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Designing adaptive humanoid robots
through the FARSA open-source
framework

Gianluca Massera1, Tomassino Ferrauto1, Onofrio Gigliotta2 and
Stefano Nolfi1

Abstract
We introduce FARSA, an open-source Framework for Autonomous Robotics Simulation and Analysis, that allows us to
easily set up and carry on adaptive experiments involving complex robot/environmental models. Moreover, we show
how a simulated iCub robot can be trained, through an evolutionary algorithm, to display reaching and integrated reach-
ing and grasping behaviours. The results demonstrate how the use of an implicit selection criterion, estimating the extent
to which the robot is able to produce the expected outcome without specifying the manner through which the action
should be realized, is sufficient to develop the required capabilities despite the complexity of the robot and of the task.

Keywords
Evolutionary robotics, embodied cognition, open software, simulation framework

1 Introduction

Adaptive behaviour models focus on the study of how
embodied agents develop their capabilities autono-
mously while interacting with their physical and (even-
tually) social environment. For many years, these
studies have been confined to relatively simple agents
and tasks. Recent research, however, demonstrated
how this method can be extended to studies that
involve agents with complex morphologies and rich
sensory–motor systems mastering relatively hard tasks
(Baranes & Oudeyer, 2013; Massera, Tuci, Ferrauto, &
Nolfi, 2010; Reil & Husbands, 2002; Rolf, Steil, &
Gienger, 2010; Savastano & Nolfi, 2012; Tuci,
Massera, & Nolfi, 2010; Yamashita & Tani, 2008).
From a modelling point of view complexity does not
represent a value in itself. We fully bound the Occam’s
razor argument that claims that given two explanations
of the data, all other things being equal, the simpler
explanation is preferable. After all, one of the key con-
tribution of adaptive behaviour research consists in the
demonstration of how complex abilities can emerge
from the interactions between relatively simple agents
and the environment. On the other hand, the modeliza-
tion of a given phenomenon necessarily require the
inclusion of the characteristics that constitute key
aspects of the targeted objective of study. In some
cases, therefore, the use of complex agents and/or tasks
is necessary. For example, the modelization of the

morphological characteristics and of the articulated
structure of the human arm constitutes a prerequisite
for modelling human object manipulation skills.
Likewise, the use of agents provided with rich sensory
systems constitutes a necessary prerequisite for model-
ling sensory integration and fusion.

From a methodological perspective, however, the
need to build rather complex models for tackling these
research issues currently represents a barrier that might
significantly slow down research progress in this area.
In this paper we introduced FARSA, an open source
software tool that allows to easily set up and carry out
adaptive experiments based on the iCub humanoid
robot (Metta, Sandini, Vernon, Natale, & Nori, 2008;
Sandini, Metta, & Vernon, 2004) as well as on other
robotic platforms. FARSA does not only provide a
simulator, since it consists of a set of integrated
libraries: a robot/environmental simulator, a sensor
and actuator library, a controller library, and an adap-
tive library. Moreover, it comes with a rich graphical
interface that facilitates the visualization and analysis
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of the characteristics of the model and of the beha-
vioural and cognitive processes originating from the
agent/environmental interaction. For these reasons we
believe that it can contribute to boost adaptive beha-
viour research addressing the acquisition of multiple
skills and the development complex capabilities.

We then illustrate a series of experiments in which an
iCub robot (Metta et al., 2008; Sandini et al., 2004) is
trained through an evolutionary algorithm for the ability
to display integrated reaching and grasping capabilities.
The results obtained in these experiments demonstrate
how the use of an implicit selection criterion, estimating
the extent to which the robot is able to produce the
expected outcome of the actions, is sufficient to develop
the required capabilities despite the complexity of the
robot, of the robot’s sensory–motor system, and of the
task. These experiments have been realized through the
use of FARSA and constitute two of the exemplificative
examples provided with the tools. Therefore, they can be
easily be replicated and varied by the reader.

In the next section we introduce FARSA. In Section
3 we describe the relation of our experiment on inte-
grated reaching and grasping to the state of the art. In
Section 4 and 5 we describe our experiments and
results. Finally in Section 6 we draw our conclusions.

2 FARSA

FARSA (see http://laral.istc.cnr.it/farsa/) is an open-
source tool designed to carry on experimental research
in embodied cognitive science and adaptive behaviour.

It combines in a single framework the following
features:

� It is open-source, so it can be freely modified, used,
and extended by the research community.

