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37. Embodied Intelligence

Angelo Cangelosi, Josh Bongard, Martin H. Fischer, Stefano Nolfi

Embodied intelligence is the computational ap-
proach to the design and understanding of
intelligent behavior in embodied and situated
agents through the consideration of the strict
coupling between the agent and its environment
(situatedness), mediated by the constraints of the
agent’s own body, perceptual and motor system,
and brain (embodiment). The emergence of the
field of embodied intelligence is closely linked
to parallel developments in computational in-
telligence and robotics, where the focus is on
morphological computation and sensory–motor
coordination in evolutionary robotics models, and
in neuroscience and cognitive sciences where
the focus is on embodied cognition and devel-
opmental robotics models of embodied symbol
learning. This chapter provides a theoretical
and technical overview of some principles of
embodied intelligence, namely morphological
computation, sensory–motor coordination, and
developmental embodied cognition. It will also
discuss some tutorial examples on the model-
ing of body/brain/environment adaptation for the
evolution of morphological computational agents,
evolutionary robotics model of navigation and ob-
ject discrimination, and developmental robotics
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models of language and numerical cognition in
humanoid robots.

37.1 Introduction to Embodied Intelligence

Organisms are not isolated entities which develop their
sensory–motor and cognitive skills in isolation from
their social and physical environment, and indepen-
dently from their motor and sensory systems. On the
contrary, behavioral and cognitive skills are dynamical
properties that unfold in time and arise from a large
number of interactions between the agents’ nervous
system, body, and environment [37.1–7]. Embodied in-
telligence is the computational approach to the design
and understanding of intelligent behavior in embod-
ied and situated agents through the consideration of

the strict coupling between the agent and its environ-
ment (situatedness), mediated by the constraints of the
agent’s own body, perceptual and motor system, and
brain (embodiment).

Historically, the field of embodied intelligence has
its origin from the development and use of bio-inspired
computational intelligence methodologies in computer
science and robotics, and the overcoming of the limita-
tions of symbolic approaches typical of classical artifi-
cial intelligence methods. As argued in Brooks’ [37.2]
seminal paper on Elephants don’t play chess, the study
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of apparently simple behaviors, such as locomotion
and motor control, permits an understanding of the
embodied nature of intelligence, without the require-
ment to start from higher order abstract skills as those
involved in chess playing algorithms. Moreover, the
emergence of the field of embodied intelligence is
closely linked to parallel developments in robotics, with
the focus on morphological computation and sensory–
motor coordination in evolutionary and developmen-
tal robotics models, and in neuroscience and cogni-
tive sciences with the focus on embodied cognition
(EC).

The phenomenon of morphological computation
concerns the observation that a robot’s (or animal’s)
body plan may perform computations: A body plan
that allows the robot (or animal) to passively exploit
interactions with its environment may perform compu-
tations that lead to successful behavior; in another body
plan less well suited to the task at hand, those com-
putations would have to be performed by the control
policy [37.8–10]. If both the body plans and control
policies of robots are evolved, evolutionary search may
find robots that exhibit more morphological computa-
tion than an equally successful robot designed by hand
(see more details in Sect. 37.2).

The principle of sensory–motor coordination,
which concerns the relation between the characteris-
tics of the agents’ control policy and the behaviors
emerging from agent/environmental interactions, has
been demonstrated in numerous evolutionary robotics
models [37.6]. Experiments have shown how adap-
tive agents can acquire an ability to coordinate their
sensory and motor activity so as to self-select their
forthcoming sensory experiences. This sensory–motor
coordination can play several key functions such as en-
abling the agent to access the information necessary to
make the appropriate behavioral decision, elaborating
sensory information, and reducing the complexity of the
agents’ task to a manageable level. These two themes
will be exemplified through the illustration of evolu-
tionary robotics experiments in Sect. 37.3 in which the
fine-grained characteristics of the agents’ neural control
system and body are subjected to variations (e.g. gene
mutation) and in which variations are retained or dis-
carded on the basis of their effects at the level of the

overall behavior exhibited by the agent in interaction
with the environment.

In cognitive and neural sciences, the term em-
bodied cognition (EC) [37.11, 12] is used to refer to
systematic relationships between an organism’s cogni-
tive processes and its perceptual and response reper-
toire. Notwithstanding the many interpretations of this
term [37.13], the broadest consensus of the proponents
of EC is that our knowledge representations encom-
pass the bodily activations that were present when
we initially acquired this knowledge (for differentia-
tions, [37.14]). This view helps us to understand the
many findings of modality-specific biases induced by
cognitive computations. Examples of EC in psychology
and cognitive science can be sensory–motor (e.g., a sys-
tematic increase in comparison time with angular dis-
parity between two views of the same object [37.15]), or
conceptual (e.g., better recall of events that were experi-
enced in the currently adopted body posture [37.16]), or
emotional in nature (e.g., interpersonal warmth induced
by a warm handheld object [37.17]). Such findings were
hard to accommodate under the more traditional views
where knowledge was presumed symbolic, amodal and
abstract and thus dissociated from sensory input and
motor output processes.

Embodied cognition experiments in psychology
have inspired the design of developmental robotics
models [37.18] which exploit the ontogenetic inter-
action between the developing (baby) robot and its
social and physical environment to acquire both sim-
ple sensory–motor control strategies and higher order
capabilities such as language and number learning
(Sect. 37.4).

To provide the reader with both a theoretical and
technical understanding of the principles of morpho-
logical computation, sensory–motor coordination and
developmental EC the following three sections will
review the progress in these fields, and analyze in de-
tail some key studies as examples. The presentation of
studies on the modeling of both sensory–motor tasks
(such as locomotion, navigation, and object discrimi-
nation) and of higher order cognitive capabilities (such
as linguistic and numerical cognition) demonstrates the
impact of embodied intelligence in the design of a vari-
ety of perceptual, motor, and cognitive skills.

37.2 Morphological Computation for Body-Behavior Coadaptation

Embodied intelligence dictates that there are certain
body plans and control policies that, when combined,

will produce some desired behavior. For example,
imagine that the desired task is active categorical per-
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ception (ACP) [37.19, 20]. ACP requires a learner to
actively interact with objects in its environment to clas-
sify those objects. This stands in contrast to passive
categorization whereby an agent observes objects from
a distance – perhaps it is fed images of objects or views
them through a camera – and labels the objects accord-
ing to their perceived class. In order for an animal or
robot to perform ACP, it must not only possess a con-
trol policy that produces as output the correct class for
the object being manipulated, but also some manipula-
tor with which to physically affect (and be affected by)
the object.

