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Abstract The field of collective robotics has been raising

increasing interest in the last few years. In the vast majority

of works devoted to collective robotics all interacting

robots play always the same function, while less attention

has been paid to groups of collaborating robots in which

different robots play different roles. In this paper we evolve

a population of homogeneous robots for dynamically

allocating roles through communicative interactions. In

particular, we focus on the development of a team of robots

in which one and only one individual (the ’leader’) must

differentiate its communicative behaviour from that of all

the others (’non-leaders’). Evolved solutions prove to be

very robust with respect to changes in the size of the group.

Furthermore, both behavioural analyses and a comparison

with a control condition in which robots are not allowed to

move demonstrate the importance of co-adapting commu-

nicative and non-communicative behaviours, and, in par-

ticular, of being allowed to dynamically change the

topology of communicative interactions. Finally, we show

how the same method can be used for solving other kinds

of role-allocation tasks. The general idea proposed in this

paper might be used in the future for evolving general,

robust, and scalable role differentiation mechanisms which

can be exploited to develop non-communicative

collaborative behaviours that require specialisation of roles

within groups of homogeneous individuals.

Keywords Evolutionary robotics � Dynamic role

allocation � Neural controllers

1 Introduction

Adaptive technique such as artificial evolution in which a

robot or a group of robots develop the ability to solve a

certain problem autonomously in interaction with the

environment (Harvey et al. 2005; Nolfi and Floreano

(2000) have been effectively applied to the synthesis of

collective behaviour in groups of robots (Baldassarre et al.

2003; Dorigo et al. 2004; Spector et al. 2005; Quinn et al.

(2003). Indeed, these methods are particularly useful for

developing collective behaviours in decentralized systems

in which each robot act independently and has access to

local information only (Nolfi 2006). In this case the global

behaviour is the result of a self-organization process that

emerges from the numerous interactions taking place

between each robot and the environment and between the

robots. Systems that rely on self-organization are highly

desirable since they tend to be characterized by important

properties such as robustness, flexibility and scalability.

Following Garnier et al. (2007) collective behaviours

can be categorized in four types: coordinated, cooperative,

collective decision-making and collaborative behaviours.

Coordinated behaviour consists in the ability of a group of

individuals to produce a specific spatio-temporal organi-

zation of their relative position and/or of the results of their

activities which is functional with respect to a certain goal.

Cooperative behaviours are those in which individuals

must combine their efforts to solve a problem that goes
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beyond their individual abilities. Collective decision mak-

ing behaviours are behaviours in which a group of indi-

viduals faces several opportunities and collectively chooses

the opportunity to maximize the performance with respect

to a given problem. Finally, collaborative behaviours are

behaviours in which different activities should be simul-

taneously performed by a group of specialized individuals.

For the moment, most of the work that has applied

evolutionary robotics methods to the synthesis of collective

behaviour has studied coordinated or cooperative behav-

iour in which the individuals do not need to differentiate

their roles. A possible reason for this is that typically

Evolutionary Robotics experiments use groups of homo-

geneous robots in order to avoid problems related to

altruistic behaviours. In fact, if interacting agents are non-

homogeneous, then the problem of altruism immediately

arises, making the emergence of collective (cooperative)

behaviours extremely difficult (two examples of works

devoted to the problem of altruism in groups of commu-

nicating agents are Mirolli and Parisi 2005 and Floreano

et al. 2007).

According to the categorization provided above, a group

of collaborating robots constitutes what in the animal

behavior literature has been defined a ‘team’ (Anderson

and Franks 2001), that is a group of agents in which (1)

different individuals make different contributions to the

success of the task, (2) roles are interdependent thus

requiring cooperation, and (3) organization persists over

time. For the reason exposed above, the development col-

laborative behaviours in robot teams through Evolutionary

Robotics techniques seems to pose a difficult challenge

since it is not clear how homogeneous individuals might be

able to assume different roles in a persistent manner.

In this paper we propose a possible solution to this

problem which is based on endowing robots with com-

munication capabilities, so that role allocation might be

negotiated through the exchange of signals. In recent years

several studies have demonstrated the possibility to evolve

communication in homogeneous robots so to accomplish

collective tasks (e.g. Di Paolo 2000; Marocco and Nolfi

2007; Quinn 2001). In this work we evolve groups of robot

to differentiate themselves by simply sending different

communication signals. The rationale behind this idea is

that if we can evolve groups of homogeneous robots which

are able to negotiate their roles through the exchange of

signals, then this ability might be exploited in the future for

the development of non-communicative collaborative

behaviours requiring role specialization. More precisely,

we will focus on the development of a team of robots in

which one and only one individual should differentiate

from the others by sending a different signal.

