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Abstract 

In this paper we illustrate how the capacity to select the most appropriate actions 

when handling contexts affording multiple conflicting actions can be solved either 

through a selective attention strategy (in which the stimuli affording alternative 

actions are filtered out at the perceptual level through top-down regulation) or at 

later processing stages through an action selection strategy (through the suppression 

of the premotor information eliciting alternative actions). By carrying out a series 

of experiments in which a neuro-robot develops an ability to choose between 

conflicting actions, we were able to identify the conditions that lead to the 

development of solutions based on one strategy or another. Overall, the results 

indicate that the selective attention strategy constitutes the most simple and 

straightforward mechanism enabling the acquisition of such capacities. Moreover, 

the characteristics of the adaptive/learning process influence whether the adaptive 

robot converges towards a selective attention and/or action selection strategy. 

1. Introduction 

At every moment the environment presents animals with many opportunities and demands for 

actions. From a short-term behavioural perspective, this implies that the agents should be able to 

choose among the multiple conflicting actions available within their behavioural repertoire. From 

a long-term developmental perspective, this implies that they should overcome the difficulties 
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that arise from the need to concurrently develop two interdependent abilities: the ability to 

identify the appropriate set of complementary actions and the ability to identify the contexts 

affording these alternative actions. In this paper we investigate this issue from both a short and 

long term perspective through a synthetic approach, with the design of a neuro-robot that 

develops multiple action capacities during a long-term adaptive process and selects among them 

while it interacts with the environment in which is situated. The rationale behind the attempt to 

study both how these capacities are acquired and how they are realized is that the mechanisms 

and processes that enable the development of actions and action selection capabilities can 

strongly constrain the way in which such capacities are realized in “mature” individuals. 

To realize the importance of handling the conflicts that originate from the need to 

develop and execute competing actions we should consider that perceptual stimuli can evoke 

actions afforded by them automatically with little or no intention to act (Duncan-Johnson & 

Kopell, 1981; Gibson, 1979; Goldberg & Segraves, 1987; Miller & Hackley, 1992). The direct 

association between stimuli and actions, however, implies that contexts affording multiple 

conflicting actions might lead to the production of chaotic un-effective behaviours (Neumann, 

1987). This can only be avoided through a selection process that blocks the execution of 

conflicting actions (Humphreys et al., 2010; Tucker & Ellis, 1998).  

The identification of the mechanisms that enable natural organisms to appropriately 

select actions still represents an open research challenge (Seth, Prescott, & Bryson, 2011). 

However, the experimental evidences collected to date seem to support two types of 

mechanisms/strategies, that we termed ‘action selection’ and ‘selective attention’. The action 

selection strategy consists in concurrently processing the perceptual information affording 

multiple conflicting actions in parallel by later selecting an action through a biased competitive 

process that operates at the pre-motor level. The selective attention strategy, instead, consists in 

blocking the sensory information that can elicit alternative actions already at the perceptual level 

through top-down feedback (i.e. through efferent connections from motor areas to perceptual 

areas). For this reason, in the experiments reported in this paper we provided our robot with the 

prerequisites necessary to develop and realize one or the other strategy and we analysed whether 

and in which cases the adapted robot relies on the former, the latter, or both strategies. 

The study of how natural or artificial organisms can concurrently develop multiple 

actions skills as well as an ability to select among them represents an almost unexplored research 
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territory. In that respect, therefore, the experiments presented in this paper constitute a rather 

original contribution that extends the results obtained in other pioneering studies (Petrosino, 

Parisi, & Nolfi, 2013; Seth et al., 2011). More specifically, as we will see, our results elucidate 

the relation between the characteristics and the dynamics of the learning process through which 

the agents develop their skills and the mechanisms/strategies that they use to master their task. 

The paper is organized as follows. In the next section we discuss the neuro-psychological 

evidences in support of the action selection and selective attention strategies. In section 2 and 3 

we describe the experimental scenario and the obtained results. In section 4 we discuss the 

implication of our results and we draw our conclusions. 