One consequence of embodied intelligence is that
certain pairings of body and brain produce the desired
behavior, and others do not. Returning to the example
of ACP, if a robot’s arm is too short to reach the objects
then it obviously will not be able to categorize them.
Imagine now a second robot that possesses an arm of
the requisite length but can only bring the back of its
hand into contact with the objects. Even if this robot’s
control policy distinguishes between round and edged
objects based on the patterned firing of touch sensors
embedded in its palm, this robot will also not be able to
perform ACP.

A further consequence of embodied intelligence is
that some body plans may require a complex control
policy to produce successful behavior, while another
body plan may require a simpler control policy. This has
been referred to as the morphology and control tradeoff
in the literature [37.7]. Continuing the ACP example,
consider a third robot that can bring its palm and fingers
into contact with the objects, but only possesses a single
binary touch sensor in its palm. In order to distinguish
between round and edged objects, this robot will require
a control policy that performs some complex signal pro-
cessing on the time series data produced by this single
sensor during manipulation. A fourth robot however,
equipped with multiple tactile sensors embedded in its
palm and fingers, may be able to categorize objects im-
mediately after grasping them: Perhaps round objects
produce characteristic static patterns of tactile signals
that are markedly different from those patterns pro-
duced when grasping edged objects.

The morphology and control tradeoff however
raises the question as to what is being traded. It has
been argued that what is being traded is computa-
tion [37.7, 8]. If two robots succeed at a given task,
and each robot is equipped with the simplest control
policy that will allow that robot to succeed, but one
control policy performs fewer computations than the
other control policy, then the body plan of the robot

equipped with the simpler control policy must perform
the missing computations required to succeed at the
task.

This phenomenon of a robot’s (or animal’s) body
plan performing computation has been termed mor-
phological computation [37.8–10]. Paul [37.8] outlined
a theoretical robot that uses its body to compute the
XOR function. In another study [37.9] it was shown
how the body of a vacuum cleaning robot could literally
replace a portion of its artificial neural network con-
troller, thus subsuming the computation normally per-
formed by that part of the control policy into the robot’s
body. Pfeifer and Gomez [37.21] describe a number of
other robots that exhibit the phenomenon of morpho-
logical computation.

37.2.1 The Counterintuitive Nature
of Morphological Computation

All of the robots outlined by Pfeifer and Gomez [37.21]
were designed manually; in some cases the control poli-
cies were automatically optimized. If for each task there
are a spectrum of robot body plan/control policy pair-
ings that achieve the task, one might ask where along
this spectrum the human-designed robots fall. That is,
what mixtures of morphological computation and con-
trol computation do human designers tend to favor?
The bulk of the artificial intelligence literature, since
the field’s beginnings in the 1950s, seems to indicate
that humans exhibit a cognitive chauvinism: we tend
to favor control complexity over morphological com-
plexity. Classical artificial intelligence dispensed with
the body altogether: it was not until the 1980s that the
role of morphology in intelligent behavior was explic-
itly stated [37.2]. As a more specific example, object
manipulation was first addressed by creating rigid, ar-
ticulated robot arms that required complex control poli-
cies to succeed [37.22]. Later, it was realized that soft
manipulators could simplify the amount of control re-
quired for successful manipulation (e.g., [37.23]). Most
recently, a class of robot manipulators known as jam-
ming grippers’ was introduced [37.24]. In a jamming
gripper, a robot arm is tipped with a bag of granular
material such that when air is removed from the bag
the grains undergo a phase transition into a jammed,
solid-like state. The control policies for jamming grip-
pers are much simpler than those required for rigid or
even soft multifingered dexterous manipulators: at the
limit, the controller must switch the manipulator be-
tween just two states (grip or release), regardless of the
object.
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Despite the fact that the technology for creating
jamming grippers has existed for decades, it took a long
time for this class of manipulators to be discovered.
In other branches of robotics, one can discern a sim-
ilar historical pattern: new classes of robot body plan
were successively proposed that required less and less
explicit control. In the field of legged locomotion for
example, robots with whegs (wheel-leg hybrids) were
shown to require less explicit control than robots with
legs to enable travel over rough terrain [37.25].

These observations suggest that robots with more
morphological computation are less intuitive for hu-
mans to formulate and then design than robots with
less morphological computation. However, there may
be a benefit to creating robots that exhibit significant
amounts of morphological computation. For example,
hybrid dynamic walkers require very little control and
are much more energy efficient compared to fully ac-
tuated legged robots [37.26]. It has been argued that
tensegrity robots also require relatively little control
compared to robots composed of serially linked rigid
components, and this class of robot has several desir-
able properties such as the ability to absorb and recover
from external perturbations [37.9].

So, if robots that exhibit morphological compu-
tation are desirable, yet it is difficult for humans to
navigate in this part of the space of possible robots, can
an automated search method be used to discover such
robots?

37.2.2 Evolution and Morphological
Computation

One of the advantages of using evolutionary algorithms
to design robots, compared to machine learning meth-
ods, is that both the body plan and the control policy can
be placed under evolutionary control [37.27]. Typically,
machine learning methods optimize some of the param-
eters of a control policy with a fixed topology. However,
if the body plans and control policies of robots are
evolved, and there is sufficient variation within the
population of evolving robots, search may discover
multiple successful robots that exhibit varying degrees
of morphological computation. Or, alternatively, if mor-
phological computation confers a survival advantage
within certain contexts, a phylogeny of robots may
evolve that exhibit increasing amounts of morpholog-
ical computation.

A recent pair of experiments illustrates how mor-
phological computationmay be explored. An evolution-
ary algorithm was employed to evolve the body plans

a) b)

c) d)

Fig. 37.1a–d A sample of four evolved robots with differ-
ing amounts of morphological complexity. (a) A simple-
shaped robot that evolved to locomote over flat ground.
(b–d) Three sample robots, more morphologically com-
plex than the robot in (a), that evolved in icy environments
(after Auerbach and Bongard [37.28]). To view videos of
these robots see [37.29]

and control policies of robots that must move in one of
two environments. The first environment included noth-
ing else other than a flat, high-friction ground plane
(Fig. 37.1a). The second environment was composed
of a number of low-friction bars that sit atop the high-
friction ground plane (Fig. 37.1b–d). These bars can
be thought of as ice distributed across a flat landscape.
In order for robots to move across the icy terrain,
they must evolve appendages that are able to reach
down between the icy blocks, come into contact with
the high-friction ground, and push or pull themselves
forward.