The obtained results illustrate how the method proposed

allows evolving robots to solve the specialization problem

and to come up with solutions which are robust and scal-

able with respect to the number of interacting robots. In

addition we demonstrate how one key aspect of the evolved

solutions consists in exploiting the robot’s motor behaviour

so to dynamically change the topology which determines

who interact with whom, and we show how the proposed

solution can be generalized to different kinds of role allo-

cation tasks.

The rest of the paper is structured as follows. In Sect. 2

we describe the relation between the model presented in

this paper with the state of the art. In Sect. 3 we present the

experimental set-up. Section 4, which presents the results

of our experiments, is divided in several subsections: in

Sect. 4.1 we present the general results; in Sect. 4.2 we test

the robustness of the best evolved solution with respect to

the number of interacting robots; in Sect. 4.3 we perform a

behavioural analysis of the best individual in order to

understand the mechanisms underlying the evolved solu-

tion; in Sect. 4.4 we compare the results of our experiment

with a control condition in which the robots are not allowed

to move (i.e. are not allowed to modify the topology of the

interactions); in Sect. 4.5 we demonstrate how the same

method can be applied to solve a different role allocation

task. Finally, in Sect. 5 we discuss the significance of the

proposed method and of the obtained results and the

implications for future works.

2 Related work

The issue of dynamical role allocation in evolving robots has

already been tackled by Baldassarre et al. (2003), Quinn

et al. (2003), Ampatzis et al. (2009) and Tuci et al. (2013).

Baldassarre et al. (2003) evolved a group of robots for the

ability to aggregate and collectively navigate toward a light

target. The robots were equipped with infrared sensors,

ambient light sensors, a speaker and directional microphones

which were used to detect the intensity of the sounds pro-

duced by the other robots (a costant sound with fixed

intensity). Evolved robots of different replications displayed

three different families of strategies. The most effective of

these strategies involved a collaborative behaviour in which

different individuals played different roles (i.e. in which

some individuals assume and maintain the frontal position

with respect to the group and drive the group toward the light

while other individuals assume the rear position with respect

to the group and follow the individuals located at the front).

Since the groups were formed by homogeneous individuals,

and since robots’ controllers were formed by simple per-

ceptrons and hence did not have any internal state, robot’s

specialization was situated, in the sense that it completely

depended on the different input patterns that robots received

from the environment.
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In a similar work, Quinn et al. (2003) evolved a team

of three homogeneous robots able to dynamically allo-

cating their roles in order to navigate as a group. In this

experiment, robots equipment was really minimal: each

robot had just four infrared sensors and two motor-driven

wheels. As in the case of the previous experiment, the

robots were asked to move together. The analysis of

evolved robots’ behaviour showed that the task was

completed by relying on two phases: during the first phase

robots organize themselves into a line formation, while in

the second phase the robots start to move swinging

clockwise and anticlockwise while maintaining their rel-

ative positions.

Ampatzis et al. (2009) evolved a team of two wheeled

robots provided with a gripper to show a self-assembly

behaviour. In particular, robots shared the same neural

controller and the role allocation (two role were allowed:

s-bot -gripper and s-bot -grippee) was accomplished by a

dynamical physical interaction between the robots without

an explicit communication channel.

In a more recent work, Tuci et al. (2013), evolved a

group of robots to show two behaviours: foraging and nest

patrolling. The authors explicitly rewarded the ability of

robots to switch their role in different scenarios. In par-

ticular the nest and the foraging areas were indicated by a

green and red light respectively. Furthermore the robots

were not equipped with a specific communication system.

