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Abstract In this paper, we show how the development of

plastic behaviours, i.e., behaviour displaying a modular

organisation characterised by behavioural subunits that are

alternated in a context-dependent manner, can enable

evolving robots to solve their adaptive task more efficiently

also when it does not require the accomplishment of mul-

tiple conflicting functions. The comparison of the results

obtained in different experimental conditions indicates that

the most important prerequisites for the evolution of

behavioural plasticity are: the possibility to generate and

perceive affordances (i.e., opportunities for behaviour

execution), the possibility to rely on flexible regulatory

processes that exploit both external and internal cues, and

the possibility to realise smooth and effective transitions

between behaviours.

Keywords Behavioural plasticity � Evolutionary robotics �
Multiple behaviours � Autonomous robotics � Modularity �
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Introduction

Behavioural plasticity is a special case of plasticity—‘‘the

ability of an organism to react to internal or external

environmental inputs with a change in form, state, move-

ment, or rate of activity’’ (West-Eberhard 2003, p. 33). It

involves the capability to display multiple behavioural

responses, which might differ in a continuous or discon-

tinuous way, in a condition-sensitive manner (Komers

1997).

Behavioural plasticity constitutes a key aspect of animal

behaviour. Indeed, behaviours are often organised in

functionally specialised subunits governed by switch and

decision points (Gallistel 1980). Examples of elaborate

behaviours including several different phases regulated

through a rich set of context-dependent rules include the

courtship behaviour of the grasshopper (Otte 1972), the

reproduction behaviour of female canaries (Hinde 1970),

web construction and predation behaviours in spiders

(Eberhard 1988; Jackson and Wilcox 1993).

Behavioural plasticity is essential for enabling organ-

isms to adapt to variations of their external and/or internal

environment. In that respect, it is important to consider that

what matters, from the point of view of the adapting

individuals, is the organism’s perceptual environment (i.e.,

the characteristics of the environment that the organism

perceives given its sensory system and its relative location

in the environment). This means that all environments are

variable, from the perspective of an organism that is situ-

ated and performs actions in an environment, indepen-

dently of whether they appear variable or not from the

perspective of an external observer.

In this paper, we analyse experimentally how evolving

robots can acquire and display behavioural plasticity, i.e., a

series of behaviours that are exhibited in a context-
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dependent manner. In particular, we analyse whether

behavioural plasticity evolves during the course of the

evolutionary process, which are the prerequisites for its

evolution, and which are the mechanisms through which it

is realised. The comparison of the results obtained in dif-

ferent experimental conditions indicates that the most

important prerequisites for the evolution of behavioural

plasticity are the possibility to generate and perceive

affordances (i.e., opportunities for behaviour execution),

and the possibility to regulate, in a flexible manner, the

alternation of the different sub-behaviours and the transi-

tions between sub-behaviours.

Behaviour, multiple behaviours and behavioural

plasticity

For the sake of clarity, it is important to specify what we

mean by behaviour, multiple behaviours and behavioural

plasticity. In the context of agents that are embodied and

situated, behaviour is the dynamical process that originates

from agent/environmental interactions. At any time step,

the environment and the agent/environment relation co-

determine the body and the motor reaction of the agent

that, in turn, co-determine how the agent/environment

relation and/or the environment vary. Sequences of inter-

actions lead to a dynamical process that extends for a

certain period of time: the agent’s behaviour.

We use the term overall behaviour to indicate the entire

behaviour displayed by an agent, i.e., the behaviour dis-

played by an organism during its entire lifetime. Moreover,

we use the term function/s to indicate the adaptive role of

behaviour, e.g., the overall behaviour displayed by an

organism can have the function of enabling the organism to

survive and reproduce.

Behaviour might be characterised by a modular organ-

isation with somewhat semi-discrete and semi-dissociable

subunits (West-Eberhard 2003), or sub-behaviours, playing

different functions (or sub-functions). When sub-be-

haviours display a modular organisation as well, the

behaviour displays a hierarchical organisation charac-

terised by multiple-levels (e.g., lower-level behaviours,

higher-level behaviours, overall behaviour, see Nolfi

2009). We used the term semi-discrete and semi-dissocia-

ble to emphasise the fact that conceptualising sub-be-

haviours as a collection of independent subunits is

misleading, since sub-behaviours are only partially inde-

pendent from each other. The modular organisation of

behaviour, therefore, is characterised by both discreteness

and evidence of boundaries between sub-behaviours and by

connectedness and integration among them (West-Eber-

hard 2003). After all, even individual organisms are not

completely independent units, given that they also show a

significant level of connectedness and interdependence

with conspecifics, in most of the species. Notice that the

modular organisation of behaviour should not be confused

with the modular organisation of the agent’s nervous

system.

The term multiple behaviours refers to behaviours

characterised by a modular organisation, i.e., characterised

by the presence of multiple semi-independent sub-be-

haviours. In behaviours displaying several levels of

organisation, the presence of multiple semi-independent

behavioural units characterises all levels of organisation,

except the level of the overall behaviour. As an example,

we can consider the behaviour of a tennis player during a

game that can be divided in a series of semi-independent

sub-behaviours such as serve and volley (in which the

player serves and then charges forward to the net), lob (a

shot in which the ball is lifted high above the net) etc.

The term behavioural plasticity refers to agents dis-

playing behaviours characterised by a modular organisa-

tion and displaying the capability to regulate the exhibition

of the different sub-behaviours on the basis of their internal

and external environment. In the example of the tennis

player, behavioural plasticity refers to the capability of

displaying multiple behaviours such as these described

above and to the capability to select the appropriate

behaviour depending on the game context, for example the

ability to execute a drop shot behaviour, that consists in

hitting the ball just over the net, when the opponent is far

from it. The term behavioural plasticity should not be

confused with neural plasticity, e.g., fine-grained modifi-

cations of the connection weights of the agent’s nervous

system (see Nolfi and Floreano 1999).