It was found that robots evolved to travel over the
ice had more complex shapes than those evolved to
travel over flat ground (compare the robot in Fig. 37.1a
to those in Fig. 37.1b–d) [37.28]. However, it was
also found that the robots that travel over ice had
fewer mechanical degrees of freedom (DOFs) than the
robots evolved to travel over flat ground [37.30]. If
a robot possesses fewer mechanical DOFs, one can
conclude that it has a simpler control policy, because
there are fewer motors to control. It seems that the
robots evolved to travel over ice do so in the follow-
ing manner: the complex shapes of their appendages
cause the appendages to reach down into the crevices
between the ice without explicit control; the simple con-
trol policy then simply sweeps the appendages back and
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forth, horizontally, to in effect skate along the tops of
the ice. In contrast, robots evolved to travel over flat
ground must somehow push back, reach up, and pull
forward – using several mechanical DOFs – to move
forward.

One could conclude from these experiments that the
robots evolved to travel over ice perform more mor-
phological computation than those evolved to travel

over flat ground: the former robots have more com-
plex bodies but simpler control policies than the latter
robots, yet both successfully move in their environ-
ments. Much more work is required to generalize this
result to different robots, behaviors, and environments,
but this initial work suggests that evolutionary robotics
may be a unique tool for studying the phenomenon of
morphological computation.

37.3 Sensory–Motor Coordination in Evolving Robots

The actions performed by embodied and situated agents
inevitably modify the agent–environmental relation
and/or the environment. The type of stimuli that an
agent will sense at the next time step at t

C1 crucially
depends, for example, on whether the agent turns left
or right at the current time t. Similarly, the stimuli
that an agent will experience next at time t

C1 when
standing next to an object depend on the effort with
which it will push the object at time t. This implies
that actions might play direct and indirect adaptive
roles. Actions playing a direct role are, for example,
foraging or predator escaping behaviors that directly
impact on the agent’s own survival chances. Action
playing indirect roles consists, for example, in wander-
ing through the environment to spot interesting sensory
information (e.g., the perception of a food area that
might eventually afford foraging actions) or playing
a fighting game with a conspecific that might en-
able the agent to acquire capacities that might later
be exploited to deal with aggressive individuals. The
possibility to self-select useful sensory stimuli through
action is referred with the term sensory–motor coordi-
nation.

Together with morphological computation, senso-
ry–motor coordination constitutes a fundamental prop-
erty of embodied and situated agents and one of most
important characteristic that can be used to differen-
tiate these systems from alternative forms of intelli-
gence. In the following sections, we illustrate three
of the key roles that can be played by sensory–motor
coordination:

i) The discovery of parsimonious behavioral strategies
ii) The access and generation of useful sensory infor-

mation through action and active perception
iii) The constraining and channeling of the learning

process during evolution and development.

37.3.1 Enabling the Discovery
of Simple Solutions

Sensory–motor coordination can be exploited to find
solutions relying on more parsimonious control policies
than alternative solutions not relying, or relying less, on
this principle. An example is constituted by a set of ex-
periments in which a Khepera robot [37.31] endowed
with infrared and speed sensors, has been evolved for
the ability to remain close to large cylindrical objects
(food) while avoiding small cylindrical objects (dan-
gers). From a passive perspective, that does not take into
account the possibility to exploit sensory–motor coor-
dination, the ability to discriminate between sensory
stimuli experienced near small and large cylindrical ob-
jects requires a relatively complex control policy since
the two classes of stimuli strongly overlap in the robot’s
perceptual space [37.32]. On the other hand, robots
evolved for the ability to perform this task tend to con-
verge on a solution relying on a rather simple control
policy: the robots begin to turn around objects as soon
as they approach them and then discriminate the size of
the object on the basis of the sensed differential speed
of the left and right wheels during the execution of the
object-circling behavior [37.33]. In other words, the ex-
ecution of the object-circling behavior allows the robots
to experience sensory stimuli on the wheel sensors that
are well differentiated for small and large objects. This,
in turn, allows them to solve the object discrimina-
tion problem with a rather simple but reliable control
policy.

Another related experiment in which a Khepera
robot provided solely with infrared sensors was adapted
for finding and remaining close to a cylindrical object,
while avoiding walls, demonstrates how sensory–motor
coordination can be exploited to solve tasks that re-
quire the display of differentiated behavior in different
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environmental circumstances, without discriminating
the contexts requiring different responses [37.32, 34].
Indeed, evolved robots manage to avoid walls, find
a cylindrical object, and remain near it simply by mov-
ing backward or forward when their frontal infrared
sensors are activated or not, respectively, and by turning
left or right when their right and left infrared sensors
are activated, respectively (providing that the turning
speed and the move forward speed is appropriately reg-
ulate on the basis of the sensors activation). Indeed,
the execution of this simple control rule combined with
the effects of the robot’s actions lead to the exhibi-
tion of a move-forward behavior far from obstacles, an
obstacle avoidance behavior near walls, and an oscil-
latory behavior near cylindrical objects (in which the
robot remains near the object by alternating forward and
backward and/or turn-left and turn-right movements).
The differentiation of the behavior observed during the
robot/wall and robot/cylinder interactions can be ex-
plained by considering that the execution of the same
action produces different sensory effects in interaction
with different objects. In particular, the execution of
a turn-left action at time t elicited by the fact that
the right infrared sensors are more activated than the
left sensors near an object leads to the perception of:
(i) a similar sensory stimulus eliciting a similar action
at time t

C1, ultimately producing an object avoidance
behavior near a wall object, (ii) a different sensory
stimulus (in which left infrared sensors can become
more activated than the left infrared sensors) eliciting
a turn-right action at time t

C1 ultimately producing an
oscillatory behavior near the cylinder.

Examples of clever use of sensory–motor coor-
dination abound in natural and artificial evolution.
A paradigmatic example of the use of sensory–motor
coordination in natural organisms are the navigation ca-
pabilities of flying insects that are based on the optic
flow, i. e., the apparent motion of contrasting objects
in the visual field caused by the relative motion of the
agent [37.35]. Houseflies, for example, use this solu-
tion to navigate up to 700 body lengths per second
in unknown 3D environment while using quite modest
processing resources, i. e., about 0:001% of the number
of neurons present in the human brain [37.36]. Ex-
amples in the evolutionary robotics literature include
wheeled robots performing navigation tasks ([37.32],
see below), artificial fingers and humanoid robotic arms
evolved for the ability to discriminate between ob-
ject varying in shapes [37.20, 37], and wheeled robots
able to navigate visually by using a pan-tilt cam-
era [37.38].