� It is constituted by a series of integrated libraries
that allow it to easily design the different compo-
nents of an embodied model (i.e. the agents’ body
and sensory–motor system, the agents’ control sys-
tems, and the ecological niche in which the agents
operate) and that allow to simulate accurately and
efficiently the interactions between the agent and
the environment.

� It comes with a rich graphical interface that facili-
tates the visualization and analysis of the elements
forming the embodied model and of the beha-
vioural and cognitive processes originating from
the agent/environment interactions.

� It is based on a highly modular software architec-
ture that enables a progressive expansion of the tool
features and simplifies the implementation of new
experiments and of new software components.

� It is multi-platform, i.e. it can be compiled and used
on Linux, Windows, and Mac OS X operating
systems.

� It comes with a set of exemplificative experiments
and with a synthetic but comprehensive documenta-
tion that should enable users to quickly master the
tool usage.

Other related tools include: Webots� (Michel,
2004), USARSim (Carpin, Lewis, Wang, Balakirsky, &
Scrapper, 2007), Gazebo (Koenig & Howard, 2004),
ARGOS (Pinciroli et al., 2012), and LpzRobots (Der &
Martius, 2012).

In the following sub-sections we briefly review the
characteristics of its main components.

2.1 The robots/environment simulator
library

The robots/environment simulator (worldsim) is a
library that allows the simulation of robots and the
environment in which they operate. The library sup-
ports both individual robot simulation and collective
experiments in which several robots are placed in the
same environment. The physical and dynamical aspects
of the robots and of the robot/environment interactions
can be simulated accurately by using a 3D dynamics
physics simulator or by using a faster but simplified
kinematic engine. For what concern the dynamics simu-
lation, FARSA relies on the Newton Game Dynamics
engine (Jerez & Suero, 2004) that enables accurate and
fast simulations. The underlying dynamic engine has
been encapsulated so as to enable the inclusion of alter-
native engines.

Currently, FARSA supports the following robotic
platforms: the Khepera (Mondada, Franzi, & Ienne,
1993), the e-Puck (Mondada et al., 2009), the marXbot
(Bonani et al., 2010), and the iCub (Sandini et al.,
2004). These robots have been designed by assembling
a series of building blocks (physical elements, sensors,
and motorized joints) that users can re-use to imple-
ment alternative, not yet supported, robots.

In the case of the iCub, the simulator is based on the
YARP (Metta, Fitzpatrick, & Natale, 2006) middle-
ware library (the same command used to read the
robot’s sensors and control the robot’s motor can be
used to work with the simulated or real robot). This
strongly facilitates the possibility to port results from
simulation to reality and the possibility to integrate
into FARSA projects the software modules available
from the iCub software repository (http://wiki.icu-
b.org/iCub_documentation).

With respect to the iCub simulator developed by
Tikhanoff et al. (2008), the simulation library included
in FARSA presents a series of advantages: it strictly
conforms to the real kinematic joint structure of the
robot, it allows to simulate multiple robots, it includes
both a dynamic and kinematic engine, and it provides
an enhanced visualization tool.

256 Adaptive Behavior 22(4)

 at Consiglio Nazionale Ricerche on October 9, 2014adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


2.2 The sensor and motor library

FARSA also includes a library of ready-to-use sensors
and actuators. In some cases, sensors and actuators
include software routines that pre-elaborate sensory or
motor information (e.g. to reduce its dimensionality)
and/or integrate different kinds of sensory–motor infor-
mation (as in the case of actuators that set the torque
to be produced by a joint motor on the basis of the cur-
rent and desired position of the controlled joint).

Wheeled robots are provided with infrared, ground,
traction force, linear vision, and communication
sensors, among others. Moreover, they are provided
with wheels, grippers, LEDs, and communication
actuators.

The iCub robot is provided with proprioceptors that
measure the current angular position of the robot’s
joints, tactile sensors, and vision sensors among others
and with actuators that control all the available DOFs.
The state of the robot’s sensors and actuators, as well
as the state of selected variables of the robot’s control
system, can be graphically visualized while the robot
interacts with the environment. This provides a useful
analysis and debugging tool.

2.3 The controller libraries

These libraries enable the user to design, modify, and
visualize the robot’s control system. Currently FARSA
includes two libraries that support the design of neuro-
controllers. Users willing to use other architectures or
formalisms can integrate into FARSA alternative
libraries.

