversely, in the central part of the graph, which corre-
sponds to situations in which there is a significant mismatch 
between the orientation of the robot and that of the rest of 
the group (signalled by a high traction intensity), the robot 
mainly responds to the direction of traction. Interestingly, in 
situations in which there is a potential conflict between the 
direction of the light and the direction of the group motion 
(corresponding to top-central part of the graph) the potential 
field resulting from the average of the outputs of the two 
controllers does not lead to fixed points or limit-cycle be-
haviours which could prevent the accomplishment of the 
task (these are typical problems which can arise when 
schema-based controllers are combined, Ge and Cui, 2002). 

To summarise, the results shown in this section dem-
onstrate how evolved controllers can be exploited as tem-
plates for designing hand-coded controllers within the 
framework of the motor schema-based approach so as to 
solve new problems without the need to re-evolve solutions 
from scratch. 

8.   The path to implementation in 
real robots 
The arguments presented in the paper rely on experiments 
carried out on simulated swarm-bots. The reason for using 
simulations in this work resided primarily in its peculiarly 
theoretical and methodological aims. In previous works, the 
evolved controller capable of performing coordinated mo-
tion was successfully tested in hardware in a wide variety of 
conditions (Baldassarre et al., 2007). These tests demon-
strated the robustness of the controller evolved in simula-
tion by showing how it was possible to transfer it to real 
robots with full success without the need of any modifica-
tion. The strength of the core mechanisms underlying the 
coordinated motion controller presented here were also 
tested in other real robotic set-ups that used them as “build-
ing-blocks” for evolving more complex behaviours (e.g., 
Trianni et al., 2006). Finally, the flexibility of the real s-bot 
developed within the project SWARM-BOTS was also 
tested with hand-coded controllers (e.g., Groß et al., 2006). 
The work that led to this wide spectrum of results (cf. the 
web site of the project for other references of works carried 

out with real s-bots: http://www.swarm-bots.org/) on one 
side indicated the importance of expanding the theoretical 
understanding of the evolved controllers through new meth-
ods of analysis (like those described here) and, on the other 
side, suggested to carry out a close comparison of evolved 
controllers with hand-coded ones. 

9.  Discussion and conclusions 
At the current state of the art, self-organising methods, such 
as those proposed within the evolutionary robotics litera-
ture, and direct design methods, such as behaviour-based 
robotics, have both strengths and weaknesses. A major 
strength of self-organising methods, as shown in this paper, 
is the ability to discover effective solutions that exploit 
properties of the system that can hardly be identified by a 
human designer. With this respect, the experiment described 
in section 3 shows how evolving robots were able to dis-
cover a simple strategy that allows a group of physically 
assembled robots to produce a very efficient coordinate 
motion behaviour. Some fine details of the found solution 
were hard to identify. This was demonstrated by the fact 
that the hand-coded controllers, obtained by approximating 
the sensory-motor mapping produced by evolved neural 
controllers with a suitable statistical procedure, produced a 
performance lower than the performance of the latter ones 
(see sections 5 and 7), even if the residual error of the re-
gression was very low (see section 4). In general, the reason 
why self-organising methods such as those used by evolu-
tionary robotics can generate solutions that are difficult to 
imagine for an human designer is that, through random 
variation and selection, they can discover and capitalize on 
useful properties emerging from the complex fine-grained 
interactions between the robots and their environment, in-
cluding the social environment formed by other robots 
(Nolfi and Floreano, 2000; Funes et al., 2004; Nolfi, 2006). 
The main weakness of self-organising methods is that they 
do not guarantee that a given problem will be actually 
solved even if an effective solution exists. In fact, to be suc-
cessful evolutionary methods not only require that an effec-
tive solution of the problem exists, but also that a chain of 
intermediate adaptive solutions, that represent crucial steps 
toward the final solution, can be discovered through pro-
gressive variations (Nolfi and Floreano, 2000). 

The main strength of hand-coded controllers reside in 
the fact that, by being easier to understand from the point of 
view of the experimenter and by usually presenting a strong 
modular organization, they can be directly programmed, 
modified and combined to produce new controllers, or new 
variations of existing controllers, in an incremental fashion. 
Hence, in general, hand-coded controllers can be more eas-
ily scaled to increasing complex tasks. On the other side, 
the main weakness of hand-coded controllers resides in the 
difficulty of identifying the “micro rules” that should regu-
late the fine-grained interaction between the robot and the 
environment that can lead to the desired behaviour. 

This paper proposed a method for combining the 
strengths of self-organising methods and direct design 



methods. In particular it showed how effective solutions 
discovered through an evolutionary technique can be re-
coded in equation-based controllers, such as motor schema-
based controllers, that can be later manipulated and com-
bined to produce new behaviours. In this respect, as demon-
strated in section 4, equation-based controllers functionally 
analogous to evolved feed-forward neural controllers can be 
obtained by: (a) identifying a function which approximates 
the general characteristics of the mapping performed by the 
evolved neural controller; (b) approximating the function 
parameters through non-linear regression methods. The 
recoding of the neural controllers in equation-based control-
lers can produce a loss of performance. However, as we 
have shown, the process of recoding can favour the identifi-
cation of crucial parameters that can be later varied to ana-
lyse the characteristics of the evolved solution and to de-
velop new controllers able to produce new behaviours. With 
respect to the last point, section 6 and 7 showed how it is 
possible to obtain new variations of evolved behaviours, 
and completely new behaviours, by varying the parameters 
of the equation-based controllers or by combining different 
equation-based controllers. 

The parameters of the equation-based controllers can 
be varied either manually (section 6.2), after their functional 
role has been identified (section 5), or through semi-
automatic techniques based on interactive evolutionary 
computation algorithms (section 6.1). In the latter case the 
parameters are varied randomly but variations are retained 
or discarded on the basis of their effects evaluated by visu-
ally inspecting the resulting behaviours. In both cases, the 
identification of few crucial parameters is essential to keep 
the search space within a reasonable size. Finally, as shown 
in section 7, equation-based controllers which approximate 
evolved solutions can be fruitfully used as building blocks 
and combined to solve problems that require different re-
lated abilities (e.g., coordinated motion and coordinated 
light approaching). 

The proposed method should have, at least in princi-
ple, a general validity and could therefore be applied suc-
cessfully to different robotic set-ups and to problems differ-
ent from those studied in the present paper, at least in the 
cases in which the evolved neural controllers consist of 
feed-forward neural architectures. 

To the best of the authors knowledge, this paper pre-
sents the first work which explicitly combines evolutionary 
synthesis approaches with human design or “guidance” (as 
done in IEC techniques) not only at the level of fine-grained 
solutions but also at the level of the whole robot control 
architecture. 
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