1.1 On the role of action selection and selective attention 

Cisek (2007) proposed that the tendency to execute multiple conflicting actions is solved through 

a biased competition operating at the pre-motor level. According to his affordance competition 

hypothesis, the brain processes sensory information to specify, in parallel, several potential 

actions that are concurrently available. These potential actions compete against each other while 

information is collected to bias this competition toward the selection of the most appropriate 

response. More specifically, the author suggests that the dorsal visual system specifies actions 

which compete against each other within the fronto-parietal cortex, while a variety of biasing 

influences are provided by prefrontal regions and the basal ganglia. 

Evidences in support of this hypothesis have been collected in a series of experiments in 

which primate subjects were performing an instructed-delay reaching task (Cisek & Kalaska, 

2005) organized into three phases. The monkeys located in front of a monitor were exposed to: 

(1) two circles, one red and one blue, located around a fixation point, (2) a non-spatial cue 

indicating the colour of the target circle, and (3) an arrow pointer. After the presentation of the 

arrow pointer, that acted as a ‘go’ signal, the subjects were asked to move the pointer toward the 

location of the target circle. By recording the state of directionally tuned cells of the premotor 

cortex the authors observed two simultaneous sustained signals corresponding to the two reach 

options during the first phase. Moreover they observed how the neural activity associated with 

the target and non-target circles increased and decreased respectively, during the second phase, 

after the presentation of the cue encoding the colour of the target circle. Overall the collected 

data indicate that alternative reach actions can be activated in parallel at the level of the pre-
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motor cortex and can be later enhanced or suppressed in order to execute only one of the 

conflicting actions. Additional evidences have been reported in a successive study (Pastor-

Bernier & Cisek, 2011). 

The hypothesis that action selection is realized through a selective attention process 

operating at the perceptual level has been proposed by Castiello (1999), according to which overt 

and covert attention mediate the elaboration of sensory information into motor states, i.e. filter 

out information affording alternative conflicting actions already at the perceptual level. This 

theory is supported by a series of evidences collected in reach-to-grasp experiments in which 

human subjects had to reach a target object in a 3D space in the presence of similar distracting 

objects (Bonfiglioli & Castiello, 1998; Castiello, 1996; Chieffi, Gentilucci, Allport, Sasso, & 

Rizzolatti, 1993; Howard & Tipper, 1997; Jackson, Jackson, & Rosicky, 1995; Tipper, Howard, 

& Houghton, 1998; Tipper, Howard, & Jackson, 1997). The analysis of these experiments 

indicates that when attention is raised on the target object, the perception of the distractors does 

not affect the trajectory with which the target is reached, irrespectively of the hand-distractor 

distance (Jackson et al., 1995) and irrespectively of the similarity between features of the target 

and of the distractor (Bonfiglioli & Castiello, 1998; see Castiello, 1999). On the contrary, when 

the attention is also raised on a distractor, its properties interfere with those of the target causing 

a deterioration of the action (Castiello, 1999).  

Overall these results suggest that the filtering out of the perceptual information affording 

conflicting actions realized through selective attention at early processing levels constitutes a 

radical solution that eliminate the verification of conflicts in later processing stages. Additional 

experimental evidences that support this hypothesis has been collected by several other authors. 

Indeed, in a control experiment analogous to that illustrated at the beginning of this section but in 

which the colour of the target circle was known in advance, Cisek did not find any evidence of 

activity related to the relative direction of the non-relevant object in the directionally tuned 

neurons of the premotor cortex (Cisek, 2007). Moreover, an active inhibition of the 

representations of distractor/irrelevant stimuli in perceptual areas has been documented in 

several studies (Most, Scholl, Clifford, & Simons, 2005; Munneke, Heslenfeld, Usrey, 

Theeuwes, & Mangun, 2011; Payne & Allen, 2011; Seidl, Peelen, & Kastner, 2012; Triesch, 

Ballard, Hayhoe, & Sullivan, 2003).  
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The apparent conflict between the two body of evidences reviewed above can be 

explained by considering the characteristic of the tasks. Indeed, the evidences supporting the 

action selection hypothesis have been collected in experimental scenario in which the cue 

indicating the relevant object was available only at a certain stage of the process. On the 

contrary, the evidences supporting the selective attention strategy has been collected in 

experimental scenarios in which the participants knew the location of the target object from the 

beginning. Moreover, this might indicate that tasks that admit selective attention solutions are 

potentially compatible with action selection solutions as well.  