Evonet is an easy-to-use library that enables users to
graphically design, modify, and visualize the architec-
ture of the robot’s neural controller as well as the prop-
erties of the neurons and of the connection weights.
The library supports logistic, leaky integrator, and
threshold neurons. NNFW is an alternative object-
oriented library that provides a larger variety of neuron
types and output functions (Gaussian, winner-take-all,
ramp, periodic, etc.) and supports the use of a radial
basis function neural network.

Thanks to the integration between the controller and
the sensory and motor libraries, the sensory and motor
layer of the neural controller is automatically generated
on the basis of the selected sensors and actuators.
Moreover, the update of the sensory neurons and the
update of the actuators on the basis of the state of the
motor neurons is handled automatically.

Finally, the graphic viewer of the robot’s controller
also enables users to lesion and/or to manually manipu-
late the state of the sensors, internal, and motor neu-
rons in order to analyse the relationship between the
state of the controller and the behaviour that originates
from the robot/environmental interaction.

2.4 The adaptation libraries

These libraries enable the user to subject a robot or a
population of robots to an adapting process (i.e. to a
evolutionary and/or learning process during which the
characteristics of the robots are varied and variations
are selected so as to improve the abilities of the robots
to cope with a given task/environment).

The adaptation libraries that are currently available
support the use of evolutionary algorithms (including
steady state, truncation selection, and Pareto-front
algorithms), supervised learning algorithms (i.e. back-
propagation), and unsupervised learning algorithms
(i.e. Hebbian learning). The evolutionary algorithms
are parallelized at the level of the individual’s evalua-
tion and can therefore run significantly faster in multi-
core machines and computer clusters.

In the case of evolutionary and supervised algorithm,
the variation in performance during the adaptation can
be monitored and analysed in the associated graphics
renderer.

2.5 Usability and speed

FARSA is well documented, easy to use, and provided
with a rich graphical interface that facilitates monitor-
ing and debugging. The inclusion of exemplificative
experiments (including the two experiments described
in this paper) enables easy replication and a variety of
interesting case studies.

A large spectrum of experiments can be configured
and varied through parameters. More specifically, the
type of robotic platform, the sensors and actuators of
the robot, the characteristics of the neural controller,
and the type and the characteristics of the adaptive pro-
cess can be set and varied easily through the graphical
interface or through a text editor. The realization of
experiments that involve non-parametric variations (i.e.
that require a new type of fitness function or a new type
of sensor) require writing C++ extensions. This task,
however, is facilitated by the fact that experiments are
defined as plugins, i.e. relatively short programs that
can be compiled separately from FARSA and loaded at
runtime. Plugins can also be used to implement larger
software extensions (e.g. new learning algorithms or
new graphics widgets).

FARSA is optimized and parallelized so to reduce
as much as possible the time required to carry on com-
putationally expensive experiments. The simulation
speed clearly depends on the complexity of the robotic
platform and of the robot/environment interactions. In
the case of the experiments described below, the simu-
lation of the robot/environmental interaction on a stan-
dard single processor (Quad-Core AMD Opteron�
Processor 2374 HE at 2.2 GHz) under Linux runs 116
times and 2.6 times faster than real time (in the case of
the experiments reported in Sections 4 and 5,
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respectively). Moreover the simulation of the evolution-
ary process on a multi-thread cluster runs approxi-
mately 666 times and 19 times faster on two quad-core
processors using 8 threads (the same type of processor
and operating system as above, experiment reported in
Sections 4 and 5, respectively).