In the first three works, the robots were not directly

evolved for the ability to assume different roles. Thus, the

emergence of an ability to assume different roles (when

present) can be explained by considering that it represents a

prerequisite for the development of effective behaviour

(i.e. collaborative behaviours). Moreover, in the above

mentioned works, the authors did not analyse the robust-

ness of the solutions involving role specialization with

respect to the number of interacting robots (indeed, the

solution found by the robots of Quinn and colleagues did

demonstrate not to be robust to the lack of an individual: if

one of the three robots is removed from the formation the

remaining pair maintain the same configuration as when in

full formation but ceasing the forward movement). In the

present work we follow a complementary approach. We

evolve the robots directly for the ability to assume different

roles and we look to whether evolving robots come up with

solutions which are robust with respect to the number of

robots composing the group. This latter objective with a in

deep analysis of the internal dynamics that subserves the

role allocation behaviour though a specific communication

system differentiates the current study from the work of

Tuci and colleagues 2013. In fact, our objective is to come

up with general, robust, and scalable role differentiation

mechanisms which can be later exploited to develop col-

laborative behaviours.

3 Experimental setup

The experimental set-up, implemented using Evorobot*

(Nolfi and Gigliotta 2010), consists in a group of ten

identical E-puck (Fig. 1, left) robots placed in a box shaped

arena of 600 9 600 mm (Fig. 1, right).

Robots can move in the arena by sending commands

to their two wheels and can exchange signals between

themselves through a dedicated communication channel.

Communication is local as each robot perceives only the

higher signal emitted by surrounding robots within the

distance of 150 mm. Robots’ signals are not only used

for communication: they also represent the role of the

signalling robot. We evolve our robots for their ability to

differentiate their roles through the differentiation of their

signals: one of the robots must maximise the value of its

communicative output, while all other robots must min-

imize the values of their signals. (For simplicity, in the

remainder of the paper we will call the individuals that

send high value signals ’leader’ and those that send low

value signals as non-leaders.) More concretely, we cal-

culate the fitness of a group of robot in the following

way. For each cycle, we take the average of the differ-

ences between the communicative output of the current

’leader’ (i.e. the robot with maximal communicative

output) and the communicative outputs of all other

robots. The fitness is the average of this value for all the

cycles of all the trials. Formally, this is how fitness is

calculated:

F ¼
PC

j

PN
i Max� Oi

CðN � 1Þ ; ð1Þ

where N is the number of robots in the group (i.e. 10), C is

the total number of life-cycles of each individual (i.e. 1,000

cycles times 40 trials = 40,000), Max is the value of the

signal of the current leader and Oi is the value of the signal

of robot i. Each robot is controlled by a neural network

with a fixed architecture shown in Fig. 2. There are ten

sensory units: 8 input units encode the state of the 8

infrared sensors, which are placed around the robot’s body;

Fig. 1 The experimental set up. Left the e-puck robot. Right the arena

with ten simulated robots
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one input unit encodes the higher signal emitted by sur-

rounding robots; and the last input unit encodes the acti-

vation of the same robot’s communicative output unit

during the previous cycle. All sensory units (but the one

encoding the same robot’s communicative output) are

noisy: in each cycle we add a random value uniformly

distributed in the range [-0.05, 0.05] to the estimated

value of each sensor. All the infrared sensor units send

connections to two motor units, while communication input

units send connections to two hidden units, which are leaky

integrators with evolvable time constant. These two hidden

units send connections to both the communicative output

unit and the two motor output units, which are used to

control the motors of the two wheels.

The free parameters of the robots’ neural controllers

(i.e. the connection weights, the biases, and time constants

of the two leaky neurons) are evolved (Nolfi and Floreano

2000). Each parameter is encoded as an 8 bits string,

whose value is then uniformly mapped in the range [5.0,

?5.0] for weights and biases and in the range [0, 1] for

time constants. The initial population consists of 100

randomly generated genotypes. Each genotype is tested for

40 trials, lasting 1,000 cycles each. At the beginning of

each trial, the genotype is translated into a corresponding

neural controller which is duplicated ten times and

embodied into ten robots (the group of robots is homoge-

neous). The robots are randomly placed into the arena and

are left free to move and to communicate between each

other for all the rest of the trail. After all teams of robots

have been tested, the 20 best genotypes of each generation

are allowed to reproduce by generating five copies each,

with 2 % of their bits replaced with a new randomly

selected value. The evolutionary process lasts 250 gener-

ations (i.e. the process of testing, selecting and reproducing

robots is iterated 250 times). The experiment was repli-

cated 10 times by starting with differently randomly gen-

erated genotypes.