To investigate this theme we carried out a series of experiments in which a humanoid 

robot controlled by a neural network is trained for the ability to look at an object of a given 

colour by possibly ignoring a second object with a different colour. To verify the conditions in 

which the robot relies on action selection and/or selective attention strategies, we provided the 

robot with neural network controllers that support the development of the former, the latter, or 

both strategies. Moreover, to disentangle the effect of the training process, we compared the 

results obtained in alternative experiments in which the robot was trained through a trial and 

error or through a learning by demonstration method. 

2. Experimental Scenario 

The task consisted in visually following an object of a specific colour by possibly ignoring a 

second object of a different colour. The colour of the object to be selected was explicitly 

indicated by the experimenter to the robot from the beginning of each trial. The study has been 

replicated six times by varying two experimental conditions: the architecture of the neural 

controller of the robot and the training procedure. More specifically, the neural controller could 

include or not a set of modulatory output units that could reduce and/or suppress the activity of 

selected sensory information. Moreover the robot was trained through a trial and error learning 

procedure or through a learning by demonstration procedure. In the former case it was rewarded 

on the basis of its overall ability to perform the task (i.e. on the basis of the percentage of time 

spent by looking at the selected object). In the latter case it received a teaching signal that 

specified, for each step, the state that the actuators should have to direct the sight of the robot 

toward the target object. In the following sub-sections we describe the method in detail. 
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2.1. The robot 

Our robot platform was the iCub (Fig. 1) (Sandini, Metta, & Vernon, 2004), a humanoid robot 

provided with a rich set of sensors and actuators. In our experiments, however, only the camera 

located in the right eye and the two actuators that control the lateral and vertical movement of the 

neck were used. The experiments have been carried out in simulation by using FARSA (Massera, 

Ferrauto, Gigliotta, & Nolfi, 2013), a freely available developmental robotic tool that provides a 

realistic simulator of different robotic platforms and other tools for carrying research in adaptive 

robotics. 

 

Figure 1. The simulated iCub robot. The environment of the robot might contain either a single 

red or green sphere (left panel), or two spheres, one green and one red (right panel). The 

spheres move along a circular trajectory at a fixed speed clockwise or counter clockwise.  
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2.2. The neural network of the robot 

The robot was provided with a simple neural network including three layers. As mentioned 

above, the experiments have been repeated by using three different variations of the architecture 

(see Fig. 2). In all cases, the perceptual layer included eight visual neurons, that encoded the 

offset of the red and green objects along the horizontal and vertical dimension with respect to the 

centre of the visual field of the right eye, and two neurons that encoded the colour of the target 

object (i.e. the object that should be observed by the robot). The state of the visual neurons was 

calculated on the basis of pre-elaborated information extracted from the right camera through a 

simple colour blob identification software routine. The activity of the visual neurons varied in 

the range [0.0, 1.0] and assumed a null value [0.0] when the object of a specific colour was 

located over the centre of the visual field, with respect to the horizontal or vertical dimension, or 

when an object of a specific colour was absent from the visual field of the robot. The state of the 

last two neurons was set to [1.0, 0.0] when the robot was asked to look at the red object and to 

ignore the green object, if present, and to [0.0, 1.0] in the opposite case. 

The internal layer included six neurons. 

The output layer included two motor neurons that set the velocity and direction of the two 

motors that controlled the flexion and rotation of the neck of the robot (i.e. the direction was 

determined by whether the activation state was over or below 0.5 and the speed varied 

proportionally to the offset with respect to this neural value). The robot should bring the selected 

object toward the centre of its visual field by moving its head (the position of the eyes was kept 

fixed). 

 

Figure 2. The three neural network architectures used in the corresponding experimental 

conditions. The perceptual, internal and output layers are displayed from bottom to top. The full 
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arrows indicate the connections among neurons. The dashed lines indicate modulatory 

connections. 

 

The neurons of the internal and of the output layer were updated on the basis of a 

standard logistic function. The state of the neural network was updated every 100ms. 

In the first experimental condition, shown on the left panel of Fig. 2, the internal neurons 

received connections from both the visual and target object neurons and projected connections to 

the motor neurons. This neural architecture included the neural circuits that could enable the 

development of action selection solution in which the impact of irrelevant visual information was 

reduced and possibly eliminated within the first and/or the second processing layer. 