3 Relation to the state of the art

Reaching and grasping capabilities can be developed
through trial-and-error and/or supervised learning
methods (Barto, 2003). In trial-and-error methods, the
motor capability is acquired without the help of an
explicit teacher or trainer, and the adaptive process is
driven by intrinsic feedback. Examples of intrinsic feed-
back are the kinesthetic and tactile sensations experi-
enced when an object has been successfully grasped or
the sight of a ball entering inside the net after a kicking
action. In supervised training methods, instead, the
intrinsic feedback is augmented with extrinsic informa-
tion provided by the teacher. This information might
consist of the sequence of sensory states experienced by
the robot while its arm is driven by a caretaker toward
a target object to be reached (in kinesthetic teaching
methods, see for example Yamashita and Tani (2008))
or by the demonstration performed by the teacher of
the action that should be performed by the robot (in
learning by demonstration methods, see for example
Miyamoto and Kawato (1998)). Most of the research in
the field of artificial intelligence and adaptive behaviour
focus on the latter paradigm. In this paper, instead, we
will focus on trial-and-error methods relying on intrin-
sic feedback (e.g. the robot’s capability to perceive
whether or not and eventually to what extent a reaching
and/or grasping action has been successfully carried
out). Previous attempts to study how robots can
develop reaching or grasping capabilities through trial-
and-error methods include experiments with non-
redundant systems provided with two actuated DOFs
(Berthier, Rosenstein, & Barto, 2005; Schlesinger,
Parisi, & Langer, 2000) or experiments in which the
robots were provided with significant built-in compe-
tences (Oztop, Bradley, & Arbib, 2004). More specifi-
cally, Schlesinger et al. (2000) studied the development
of reaching behaviour in a simulated agent provided
with a 2-dimensional arm with two actuated DOFs, a
bi-dimensional vision system with one actuated DOF,
and a tactile sensor located on the final portion of the
arm. The robot’s neural network controller received as
input the angular state of the arm joints, the state of the
tactile sensor, and the visual information extracted
from the camera and control the two DOFs of the arm
and one DOF of the visual system. The neural network
controller was trained through an evolutionary method
(Nolfi & Floreano, 2000) on the basis of a performance
criterion calculated by computing the average number

of time steps spent by the robot touching the target
object. Oztop et al. (2004) studied the development of
grasping behaviour in a simulated robot provided with
an arm and hand with 19 actuated DOFs. The reaching
behaviour was pre-programmed in the robot on the
basis of the Jacobian transpose method (Sciavicco &
Siciliano, 2004). Learning was thus confined to the
mapping of a series of sensorily extracted object affor-
dances into a series of grasping parameters able to
shape the pre-existing reaching capability into an effec-
tive grasping behaviour. The neural network controller
was trained through a reinforcement learning algorithm
(Sutton & Barto, 1998) and received positive reward for
the trials producing successful or nearly successful
grasps and negative reward for trials leading to unstable
grasps or no object contact. Berthier et al. (2005) stud-
ied the development of a reaching behaviour in a simu-
lated robot provided with an arm with 2 controlled
DOFs on the shoulder (flexion–extension and adduc-
tion–abduction). The robot’s neural network controller
received as input the current state and velocity of the
two joints and produced as output the intensity of the
torque to be applied by two muscle-like actuators. The
network was trained through a reinforcement learning
algorithm (Sutton & Barto, 1998) by providing to the
robot positive and negative rewards when the hand of
the robot approached or moved away from the target,
respectively. The experiments described in this paper,
instead, concern the study of how a highly redundant
humanoid robot can develop reaching and grasping
capabilities from scratch or on-top of simple reflex-like
competences. The relation between the experiments pre-
sented in this paper and our own previous related work
(Massera, Cangelosi, & Nolfi, 2007; Massera et al.,
2010; Savastano & Nolfi, 2012, 2013) will be discussed
below. Although the first phase of reaching and grasp-
ing development in children are clearly characterized by
a trial-and-error learning process (Oztop et al., 2004),
the objective of this paper is not to model human learn-
ing but rather to demonstrate how apparently complex
behavioural capabilities can be successfully acquired
through a simple trial-and-error adaptive process that
do not require specification of the manner through
which the target actions should be realized.

4 Reaching

In this section we describe how a simulated iCub robot
can acquire the capability to reach with its left arm any
arbitrary target position in its peripersonal space by
controlling six actuated joints (two joints of the iCub’s
torso and four joints of the iCub’s left arm). The con-
nection weights of the robots’ neural controller are
adapted through an evolutionary method for the ability
to minimize the average distance between the left hand
of the robot and the target location averaged over
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several trials in which the robot has to reach different
target positions.

4.1 Method

The robot’s neural controller (Figure 1) is provided with
three sensory neurons that encode the position of the tar-
get object in Cartesian coordinates, four internal neurons,
and six motor neurons that control the desired angular
position or velocities (depending on experimental setup,
see below) of the six actuated DOFs (i.e. the rotation and
the extension–flexion of the torso; the extension–flexion,
the abduction–adduction and the supination–pronation
of the arm; the extension–flexion of the forearm).
The sensory neurons are fully connected to internal
neurons that are fully connected to motor neurons. To
verify the role of the sensory feedback during the robot/
environment interactions we ran two sets of experi-
ments. In steady-encoding experiments the sensory neu-
rons encode the offset of the current target position
along the X, Y, and Z axes, normalized in the range
[0,1], with respect to centre of the iCub body, and the
motor neurons encode the desired angles for the final
posture of the arm by using a linear mapping (actual
torques are set through a PID controller). The offset
between the desired and the target angular positions are
then used to set the velocity of the joint motors on the
basis of a simple proportional controller. In the
unsteady-encoding experiments, instead, the three sen-
sory neurons encode the offset of the current target
position along the X, Y, and Z axes, normalized in the
range [0,1], with respect to the centre of the left palm,
and the motor neurons encode directly the velocity of
the joint motors. In the latter case the robot can use the