4 Results and analyses

4.1 General results

By analyzing the obtained results we observed in five out

of ten replications evolved robots display an ability to solve

the role allocation task after 250 generations (Fig. 3). Since

we were interested in investigating whether role differen-

tiation could be evolved in groups of homogeneous robots,

we discarded all the replications in which good role allo-

cation did not emerge. Within the successful replications

we observed different strategies, which can be divided in

two types depending on whether the roles towards which

individuals converge are either reversible or irreversible. In

reversible strategies, the robots which assume a non-leader

role can maintain their non-leader role or turn to a leader

role depending on whether they keep interacting with lea-

der robots or not. On the contrary, in irreversible strategies,

once a robot has assumed a non-leader role, it remains a

non-leader for the rest of the trial independently from its

interactions with other robots. Both kinds of strategies have

advantages and disadvantages, and they might be appro-

priate for supporting different kinds of non-communicative

collective behaviors requiring specialization (see the dis-

cussion). However, for reasons of space in the rest of this

paper we will focus our analyses only on the best evolved

individual, which belongs to the irreversible strategy type.

4.2 Robustness

An important advantage of solutions based on distributed

mechanisms consists in the fact that these solutions might

Fig. 2 The neural controller

Fig. 3 Fitness of the best individuals of the ten replications of the

experiment
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generalize with respect to the number of robots (Bald-

assarre et al. 2006; Trianni and Nolfi 2007). This gener-

alization ability is important in collective robots since the

number of robots available might vary due to variations of

the environmental circumstances or due to the malfunc-

tioning of some of the robots. In order to verify whether our

method produced robust solutions we tested the best indi-

vidual of the best evolutionary run using different group

sizes: in particular, we tested groups of 2, 4, 6, 8, 10, and

12 robots (remember that during the evolutionary process

groups of robots were always composed of 10 individuals).

For each group size we made 25 trials, each of which lasted

3,000 life cycles. For each life cycle we recorded the

number of leaders within the group. This latter measure

was computed assigning the leader role to the robots with

the role/communication output higher than 0.5 and the non-

leader role to the robots with the role/communication

output lower than 0.5. The average (over the 25 trials)

number of leaders and the number of leaders on the last life

cycle are shown in the boxplots reported in Fig. 4, left and

4, right, respectively.

The results reported in the figure show that evolved

robots do generalise with respect to the number of robots. In

fact, there are not significant difference between group size

whether we consider the average number of leaders over all

life cycles int tested trials (Friedman test, p = 0,22493), or

the number of leaders in the last life cycle, where a con-

vergence is supposed to be reached (Friedman test, p =

0,072). The fact that different number of robots in the same

arena produce basically the same number of leaders dem-

onstrates that, within reasonable limits, also the size of the

arena does not matter much for role allocation, since by

changing the number of robots it changes the crowding of

the arena. On the other hand, if we increase the number of

robots too much while maintaining the size of the arena

constant, performance starts to decrease significantly just

because the arena becomes overcrowded and the robots are

not able to move and meet each other in order to appro-

priately negotiate their roles. For this reason, in order to test

whether the evolved solution was effective even with larger

group sizes, we had to increase the size of the arena. In

particular, we tested in larger arenas (see measures between

parentheses) groups formed of 20 (800 9 800 mm), 30

(900 9 900 mm), and 40 (1,000 9 1,000 mm) agents.

Results shown in Fig. 5, left indicate that notwithstanding

increase in the arena size performance gradually decrease as

the group size increases. In order to test whether the prob-

lem of crowding with many robots might be overcome not

only through larger arenas but also through the extension of

the communication range of the robots, we re-tested groups

of 20, 30, 40, and 50 with a communication range of

400 mm instead of 150 mm. Figure 5, right shows how

extending the communication range from 150 to 400 mm is

able to improve the performance of the system.

4.3 Behavioural analysis

To understand the strategy used by the evolved robots to

solve the role allocation task we tested the best individual

with respect to both its communicative and non-commu-

nicative behaviour. With respect to communicative

behaviour, we analysed a situation in which the team is

composed by two robots initially located at a distance

which is higher than their communicative range and facing

toward each other. In this situation the robots move for-

ward toward each other, thus reducing their relative dis-

tance up to the point in which they start to detect their

respective communication outputs. The communicative

output of the two robots during the first 50 cycles of this

test is shown in Fig. 6, left. As can be seen from the figure,

when the robots do not detect any signal, they quickly

increase their communication output up to a value of 0.955
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Fig. 4 Average number of leaders over 25 trials of 3000 cycles (left) and number of leaders recorded on the last lifecycle of 25 trials right for the