In the second experimental condition, shown in the central panel of Fig. 2, the network 

included two additional output units whose activation state at time t was used to set the gain of 

the red and green visual input at time t+1 (see the dashed line in Fig.2). Since the output of these 

visual neurons were calculated by multiplying their activity and gain, these additional output 

neurons could reduce or suppress the impact of the activity of the perceptual neurons that 

encoded the relative position of the red and/or of the green object. A similar technique has been 

used by Kruschke (1992) to study the role of selective attention in category learning. The two 

additional output units received connections directly from the target object units. The internal 

neurons received connections from the visual perceptual neurons and projected connections to 

the motor neurons. This neural architecture includes the neural circuits that could enable the 

development of a selective attention solution in which the irrelevant perceptual information 

could be filtered out at the perceptual level by means of the top-down regulatory connections 

from the two additional output units to the visual neurons. Notice also how the lack of 

connections from the target object units to the internal neurons implied that this second 

architecture could not support the development of action selection strategies.  

The architecture used in the third experimental condition, shown in the right of Fig. 2, 

was identical to that described above but also included connections from the target object 

neurons to the internal neurons. This last architecture, therefore, could support the development 

of either selective attention or action selection strategies as well as mixed solutions. 
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The proposed neural architectures do not aim to model the anatomy of the brain but only 

the minimal set of characteristics that need to be taken into account to study the role of selective 

attention and/or action selection.  

2.3. The adaptive process 

The connection weights and biases that determined how the robot reacted to stimuli were initially 

set randomly and then varied during the adaptive/learning process. Thus the same robot was 

instantiated with different neural network controllers, initialized with randomly extracted 

parameters for each replication, and then trained. We refer to these different instantiations as 

individuals. 

During the adaptation process the robot was allowed to interact with the environment for 

a series of trials, each lasting 15s, during which it was exposed to two blocks of four trials, of 

which two involving a single red or green object and the other two involving both a red and a 

green object (see Fig. 1). The single object trials were introduced to ensure that, as in natural 

ecological settings, the robot could face both simple and more complex conditions. Objects 

consisted of spheres with a diameter of 3.5cm that were moved along a circular trajectory 

clockwise or counter-clockwise with an angular speed of 24°/s. The circular trajectory had a 

radius of 10cm, and was centred at a distance of 32.5±2.5cm from the robot with a lateral offset 

of ±2.5cm with respect to the centre of the robot. At the beginning of each trial, the position of 

the head was reset as depicted in Fig.1, the centre of the spherical trajectory was randomly 

chosen among the four possible points indicated above, and the initial position of the object was 

set on the uppermost point of the corresponding circular trajectory in half of the trials and on the 

lowermost point in the other half. When two objects were presented simultaneously, they were 

placed one of the uppermost point and the other on the lowermost point of the corresponding 

circular trajectory and then moved either clockwise or counter-clockwise. 

The experiments were realized by using two alternative training methods: a trial and error 

and a learning by demonstration method. In the trial and error condition, the free parameters 

were varied randomly and variations were retained or discarded on the basis of their overall 

effect on the ability of the individual to bring and maintain the target object over the centre of the 

view field. This was realized by using an evolutionary method (Nolfi & Floreano, 2000). The 

reason behind the choice of this algorithm is that it is one of the simplest yet most effective ways 
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to train an embodied neural network through a trial and error process based on a distal reward 

(Schlesinger, 2004). The initial population consisted of 20 randomly generated genotypes 

encoding the connection weights and biases of 20 corresponding neural controllers (each 

parameter was encoded by eight bits and normalized in the interval [-5.0, 5.0]). During each 

generation, each individual was allowed to produce an offspring, that was a varied copy of itself 

generated by mutating each bit with a probability of 2%. Offspring were then evaluated and used 

to replace the worst genotype of the population or discarded on the basis of whether they 

achieved or not a better fitness. The fitness for a trial was computed on the basis to the following 

equation: 

 fit =  e(!!"#$∗!") (1) 

where e is the exponential function, dist is the mean Cartesian distance between the 

centre of the view field and the centre of the target object in cm. The evolutionary process has 

been conducted for 1500 generations. The experiment has been replicated 10 times with different 

seeds for the random number generator.  