perceptual feedback of its own actions to refine its
behaviour while it interacts with the environment. In
the former case, instead, the sensory state does not
change while the robot moves and consequently the
robot cannot exploit the sensorial effects of its own
actions. Moreover, the sensorial information perceived
in the unsteady-encoding correlate directly with the
extent to which the robot has successfully carried out its
action.

The output of internal and motor neurons was com-
puted accordingly the following equation:

oi =s
XN

j= 0

xjwji

 !
ð1Þ

where s is the standard logistic function: 1=(1+ e�x), xj

is the output of the jth presynaptic neuron and wji is the
synaptic weight from the jth presynaptic to ith postsy-
naptic neuron. The update rate of the state of the sen-
sors, of the neural controller, of the actuators, of the
robot and of the environment is 25 Hz. The characteris-
tics of the robot and of the architecture of the robots’
neural network are kept fixed. The strength of the con-
nection weights are adapted by using an evolutionary
method (Nolfi & Floreano, 2000). The initial popula-
tion consists of 20 randomly generated genotypes,
which encode the 46 free parameters of 20 correspond-
ing neural controllers. Each gene is constituted by 8 bits
that encode a corresponding floating point value in the
range ½�5:0,+5:0�. During each generation, each indi-
vidual is allowed to produce an offspring (i.e. a geno-
type identical to that of the parent with 5% of its bit
randomly mutated). The 20 parent and the 20 offspring

Figure 1. (Left) The simulated iCub. The white points shows all the possible target positions (see text for an explanation). (Right)
The architecture of the neural controller. The lower, intermediate, and upper layer indicate the sensory, internal, and motor
neurons. Lines represents connections from the lower to the upper layer.
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individuals are evaluated. The genotypes of offspring
individuals that outperform parents are used to replace
the genotypes of the worst parents. The genotypes of
the remaining offspring are discarded. The reproduc-
tion, evaluation, and selection process is repeated for
5000 generations. Each individual is evaluated for 400
trials, each lasting up to 17.5 s, during which it should
reach 400 corresponding target positions extracted from
a set of 2304 reachable positions. To get a subset of
points as equidistributed as possible, we use the crowd-
ing distance (Deb, Agrawal, Pratap, & Meyarivan,
2000) to sort all reachable positions on the basis of their
Cartesian coordinates. The 2304 reachable points have
been calculated by storing the position that the centre
of the robot’s left palm assumed when the six actuated
joints were moved to all possible combination of states
within the values indicated in Table 1. Furthermore, to
favour the selection of individuals that are able to gen-
eralize their abilities to any possible reachable position,
the target position experienced during each trial was
randomly chosen within a spherical area with a dia-
meter of 2 cm centred around the current extracted
reachable position.

The fitness is calculated on the basis of the following
equation:

F =
X400

t = 1

e �
kpalmPos�targetPosk

0:04ð Þ ð2Þ

Where t is the trial, and k palmPos� targetPos k is
the Euclidean distance in meters between the centre of
the robot’s left palm and the centre of the target loca-
tion measured at the end of each trial. To verify
whether an incremental adaptive process can lead to
better performance, we ran an additional set of experi-
ments referred to below as incremental. More specifi-
cally, to simulate the condition on which the problem is
initially simplified and become progressively harder as
soon as the skills of the individuals improve, they are
rewarded with the maximum fitness during trials in
which the palmPos� targetPos distance is below a
threshold . This threshold is initially set to 5 cm at gen-
eration 0 and it is progressively reduced by 20% after a

generation in which the average fitness of all individu-
als is greater than 0.6, and it is definitely set to 0.0
when it becomes lower than 1 cm. For sake of compari-
son, consider that the height of the iCub is about 1 m.

4.2 Results

The combination of the steady versus unsteady encod-
ing and incremental versus non-incremental adaptive
process leads to four sets of experiments. For each
experiments six replications starting from different ran-
domly generated populations were run. Evolved indi-
viduals were then post-evaluated on the entire set of
2304 reachable target locations by calculating percent-
age of target location reached with an accuracy of at
least 5 cm.