Whether behavioural units or sub-behaviours should be

considered as real entities eligible for scientific analysis or

subjective entities that only exist in the eyes of the observer

represents an open question. Indeed, although many biol-

ogists assume that behaviour is organised in semi-discrete

units with specialised functions (Mitchell 1990; Barlow

1977; Gallistel 1980; Wenzel 1993; West-Eberhard 2003),

others consider behavioural units as useful fictions at best

(Fentress 1983). Within the Artificial Life and Robotics

community, the notion of behavioural unit has a relatively

clear and non-controversial meaning in the context of

behaviour-based architectures (Brooks 1986) in which

different modules or layers are responsible for the pro-

duction of alternative corresponding sub-behaviours (i.e.,

in a situation in which there is a one-to-one correspondence

between behavioural units and agent’s control modules and

in which the control modules are separated by clear

boundaries). Whether robots operating on the basis of non-

modular neural controllers can properly make use of mul-

tiple behaviours, as well, represents an open question (see

Tani and Ito 2007; Prescott 2008; Nolfi 2009). The attempt

to resolve this issue is outside the scope of this paper. For
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intellectual honesty, we clarify that together with several

authors cited above, we assume that the behaviour of an

agent can have a modular organisation even when the

behavioural units do not correspond to clearly identifiable

components of the agent. As argued by West-Eberhard

(2003, p. 63), we believe that ‘‘it would be foolish to deny

the modular properties of phenotypic organization just

because there are connections and indistinct borders around

the subunits we recognize as trait. There can be no doubt

that there exists behavioural subroutines or subunits, for

they are distinguishable from others in form, function, and

discreteness, and sometimes in gene expression …’’.

Moreover, we assume that the presence or the lack of a

modular behavioural organisation can have important

consequences (e.g., on agents’ performance and on agents’

ability to develop new skills).

Relation to the state of the art

Evolutionary robotics (Nolfi and Floreano 2000; Nolfi et al.

2016) concerns the synthesis of population of embodied

and situated robots that develop their skills autonomously

as a result of an evolutionary process based on selective

reproduction and variation. In this context, the study of

behavioural plasticity has been addressed indirectly in the

following three research lines.

The first research area concerns the study of the com-

bination of evolution and learning (Nolfi and Floreano

1999). Nolfi and Parisi (1997), in particular, showed how

evolving robots manage to successfully vary their beha-

viour during the course of their life to adapt to variations of

objects reflectance. Floreano and Nolfi (1997) showed how

evolving predator robots vary their predation strategy on

the basis of the behaviour displayed by the escaping prey

so as to successfully capture it.

The second line of research addresses the study of the

potential advantage of evolutionary algorithms supporting

the evolution of modular neural controllers. The rationale

behind this is that the availability of separated neural

modules can facilitate the exhibition of behaviours char-

acterised by a modular organisation. In some cases, this

objective was realised by providing the neural controllers

with a varying number of neural modules arbitrated on the

basis of a co-evolved arbitration mechanism (Calabretta

et al. 2000; Schrumand and Miikkulainen 2012). In other

studies, instead, it was realised by genetically encoding the

connectivity between the neurons, i.e., by enabling the

evolutionary process to select architectures displaying

clusters of neurons with many intra-connections and few

inter-connections (Bangard 2011; Verbancsics and Stanley

2011; Huizinga et al. 2014).

Finally, the third line of research concerns the study of

action selection (behaviour selection for consistency with

the terminology we are using), i.e., the capacity to select

between alternative behaviours afforded by the current

organism/environmental context (Seth et al. 2012). In most

of the cases, evolutionary studies conducted in this area

concern the evolution of an ability to arbitrate hand-de-

signed control modules producing predetermined beha-

viours (e.g., Gonzales et al. 2000; Rahim et al. 2014). In

other cases, however, the behaviours were evolved as well

(Izquierdo and Bührmann 2008; Seth 2012; Petrosino et al.

2013; Williams and Beer 2013). In these experiments,

however, the synthesis and the exhibition of multiple

behaviours represented the only possible viable solution

since the evolving robots were required to carry on mutu-

ally exclusive tasks [e.g., eating or avoid eating a specific

food type (Seth 2012; Petrosino et al. 2013) or moving on

the basis of a wheeled or legged actuators (Williams and

Beer 2013)].

In this paper, we run a series of experiments that aim to

study whether behavioural plastic solutions evolve, whe-

ther they provide advantages with respect to non-plastic

solutions and which are the factors that represent necessary

prerequisites for the evolution of behavioural plasticity. As

we will see, our results indicate that behavioural plastic

solutions can evolve also when the adaptive task does not

require the accomplishment of multiple conflicting func-

tions. Moreover, our results indicate that behavioural

plastic solutions might enable the evolving agents to

achieve higher performance. The analysis of our experi-

ments indicates that the most important prerequisite for the

evolution of behavioural plasticity is constituted by the

capability to perceive and generate affordances, i.e.,

opportunities for behaviours (Gibson 1979; Chemero

2011). This capability depends on the richness of the

robot’s perceptual environment that, in turn, depends on

the richness of the robot’s internal and external environ-

ments, on the richness of the robot’s sensory–motor sys-

tem, and on the ability to exploit sensory–motor

coordination. Moreover, the analysis indicates the impor-

tance of using flexible regulation mechanisms that rely on

both external and internal cues. Finally, the obtained results

demonstrate the importance of the connectedness between

sub-behaviour and the importance of providing the agents

with mechanisms that enable them to realise a smooth and

effective transition between sub-behaviours.

The method

To study this issue, we decided to consider a cleaning

experimental scenario in which a wheeled robot need to

vacuum-clean the floor of an unknown in-door environ-

ment. We choose this problem since it represents the first

(and still the more significant) successful application
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domain of autonomous robot solutions (Roomba, the first

autonomous vacuum-cleaning robot developed by

iRobots� under the supervision of Rodney Brooks and

commercialised from 2002 has been sold in more than

10 million units to date, see iRobot 2013). Rather than

designing the controller by hand, we studied whether

effective controllers can be developed from scratch through

an evolutionary method in which the evolving robots are

selected on the basis of the percentage of successfully

cleaned surface, i.e., on the basis of a scalar value that rates

their overall ability to perform the task.

It is important to point out that we choose this domain

also because it involves the execution of a task with a

single goal (cleaning the environment) that does not nec-

essarily require behavioural plastic solutions. This enables

us to study whether and how behavioural plastic solutions

evolve, whether and why they provide an advantage with

respect to non-plastic solutions, and eventually which are

the characteristics and functions of the evolved sub-be-

haviours. Domains involving multiple conflicting goals,

such as those used in the literature addressing the study of

action selection cited above, in fact, necessarily require the

development of solutions characterised by multiple beha-

viours and, implicitly, constrain the number and type of

required sub-behaviours.