37.3.2 Accessing and Generating
Information Through Action

A second fundamental role of sensory–motor coordi-
nation consists in accessing and/or generating useful
sensory information though action. Differently from ex-
perimental settings in which stimuli are brought to the
passive agent by the experimenter, in ecological condi-
tions agents need to access relevant information through
action. For example, infants access the visual informa-
tion necessary to recognize the 3D structure of an object
by rotating it in the hand and by keeping it at close dis-
tance so to minimize visual occlusions [37.39]. The use
of sensory–motor coordination for this purpose is usu-
ally named active perception [37.37, 40, 41].

Interestingly, action can be exploited not only to
access sensory information but also to generate it. To
understand this aspect, we should consider that through
their action agents can elaborate the information they
access through their sensory system over time and store
the result of the elaboration in their body state and/or
in their posture or location. A well-known example of
this phenomenon is constituted by depth perception as
a result of convergence, i. e., the simultaneous inward
movement of both eyes toward each other, to maintain
a single binocular percept of a selected object. The exe-
cution of this behavior produces a kinesthetic sensation
in the eye muscles that reliably correlates with the ob-
ject’s depth.

The careful reader might have recognized that the
robot’s behavioral discrimination strategies to perceive
larger and smaller cylindrical objects, described in the
previous section, exploit the same active perception
mechanism. For a robot provided with infrared and
wheel-speed sensors, the perception of object size nec-
essarily requires a capacity to integrate the information
provided by several stimuli. The elaboration of this in-
formation however is not realized internally, within the
robot’s nervous system, but rather externally through
the exhibition of the object-circling behavior. It is this
behavior that generates the corresponding kinesthetic
sensation on the wheel sensors that is then used by the
robot to decide to remain or leave, depending on the
circumstances.

Examples of clever strategies able to elaborate the
required information through action and active percep-
tion abound in evolutionary robotics experiments. By
carrying out an experiment in which a robot needed to
reach two foraging areas located in the northeast and
southwest side of a rectangular environment surrounded
by walls, Nolfi [37.34] observed that the evolved robots
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developed a clever strategy that allows them to compute
the relative length of the two sides of the environment
and to navigate toward the two right corners on the
basis of a simple control policy. The strategy consists
in leaving the first encountered corner with an angle
of about 45ı with respect to the two sides, moving
straight, and then eventually following the left side of
the next encountered wall ([37.34] for details). Another
clever exploitation of sensory–motor coordination was
observed in an experiment involving two cooperating
robots that helped each other to navigate toward circu-
lar target areas [37.42]. Evolved robots discovered and
displayed a behavior solution that allowed them to in-
form each other on the relative location of the center of
their target navigation area despite their sensory system
being unable to detect their relative position within the
area [37.42].

37.3.3 Channeling the Course
of the Learning Process

A third fundamental role of sensory–motor coordina-
tion consists in channeling the course of the forthcom-
ing adaptive process.

The sensory states experienced during learning cru-
cially determine the course and the outcome of the
learning process [37.43]. This implies that the actions
displayed by an agent, that co-determine the agent’s
forthcoming sensory states, ultimately affect how the
agent changes ontogenetically. In other words, the be-
havior exhibited by an agent at a certain stage of its

development constraints and channels the course of the
agent’s developmental process.

Indeed, evolutionary robotics experiments indicate
how the evolution of plastic agents (agents that vary
their characteristics while they interact with the envi-
ronment [37.44]) lead to qualitatively different results
with respect to the evolution of nonplastic individuals.
The traits evolved in the case of nonplastic individuals
are selected directly for enabling the agent to display
the required capabilities. The traits evolved in the case
of plastic individuals, instead, are selected primarily for
enabling the agents to acquire the required capabilities
through an ontogenetic adaptation process. This implies
that, in this case, the selected traits do not enable the
agent to master their adaptive task (agents tend to dis-
play rather poor performance at the beginning of their
lifetime) but rather to acquire the required capacities
through ontogenetic adaptation.

More generally, the behavioral strategies adopted by
agents at a certain stage of their developmental process
can crucially constrain the course of the adaptive pro-
cess. For example, agents learning to reach and grasp
objects might temporarily reduce the complexity of the
task to be mastered by freezing (i. e., locking) selected
DOFs and by then unfreezing them when their capacity
reaches a level that allows them to master the task in
its full complexity [37.45, 46]. This type of process can
enable exploratory learning by encompassing variation
and selection of either the general strategy displayed by
the agent or the specific way in which the currently se-
lected strategy is realized.

37.4 Developmental Robotics for Higher Order Embodied Cognitive
Capabilities

37.4.1 Embodied Cognition
and Developmental Robots

The previous sections have demonstrated the fun-
damental role of embodiment and of the agent–
environment coupling in the design of adaptive agents
and robots capable to perform sensory–motor tasks
such as navigation and object discrimination. How-
ever, embodiment also plays an important role in higher
order cognitive capabilities [37.12], such as object cat-
egorization and representation, language learning, and
processing, and even the acquisition of abstract con-
cepts such as numbers. In this section, we will consider
some of the key psychological and neuroscience ev-

idence of EC and its contribution in the design of
linguistic and numerical skills in cognitive robots.

Intelligent behavior has traditionally been mod-
eled as a result of activation patterns across distributed
knowledge representations, such as hierarchical net-
works of interrelated propositional (symbolic) nodes
that represent objects in the world and their attributes
as abstract, amodal (nonembodied) entities [37.47]. For
example, the response bird to a flying object with feath-
ers and wings would result from perceiving its features
and retrieving its name from memory on the basis of
a matching process. Such traditional views were at-
tractive for a number of reasons: They followed the
predominant philosophical tradition of logical concep-
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tual knowledge organization, according to which all
objects are members of categories and category mem-
bership can be determined in an all-or-none fashion via
defining features. Also, such hierarchical knowledge
networks were consistent with cognitive performance
in simple tasks such as speeded property verification,
which were thought to tap into the retrieval of knowl-
edge. For example, verifying the statement a bird has
feathers was thought to be easier than verifying the
statement a bird is alive because the feature feathers
was presumably stored in memory as defining the cate-
gory bird, while the feature alive applies to all animals
and was therefore represented at a superordinate level
of knowledge, hence requiring more time to retrieve af-
ter having just processed bird [37.47]. Finally, it was
convenient to computationally model such networks by
liking the human mind to an information processing de-
vice with systematic input, storage, retrieval, and output
mechanisms. Thus, knowledgewas considered as an ab-
stract commodity independent of the physical device
within which it was implemented.