By analysing the performance of the best evolved
individuals in the four experimental conditions (see
Figure 2), we can see how the individuals evolved in
the unsteady condition significantly outperform those
evolved in the steady condition. This results confirms
that the possibility to exploit the sensory feedbacks
caused by the robot’s actions and/or the availability of
information that strongly correlates with the extent to
which the robot successfully accomplishes the current
action strongly facilitates the development of the effec-
tive solutions.

The comparison of the performance obtained in the
incremental versus non-incremental experimental con-
ditions does not reveal significant differences.

Overall the analysis of the results in the best experi-
mental conditions indicates how the adapted individu-
als can reach close to optimal performance. This is a
remarkable result given the simplicity of the neural con-
troller and given that some of the targets located in

Table 1. Angular positions selected uniformly within the joints
limits used to generate a representative set of all possible
reachable positions.

Joint Limits

Torso rotation ½�25,0,+ 25�
Arm abduction–adduction ½32:16, 64:32, 96:48, 128:64�
Torso extension–flexion ½�2:5,5,12:5�
Arm supination–pronation ½�13:6,9:8,33:2,56:6�
Arm extension–flexion ½�74:4,� 53:3,� 32:2,� 11:1�
Forearm extension–flexion ½33:2, 51:4, 69:6, 87:8�

Figure 2. Percentage of target locations reached with an
accuracy of at least 5 cm (i.e. with a distance between the
centre of the palm and the centre of the target location less or
equal to 5 cm). The four box plots show the distribution of
performance of the six best individuals each from an
independent run with random initial conditions.
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peripheral areas of the robot’s peripersonal space are
hard to reach due to the limits and constraints that
affect the robot’s movements in these regions.

For instructions on how to replicate this experiment
with FARSA and on how to analyze the evolved solu-
tions, see http://laral.istc.cnr.it/res/reach.

5 Reaching and grasping

In this section we describe how a simulated iCub robot
can develop integrated reaching and grasping capabil-
ities that enable it to reach a ball located in varying
positions over a table, grasp it, handle it, and elevate it.
Beside the difficulties concerning the need to control an
articulated arm with many DOFs (Bernstein, 1967),
this represents a rather challenging task since it requires
interaction with physical objects (including a sphere
that can easily roll away from the robot’s peripersonal
space) and integration of three interdependent beha-
viours (reaching, grasping, and lifting).

5.1 The method

In the case of this experiment, the robot’s controller
includes a richer set of sensors and actuators, a larger
neural network, and a greater number of parameters to
be varied during the adaptive process. Adapting indi-
viduals are provided with an hand-coded neural circuit
that produce a simple reflex behaviour consisting in
turning the robot head toward red objects.

The sensory system (Figure 3(b), bottom layer)
includes two neurons that encode the offset between the
sphere and the hand over the visual plane (dx, dy, by
visual plane we means the two dimensional image per-
ceived by the robot’s camera), four neurons that encode
the current angular position of the pitch and yaw DOFs
of the neck (n0, n1) and of the torso (t0, t1), and nine
sensory neurons that binarily encode whether the five
tactile sensors located on the fingertips (Rf1, Rf2, Rf3,
Rf4, Rf5) and the four tactile sensors located on the
palm (Rp1, Rp2, Rp3, Rp4) are stimulated.

The motor system (Figure 3(b), top layer) includes
two motor neurons that control the desired angular
position of pitch and yaw DOFs of the torso (T0 and
T1), seven motor neurons that control the desired angu-
lar position of the seven corresponding DOFs of the
right arm and wrist (RA0, RA1, RA2, RA3, RA4, RA5
and RA6) and a right-hand motor (RF0) that controls
the desired angular position of all joints of the hand
(the fingers’ abduction–adduction is kept fixed). This
means that all fingers extend/flex together.

The neural network is also provided with seven inter-
nal neurons that receive connections from all sensory
neurons and project connection to all motor neurons
(Figure 3(b), intermediate layer). These neurons are
leaky integrators, that is their activation at a given time

step depends on both the input at that time step and on
the activation at the previous time step. The output of
the ith internal neuron is computed as follows:

oi, t =aioi, t�1 + 1� aið Þs
XN

j= 0

xj, twji

 !
ð3Þ

where oi, t is the output of the ith internal neuron at
time step t, ai is a time integrator parameter that deter-
mines how much the output at the current time step
depends on the output at the previous time step, s(z) is
the standard logistic function as before, xj, t is the out-
put of the jth presynaptic neuron at time step t and wji

is the synaptic weight from the jth presynaptic to ith
postsynaptic neuron. The update rate of the state of the
sensors, of the neural controller, of the actuators, of
the robot and of the environment is 25 Hz (50 ms per
step).