In the learning by demonstration experimental condition the robot was trained through 

back-propagation on the basis of a series of demonstration generated through an automated 

procedure. The connection weights and biases were initialized randomly in the interval [-0.5, 

0.5] and the robot was exposed to 1000 blocks of four trials (of which two involving either a 

single red or green object and two involving both a red and a green object). The teaching input 

(i.e. the desired state that the two motor neurons should assume for each time step) was 

computed online by a software routine that calculated the direction and the speed that the two 

actuators of the head should assume to ensure that the visual perception of the target object 

moved and/or remained toward the centre of the robot’s view field. The learning rate has been 

set to 0.2. The experiment has been replicated 10 times with different seeds for the random 

number generator. 

In the case of the experimental conditions in which the robot neural network also 

included the attentional system, the sum of the delta errors back-propagated on the first and the 

second block of four perceptual visual neurons were used as delta errors for the first and the 

second attentional output neurons. In other words, the teaching signal for the attentional output 
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neurons that regulated the relative impact of the red and green perceptual neurons at time t+1 

was calculated indirectly on the basis of whether a larger or lower activation of the red and green 

perceptual neurons would have reduced the difference between the desired and the actual state of 

the motor neurons.  

Overall the combination of three experimental conditions varying with respect to the 

architecture of the neural network and two experimental conditions varying with respect to the 

training method led to a total of six experimental conditions. For each condition, 10 replications 

were ran. 

3. Results 

We describe the results obtained by using the trial-and-error and the learning by demonstration 

method respectively in section 3.1 and 3.2. In each section, the results obtained by using the 

three different neural architectures described above are reported.  

To compare the performance obtained in different experimental conditions we calculated 

an error measure that consisted in the mean distance between the centre of the visual field and 

the target object scaled by the size of the visual field. These data were collected by post-

evaluating the best individual (i.e., that  with the lowest average error across all trials) of the last 

generation (in the case of the trial-and-error experiments) or the individuals at the end of the 

training process with their connection weights fixed (in the case of learning by demonstration 

experiment). In all cases, the error measures were calculated by evaluating the individuals for 

100 blocks of 4 trials.  

Moreover, for each experimental condition, we analysed the extent to which trained 

individuals were able to ignore irrelevant visual information.  

3.1. Trial-and-error learning condition 

As show by the results reported in Fig. 3, the experiments conducted with the Selective Attention 

architecture led to better results (i.e. lower error) than the experiments performed with the Action 

Selection architecture. The Selective Attention architecture also led to better results with respect 

to the Mixed architecture, although the difference was less marked with respect to the Action 

Selection architecture. 
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An ANOVA analysis performed by using the neural architecture as independent factor 

showed a significant main effect of this factor on the average errors, F(2, 27)=69.77, p<0.01. 

Post-hoc analyses conducted with t-tests revealed that the individuals with the Action Selection 

architecture obtained higher error (0.077) than both individuals with the Selective Attention 

architecture (0.053), p<0.001, and individuals with the Mixed architecture (0.063), p<0.001. 

Individuals with the Mixed architecture obtained higher error than individuals with the Selective 

Attention architecture, p<0.01. 

The analysis of the error obtained in different type of trials (see Fig. 3) indicated that the 

individuals trained with the Selective Attention and Mixed architecture displayed close to 

optimal performance in all cases while the individuals trained with the Action Selection 

architecture performed well only in three out of four cases. More specifically, they displayed 

close to optimal performance during the trials in which they experienced a single red or green 

object and during the trials in which they experienced both objects and should visually follow the 

object of one colour. The best individual with the Action Selection architecture, for example, 

displayed a relatively low error during the trials in which it was asked to foveate the red object 

(Red only and Red conditions) and in which it was asked to foveate the green object and the red 

object was missing (Green only condition) but displayed a higher error when it should foveate 

the green object when also the red object was present (Green condition) (Figure 3, left panel). A 

qualitatively similar outcome was observed in the other replications, although the colour of the 

object that could be correctly foveated during double object trials varied in different replications 

(result not shown for reason of space). 