best evolved controller embodied in groups of 2, 4, 6, 8, 10, and 12 robots

Dynamic role allocation 395

123



(i.e. they become leaders). Later on, when the two leader

robots detect the signal of the other robot which indicates

that also the other robot is a leader (cycle 19 of Fig. 6,

left), they progressively and concurrently reduce their

communication outputs until a point (cycle 22) in which

the two communication outputs start to differentiate. As

soon as the symmetry between the states of the two robots

is broken, the difference between the two states tends to be

amplified. As a consequence, the robot with the highest

communication output progressively increases its com-

munication output further thus taking the role of leader

while the other robot keeps on decreasing its communi-

cation output further up to a value of 0.036 thus becoming

a non-leader. In order to break the symmetry between the

two communication outputs the two robots exploit the

noise on the sensory state (which is simulated by adding a

random uniformly distributed noise in the range [-0.05,

0.05] to the estimated value of the sensor). Indeed, by

repeating the experiment in a test in which the noise has

been removed (Fig. 6, right), the robots fail to differentiate

their state and both converge on the non-leader role.

Overall, the differentiation mechanism can be explained

by the exploitation of (a) noise, and (b) a bifurcation point

in the communication output (and in the internal state) of

the robot located between the two attractors points corre-

sponding to a leader and non-leader role and correspond-

ing to a value of about 0.5.

What about non-communicative behaviour? Is it affec-

ted by the role assumed by a robot? Since the two hidden

units which determine communicative behaviour project

also to the two motor units controlling the two robot wheels

it is likely that the role assumed by a robot will modulate

also non-communicative behaviour. This is indeed the

case: if left free to move all alone in the arena leader robots

tend to move straight and just perform obstacle avoidance

when encountering walls, while non-leader robots tend to

0

1

2

3

4

5

6

Group size

A
ve

ra
ge

 n
um

be
r 

of
 le

ad
er

s

Standard communication range (150 mm)

0

1

2

3

4

5

6

20 30 40 50 20 30 40 50
Group size

A
ve

ra
ge

 n
um

be
r 

of
 le

ad
er

s

Extended communication range (400 mm)

Fig. 5 Average number of leaders over 25 trials of 3,000 cycles recorded on for the best evolved controller embodied in groups of 20, 30, 40, and

50 robots. Left with a communication range of 150 mm. Right with an extend communication range of 400 mm

Fig. 6 Communicative outputs of two interacting robots over 50 life-cycles with (left) and without (right) noise in the communicative input

channel
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have a wide circular motor behaviour. But is this difference

also present in robot’s ecological conditions (i.e. when the

arena is crowded by ten interacting robots)? If so, what, if

any, is the adaptive function of this behavioural differen-

tiation? In order to answer these questions we re-run 100

test trials lasting 3,000 cycles each with groups of 10 robots

while measuring, for each cycle and for each robot, three

values: the communicative output, the instantaneous speed,

and the number of interaction links (i.e. the number of

robots within the communication range). Figure 7 shows

the average speed (left) and number of links (right) for

robots with a communicative output higher than 0.5

(leaders) and lower than 0.5 (non-leaders). It turns out that

even in ecological conditions leaders tend to move faster

than non-leaders, and this has the result of slightly

increasing their average number of communicative inter-

actions (though quantitatively small, both the differences

are statistically significant—Mann–Whitney U, p \
0.001—and correspond to the qualitatively very different

behaviours explained above).

In order to ascertain whether this behavioural difference

is epiphenomenal or has an adaptive function, we ran other

two tests of ten trials of 3,000 cycles each comparing the

performance (number of leaders) in two conditions: ten

robots with the best evolved controller versus ten robots

with the same controller but with the 4 connections linking

the two internal units with the motor output units lesioned

(i.e. set to 0). Hence, in the latter condition the role that the

robot has assumed can not influence the robot non-com-

municative behaviour. In this condition all the robots (both

leaders and non-leaders) produce the wide circular motor

behaviours produced by non-leaders in normal conditions.

Consequently, it is harder for leaders to meet each other,

resulting in a significantly higher number of leaders in the

group (Fig. 8, in both the comparisons, Mann–Whitney U,

p \ 10-7).