The investigation of the cleaning problem also permits

to compare our evolved solutions with those developed by

companies that sell cleaning robots. In that respect, the fact

that the behavioural policies displayed by different ver-

sions of the Roomba and by similar robots produced by

other companies significantly differ (Ackerman 2010)

demonstrates that finding the optimal solution/s of this

problem is far from trivial.

The task, the environment and the robot

To evolve robots that are robust with respect to environ-

mental variations, we evaluated each robot for three trials

or cleaning sessions. At the beginning of each trial, the

initial position and orientation of the robot in the envi-

ronment, and the specific characteristics of the environ-

ment, like dimensions and object positions, in which it was

situated in were randomly varied within limits.

Each trial lasted 6 min and 15 s. Although performing a

precise comparison with the time required by commercial

robot to clean completely or almost completely a surface

with similar properties is impossible due to the lack of data

(for some indications see Ackerman 2010), this represents

a rather short period of time.

To compute the cleaning performance, we calculated the

percentage of 20 9 20 cm non-overlapping areas visited

by the robot at least once during a trial.

The experiments have been repeated in two different

types of environments. In the first set of experiments, we

used a concave environment (Fig. 1, left) constituted by a

large central area and by four peripheral corridors that

represent a room-like environment. The average envi-

ronment had a central area with a size of 6.8 m2 and four

corridors with a size of 3.78 m2 in total. The exact size

of the environment, however, was randomly set at the

beginning of each trial. This was realised by varying the

height and width of the central area and of corridors of

±33 and ±18 %, respectively, during different trials. In

the second set of experiment, we used a convex envi-

ronment (Fig. 1, right) constituted by a rectangular room-

like area including furniture. The rectangular area has a

size of 12.2 m2 ± 33 % and includes: a first rectangular

object with an area of 0.93 m2 ± 10 %, a second rect-

angular object with an area of 0.17 m2, the legs of a

table, and the legs of chairs (the number of chairs was

randomly varied in the range [0, 4]). The x and y coor-

dinates of all the objects located over the plane were also

varied during each trial within limits that prevented

physical overlap.

The robot used was a MarXbot (Bonani et al. 2010), a

differential drive wheeled robot with a diameter of 17 cm.

The robot is equipped with 24 infrared sensors evenly

distributed along the robot’s body and capable of detecting

Fig. 1 Examples of concave

and convex environments, left

and right, respectively
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objects in a range of 10 cm. Moreover, it is equipped with a

rotating laser sensor capable of detecting obstacles at

longer distance. Experiments were run in simulation using

the FARSA open-software tool (Massera et al. 2013) that

includes an accurate simulator of the robot and of the

environment.

The robots’ neural controller

The robots are provided with a neural network controller.

In all experiments, the robots are equipped with eight

sensory neurons that encode the average activation state of

eight groups of three adjacent infrared sensors each and

two motor neurons that encode the desired speed of the two

robot’s wheels. The sensory neurons are fully connected

with the motor neurons and to hidden neurons (if present),

and the hidden neurons are fully connected to the motor

neurons. Hidden and motor neurons are provided with

biases. The state of the hidden and motor neurons is

computed on the basis of the logistic function. The state of

the sensory neurons and the desired speed of the robot’s

wheels are updated every 50 ms. Experiments have been

replicated in the following four experimental conditions:

(S) Simple: The robots are only provided with the

infrared sensors

(R) Range sensor: The robots are provided with an

additional sensory neuron that encodes the average

distance of obstacles located within 1 m detected

through the rotating laser range sensor. This sensor

has been added to enable the robot to vary its

behaviour in narrow versus open areas

(T) Time: The robots are provided with an additional

sensory neuron that encodes the time passed since the

beginning of the current cleaning session (trial), i.e.,

whose activation state linearly varies between 1.0 and

0.0 during the course of the trial. This sensor has been

added to enable the robot to vary the behaviour

during the course of cleaning sessions. Notice that

this sensor enables the robot to access information

extracted from the robot’s internal environment (e.g.,

a robot clock situated inside the robot body), while

the other sensors enable the robot to access informa-

tion extracted from the external environment

(M) Modular: The neural controller is formed by three

modules (each provided with eight infrared sensors

connected to the two motor neurons) that are used

during three subsequent phases of the trial of equal

length. This modular neural controller was used to

enable the robot to freely differentiate its behaviour

during the three successive phases of the trial

To investigate whether the addition of internal neurons

could enable the robot to achieve better performance, we

carried out a second series of experiments in which the

robot was also provided with an additional layer with

three hidden neurons that received connections from all

sensory neurons and projected connections to all motor

neurons.

The connection weights and biases, that determine the

robots’ behaviour, are initially set randomly and evolved as

described in the section below. The tool used to run the

experiment can be downloaded from https://sourceforge.

net/projects/farsa/. The source of the plugin that enables to

replicate this experiment can be downloaded from http://

sourceforge.net/p/farsa/code/HEAD/tree/farsaPlugins/clea

ningExperiment/.

To provide the robots with the modular controller

(M) with a more flexible mechanism for arbitrating

between the three modules, we also ran additional experi-

ments in which the time duration of the three phases was

encoded in additional evolvable parameters or in which the

arbitration between the modules was realised by the robot

itself through additional output neurons (as in Nolfi 1997).

However, all these experiments led to poorer results with

respect to the base (M) condition. The results obtained in

these further tests are not included in the paper for reason

of space.

The evolutionary algorithm

The initial population consists of 20 randomly generated

genotypes, which encode the connection weights and

biases of 20 corresponding individual robots (each

parameter is encoded by 8 bits and normalised in the

range [–5.0, ?5.0]). Every generation, each individual is

evaluated for three trials in environments that randomly

varied in dimension within the limits indicated above. The

fitness of each trial is calculated by counting the per-

centage of 20 9 20 cm portions of the environment that

are visited from the robot at least once during the trial.