On the contrary, by analysing the post-evaluated errors obtained in the other experimental 

conditions, in which the evolving robot was provided with the additional output units that 

modulated the impact of visual information, we can see how evolved individuals reached similar 

close to optimal performance in each type of trial (see Fig.3, middle and right panel). 

Overall this indicated that the addition of output units that can modulate the impact of 

different type of perceptual information facilitated the development of good solutions and 

enabled evolving robot to reach close to optimal performance. The inspection of the state of the 

two additional output units indicated that the robot used them to completely suppress irrelevant 

information during double object trials (i.e. the output units tended to assume a [1.0, 0.0] and 
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[0.0, 1.0] states during double object trials in which the robot was asked to look respectively at 

the red or at the green object). 

 

Figure 3. Average errors obtained by post-evaluating the robots trained in the trial and error 

condition. For each neural architecture (Action Selection, Selective Attention and Mixed) the 

error obtained in the case of the best replication and the average error obtained over the ten 

performed replications are shown. Each histogram indicates the average error and the standard 

error obtained in trials in which the robot was asked to pay attention to red objects and was 

exposed to a single red or to both a red and green object (Red only and Red condition) and in 

which the robot was asked to pay attention to green objects and was exposed to a single green or 

to both a green and red object (Green only and Green condition). 

 

The analysis of the course of the adaptive process provided some indication that could 

explain why the individuals provided with the Action Selection architecture trained with the trial 

and error method, unlike the individual provided with the other architectures, remained stacked 

in local minima in which only three out of four types of trials were mastered correctly. Figure 4 

shows how the error varied throughout generations, in the case of the best replication, in the 

three experimental conditions. As can be seen, the robot provided with the Selective Attention or 

Mixed architecture concurrently improved their ability to master all type of trials and reached 

close to optimal performance already after about 300 generations. The robot provided with the 

Action Selection architecture, instead, first developed an ability to master the single object trials 

(after about 300 generations) and then an ability to master one of the two double objects trials 

(after about 1300 generations).  
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Overall this indicates that in the Action Selection condition the adaptive process first 

converged on a suboptimal solution that consists in moving the head toward either the red or the 

green objects, irrespectively of the state of the target input units (that enables the robots to master 

the single object trials) and then on a second sub-optimal solution that consisted in responding 

more strongly to the position of the object of one colour than to the object of the other colour 

(that enable the robot to master relatively well also one of the two double object trials). On the 

other hand, the convergence toward such a strategy brought the adaptive process to a local 

minimum in which small variations could not lead to further improvements and in which 

progress could only be achieved through a significant restructuring of the strategy. 

 

Figure 4. Average errors throughout generations in the case of the best replication of the 

experiment performed with the trial and error training method. Each curve displays the average 

error reported during the four type of trials. To avoid the need to use a much larger error scale, 

data are shown from generation 100 on only. Data obtained by post-evaluating the individuals 

for 400 trials.  

 

This explanation was further confirmed by the analysis of the impact of the irrelevant 

perceptual information on the internal and motor neurons, shown in Figure 5. Such measure was 

calculated by storing the state assumed in each step by the neurons while the robot was exposed 

to a series of double and single object trials with its head blocked, and by computing the absolute 

difference between the state of the internal and motor neurons in the former and latter case with 

the target object in the same position. Differences are then averaged over all steps. 
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As shown in Figure 5, while in the Selective Attention and Mixed condition the impact of 

the irrelevant visual information was quickly reduced during the first generations, in the case of 

the Action Selection condition it remained rather high up the end of the evolutionary process 

and, overall, did not decrease throughout generations. In other words, the variations that enabled 

the individuals trained in the Action Selection condition to improve their ability to master first 

single object trials and then one of the two object trials did not favour the development of an 

ability to differentiate between relevant and irrelevant perceptual information, neither in part. 

This, however, then prevented further progresses, since the ability to conditionally filter out the 

irrelevant perceptual information was a pre-requisite for fully mastering the task. Moreover, the 

rather similar trend observed in the Selective Attention and Mixed conditions (Figure 5) 

suggested that also in the latter condition the irrelevant visual information was primarily filtered 

out through the top-down regulatory connections. Qualitatively similar results were obtained by 

analysing all replications of the experiments (results not shown for reasons of space). 