More recent work called into question several of
these assumptions about the workings of the human
mind. For example, graded category memberships and
prototypicality effects in categorization tasks pointed to
disparities between the normative logical knowledge or-
ganization and the psychological reality of knowledge
retrieval [37.48]. Computational modeling of cognitive
processes has revealed alternative, distributed represen-
tational networks for computing intelligent responses
in perceptual, conceptual, and motor tasks that avoid
the neurophysiologically implausible assumption of lo-
calized storage of specific knowledge [37.49]. Most
importantly, though, traditional propositional knowl-
edge networks were limited to explaining the meaning
of any given concept in terms of an activation pattern
across other conceptual nodes, thus effectively defin-
ing the meaning of one symbol in terms of arbitrary
other symbols. This process never referred to a concrete
experience or event and essentially made the process
of connecting internal and external referents arbitrary.
In other words, traditional knowledge representations
never make contact with specific sensory and motor
modalities that is essential to imbue meaning to the ac-
tivation pattern in a network. This limitation is known
as the grounding problem [37.50] and points to a fun-
damental flaw in traditional attempts to model human
knowledge representations.

A second reason for abandoning traditional amodal
models of knowledge representation is the fact that
these models cannot account for patterns of sensory

and motor excitation that occur whenever we activate
our knowledge. Already at the time when symbol ma-
nipulation approaches to intelligent behavior had their
heyday there was powerful evidence for a mandatory
link between intelligent thought and sensory–motor
experience: When matching two images of the same ob-
ject, the time we need to recognize that it is the same
object is linearly related to the angular disparity be-
tween the two views [37.15]. This result suggests that
the mental comparison process simulates the physical
object rotation we would perform if the two images
were manipulable in our hands. In recent years, there
has been both more behavioral and also neuroscientific
evidence of an involvement of sensory–motor processes
in intelligent thought, leading to the influential notion of
action simulation as an obligatory component of intel-
ligent thought (for review, [37.51]).

To summarize, the idea that sensory and motor pro-
cesses are an integral part of our knowledge is driven
by both theoretical and empirical considerations. On the
theoretical side, the EC stance addresses the grounding
problem, a fundamental limitation of classical views of
knowledge representation. Empirically, it is tough for
traditional amodal conceptualizations of knowledge to
address systematic patterns of sensory and motor biases
that accompany knowledge activation.

Amongst the latest development in robotics and
computational intelligence, the field of developmen-
tal robotics has specifically focused on the essential
role of EC in the ontogenetic development of cogni-
tive capabilities. Developmental robotics (also know
as epigenetic robotics and as the field of autonomous
mental development) is the interdisciplinary approach
to the autonomous design of behavioral and cogni-
tive capabilities in artificial agents (robots) that takes
direct inspiration from the developmental principles
and mechanisms observed in natural cognitive systems
(children) [37.18, 52–54]. In particular, the key princi-
ple of developmental robotics is that the robot, using
a set of intrinsic developmental principles regulating the
real-time interaction between its body, brain, and en-
vironment, can autonomously acquire an increasingly
complex set of sensorimotor and mental capabilities.
Existing models in developmental robotics have cov-
ered the full range of sensory–motor and cognitive
capabilities, from intrinsic motivation and motor con-
trol to social learning, language and reasoning with
abstract knowledge ([37.18] for a full overview).

To demonstrate the benefits of combining EC with
developmental robotics in the modeling of embodied
intelligence, the two domains of the action bases of
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language and of the relationship between space and nu-
merical cognition have been chosen. In Sect. 37.4.2, we
will look at seminal examples of the embodied bases
of language in psycholinguistics, neuroscience, and de-
velopmental psychology, and the corresponding devel-
opmental robotics models. Section 37.4.3 will consider
EC evidence on the link between spatial and numerical
cognition, and a developmental robotics model of em-
bodied language learning.

37.4.2 Embodied Language Learning

In experimental psychology and psycholinguistics, an
influential demonstration of action simulation as part of
language comprehension was first carried out by Glen-
berg and Kaschak [37.55]. They asked healthy adults to
move their right index finger from a button in their mid-
sagittal plane either away from or toward their body
to indicate whether a visually presented statement was
meaningful or not. Sentences like Open the drawer led
to faster initiation of movements toward than away from
the body, while sentences like Close the drawer led to
faster initiation of movements away from than toward
the body. Thus, there was a congruency effect between
the implied spatial direction of the linguistic descrip-
tion and the movement direction of the reader’s motor
response. This motor congruency effect in language
comprehension has been replicated and extended (for
review, [37.56]). It suggests that higher level cognitive
feats (such as language comprehension) are ultimately
making use of lower level (sensory–motor) capacities
of the agent, as predicted by an embodied account of
intelligence.

In parallel, growing cognitive neuroscience evi-
dence has shown that the cortical areas of the brain
specialized for motor processing are also involved in
language processing tasks; thus supporting the EC view
that action and language are strictly integrated [37.57,
58]. For example, Hauk et al. [37.59] carried out brain
imaging experiments where participants read words re-
ferring to face, arm, or leg actions (e.g., lick, pick, kick).
Results support the embodied view of language, as the
linguistic task of reading a word differentially activated
parts of the premotor area that were directly adjacent, or
overlapped, with region activated by actual movement
of the tongue, the fingers, or the feet, respectively.

The embodied nature of language has also been
shown in developmental psychology studies, as in
Tomasello’s [37.60] constructivist theory of language
acquisition and in Smith and Samuelson’s [37.61] study
on embodiment biases in early word learning. For ex-

ample, Smith and Samuelson [37.61] investigated the
role of embodiment factors such as posture and spa-
tial representations during the learning of first words.
They demonstrated the importance of the changes in
postures involved in the interaction with objects lo-
cated in different parts (left and right) of the child’s
peripersonal space. Experimental data with 18-month
old children show that infants can learn new names
also in the absence of the referent objects, when the
new label is said whilst the child looks at the same
left/right location where the object has previously ap-
peared. This specific study was the inspiration of a de-
velopmental robotics study on the role of posture in
the acquisition of object names with the iCub baby
robot [37.62].

The iCub is an open source robotic platform devel-
oped as a benchmark experimental tool for cognitive
and developmental robotics research [37.63]. It has a to-
tal of 53 DOF, with a high number of DOF (32) in
the arms and hands to study object manipulation and
the role of fine motor skills in cognitive development.
This facilitates the replication of the experimental setup
of Smith and Samuelson’s study [37.61]. In the iCub
experiments, a human tutor shows two novel objects re-
spectively in the left and right location of a table put in
front of the robot. Initially the robot moves to look at
each object and learns to categorize it according to its
visual features, such as shape and color. Subsequently
the tutor hides both objects, directs the robot’s atten-
tion toward the right side where the first object was
shown and says a new word: Modi. In the test phase
both objects are presented simultaneously in the centre
of the table, and the robot is asked Find the modi. The
robot must then look and point at the object that was
presented in the right location. Four different experi-
ments were carried out, as in Smith and Samuelson’s
child study. Two experiments differ with regards to
the frequency of the left/right locations used to show
each objects: the Default Condition when each object
always appears in the same location, and the Switch
Condition when the position of the two objects is var-
ied to weaken the object/location spatial association.
In the other two experimental conditions, the object
is named whilst in sight, so to compare the relative
weighting of the embodiment spatial constraints and the
time constraint.

