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76. Evolutionary Robotics

stefano Nolfi, Josh Bongard, Phil Husbands, Dario Floreano

Evolutionary Robotics is a method for automati-
cally generating artificial brains and morphologies
of autonomous robots. This approach is useful
bath for investigating the design space of robotic
applications and for testing scientific hypothe-
ses of biological mechanisms and processes. In
this chapter we pravide an overview of methods
and results of Evolutionary Robotics with robots of
different shapes, dimensions, and operation fea-
tures. We consider both simulated and physical
robots with special cansideration to the transfer
petween the two worlds.
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Evolutionary robotics is a method for the avtomatic cre-
ation of avionomous robots [76.1]. It is inspired by
the Darwinian principle of selective reproduction of
the fittest, capiured by evolutionary algorithms [76.2].
[n evolutionary robotics, robots are considered as au-
tonomous arificial organisms that develop their own
control system and body configuration in close interac-
tion with the environment without human intervention.
Drawing inspiration from principles of biological self-
organization, evolutionary robotics includes clements
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of evolutionary, neural, developmental, and morpho-
logical systems. The idca that an evolutionary process
could drive the generation of control systems dates back
to at least the 1950s [76.3] with a more explicit form
appearing in the mid 1980s with the ingenious thought
experiments by neuroscientist Valentino Braitenberg
on neurally driven vehicles [76.4|. In the early 1990s,
the first generation of simulated artificial organisms
with a genetic code describing the neural circuitry and
morphology of a scnsory motor system began cvolv-

2035




v

- —t

2016 Part G | Robots and Humans

¢'92| 9 Med

ing on computer screens [76.5-8). At that time, real
robots were still complicated and expensive machines
that required specialized programming technigues and
skillful manipulation. Towards the end of that period,
a new generation of robots started 1o emerge that shared
important characteristics with simple biological sys-
tems: robustness, simplicity, small size, exibility, and
modularity [76.9, 10]. Above all, those robots were

76.1 Method

The major methodological steps in  evolutionary
robotics proceed as follows (Fig. 76.1). An initial
population of diiferent artificial chromosomes, each
encoding the control system (and possibly the mor-
phology) of a robot, is randomly created. Each of
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Fig, 76.1 Evolutionary experiments on a single robot. Each indi-
vidual of the population is decaded into a corresponding neurocon-
troller which reads sensory information and sends motor commands
1o the robot every 300 ms while jts titness is automatically evaluated
and stored away for reproductive selection

76.2 First Steps

In an early experiment on robot evoluiion without hu-
man intervention, carmied out at Ecole Polytechnigue
Fédérale de Lausanne (EPFL) [76.12), a small wheeled
robot was evolved for navigation in a looping maze
(Fig. 76.2). The Khepera robot has a diameter of 55 mm
and two wheels with controllable velocities in both di-
rections of rotation. It also has eight infrared sensors,
six on one side and two on Ihe other side, that can
[unction either in active mode to measure distance from
ohstacles or in passive mode to measure the amount of
tinfrared) light in the environment. The robot was con-

designed so that they could be programmed and manip-
ulated by people without engineering training. Those
technological achicvements, together with the growing
influence of biological inspiration in artificial inge)-
ligence [76.11], coincided with the first evolutionary
experiments on real robots |76.12-14] (< ERIFEERY
and < ETEELER), and the term evolutionary robotics
was coined |76.15].

these chiromosomes is then decoded into a correspond-
ing controller, for example a neural network (NN),
and downloaded into the processor of the robot. The
robot is then let free Lo act {(move, look around, ma-
nipulate the environment) according to a genetically
specified controller while its performance for a given
task is automatically evaluated. Performance evaluation
is done by a fitness function’ that measures how fast
and straight the robot moves, how frequently it col-
lides with obstacles, etc. This procedure is repeated
for all chromosomes of the population. The fittest in-
dividuals (those that have received more fitness points)
are allowed to reproduce by generating copies of their
chromosomes with the addition of random modifica-
tions introduced by genctic operators (e.g., mutations
and exchange of genetic material). The newly ob-
tained population is then tested again on the same
robot. This process is repeated for a pumber of gen-
crations until an individual is bomn which satisfies the
fitness function set by the user. The control system
of evolved robots, encoded in an artificial genome, is
therefore generated by a repeated process of selective
reproduction, random mutation, and genctic recombi-
nation, similarly to what happens in natural evolution
.o WinEn 119 )N

aected 1o a desktop computer through rotating contacts
that provided both power supply and data exchange
through a serial port (| EERETECE),