The reflex behaviour is realized by a neural circuit
(Figure 3(a)) with two sensory neurons, that encode the
average offsets of red pixels over the vertical and hori-
zontal axis of the visual field, which are directly con-
nected to two motor neurons, that control the angular
position of the neck (N0, N1). The four weights and the
two biases of the motor neurons are set manually. The
other 226 parameters are adapted.

At the beginning of each trial the sphere is placed in
a random position inside one of four square areas with
a side of 4 cm (Figure 4). The first two of these areas
are located in front of the iCub at a distance of 25 cm
and 35 cm, the other two are located 10 cm on the left
and on the right side and at a distance of 30 cm. Each
trial lasts 300 time steps (i.e. 15 s) plus 10 additional
time steps during which the plane is removed to verify
whether or not the ball is held by the robot.

The fitness is computed on the basis of the following
equations:

Ft = 0:3Dt + 0:2Tt + 0:2OtCt + 0:3Qt +Gt ð4Þ

F =
XN

t = 1

Ft ð5Þ

Where F is the overall fitness of the individual, Ft is
the fitness at trial t, N is the number of trials and Dt,
Tt, Ot, Ct, Qt, and Gt are fitness components, ranging
from 0 to 1, that reward the individuals for bringing
their hand near the object (Dt),touching the object with
the palm (Tt), opening the fingers far from the object
(Ot), closing the finger near the object (Ct), closing the
finger around the object (Qt), holding and elevating the
object (Gt). These fitness components have been intro-
duced to increase the individuals’ evolvability (i.e. the
probability that random variations might lead to per-
formance improvements) and to channel the adaptive
process toward the acquisition of abilities that consti-
tute a prerequisite for the development of the required
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capabilities (we will come back to this issue in the dis-
cussion section). The used components and their para-
meters have been chosen on the basis of our intuition
and have not be optimized on the basis of a trial and
error approach. They are computed on the basis of the
following equations (the subscript indicating the depen-
dency on the trial has been removed for clarity):

D= e�5d ð6Þ

T = min
n

10
, 1

� �
ð7Þ

O=
1

n0

Xn0

s= 1

Es ð8Þ

C =
1

300�nc

P300
s= nc

1� Es, if nc 6¼ 300

0, otherwise

�
ð9Þ

Q= min
f

4
, 1

� �
ð10Þ

G=
0, if oz<� 0:1
0:5+ oz + 0:1

0:2 0:5, if � 0:1\oz\0:1
1, if oz � 0:1

8<
: ð11Þ

where d is the distance between the centre of the palm
and the surface of the object at the end of the trial; n is
the number of steps in which the palm of the robot
touched the object during the current trial; n0 and nc

are the steps at which palm enters in contact with the
object for the first and for the fifth time, respectively,
or 300 when the conditions are never satisfied; Es is the
extension of the fingers at step s; f is the maximum
number of fingers that entered in contact with the
object concurrently during the trial; oz is the displace-
ment along the vertical axis of the object centre (0
means the object is exactly on the table).

To support the evolution of robust behaviours while
minimizing the simulation costs, the number of trials is
initially set to 4 and is then increased to 8, 12, 16, 20,
24, and 28 as soon as an evolving individual successfully
grasps and holds the objects during 50%, 60%, 70%,
80%, 90% and 100% of the trials. Five replications of
the experiment lasting 2000 generations were run. All
other parameters were identical to that described in
Section 3.

Figure 3. The architecture of robot’s neural controller. The lower, intermediate, and upper layer represent the sensory, internal,
and motor neurons, respectively. Lines represents connections from the lower to the upper layer. The connection weights and
biases and of the neural circuit shown in (a) are manually set and fixed. All other connection weights and biases are adapted.