The robot’s behavior is controlled by a modular
neural network consisting of a series of pretrained
Kohonen self-organizing maps (SOMs), connected
through Hebbian learning weights that are trained on-
line during the experiment [37.64]. The first SOM is
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a color map as it is used to categorize objects accord-
ing to their color (average RGB (red-green-blue) color
of the foveal area). The second map, the auditory map,
is used to represent the words heard by the robot, as
the result of the automatic speech recognition system.
The other SOM is the body-hub map, and this is the
key component of the robot’s neural system that imple-
ments the role of embodiment. The body-hub SOM has
four inputs, each being the angle of a single joint. In the
experiments detailed here only 2 degrees from the head
(up/down and left/right motors), and 2 degrees from the
eyes (up/down and left/right motors) are used. Embod-
iment is operationalized here as the posture of eye and
head position when the robot has to look to the left and
to the right of the scene.

During each experiment, the connection weight
linking the color map and the auditory map to the body-
hub map are adjusted in real time using a Hebbian
learning rule. These Hebbian associative connections
are only modified from the current active body pos-
ture node. As the maps are linked together in real time,
strong connections between objects typically encoun-
tered in particular spatial locations, and hence in similar
body postures, build up.

To replicate the four experimental conditions of
Smith and Samuelson [37.61], 20 different robots were
used in each condition, with new random weights for
the SOM and Hebbian connections. Results from the
four conditions show a very high match between the
robot’s data and the child experiment results, closely
replicating the variations in the four conditions. For
example, in the Default Condition 83% of the trials
resulted in the robots selecting the spatially linked
objects, whilst in the Switch condition, where the
space/object association was weakened, the robots’
choices were practically due to chance at 55%. Smith
and Samuelson [37.61] reported 71% of children se-
lected the spatially linked object, versus 45% in the
Switch condition.

This model demonstrates that it is possible to build
an embodied cognitive system that develops linguis-
tic and sensorimotor capabilities through interaction
with the world, closely resembling the embodiment
strategies observed in children’s acquisition early word
learning. Other cognitive robotics models have also
been developed which exploit the principle of embod-
iment in robots’ language learning, as in models of
compositionality in action and language [37.65–68], in
models of the cultural evolution of construction gram-
mar [37.69, 70], and the modeling of the grounding of
abstract words [37.71].

37.4.3 Number and Space

Number concepts have long been considered as pro-
totypical examples of abstract and amodal concepts
because their acquisition would require generalizing
across a large range of instances to discover the in-
variant cardinality meaning of words such as two and
four [37.72]. Mental arithmetic would therefore appro-
priately be modeled as abstract symbol manipulation,
such as incrementing a counter or retrieving factual
knowledge [37.73]. But evidence for an inescapable
reference back from abstract number concepts to the
sensori-motor experiences during concept acquisition
has been present for a long time. Specifically, Moyer
and Landauer [37.74] showed that the speed of decid-
ing which of two visually presented digits represents
the larger number depends on their numerical distance,
with faster decisions for larger distances. Thus, even in
the presence of abstract symbols we seem to refer to
analog representations, as if comparing sensory impres-
sions of small and large object compilations.

More recent studies provided further evidence that
sensory–motor experiences have a strong impact on the
availability of number knowledge. This embodiment
signature can be documented by measuring the speed
of classifying single digits as odd or even with lateral-
ized response buttons. The typical finding is that small
numbers (1, 2) are classified faster with left responses
and large numbers (8, 9) are classified faster with right
responses [37.76]. This spatial–numerical association
response codes, or SNARCs effect, has been replicated
across several tasks and extended to other effectors (for
review [37.77]), including even attention shifts to the
left or right side induced by small or large numbers, re-
spectively [37.78].

Importantly, SNARC depends on one’s sensory–
motor experiences, such as directional scanning and
finger counting habits, as well as current task de-
mands. For example, the initial acquisition of num-
ber concepts in childhood occurs almost universally
through finger counting and this learning process leaves
a residue in the number knowledge of adults. Those
who start counting on their left hand, thereby associ-
ating small numbers with left space, have a stronger
SNARC than those who start counting on their right
hand [37.79]. Similarly, reading direction modulates
the strength of SNARC. In the original report by De-
haene et al. [37.76], it was noticed that adults from
a right-to-left reading culture presented with weaker
or even reversed SNARC. The notion of a spill-over
of directional reading habits into the domain of num-
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Fig. 37.2a,b (a) iCub simulation
model of the SNARC (spatial–
numerical association response code)
effect; (b) SNARC effect results, with
the difference in reaction times (right
minus left hand) is plotted against
number magnitude (after [37.75])

ber knowledge was further supported by developmental
studies showing that it takes around 3 years of schooling
before the SNARC emerges [37.80]. However, more re-
cent work has found SNARC even in preschoolers (for
review [37.81], thus lending credibility to the role of
embodied practices such as finger counting in the for-
mation of SNARC.

In a recent series of experiments with Russian–
Hebrew bilinguals, Shaki et al. [37.82–84] (for review
[37.85]) documented that both one’s habitual reading
direction and the most recent, task-specific scanning di-
rection determine the strength of one’s SNARC. These
findings make clear that SNARC is a compound effect
where embodied and situated (task-specific) factors add
different weights to the overall SNARC.

SNARC and other biases extend into more complex
numerical tasks such as mental arithmetic. For exam-
ple, the association of larger numbers with right space
is also present during addition (the operational momen-
tum or OM effect). Regardless of whether symbolic
digits or nonsymbolic dot patterns are added together,
participants tend to over-estimate the sum, and this
bias also influences spatial behavior [37.86]. More gen-
erally, intelligent behavior such as mental arithmetic
seems to reflect component processes (distance effect,
SNARC effect, OM effect) that are grounded in senso-
rimotor experiences.

The strong link between spatial cognition and num-
ber knowledge permits the modeling of the embodiment
processes in the acquisition of number in robots. This
has been the case with the recent developmental model
developed by Rucinski et al. [37.75, 87] to model the
SNARC effect and the contribution of pointing ges-
tures in number acquisition. In the first study [37.75],
a simulation model of the iCub is used. The robot is
first trained to develop a body schema of the upper

body through motor babbling of its arms. The iCub is
subsequently trained to learn to recognize numbers by
associating quantities of objects with numerical sym-
bols as 1 and 2. In the SNARC test case, the robot has
to perform a psychological-like experiment and press
a left or right button to make judgments on number
comparison and parity judgment (Fig. 37.2b).