The total fitness is calculated by averaging the fitness

obtained during the three trials. All individuals are

allowed to generate an offspring that is also evaluated for

three trials. The 20 offspring are generated by creating a

copy of the parent genotype and by mutating each bit

with a 2 % probability. The genotype of offspring is used

to replace the genotype of the worst parents or discarded

depending on whether or not offspring outperform the

parents. The genotypes of the initial population were

generated randomly. Each evolutionary experiment was

replicated 20 times starting from different randomly

generated initial populations.
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Results

In ‘‘Performance and efficacy of plastic versus non-plastic

behavioural solutions’’, we describe the performance

achieved in the different experimental conditions. As we

will see, the cleaning task in the convex environment

admits a simple behavioural solution that does not require

the exhibition of multiple behaviours. Consequently, the

performance obtained in the different experimental con-

ditions is rather similar. On the contrary, the cleaning task

in the concave environment requires the exhibition of at

least two sub-behaviours that differ in forms and func-

tions: an exploration behaviour that enables the robot to

explore the large central area and a wall-following

behaviour that enables the robot to explore the peripheral

areas and the borders of the central area. The possibility

to discover and to display these two behaviours rather

than a single undifferentiated behaviour crucially depends

on the characteristics of the robots’ neural controller as

demonstrated by the fact that the behaviour and the per-

formance significantly vary in the four experimental

conditions.

In ‘‘On the mechanisms supporting behaviour differen-

tiation and arbitration’’, we will discuss the mechanisms

that support behavioural differentiation and arbitration by

analysing the behavioural solutions found in the different

experimental conditions. As we will see, the two most

important mechanisms that support the evolution of beha-

vioural plastic solutions are the ability to perceive and to

generate affordances (i.e., opportunities for behaviours)

and the possibility to flexibly and properly handle beha-

vioural transitions.

Performance and efficacy of plastic versus non-

plastic behavioural solutions

By post-evaluating the best robot of the last generation of

each replication for 500 trials, we can see how in the

concave environment, the evolved robots reach close to

optimal performance in the temporal (T) experimental

conditions, good performance in the modular conditions

(M), and relatively low performance in the case of the

simple (S) and range sensor (R) conditions (Fig. 2, left).

The performance of each experimental condition statisti-

cally differs from all others conditions (Kruskal–Wallis

ANOVA, df = 3, p\ 0.001—Bonferroni-corrected

Mann–Whitney U, p\ 0.0083) with the exception of

(S) and (R) that do not differ significantly from each other

(p = 0.82). The performance obtained in the experiments

in which the robots were also provided with the internal

neurons (Fig. 2, right) does not significantly differ from the

experiments without internal neurons (Mann–Whitney U,

p\ 0.05).

The analysis of the behaviours displayed by the best

robots of the last generation indicates that the performance

level correlates with the ability of the robots to display

multiple behaviours. This is clearly illustrated by the

behaviour displayed by the best (S) and (T) robots that

achieved a fitness of 67.4 and 82.8 %, respectively. While

(S) displays a single uniform behaviour along the trial,

(T) is capable of performing two well-differentiated

behaviours (Fig. 3, top).

Indeed, the best robot with a simple architecture (S) al-

ways behaves in the same manner during the successive

phases of the trial (Fig. 3, top-left). In particular, it avoids

Fig. 2 Box plots of performance in the concave environment. The left

and right figures report the results obtained without internal neurons

and with internal neurons, respectively. The box plots display the

performance of the best robot of the last generation in the four

experimental conditions, i.e., in the single (S), temporal (T), modular

(M), and range sensor (R) conditions. Boxes represent the inter-

quartile range of the data, while the horizontal lines inside the boxes

mark the median values. The whiskers extend to the most extreme

data points within 1.5 times the inter-quartile range from the box.

Circles mark the outliers. Each box displays the performance of the

best robot of 20 replications of each experiment. The performance is

indicated by the percentage of cleaned cells within the walls. The

value corresponding to optimal performance is unknown but is

reasonably below 1.0 given that the robots have a rather limited

cleaning time
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walls and obstacles by sharply turning with an angle of

45�–90� (depending on the relative angle with which the

robot approaches the obstacle) and moves straight when it

is far from obstacles. Through the exhibition of this

behaviour, the robot manages to keep exploring the envi-

ronment until the end of the trial by avoiding obstacles and

by keep moving in different portions of the environment.

However, the robot spends most of its time by exploring

the large central portion of the environment. It explores the

peripheral areas only occasionally when it happens to

approach them with a direction that it is almost orthogonal

to the entrance of the corridor. The robots of the other

replications of the experiments show qualitatively similar

behaviours (results not shown).

The best robot with the time neuron architecture (T),

instead, shows two well-differentiated behaviours: (1) an

initial exploration behaviour that is realised by producing a

progressively larger curvilinear trajectory that enables the

robot to explore the large central portion of the environ-

ment, and (2) a wall-following behaviour that enables it to

explore all the peripheral areas of the environment (Fig. 3,

top-right). Although the way in which the exploration

behaviour is realised varies in different replications of the

experiment, well-differentiated exploration and wall-fol-

lowing behaviours are clearly observable in all cases (re-

sults not shown). The high performance of these robots is

due to their ability to display different behaviours, which

are specialised for the exploration of large open areas and

peripheral areas, and to carefully tune the time duration of

the two behaviours. Indeed, the relative duration of the two

behaviours determines whether the robot spends enough

time exploring the central large area while keeping enough

time to explore all the peripheral areas of the environment

or not.

A qualitative analysis of the first ten replications showed

that in the best two robots, that clearly outperform the best

robots of the other eight replications, the transition between

the two behaviours occurs at 3.17 ± 0.11 min. This tran-

sition time is optimal or nearly optimal as demonstrated by

the fact that post-evaluation tests performed by slowing

down or speeding up the robot’s internal clock and, con-

sequently, the behaviour transition led to significantly

worse performance (results not shown).