Figure 5. Impact of irrelevant perceptual information (Irr Red = impact of red position when the 

target is green, IrrGreen = impact of green position when the target is red) on internal and 

motor neurons activity throughout generations. Data computed for the best individual of each 

generation of the best replication, for each experimental condition. Data averaged over 100 

successive generations for each data bin. 

 

To verify that the differences in performance could not be explained by the presence of 

additional neurons and/or connections in the Selective Attention and Mixed conditions, we 

carried out two additional control experiments in which we used: (i) an Action Selection 

architecture with 8 internal neurons (instead of 6), and (ii) a Selective Attention architecture in 
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which the modulatory connections were directed toward the internal neurons rather than toward 

the perceptual visual neurons. All other parameters were kept the same. 

The fact that the results obtained in these two control experiments (see Figure 6) are 

fairly similar to that obtained in the experiment in which the robot were provided with the 

standard Action Selection architecture (Figure 3, left panel) indicated that the raw amount of 

neural resources as well as the possibility to modulate the neural activation were not sufficient by 

themselves to ensure the development of close to optimal solutions in all conditions. 

Comparisons conducted with t-tests indicated that the error observed with the standard Action 

Selection architecture (0.077) was not significantly different from both the error obtained in the 

control experiment with two additional internal neurons (0.074), p=0.16, and from the error 

obtained in the control experiment in which the attentional output units modulated the state of 

the internal neurons, (0.078), p=0.62. Moreover, the average errors displayed by the robot 

trained in the two control conditions were significantly different from the error displayed by the 

robot trained with the standard Selective Attention architecture, p<0.001, and with the Mixed 

architecture, p<0.001.  

 

Figure 6. Average errors obtained by post-evaluating the robots trained in the two control 

conditions (see text).  
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3.3 Results obtained in the learning by demonstration condition 

The analysis of the performance in the learning by demonstration condition, in which the robot 

was asked to produce, for each experienced input state, the action that minimized the relative 

distance between the barycentre of the target object and centre of the robot visual field, indicated 

that in this case the individuals developed a close to optimal ability in all cases, independently of 

the type of neural architecture (see Fig. 7). An ANOVA analysis performed by using the neural 

architecture as independent factor showed no significant main effect of the architecture on the 

average errors, p=.49. Indeed, t-test comparisons revealed no differences between average error 

obtained by individuals with the Action Selection (0.063), Selective Attention (0.059), and 

Mixed (0.059) architectures (i.e. p>0.05 in all cases).  

Thus, individuals trained through the learning by demonstration method achieved close to 

optimal performance irrespectively from the neural architecture, with almost identical 

performances obtained in the case of the Selective Attention and Mixed architecture, as well as 

in the case of Action Selection architecture. Indeed, the visual inspection of the robot behaviour 

at the end of the training process during a post-evaluation test in which the connection weights 

were frozen showed that all replications managed to solve the problem rather well in all trials. 

 

Figure 7. Average errors obtained by post-evaluating the individuals trained in the learning by 

demonstration condition. For each neural architecture (Action Selection, Selective Attention and 

Mixed) the error obtained in the case of the best replication and the average error obtained over 

the ten performed replications are shown. Each histogram indicates the average error and the 

standard error obtained in trials in which the robot was asked to pay attention to red objects and 

was exposed to a single red or to both a red and green object (Red only and Red condition) and 
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in which the robot was asked to pay attention to green objects and was exposed to a single green 

or to both a green and red object (Green only and Green condition). 

 

We then conducted also for the learning by demonstration experiments the analysis of the 

impact of the irrelevant perceptual information on the internal and motor neurons. As shown in 

Figure 8, the individuals with both the Selective Attention and Mixed architectures learned how 

to reduce the impact of the irrelevant perceptual information already after the first hundreds of 

trials. This seems to indicate that, as in the trial and error training condition, the irrelevant 

perceptual information was primarily filtered out through the top-down regulatory connections. 

In the Action Selection condition, instead, the acquisition of the capability to eliminate the 

impact of irrelevant information on the motor states took considerably more training time. Notice 

also how the reduction of the impact of the irrelevant information was carried out by both the 

two processing layers, as demonstrated by the fact that at the end of the training process the 

impact of irrelevant information on the internal neurons was still considerable while the impact 

on the motor neurons was almost null. Qualitatively similar results were obtained by analysing 

all replications of the experiments (results not shown for reasons of space). 