The robot’s cognitive architecture is based on
a modular neural network controller with two main
components, following inspiration from a connectionist
model of numerical cognition [37.88] and the TRoPI-
CALS cognitive architecture of Caligiore et al. [37.89,
90]. The two main components of the neural control
system are: (i) ventral pathway network, responsible for
processing of the identity of objects as well as task-
dependent decision making and language processing;
and (ii) dorsal pathway network, involved in process-
ing of spatial information about locations and shapes of
objects and processing for the robot’s action.

The ventral pathway is modeled, following Chen
and Verguts [37.88], with a symbolic input which en-
codes the alphanumerical number symbols of numbers
from 1 to 15, a mental number line encoding the num-
ber meaning (quantity), a decision layer for the number
comparison and parity judgment tasks, and a response
layer, with two neurons for left/right hand response se-
lection. The dorsal pathway is composed of a number
of SOMs which code for spatial locations of objects
in the robot peripersonal space. One map is associ-
ated with gaze direction, and two maps respectively for
each of the robot’s left and right arms. The input to the
gaze map arrives from the 3-dimensional proprioceptive
vector representing the robot gaze direction (azimuth,
elevation and vergence). The input to each arm position
map consists of a 7-dimensional proprioceptive vector
representing the position of the relevant arm joints. This
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dorsal pathway constitutes the core component of the
model where the embodied properties of the model are
directly implemented as the robot’s own sensorimotor
maps.

To model the developmental learning processes in-
volved in number knowledge acquisition, a series of
training phases are implemented. For the embodiment
part, the robot is first trained to perform a process equiv-
alent to motor babbling, to develop the gaze and arm
space maps. With motor babbling the robot builds its
internal visual and motor space representations (SOMs)
by performing random reaching movements to touch
a toy in its peripersonal space, whilst following its
hand’s position. Transformations between the visual
spatial map for gaze and the maps of reachable left
and right spaces are implemented as connections be-
tween the maps, which are learned using the classical
Hebbian rule. At each trial of motor babbling, gaze
and appropriate arm are directed toward the same
point and resulting co-activations in already devel-
oped spatial maps is used to establish links between
them.

The next developmental training establishes the
links between number words (modeled as activations
in the ventral input layer) and the number meaning
(activations in the mental number line hidden layer).
Subsequently the robot is taught to count. This stage
models the cultural biases that result in the internal as-
sociation of small numbers with the left side of space
and large numbers with the right side. As an example
of these biases, we considered a tendency of children
to count objects from left to right, which is related to
the fact that European culture is characterized by left-
to-right reading direction [37.91]. In order to model the
process of learning to count, the robot was exposed to
an appropriate sequence of number words (fed to the
ventral input layer of the model network), while at the
same time the robot’s gaze was directed toward a spe-
cific location in space (via the input to the gaze visual
map). These spatial locations were generated in such
a way that their horizontal coordinates correlated with
number magnitude (small numbers presented on the
left, large numbers on the right) with a certain amount
of Gaussian noise. During this stage, Hebbian learning
established links between number word and stimuli lo-
cation in the visual field.

Finally, the model is trained to perform number rea-
soning tasks, such as number comparison and parity
judgment, which corresponds to establishing appropri-
ate links between the mental number line hidden layer
and neurons in the decision layer. Specifically, one

experiment focuses on the modeling of the SNARC ef-
fect. The robot’s reaction time (i. e., amount of activity
needed to exceed a response threshold in one of the two
response nodes) in parity judgment and number com-
parison tasks were recorded to calculate the difference
between right hand and left hand RTs for the same num-
ber. When difference values are plotted against number
magnitudes the SNARC effect manifests itself in a neg-
ative slope as in Fig. 37.2. As the connections between
visual and motor maps form a gradient from left to
right, the links to the left arm map become weaker,
while those to the right become stronger. Thus, when
a small number is presented, internal connections lead
to stronger automatic activation of the representations
linked with the left arm than that of the right arm, thus
causing the SNARC effect.

This model of space and number knowledge was
also extended to include a more active interaction with
the environment during the number learning process.
This is linked to the fact that gestures such as point-
ing at the object being counted, or the actual touching
of the objects enumerated, has been show to improve
the overall counting performance in children [37.92]. In
the subsequent model by Rucinski et al. [37.87], a sim-
pler neural control architecture was used based on the
Elman recurrent network to allow sequential number
counting and the representation of gestures as propri-
oceptive states for the pointing gestures. The robot has
to learn to produce a sequence of number words (from
1 to 10) with the length of the sequence equivalent to
the number of objects present in the scene. Visual in-
put to the model is a one-dimensional saliency map,
which can be considered a simple model of a retina.
In input, the additional proprioceptive signal was ob-
tained from a pointing gesture performed by the iCub
humanoid robot and is used to implement the gestural
input to the model in the pointing condition. The out-
put nodes encode the phonetic representation of the 10
numbers.

During the experiment, the robot is first trained
to recite a sequence of number words. Then, in order
to assess the impact of the proprioceptive informa-
tion connected with the pointing gesture, the training
is divided into two conditions: (i) training to count
the number of objects shown to the visual input in
the absence of the proprioceptive gesture signal, and
(ii) counting though pointing, via the activation of the
gesture proprioceptive input. Results show that such
a simple recurrent architecture benefits from the input
of the proprioceptive gesturing signal, with improved
counting accuracy. In particular, the model reproduces
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the quantitative effects of gestures on the counted
set size, replicating child psychology data reported
in [37.92].

Overall, such a developmental robotics model
clearly shows that the modeling of embodiment phe-
nomena, such as the use of spatial representation in
number judgments, and of the pointing gestures for

number learning, can allow us to understand the acqui-
sition of abstract concepts in humans as well as artificial
agents and robots. This further demonstrates the benefit
of the embodied intelligence approach to model a range
of behavioral and cognitive phenomena from simple
sensory–motor tasks to higher order linguistic and ab-
stract cognition tasks.

37.5 Conclusion

This chapter has provided an overview of the three key
principles of embodied intelligence, namely morpho-
logical computation, sensory–motor coordination, and
EC, and of the experimental approaches and models
from evolutionary robotics and developmental robotics.
The wide range of behavioral and cognitive capabil-
ities modeled through evolutionary and developmen-
tal experiments (e.g., locomotion in different environ-
ments, navigation and object discrimination, posture in
early word learning and space and number integration)
demonstrates the impact of embodied intelligence in the
design of a variety of perceptual, motor and cognitive
skills, including the potential to model the embodied
basis of abstract knowledge as in numerical cognition.