The results presented in this section demonstrate that

evolved robots have co-adapted their communicative and

non-communicative behaviour so to maximise the effi-

ciency of the role allocation task: on the one hand, the

robots allocate their roles on the basis of their encounters

due to their motor behaviour; on the other hand, their roles

influence their motor behaviour so maximise the proba-

bility that two leaders meet each other and re-negotiate

their roles so that only one leader remain in the group as

required by the fitness function.
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4.4 Role of topology

In the previous section we showed that evolved robots not

only move in the environment, but also differentiate their

non-communicative behaviour according to their role so to

maximise their fitness. In this section we investigate

whether the possibility to move so to change the topology

of interactions is really necessary for solving the role-

allocation task. To do that, we run ten replications of a new

evolutionary experiment in which the ten interacting robots

have a configuration which is fixed throughout the whole

trial, in that robots are not allowed to move. For each trial,

the fixed configuration is chosen randomly by placing the

first robot at the centre of the arena and then positioning the

other robots one by one with the constraint that each newly

introduced robot must be within the communication range

of at least one of the robots which are already present in the

arena (this constrain has been introduced in order to assure

that in the resulting topology there is never a robot or a

group of robots which is completely disconnected from the

others, which would have prevented the possibility of

finding a solution to the role-allocation task). Figure 9

shows the fitness of the best individual of each generation

for the ten replications of this new experiment. In this

condition all the evolutionary processes converge in less

than 50 generations to a stable value of about 0.8, which is

significantly lower than the best solution found in the basic

experiment (about 0.9). The fact that in this condition

evolution is much faster and more reliable than in the

normal case is not surprising since in the fixed-topology

condition robots have only to evolve communicative

behavior, while in the normal condition they have also to

evolve motor behaviours such as obstacle avoidance and

exploring behavior and to co-adapt them with their com-

municative behavior.

In order to compare the best solutions of the two con-

ditions (the normal condition and the one with fixed

topology) we performed the robustness test presented in

Sect. 4.2 with the best evolved individual of the fixed

topology condition: 25 trials of 3,000 cycles each for six

different group sizes (2, 4, 6, 8, 10, and 12). The results of

these tests, shown in Fig. 10, clearly demonstrate the

advantage of having the possibility to co-adapt communi-

cative and non-communicative behavior (all the difference

between group of the same size resulted statistically sig-

nificant Mann-Whitney U, p \ 0.01; only in the case of

two robots the fixed topology presents better results). Since

they cannot rely on dynamically changing the topology of

the interactions through displacing in the environment,

robots of the fixed topology condition cannot but rapidly

converge on suboptimal solutions. In fact, with groups

composed by 4 to 12 robots performance is not only sub-

optimal (Fig. 10, right), but the groups do not converge on

having just one leader. On the contrary, the higher is the

number of interacting robots, the higher is the average

number of leaders of the groups (Fig. 10, left). Only in

groups composed by just two robots the fixed-topology

solution stably converges on having only one leader and

outperforms the condition in which robots are free to move.

And this is not a problem of robustness: even in the con-

dition for which robots have been evolved (i.e. groups of

10) the fixed-topology condition produce groups of robots

that have on average about 3 leaders instead of 1. The

difference between groups of different size in the fixed

topology condition ( reported in Fig. 10) thus is widely

significant (Friedman test, p = 0.00000 for the average

number of leaders and number of leaders in the last

lifecycle).

4.5 Task generalization

So far we have demonstrated that the approach proposed in

this paper of evolving groups for robots for dynamically

allocating roles through local communicative interactions

is feasible and promising at least for the case in which one

of the robots must assume the role of the leader and all the

other robots must assume the role of non-leaders. But since

nothing in this approach is strictly related to the emergence

of a (single) leader, the same idea might be exploited also

for developing robots able to dynamically allocate different

kinds and numbers of roles. In order to demonstrate this,

we applied the same method for evolving groups which

have to split in two evenly distributed subgroups, with half

of the robots sending high-value signals and the other half

Fig. 9 Fitness of the best individuals of the ten replications of the

experiment with fixed topology
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sending low value signals. The new experimental set-up is

identical to the previous one (described in Sect. 3) but for

the fitness function, which is calculated as follows. During

each cycle, we sort robots by their role/communication

output activation from the highest to the lowest. After that,

we split the group of N robots in two sub-groups composed

of N/2 robots each, according to the robots’ communicative

output (the 50 % with the higher and the 50% with the

lower output value). Then, we compute the absolute dif-

ference between the means of the communicative output

within the two groups. The fitness value is the average of

this difference over the total number of life-cycles (i.e.