A simple genetic algorithm [76.16] was used to
evolve the synaptic strengths of a neural network com-
posed of eight sensory neurons and two motor neurons.
Each sensory unit was clamped to one of the eight
active infrared sensors whose value was updated ev-
ery 300 ms. Each motor unit received weighted signals
from the sensory units and from the other motor unit,
plus a recurrent connection with itsell with a 300 ms




Evolutionary Robotics | 76.2 First Steps 2037

delay. ‘The net input of the motor units was olTset by
a modifiable threshold and passed through a logistic
squashing (unction. The resulting outputs, in the range
[0.1], were used to control the two motors so that
an output of | generated maximum rotation speed in
one direction, an output of 0 generated maximum ro-
jation speed in the opposite direction, and an output
of 0.5 did not generate any motion in the correspond-
ing wheel. A population of 80 individuals, cach coding
the synaptic strengths and threshold values of the neural
controllers, was initialized with all weights set to smail
random values centered around zero. Each individual
was tested on the physical robot [or 80 sensorimotor cy-
cles (approximately 245) and evaluated at every cyclhe
according (o a fitness function with three components
measured onboard the robot

¢=V(l—Van(l-i, (76.1)
where V is the average rotation speed of the two wheels,
A v is the absolute value of the algebraic difference be-
tween the signed speed values of the wheels (positive
is one direction, negative the other), and { is the nor-
malized activation value of the infrared sensor with the
highest activity. The first component is maximized by
speed, the second by straight motion, and the third by
distance {rom objects.

During the first 100 generations, both average and
best fitness values grew steadily, as shown in Fig. 76.3.
A fitness value of 1.0 would correspond to a robot mov-
ing straight at maximum speed in an open space and
therefore was not attainable in the looping maze shown
in Fig. 76.2, where some of the sensors were often ac-
tive and where several tumns were necessary to navigate.
Fig. 76.4 shows the trajectory of the best individual of
the last generation.

Although the fitness function did not specify in
what direction the robot should navigate (given that it
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Fig. 76.2 Bird's-eye view of the desktop Khepera robot in
the looping maze

S

was perfectly circular and that the wheels could ro-
tate in both directions), after a few generations all the
best individuals moved in the direction corrcsponding
to the side with the highest number of sensors. In-
dividuals moving in the other direction had a higher
probability of colliding into comers without detecting
them and thus disappeared from the population. Fur-
thermore, the cruising speed of the best evolved robots
was approximately half of the maximum speed that
could be technically achieved and did not increase even
when the evolutionary experiment was continued up
to 200 generations. Further analysis revealed that this
seli-limitation of the navigation speed had an adaptive
function because, considering the sensory and motor
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Fig. 76.3 Average fitness of the population and fitness of the best
individual at cach generation (error bars show standard error over
three runs from different initial populations)
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Fig. 76.4 Trajectory of the robot with the best neural con-
trolter of the last generation. Segments represent the axis
hetween the two wheels, Data were recorded and plotied
cvery 300 ms using an external laser positioning device
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refresh rate together with the response profile of the dis-
tance sensors, robots that traveled faster hadd a higher
risk of colliding with walls before detecting them; they
gradually disappeared from the population.

Despite its simplicity, this experiments shows that
evolution can discover solutions that match not only the
computational requirements of the task to be solved, but
also the morphological and mechanical propertics of the
robot in relation to its physical envitonment.

76.2.1 Evolution of Neural ControHers
for Wallking

Over the past 20 years or so, there has been a grow-
ing body of work on cvolving controllers for various
kinds of walking robots — a nontrivial sensorimotor co-
ordination task. Early work in this area concentrated
on evolving dynamical network controllers for simple
(abstract) simulated insects (often inspired by cock-
roach studies) which were required 1o walk in simple
cnvironments [76.17, 18], Earlier, Beer et al. had in-
troduced a neural architecture for locomotion based
on studies of cockroaches [76.19], which is shown
in Fig. 76.5. The promise of this work soon led 1o ver-
sions of this methodology being used on real robots,
Probably the first success in this dircction was by Lewis
ctal. [76.14,20] who evolved a neural controller for
a simple hexapod robot using coupled oscillators built
from continuous-time, leaky-integrator, antificial neu-
rons, All evaluations were done on the actual robot with
cach leg connected to its own pair of coupled neurons,
leg swing being driven by one newron and leg eleva-
tion by the other. These pairs of neurons were cross
connected, in a manner similar to that used by Beer
and Gallagher [76.18] (Fig. 76.5), 1o allow coordina-
tion between the legs. In order to speed up the process,
they employed staged evolution where first an oscillator
capable of moving a leg was evolved and then an archi-
tecture based on these oscillators was further evolved
1o develop walking. The robot was able to execute an
efficient ripod gait on flat surfaces.