The best robot with the modular (M) architecture also

shows an exploration behaviour displayed during 4.17 min,

when the robot operates on the basis of the first and third

Fig. 3 Typical trajectories displayed by the best robots of the four

experimental conditions without hidden units in the concave

environment. The portions of the trajectory produced during the first,

second, and third part of the trial (i.e., from step 1 to 2500, from step

2501 to 5000, and from step 5001 to 7500, respectively) are shown

with different colours and line style (colour figure online)
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neural modules, and a wall-following behaviour displayed

during 2.08 min in which it operates on the basis of the

second neural module (Fig. 3, bottom, left). The lower

performance with respect to the best (T) robot is due to the

fact that the transition between the two behaviours is too

abrupt and to the fact that it is not able to finely tune the

relative duration of the two behaviours. The analysis of the

robots of the other replications shows qualitatively similar

solutions although, in some cases, the differentiation of the

behaviour is less marked (result not shown). As mentioned

above, we carried out a series of additional experiments in

which the genotype of evolving robots included three

additional genes that were used to determine the time

duration of the three phases. However, in this condition, the

evolved robots relied on a single exploration behaviour, as

in the case of the (S) experimental condition (results not

shown).

Finally, the analysis of the best robot in the case of the

range sensor experimental condition (R) also displays a

behavioural plastic solution characterised by the exhibition

of an exploration behaviour and a wall-following beha-

viour (Fig. 3, bottom-right). This robot alternates the two

behaviours by switching either from the exploration to the

wall-following behaviour or from the wall-following to the

exploration behaviour. The achievement of lower perfor-

mance with respect to the (T) experimental condition is due

primarily to the inability of this robot to precisely control

the duration of behaviours, as demonstrated by the high

variability of the relative duration of the two behaviours

among trials. The best robots of four other replications

displayed qualitatively similar solution, while the best

robot of the five remaining replications display a single

uniform exploratory behaviour similar to that shown by

(S) robots (result not shown). The behaviour of the second

set of ten replications was not inspected.

In the convex environment, instead, the robots achieve

similar performance in all experimental conditions (see

Fig. 4, left). The differences among the four experimental

conditions are significant (Kruskal–Wallis ANOVA,

df = 3, p\ 0.001). However, the pairwise comparison

(Bonferroni-corrected Mann–whitney U) indicates that this

difference is due to the fact that (R) is significantly worse

than (T) (p\ 0.001) and (M) (p = 0.00143). All other

conditions do not statistically differ (p[ 0.0083). The

performance obtained in the experiments in which the

robots were also provided with the internal neurons (Fig. 4,

right) does not significantly differ from the basic experi-

ments for (T) and (M) (Mann–Whitney U, p[ 0.05) with

the exception of (S) and (R) in which the performance of

the experiments with internal neurons is significantly better

in the former, and worse in the latter case (Mann–Whitney

U, p\ 0.05).

Overall, these results can be explained by considering

that in this type of environment, the exhibition of a single

behaviour is sufficient to achieve close-to-optimal perfor-

mance. As a consequence, evolving robots do not develop

multiple behaviours (see Fig. 5). In some cases, especially

in the (M) condition, a weak differentiation is observed.

However, it does not provide an advantage in this type of

environment.

On the mechanisms supporting behaviour

differentiation and arbitration

We have seen how behavioural plasticity, i.e., the ability to

display and regulate multiple behaviours, can enable the

adaptive robots to achieve better performance in the con-

cave environment and that the emergence of behavioural

plastic solutions depends on the characteristics of robot’s

neural controllers. We will now focus on the mechanisms

supporting behaviour differentiation and arbitration. As we

will see, evolving robots can rely on different mechanisms

to achieve behavioural plasticity. The efficacy of these

mechanisms and the facility with which they can be

Fig. 4 Box plots of performance in the convex environment. The left and right figures report the results obtained without internal neurons and

with internal neurons, respectively
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discovered explain the variations in performance observed

in the considered experimental conditions.

Before entering into this, it is important to point out that,

as we mentioned in the introduction, the behaviour dis-

played by an embodied and situated agent is a dynamical

process unfolding in time that results from the robot/en-

vironmental interactions. This implies that the organisation

of behaviour/s varies at different timescales. Moreover, this

implies that the sensory states experienced by the robot at a

given time step are co-determined by the actions produced

by the robot during previous robot/environmental interac-

tions. If we use the term affordance introduced by Gibson

(1979) to indicate sensory states that elicit the production

of behaviours, this implies that the affordances are not only

extracted through sensors from the internal and/or the

external environment but are also generated by the robot

itself through actions.

The analysis of the behaviour exhibited by the robots at

a short timescale (i.e., at a timescale of seconds) indicates

that in all experimental conditions, robots tend to exhibit at

least two different low-level behaviours: (1) an obstacle-

avoidance behaviour that consists in turning while the

robot detects an obstacle on its frontal side, and (2) a move-

forward behaviour that consists in moving straight or

almost straight while the robot does not detect obstacles in

its frontal side (see Fig. 6). This implies that at this short

timescale, all robots of all experimental conditions display

behavioural plastic behaviours. The reasons that explain

Fig. 5 Typical trajectory displayed by the best robots of the four experimental conditions without hidden units in the convex environment

Fig. 6 Exemplification of short-term behavioural plasticity in the

case of an exploration behaviour that is realised by alternating a

move-forward and an obstacle-avoidance behaviour (shown in blue

and red, respectively). The former behaviour is elicited by perceptual

states in which the frontal infrared sensors are not activated, i.e., a

state affording the move-forward behaviour. The latter behaviour is

elicited by perceptual states in which the frontal infrared sensors are

activated, i.e., a state affording the obstacle-avoidance behaviour

(colour figure online)
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why this type of behavioural plasticity always evolves are

that it plays a functional role (i.e., it enables the robot to

avoid being stuck and to keep exploring the environment)

and that it is supported by the availability of always-

available and easy-to-use affordances. Indeed, indepen-

dently from the way in which the robot behaves, it will

always experience a lack of activation on the frontal

infrared sensors when the robot/environment context

affords a move-forward behaviour and an activation on the

frontal infrared sensors when the robot/environmental

context affords an obstacle-avoidance behaviour. The

infrared sensors, therefore, always enable the robot to

perceive when the former or the latter behaviour should be

produced and when the transition between the two beha-

viours should occur.

This ideal situation, however, in which the robot can

rely on robust and ready-to-use affordance states only

characterises few lucky cases (incidentally, this probably

explains why the combination of obstacle-avoidance and

navigation behaviours represents a widely used experi-

mental scenario in robotics). In other cases, the affordance

states supporting behaviour differentiation and arbitration

should be extracted through internal elaboration and/or

generated through the exhibition of appropriate

behaviours.