1,000 cycles times 40 trials = 40,000). This is the fitness

formula:

F ¼
PC

j

PN
2

i¼1
Oi
N
2

�
PN

i¼N
2
þ1

Oi
N
2

�
�
�

�
�
�

C
; ð2Þ

where C is the total number of cycles, N is the number of

robots and Oi is the communicative output of robot i.

Figure 11 shows the fitness of the best individual of each

generation for the ten replications of the same experiment

with different random initial conditions. As it is clear from

the figure, evolution is able to find very effective solutions

also to this new dynamic role allocation task. Indeed, this

task seems to be much easier to solve than the previous one

since nine out of ten evolutionary runs have reached a

stable fitness value of about 0.9 (which is the fitness

reached by the best replication of the previous experiment),

and the worst seed reached a fitness of 0.8.

5 Discussion

In this paper we presented evolutionary robotics experi-

ments in which groups of homogeneous robots are evolved

for their ability to dynamically allocate their roles through

their communicative and non-communicative interactions.

Each individual robot is an independent entity which only

has access to local information. As a consequence, the

allocation of the different roles is the results of a dynamical

process in which the robots negotiate their roles on the fly

(for alternative approaches in which the role allocation

process is based on global information shared by the

individuals see, Mataric 1995 and Stone and Veloso 1999).

In particular, we analyzed the case in which a single robot

should assume the role of the leader (i.e. should turn their

communication output on) and all other robots should

assume the role of non-leader (i.e. should turn their

communication output off). The fact that the robots are
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Fig. 10 Average number of leaders over 25 trials of 3,000 cycles (right) and number of leaders recorded on the last lifecycle of 25 trials (left) for

the best evolved controller with fixed topology embodied in groups of 2, 4, 6, 8, 10, and 12 robots

Fig. 11 Fitness of the best individuals of the ten replications of the

experiment in which robots are evolved for their ability to split in two

sub-groups. See text for details
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homogeneous implies that each individual can potentially

assume any possible role.

The analysis of the obtained results indicates that the

method proposed leads to the development of effective

solutions which scale well with respect to the number of

interacting robots. In fact, the best evolved solution dem-

onstrated to be very robust to changes in the number of

robots composing the group, which might be higher or

lower with respect to the number of robots experienced

during the evolutionary learning process. This aspect is

particularly important in the case of mobile robots in which

the number of interacting robots might vary depending on

the robot relative position.

A detailed behavioural analysis showed that evolved

solutions are based on the combination of two dynamical

mechanisms which (1) regulate how the state encoding the

role of a robot changes while the robot interacts with other

individuals located nearby, and (2) regulate the network of

interacting robots (i.e. who interact with whom).

The first mechanism concerns the communicative

behaviour of the robots. When a robot does not interact

with other robots, it tends to increase its communicative

output so to progressively assume the role of leader.

However, when two leader robots interact, they initiate a

mutual inhibition phase which finally ends in a situation in

which one robot acts as a leader and the other robot acts as

a non-leader. This result is achieved through a dynamical

process involving three phases: (a) an initial phase in which

the two robots inhibit each other so to reach an interme-

diate state representing a bifurcation point in robots’

internal dynamics (i.e. a situation from which the state of

the robot can easily move toward a leader or non-leader

role corresponding to a fully activated or fully deactivated

state); (b) a transition phase in which the symmetry

between the states of the two robots is broken by exploiting

small differences in robots’ sensors state due to noise; and

(c) a final phase in which these small differences are pro-

gressively amplified thanks to the mutual interactions

between the robots and a positive feedback mechanism

which tends to reduce the discrepancy between the current

state of a robot and one of the two fixed attractor states

corresponding to the fully activated and the fully deacti-

vated states.

The second mechanism concerns the motor behaviours

of the robots which influence the topology of who inter-

acts with whom. Despite the selection criterion does not

directly reward the robots for their ability to move and

modify their interaction topology, evolved robots do

indeed exploit this possibility in order to increase their

ability to efficiently differentiate their roles. By compar-

ing the results obtained in the standard condition with a

control experiment in which the robots are not allowed to

move, we observed that the robots in the former condition

significantly outperform the robots in the latter condition.