The current progress of both evolutionary and de-
velopmental models of embodied intelligence, although
showing significant scientific and technological ad-
vances in the design of embodied and situated agents,
still has a series of open challenges and issues. These
issues are informing ongoing work in the various fields
of embodied intelligence.

One open challenge in morphological computation
concerns how best to automatically design the body
plans of robots so that they can best exploit this phe-
nomenon. In parallel to this, much work remains to
be done to understand what advantages morphological
computation confers on a robot. For one, it is likely
that a robot with a simpler control policy will be more
robust to unanticipated situations: for example the jam-
ming gripper is able to grasp multiple objects with
the same control strategy; a rigid hand requires differ-
ent control strategies for different objects. Secondly,
a robot that performs more morphological computa-
tion may be more easily transferred from the simulation
in which it was evolved to a physical machine: with
a simpler control policy there is less that can go wrong
when experiencing the different sensor signals and mo-
tor feedback generated by operation in the physical
world.

Evolving robots provides a unique opportunity for
developing rigorous methods for measuring whether
and how much morphological computation a robot per-
forms. For instance, if evolutionary algorithms can be
designed that produce robots with similar abilities yet
different levels of control and morphological complex-
ity, and it is found that in most cases reduced control
complexity implies greater morphological complexity,
this would provide evidence for the evolution of mor-
phological computation.

The emerging field of soft robotics [37.93] provides
much opportunity for exploring the various aspects
of morphological computation because the space of
all possible soft robot body plans – with large vari-
ations in shape and continuous admixtures of hard
and soft materials – is much larger than the space
of rigid linkages traditionally employed in classical
robots.

The design issue, i. e., the question of how systems
able to exploit coordinated action and perception pro-
cesses can be designed, represents an open challenge
for sensory–motor coordination as well. As illustrated
above, adaptive techniques in which the fine-grained
characteristics that determine how agents react to cur-
rent and previous sensory states are varied randomly
and in which variations are retained or discarded on
the basis of their effects at the level of the overall be-
havior exhibited by the agent/s interacting with their
environment constitutes an effective method. However,
this method might not scale up well with the number of
parameters to be adapted. The question of how sensory–
motor coordination capabilities can be acquired through
the use of other learning techniques that relays on
shorter term feedbacks represents an open issue. An in-
teresting research direction, in that respect, consists in
the hypothesis that the development of sensory–motor
coordination can be induced through the use of task
independent criteria such as information theoretic mea-
sures [37.94, 95].
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Other important research directions concerns the
theoretical elaboration of the different roles that mor-
phological computation and sensory–motor coordina-
tion can play and the clarification of the relation-
ship between processes occurring as a result of the
agent/environmental interactions and processes occur-
ring inside the agents’ nervous systems

In developmental robotics models of EC the is-
sues of open-ended, cumulative learning and of the
scaling up of the sensory–motor and cognitive reper-
toires still requires significant efforts and novel method-
ological and theoretical approaches. Another issue,
which combines both evolutionary and developmen-
tal approaches, is the interaction of phylogenetic and
ontogenetic phenomena in the body/environment/brain
adaptation.

Human development is characterized by cumula-
tive, open-ended learning. This refers to the fact that
learning and development do not start and stop at
specific stages, but rather this is a life-long learning
experience. Moreover, the skills acquired in various de-
velopmental stages are accumulated and integrated to
support the further acquisition of more complex capa-
bilities. One consequence of cumulative, open-ended
learning is cognitive bootstrapping. For example in lan-
guage development, the phenomenon of the vocabulary
spurt exist, in which the knowledge and experience
from the slow learning of the first 50�100 words causes
a redefinition of the word learning strategy, and to syn-
tactic bootstrapping, where children rely on syntactic
cues and word context in verb learning to determine the
meaning of new verbs [37.96]. Although some com-
putational intelligence models of the vocabulary spurt
exist [37.97], robotic experiments on language learning
have been restricted to smaller lexicons, not reaching
the critical threshold to allow extensive modeling of
the bootstrapping of the agent’s lexicon and grammar
knowledge. These current limitations are also linked
to the general issue of the scaling up of the robot’s
motor and cognitive capabilities and of cross-modal
learning. Most of the current cognitive robotics models
typically focus on the separate acquisition of only one
task or modality (perception, or phonetics, or semantics
etc.), often with limited repertoires rarely reaching 10
or slightly more learned actions or words. Thus a truly
online, cross-modal, cumulative, open-ended develop-
mental robotics model remains a fundamental challenge
to the field.

Another key challenge for future research is the
modeling of the interaction of the different timescales
of adaptation in embodied intelligence, that is between
phylogenetic (evolutionary) factors and ontogenetic
(development, learning, maturation) phenomena. For
example, maturation refers to changes in the anatomy
and physiology of both the child’s brain and the body,
especially during the first years of life. Maturational
phenomena related to the brain include the decrease of
brain plasticity during early development, whilst matu-
ration in the body is more evident due to the significant
morphological growth changes a child goes through
from birth to adulthood (see Thelen and Smith’s analy-
sis of crawling and walking [37.98]). The ontogenetic
changes due to maturation and learning have impor-
tant implications for the interaction of development
with phylogenetic changes due to evolution. Body mor-
phology and brain plasticity variations can be in fact
explained as evolutionary adaptations of the species to
changing environmental context as with heterochronic
changes [37.99]. For example, Elman et al. [37.43]
discuss how genetic and heterochronic mechanisms
provide an alternative explanation of the nature/nurture
debate, where genetic phenomena produce architectural
constraints of the organism’s brain and body, which
subsequently control and affects the results of learn-
ing interaction. Following this, Cangelosi [37.100] has
tested the effects of heterochronic changes in the evo-
lution of neural network architectures for simulated
robotic agents.

The interaction between ontogenetic and phylo-
genetic factors has been investigated through evo-
lutionary robotics models. For example, Hinton and
Nolan [37.101] and Nolfi et al. [37.102] have devel-
oped evolutionary computational models explaining
the effects of learning in evolution. The modeling of
the evolution of varying body and brain morpholo-
gies in response to phylogenetic and ontogenetic re-
quirements is also the goal of the evo-devo field of
computational intelligence [37.7, 103–105]. These evo-
lutionary/ontogenetic interaction models have, how-
ever, mostly focused on simple sensory–motor tasks
such as navigation and foraging. Future work com-
bining evolutionary and developmental robotics mod-
els can better provide theoretical and technological
understanding of the contribution of different adapta-
tion time scales and mechanisms in embodied intelli-
gence.
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