This also implies that plasticity is not a binary but rather

a continuous property. The greater the number of

behaviours/complexity of the sub-behaviours exhibited by

a robot is and the greater is the range of timescales at which

the robot exhibits differentiated behaviours, the greater the

behavioural plasticity of the robot is. In the rest of the

paper, however, we focus exclusively on the longer time-

scale. Consequently, we use the term multiple behaviours

and behavioural plasticity to indicate robots that exhibit

behaviour differentiation at this timescale, independently

of whether they show behaviour differentiation at shorter

timescale. We do this since at longer timescale, we observe

qualitatively and quantitatively different solutions in the

context of our experiments.

As we have seen in the previous section, the concave

environment requires behavioural diversification at the

longer timescale, e.g., it requires the exhibition of an

exploration and a wall-following behaviour lasting for

minutes. In this case, however, the robot cannot rely on

ready-to-use affordances that indicate when the robot

should display the first or the second behaviour and when

the robot should switch from one to the other behaviour. To

achieve this kind of behavioural plasticity, the evolving

robots should find a way to: (1) keep producing the same

behaviour for a prolonged period of time, (2) switch

behaviour at the right moment, and (3) realise a suit-

able transition during behaviour switch. We will illustrate

in details how the evolved robots manage to master these

requirements in the different experimental conditions in the

next three sub-sections.

Notice that the evolution of context-dependent beha-

viours requires the concurrent development of two inter-

dependent skills, the ability to produce a new behaviour

and the ability to regulate appropriately when the new

behaviour should be exhibited (Williams 1966; West-

Eberhard 2003). We will come back on this issue in the

concluding section.

Producing behaviours for prolonged periods of time

All evolved robots solve the problem of producing a given

behaviour for a prolonged period of time by realising each

behaviour in a way that ensures that they keep experiencing

stimuli of the right type during the execution of that

behaviour. In cases in which the robots should exhibit two

differentiated behaviours, i.e., an exploration and a wall-

following behaviour, this implies that they should realise

the former and the latter behaviours in a way that ensures

that they keep experiencing stimuli of type 1 and 2 while

they exhibit the former or the latter behaviour, respectively,

and should react to the stimuli of the two types by pro-

ducing actions that enable them to keep producing the

former or the latter behaviours, respectively. The two

classes of stimuli, thus, assume the role of affordance for

the first and for the second behaviours, respectively. These

affordances are not directly available from the environ-

ment, as in the case of the states affording the obstacle-

avoidance and move-forward behaviour discussed above,

but are generated by the robots themselves through their

actions (i.e., through the ability to realise each behaviour in

a way that ensures that the robot keeps experiencing the

corresponding affordances). This form of dynamical sta-

bility presents some similarities with the one that can be

obtained in situated agents through homeokinesis (Der and

Martius 2012), a task-independent learning process that can

enable situated robot to synthesise temporarily stable be-

haviours, though the mechanism and the processes through

which this is realised are completely different.

All robots displaying multiple behaviours (i.e., (R),

(M) and (T) robots) exploit this affordance generation

mechanism. However, the (T) and some of the (M) robots

also exploit other additional mechanisms that enable the

robots to keep producing each behaviour for a prolonged

period of time. Thus, let us start by describing the strategy

used by the best (R) robot that only relies on this affor-

dance generation mechanism.

The best (R) robot realises the exploration behaviour by

moving forward far from obstacles and by turning left near

obstacles located in its frontal and frontal-right side and

realises the wall-following behaviour by moving forward

along walls when it perceives an obstacle on its left side
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and by turning left when the activations of its left-side

sensors decrease (see Fig. 3, bottom left). By behaving in

this way, the robot ensures that it keeps experiencing

sensory states of type 1 during the exploration behaviour

and sensory states of type 2 during the wall-following

behaviour (where type 1 includes states in which the

infrared sensors are not activated or in which the frontal or

right infrared sensors are activated and type 2 includes

states in which the left infrared sensors are activated). In

other words, as we said above, the problem of keep pro-

ducing the two behaviours for prolonged period of time is

solved by producing each behaviour in a way that ensures

that the robot keeps experiencing stimuli affording the

same behaviour (i.e., stimuli that elicit actions which lead

to the production of the same behaviour).

In (M) robots, the problem of producing the same

behaviour for a prolonged period of time is solved also

through the development of neural modules specialised for

the production of the exploration or of the wall-following

behaviour. However, (M) robots rely on affordance gen-

eration as well. Indeed, even in some (M) robots, the same

neural module enables the robot to produce either the

exploration or the wall-following behaviour and to keep

producing the current behaviour for a prolonged period of

time (Fig. 8). In these cases, the behaviour that is initially

triggered depends on the initial position of the robot (i.e.,

depends on the behaviour afforded by the first experienced

sensory states).

In (T) robots, the cue provided by the temporal neuron

co-determines the behaviour produced by the robot and,

consequently, is used to keep producing the current beha-

viour for a prolonged period of time. Indeed, whether the

robot keeps producing the exploration behaviour or

switches to the wall-following behaviour also depends on

the state of the temporal neuron (see Fig. 9). On the other

hand, the state of the time neuron influences the duration of

the exploration behaviour only during a critical phase, i.e.,

when the state of the time neuron is smaller than 0.6 and

greater than 0.4. During the rest of the trial, the ability of

the robot to keep producing the exploration behaviour or

the wall-following behaviour relies on an affordance gen-

eration mechanism analogous to that described above for

the best (R) robot. Interestingly, in the case of the best

(T) robot, the temporal neuron is also used to progressively

vary over time the way in which the exploration behaviour

is realised so as to regulate the probability that the robot

keeps experiencing sensory state affording the execution of

this behaviour. Indeed, by initially moving forward and

turning left of several degrees, the robot eliminates, com-

pletely, the possibility to encounter a wall on its left side

(i.e., the possibility to experience stimuli affording the

alternative wall-following behaviour). Then, by moving

forward and progressively reducing the angle of turn over

time, the robot becomes progressively kinder with respect

to the possibility of experiencing stimuli affording the

wall-following behaviour. This brings us to the question of

how robots manage to switch behaviour.