Moreover, we observed that evolved solutions also exploit

the possibility to regulate the robots motor behaviour

depending on the current robots role to increase their

ability to solve the role allocation problem. In fact, leader

robots tend to move more than non-leader robots in order

to increase the probability that two leader robots meet and

so to reduce the risk that the same group include more

than one leader.

Finally, by carrying out another experiment in which

exactly the same methodology was applied to the solution

of a different role allocation task we also demonstrated

how the proposed methodology generalizes to different

types of problems.

Since our ultimate goal is to study the emergence of

teams of robots in which different individuals play differ-

ent roles and collaborate for the solution of a collective

task, the principal line for future research consists in

finding a way to exploit the dynamic role allocation system

presented in this paper for the accomplishment of non-

communicative collaborative tasks, in particular, tasks

which require the presence of a leader. In fact, while sev-

eral swarm-like behaviours might be successfully accom-

plished by groups of robots without any significant

distinction between the behaviours of the members of the

group, there are many cases in which the presence of a

leader might significantly improve the performance of the

group (see Anderson and Franks 2001 for examples in the

animal kingdom and Baldassarre et al. 2003; Gigliotta et al.

2007 for examples within the artificial life community).

The solution proposed in the present paper seems

promising in this respect: since role differentiation depends

on communicative behaviour and not on different robots

having different control systems, we can solve two poten-

tially conflicting problems. On the one hand, once the

robots have assumed different roles through the signals

they emit, they can differentiate also their non-communi-

cative behaviour depending on their roles in order to

accomplish a non-communicative task that requires role

specialisation (in fact, the results presented in Sect. 4.3

show that a differentiation in non-communicative behav-

iours already happens in the present simulations because it

helps the maintenance of a single leader). On the other

hand, the fact that interacting robots share the same genes

(are clones) assures that the problem of altruism cannot

raise and that robots with different specialisations would

behave collaboratively so to maximise their fitness.

In order to develop groups of homogeneous robots able

to efficiently accomplish collaborative tasks requiring role

specialisation (in particular the presence of a leader) we

envisage three possibilities. The first possibility is to seed

the task-specific evolutionary search with our evolved

robots, which are already able to dynamically negotiate
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their roles. In this respect it is interesting to note that our

evolutionary experiments resulted in two types of strate-

gies. The first strategy is characterized by robots which

converge toward a certain role allocation state which

cannot be modified further. In particular, in this case robots

which became non-leaders will never become leaders later

on. The second strategy is characterized by robots which

tend to converge toward a certain role but which can

always change their role later on when the appropriate

conditions are met. In this case, a non-leader robot which

does not meet a leader for a certain amount of time will

always tend to assume the leader role. These two kinds of

basic strategies might be useful for different kinds of col-

laborative tasks. For example, if a task requires that one

and only one robot (the leader) have to leave the group

while all the other robots have to remain together, then the

first strategy is to be preferred since non-leader robots will

never change their role and leave the group. On the other

hand, if the task is such that if the leader robot leaves the

group it must be replaced (or if the role functionality is

context-dependent and hence roles need to be re-arranged

if the context changes, as in Baldassarre et al. 2003, Quinn

et al. 2003), then the second, more flexible, role-allocation

strategy will probably be more effective.

The second possible way of using the ideas proposed in

this paper for designing teams of robots able to accomplish

non-communicative collaborative tasks consists in design-

ing multi-objective fitness functions in which one compo-

nent of the fitness is specific to the collaborative task while

a second component rewards the robots for their ability to

dynamically allocate their roles. This might lead to the co-

evolution of behavioural skills and rule allocation mecha-

nisms which suit each other while maintaining the possi-

bility to force the evolutionary process to develop a

suitable role allocation mechanism toward a direct reward.

A third possibility which will release the designer from

the need to specify the number and the distribution of roles

within the group would consists in using information the-

oretic measures such us Shannon entropy (Shannon 1948)

to reward robots for assuming different roles in different

contexts while leaving the robots free to determine the right

number and distribution of roles within the group. Finally,

aside theoretical aspects and last but not least, in future

work we will port the simulated setting into real robots by

using a specific turret developed for the e-puck robots. In

particular we will implement our communication system

by using the e-RandB turret developed by Robolabo, Iridia

and RBZ Robot Design. Robots equipped with this turret

are able to exchange data within a specified range through

an infrared protocol that allow them to exchange messages

containing each a 16bit information packet. A capability

that is pretty sufficient for our needs.
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