Figure 4. The experimental setup. The robot is shown in the
posture set at the beginning of each trial. The left arm of the
robot is not moved. The yellow squares on the table show the
areas where the object can be located.
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5.2 Results

By analysing the obtained results we observed that in
all replications of the experiment the evolved individu-
als display an ability to reach, grasp, and hold spherical
objects located in varying positions (Table 2). In the
case of the best replication of the experiment, the best
individual displays a rather robust capability that
allows it to successfully carry on the task in 77% of the
trials. This represents a remarkable result in consider-
ation of the rigidity of the robot body and of the diffi-
culties of physically interacting with spherical objects
that can easily roll away from the peripersonal space of
the robot. The obtained solutions also represent prog-
ress with respect to the previous studies carried by
some of the authors (see Massera et al. (2007)), in
which the individuals were able to successfully accom-
plish a similar task but showed limited generalization
capabilities with respect to variations of the object
positions.

The visual inspection of the behavioural solutions
displayed by these individuals (see http://laral.istc.
cnr.it/res/reach-grasp/) can allow us to appreciate the
importance played by the integration between the
required elementary behaviours (i.e. reaching, grasping,
and lifting) and by the way in which they are combined
over time. Indeed, the way in which the best evolved
individuals reach the object by bending the torso
toward the table and by carefully pressing the ball
over the table so as to block it, while the fingers are
wrapped around the object, clearly demonstrate the
importance of the fact that the reaching and the grasp-
ing abilities have been co-evolved to serve a common
function.

Overall this demonstrates the potential advantages
of acquiring the required elementary behavioural capa-
cities through an adaptive process and of using methods
that enable the co-development of multiple capacities.
More specifically, for what concerns the experiments
illustrated above, this suggests that the introduction of
a fitness component that rewards the development of
the required elementary capabilities and of components
that reward the ability to appropriately combine and
integrate the acquired elementary capabilities might be
crucial for the development of general and effective
solutions.

For instructions on how to replicate this experiment
with FARSA and on how to analyse the evolved solu-
tions see http://laral.istc.cnr.it/res/reach-grasp/.

6 Discussion and conclusion

The possibility to design adaptive agents able to
develop their behavioural skills autonomously, while
they interact with the physical and social environment
in which they are situated, represented one of the most
fascinating scientific landmarks of the end of the last
century. Whether and how such methods can enable
the synthesis of robots able to acquire complex beha-
vioural and cognitive skills and able to progressively
expand their behavioural and cognitive repertoire still
represents an open question.

To achieve this challenging objective agents need to
be able to first develop elementary capabilities and then
more complex skills by recombining and integrating
previously developed skills. However, the way in which
this can be achieved still represents an open question.

A possible approach postulates a modular organiza-
tion of the agents’ control system in which different
modules support the acquisition and production of the
elementary capabilities and in which the elementary
modules/capabilities are then combined to produce
more complex skills (Mataric, 1998; Schaal, 2002;
Wolpert & Kawato, 1998). The composition, however,
is far from easy to achieve (Nemec & Ude, 2012), often
employs very heuristic schemes (Reinhart, Lemme, &
Steil, 2012), or needs in itself sophisticated modelling
approaches (Kulic, Ott, Lee, Ishikawa, & Nakamura,
2012; Wrede et al., 2012).

An alternative approach postulates that multiple
and complex capabilities can be obtained by recombin-
ing previously acquired behavioural and cognitive skills
that do not necessarily correspond to different parts of
the agent’s control system (Nolfi, 2009; Yamashita &
Tani, 2008). Within this approach, compositionality is
seen as a property that arises from the acquisition and
integration of multiple skills rather than a consequence
of architectural constraints. The question of whether
and how this approach can really lead to the progres-
sive acquisition of a rich behavioural and cognitive
repertoire, however, still remains to be answered.

In this paper we introduced a software framework
that enables researchers to easily perform and analyse
adaptive experiments involving relatively complex
agents and tasks. We believe that the availability of
tools of this type can significantly contribute to boost
research in adaptive robotics by enabling the investiga-
tion of hard problems and the comparison of alterna-
tive models and methods.

Table 2. Percentage of trials in which the best evolved robot of each replication successfully grasps and hold the ball during a post-
evaluation test conducted for 100 trials.

Replication 1 2 3 4 5

Success rate (%) 77 74 69 66 50
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Moreover, we reported the result of a series of
experiments that demonstrate how a relatively complex
humanoid robot provided with a simple non-modular
controller can acquire multiple integrated behavioural
capabilities. This is achieved through the use of multi-
ple component fitness functions that enhance the evol-
vability of the system and channel the adaptive process
toward promising directions. The question of whether
and how this type of approach can scale to larger beha-
vioural repertories constitutes an important research
challenge for future research.
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