Switching between alternative behaviours

The problem of switching between different behaviours is

also solved through affordance generation. To understand

how robots can act in a way that enables them to both

experience stimuli affording the current behaviour and

stimuli affording the alternative behaviour, we should

reformulate the definition of affordance generation in

probabilistic terms. Evolved robots solve the problem of

producing a given behaviour for a prolonged period of time

and the problem of switching behaviour by realising

behaviours in a way that ensures that they keep experi-

encing stimuli affording the current behaviour with a given

high probability and stimuli affording the alternative

behaviour with a given low probability, respectively.

All evolved robots solve the problem of keep producing

the same behaviour for a prolonged period of time and the

problem of switching behaviour in this way. However,

some robots also rely on additional complementary

mechanisms, as we illustrate below.

In the case of the best (R) robot, the switches from the

exploration behaviour to the wall-following behaviour

occur when the robot encounters a wall on its frontal-left

side during the execution of the exploration behaviour (see

Fig. 8, left), a situation that occurs with a low probability

for the reason described in the previous section. Overall,

this means that the exploration behaviour is realised in a

way that the robot keeps experiencing stimuli affording the

exploration behaviour most of the time, while occasionally

experiencing stimuli affording the alternative behaviour.

Clearly, this is an example of how the simultaneous evo-

lution of form and regulation can be solved. The same

mechanism is responsible for behaviour production (i.e.,

the prolonged production of the same behaviour) and for

behaviour switch. The fact that this solution is never found

by (S) robots indicates that the availability of the additional

cues provided by the range sensors enables (R) robots to

regulate, more effectively, the probability with which the

robots experience stimuli affording the current or the

alternative behaviour. This affordance generation strategy

enables the best (R) robot to switch from the exploration to

the wall-following behaviour at the optimal moment on the

average but with a high variability among trials (the robot

switches at 2.99 ± 1.02 min). The high variability nega-

tively impacts on performance since it often leads to situ-

ations in which the time dedicated to the two behaviours is

unbalanced. The problem is particularly serious when the

switch from the exploration behaviour to the wall-
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following behaviour occurs too early, since circling along

the periphery of the environment for more than one lap is

useless. This probably explains why the best robot of the

(R) experimental condition also developed an ability to

switch back from the wall-following behaviour to the

exploration behaviour when the robot encounters a wall

frontally after exiting from a peripheral corridor (see

Fig. 7, right). This latter ability is lacking in the best robots

of the other replications that consequently achieve lower

performance. In other words, the best (R) robot is capable

of displaying reversible behavioural switch.

In the case of the robot evolved in the (M) experimental

conditions, in which the three neural modules control the

robot during three successive phases of 2.08 min, not

surprisingly behavioural switching occurs primarily during

the switch between the first and the second module and/or

between the second and the third module. The rigidity of

this mechanism, however, does not enable the robot to

regulate the exact moment in which the switch is realised.

In most of the replications, the exploration behaviour is

produced for 4.17 min and the wall-following behaviour

for 2.08 min since two modules specialise for the produc-

tion of the former behaviour and the remaining module

specialises for the production of the latter behaviour.

However, also these robots use affordance generation to

switch between behaviours. Indeed, as we mentioned in the

previous section, some of the best (M) robots also display

an ability to switch behaviour while they operate on the

basis of the same neural module through the same affor-

dance generation mechanism described above (see Fig. 8).

The usage of this strategy enables these robots to achieve a

more balanced allocation of time to the two behaviours

that, in turn, enables it to achieve better performance with

respect to the best robots of the other replications.

In the case of the robot evolved in the (T) experimental

condition, the switch is regulated by both the stimuli

experienced by the robot (i.e., by affordance generation)

and by the cue provided by the robot’s internal clock. This

double regulation enables the best (T) robot to carefully

balance the time allocated to the two types of behaviour

and to reduce the variability among trials (i.e., the transi-

tion occurs 3.17 ± 0.11 min). The double regulation

Fig. 7 Illustration of how the best (R) robot switches from the exploration to the wall-following behaviour and vice versa (left and right,

respectively)

Fig. 8 Trajectory produced by

the best (M) robot which

produces an exploration

behaviour under the control of

the first neural module, an

exploration and then a wall-

following behaviour under the

control of the second neural

module, and a wall-following

and then an exploration

behaviour under the control of

the third neural module
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process is demonstrated by the analysis of the trajectories

produced by the robot during a series of trials in which the

robot always starts from the same position and in which the

orientation of the robot and the state of the time neuron are

systematically varied (Fig. 9). As shown in Fig. 9, whether

the robot switches or not to the wall-following behaviour

depends both on the state of the internal clock and on the

state of the infrared sensor that the robot experiences when

it approaches the wall. Overall, this shows that whether the

switch between the two behaviours occurs or not depends

both on the state of the internal clock and on the way in

which the exploration behaviour is realised which, in turn,

influences the type of stimuli that the robot experiences. As

mentioned above, in the case of the best (T) robot, the state

of the time neuron is not only used to regulate the proba-

bility that the robot switches behaviour directly (the

probability that the robot initiates a wall-following beha-

viour in a given relative position in the environment) but is

also used to regulate the way in which the exploration

behaviour is realised which, in turn, influences the proba-

bility that the robot will later experience stimuli affording

the wall-following behaviour.

Realising suitable and effective behaviour transitions

The connectedness of behaviours, i.e., the fact that alter-

native behaviours are semi-discrete and semi-dissociable

units that are only partially independent, implies that the

transitions between behaviours should be handled with

care. In the case of our experiments, in particular, the

transition between the exploration and the wall-following

behaviour requires special care since the latter behaviour

can only be produced when the robot is located near a wall

and when the wall to be followed is located on a specific

side of the robot. Indeed, the analysis of the evolved robots

shows that the way in which the behaviour transitions are

handled in evolved robots has an important impact on

robots’ performance.

The transition problem is particularly severe in the

(M) experimental condition when the behavioural switch

typically occurs suddenly after 2.08 and 4.16 min as a

result of the neural module switch. The problem is so

severe that in three out of the first ten replications, the

second control module specialises simply for handling the

transition (Fig. 10). In other words, these robots dedicate

the second 2.08-min phase simply to move towards a

location from which the wall-following behaviour can be

effectively initiated.