 

Figure 8. Impact of irrelevant perceptual information (Irr Red = impact of red position when the 

target is green, IrrGreen = impact of green position when the target is red) on internal and 

motor neurons activity throughout trials. Data computed over each block of four trials for the 

individual of the best replication, for each experimental condition. Data averaged over 100 

successive trial blocks. 
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4. Discussion 

As we mentioned in the introduction, the problem of selecting actions in contexts affording 

multiple conflicting behavioural responses can be solved either through a selective attention or 

through an action selection process. The former strategy consists in using top-down regulatory 

connections to filter out the perceptual information affording alternative actions. The latter 

strategy, instead, consists in processing in parallel the perceptual information affording multiple 

conflicting actions by later selecting an action through a biased competitive process that operates 

at the pre-motor level. 

To verify the implications of the utilization of the former and/or of the latter strategy 

from a functional and developmental perspective we carried out a series of experiments in which 

a neuro-robot was trained for the ability to visually follow either a red or a green moving object 

in contexts in which the robot was rewarded for following only one of them. 

Overall the obtained results indicate how a selective attention strategy, realized through 

the exploitation of top-down regulatory connections from pre-motor areas to perceptual areas, 

represents the most simple and straightforward way to select actions. Indeed, the obtained results 

indicate how the availability of top-down regulatory connections is always exploited to supress 

the perceptual information affording conflicting actions in robot learning through a trial and error 

process based on a distal reward as well as in robot learning through a learning by demonstration 

process. 

The tendency to exploit a selective attention strategy can be explained by considering that 

it enables the synthesis of solutions that are more parsimonious from the control point of view 

and that are more compatible with a developmental account. In these solutions context 

independent  situations, corresponding to single object trials, can be handled through the 

development of direct associations between stimuli and afforded actions, and context dependent 

situations, corresponding to double objects trials, can be handled by the combination of the 

capacity above with the capacity to filter out irrelevant perceptual information through top-down 

regulatory connections.  

On the contrary, from the point of view of an action selection strategy, the development 

of direct association between stimuli and actions afforded by them does not constitute a stepping 

stone toward the development of better strategies and might rather leads to an organization that is 

incompatible with more effective solutions and that therefore needs to be completely rearranged 
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to also master contexts affording conflicting actions. More specifically, the tendency to associate 

stimuli to afforded actions in context independent situations does not constitute an elementary 

ability that can be reused, in combination with other acquired skills, to also handle context 

dependent situations but rather a step toward sub-optimal local minima that can then prevent the 

possibility to fully master context dependent situations.  

Our results also indicate that the characteristics of the training process co-determine 

whether the individuals converge toward a selective attention and/or an action selection solution 

and to optimal or sub-optimal solutions. Indeed, for the reason described above, when the 

architecture provide top-down regulatory connections, the adaptive process tends to converge 

toward solutions that exploit primarily a selective attention mechanism to filter out irrelevant 

perceptual information. Moreover, while agents adapting through a learning by demonstration 

method display an ability to acquire either optimal action selection or optimal selective attention 

strategies, agents adapting through a trial and error method display an ability to acquire optimal 

selective attention strategies but only sub-optimal action selection strategies. This last difference 

can be explained by considering that the training feedback indicates more explicitly that the 

irrelevant perceptual information should be ignored in the case of the learning by demonstration 

method than in the case of the trial and error method. 

Overall our results suggest that selective attention should play a wide role in natural 

organisms especially in the case of capacities that are acquired through trial and error 

developmental processes based on distal rewards. Although, as we pointed out in the 

introduction, action selection remains the only feasible strategies in contexts in which the 

perception of the stimuli affording multiple conflicting action precedes temporarily the 

perception of the information that can be used to determine the action to be chosen (Cisek & 

Kalaska, 2005; Cisek, 2007). 

Finally our results suggest that a primary role played by the modulatory effects of motor 

areas on perceptual areas is that to resolve the conflicts between multiple actions afforded by the 

current context. This functional role might have been overlooked to date. Indeed, the role of 

these top-down influences is usually associated to the capability to anticipate the forthcoming 

sensory states on the basis of the current planned action (see Wolpert & Miall, 1996).  
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