The smartest solution to the transition problem is that

discovered by the best (T) robot (see Fig. 3, right). Indeed,

as we mentioned above, this robot exploits the cue pro-

vided by the internal clock to gradually modify the

exploration behaviour so as to ensure that the robot will

always reach a relative location with respect to the walls

Fig. 9 Behaviour produced by the best (T) robot during different

trials in which it started from the same initial position with

systematically varied orientations and systematically varied state of

the time neuron. The red and blue lines represent the trajectories

produced by the robot during trials in which it switches or does not

switch to the wall-following behaviour, respectively. The black lines

represent the walls. For sake of clarity, we only show the local portion

of the environment in which the robot is located (colour figure online)
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from which the wall-following behaviour can be effec-

tively triggered during the critical period (i.e., during

3.17 ± 0.11 min). Overall, this leads to an extremely

timely, smooth and effective transition that enables this

robot to outperform all other robots.

Conclusions

In this paper, we demonstrated that behavioural plasticity

can evolve in artificial robots, independently from whether

the task does or does not require to face multiple con-

flicting goals. Indeed, the solution of a task involving a

single objective (e.g., cleaning a given area) can also

benefit from the utilisation and the combination of multiple

differentiated behaviours. Moreover, we demonstrated how

the exploitation of behavioural plasticity enables evolving

robots to achieve better performance.

Interestingly, the behaviours displayed by the best

evolving robots show similarities with those obtained by

Gordon et al. (2014) through a minimal model based on

intrinsic motivation in which novelty is used as an intrinsic

reward. More generally, the adaptive advantage provided

by the ability to display multiple behaviours suggests that a

potential benefit of task-independent fitness functions,

which encourage the development of novel behaviours (see

Schmidhuber 1990; Oudeyer et al. 2007; Martius et al.

2014), consists in facilitating the synthesis of behavioural

plastic solutions.

The analysis of the obtained results indicates that the

mechanisms that support the evolution of behavioural

plastic solutions are the ability to perceive affordances (i.e.,

perceptual states encoding opportunities for behaviours)

and the ability to realise smooth and effective transitions

between different behaviours.

The perception of affordance constitutes a prerequisite

for the possibility to develop differentiated behaviour and

for the possibility to effectively arbitrate them, i.e.,

selecting the behaviour that is appropriate for the current

robot/environmental context and regulating the duration of

each behaviour. Interestingly, the basic mechanism that is

used by evolving robots to perceive affordances is affor-

dance generation, i.e., the ability to realise each behaviour

in a way that ensures that the robot keeps experiencing

sensory state affording the current behaviour with a given

high probability and sensory states affording alternative

behaviours with a given low probability.

The limitations of this affordance generation mecha-

nism, e.g., the inability to finely tune the duration of

behaviours, are overcome by using additional regulatory

processes that rely on internal cues. In particular, in the

case of the best evolved robot, this is realised by comple-

menting the basic affordance generation mechanism with

two additional regulatory processes. The second additional

regulatory process consists in using the state of the internal

clock to progressively vary the way in which the explo-

ration behaviour is realised so as to progressively increase

the probability that the robot will experience stimuli

affording the wall-following behaviour (see Fig. 3, top-

right). The third additional regulatory process consists in

using the state of the internal clock to vary qualitatively the

way in which the robot reacts to perceived stimuli (e.g., to

avoid obstacles by turning right or left which causes the

robot to later perceive stimuli affording the exploration

behaviour or the wall-following behaviour, respectively,

see Fig. 9).

Overall, this implies that behaviour arbitration in the

best evolved robots is realised through the combined

effects of multiple partially redundant regulatory processes

that operate through weak interactions. This type of

organisation is advantageous both from an evolutionary

perspective, since it enables a gradual transformation

(Conrad 1990; Krischner and Gerhart 2005), and from a

functional perspective, since it enables the robots to

Fig. 10 Trajectory produced by

one of the three best (M) robots

characterised by a second

module that is specialised for

enabling a suitable transition

from the exploration to the wall-

following behaviour
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operate on the basis of the combined effect of multiple

factors. This type of organisation might, indeed, be crucial

to enable the concurrent evolution of form and regulation

(sub-behaviours and behaviour arbitration in the case of

our experiment).

While the importance of affordance perception and

usage is widely recognised, the notion of affordance gen-

eration that we introduced in this paper and the description

of how affordance generation supports the evolution of

multiple context-dependent behaviour are original, to our

knowledge.

The need to realise smooth and effective transitions

between behaviours originates from the fact that behaviour

is a dynamical process in which the state of the system at

time t critically influences the state of the system at time

t ? 1. In other words, it originates from the fact that the

way in which a first behaviour is realised influences the way

in which the second following behaviour is realised. More

generally, this implies that, as claimed by West-Eberhard

(2003), the modular organisation of behaviour is charac-

terised by subunits that are semi-discrete and semi-disso-

ciable, i.e., that are not fully separable and dissociable.

Also, from this perspective, the possibility to operate on

the basis of multiple regulatory processes, such as those

described above, presents important advantages. In partic-

ular, the affordance generation mechanism that exploits the

sensory state currently experienced by the robot to deter-

mine the behaviour to be exhibited ensures that the beha-

viour exhibited by the robot is always appropriate to the

current robot/environmental context. On the other hand, the

regulation processes, carried out on the basis of the state of

the robot’s internal clock, ensure that behavioural switch

will occur within the appropriate time window.

In robotics, the objective of designing robots capable of

displaying elaborate behaviours is usually pursued by

designing modular controllers, eventually organised hier-

archically, in which each module is specialised for the

production of a corresponding sub-behaviour, and in which

modules are alternated on the basis of some arbitration

mechanism (Brooks 1986; Stone and Veloso 2000; Van

Hoorn et al. 2009). In these works, the decomposition of

the overall behaviour into sub-behaviours and, conse-

quently, the organisation of the modules, are usually

designed by the experimenter, while in other cases, it is

learned (Tani and Nolfi 1999; Haruno et al. 2001). From

this perspective, our results suggest that the utilisation of

behaviour generation and arbitration mechanisms that are

rigid and/or that do not support the realisation of smooth

and effective behaviour transitions might constitute a

strong limitation.
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