Gullagher etal. |76.21] described experiments
where neural networks controlling locomotion in an
artificial insect were evolved in simutation and then suc-
cessfully downloaded onto a real hexapod robot. This
machine was more complex than Lewis et al.'s, with
a greater number of degrees of freedom per leg. In this
approach, each leg was controlled by a fully connected
network of five continuous-time, leaky-integrator neu-
rons, cach receiving a weighted sensory input from
that leg’s angle sensor. Initially the architecture shown
in Fig. 76.5 was used, with the connection weights and
neuron time constants and biases under genetic control.
This produced efficient tripod gaits for walking on flat

surfaces. In order o produce a wider range of BAILS op.
erating at a number of speeds such that rougher terrain
could be successfully negotiated. a different distributeg
architecture, more inspircd by stick insect studies, wag
found to be more effective | 76.22].

Galt et al. 176.23] used a genetic algorithm 10 de.
rive the optimal gait parameters for a Robug 11 robo,
an eight-legged, pneumatically powered walking and
climbing robot. The individua! genotypes represented
paramelers defining each leg's support period and the
timing relationships between leg movements. These
parameters were used as inputs to a mechanistic finjte-
state machine pattern-generiting algorithm that drove
the locomotion, Such algorithims, which are often used
in conventional walking machines, rely on relatively
simple control dynamics and do not have the same
potential for the kind of sophisticated multigait coor-
dination that complex dynamical neural network archi-

Fig. 76.5 Schematic diagram of a distributed neural net-
work for the control of locomation a5 used by Beer
ctal. [76.19]. Excitatory connections are denoted by open
friangles and inhibitory connections are denoted by filed
circles. C, command neuron; P, pacemaker neuron; FT,
foot motor neuron; FS and BS, forward swing and back-
ward swing molor ncurons; FAS and BAS, forward and
backward angle sensors
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rectures, such as those described in this section, have
been shown to produce. However, controllers were suc-
cesslully evolved for a wide range of environmenis and
{o cope with damage and systems failure (although an
individual controller had to be tuned to cach environ-
ment; they were not able to self-adapt across a wide
range of conditions). Gomi and Jde [76.24) evolved the
gaits of an cight-legged robot (Fig. 76.6) using geno-
types made of eight similarly organized sets of genes,
cach gene coding for leg motion characteristics such
as the amount of delay after which the leg begins to
move, the direction of the leg’s motion, the end po-
sitions of both vertical and horizontal swings of the
feg, and the vertical and horizontal angular speed of
the leg. After a few dozen generations, where evalua-
tion was on the robot, a mixture of tetrapod and wave
gails was obtained. Using the cellular encoding [76.25]
developmental approach — which genetically encodes
a grammar-lree program that controls the division of
cells growing into a dynamical recurrent neural net-
work of the kind used by Beer ctal. — Gruau and
Quarramaran [76.26] evolved a single-leg neural con-
wroller for the same eight-legged robot vsed by Gomi
and Ide. This generated a smooth and fast quadru-
pod locomotion gait (1 <EMETTTEEA and |E)TIRTEER).
Kodjabachian and Mever {76.27) extended this work
to develop more sophisticated locomotion behaviors.
Jakobi |76.28) successfully used bis minimal simu-
lation techniques (described in Sect. 76.3) 1o evolve
controllers for the same eight-legged robot as Gruau.
Evolution in simulation took less than 2h on what
would today be regarded as a very slow computer,
and was then successfully transferred to the real robot.
Jakobi evolved modular controllers based on Beer's
continuous recurrent networks to control the robot as
it engaged in walking about its environment, avoiding
obstacles and seeking out goals depending on the sen-
sory input. The robot could smoothly change gait, move
backward and forward, and even tum on the spot. More
recent work has used similar architectures to those ex-
plored by the researchers mentioned above, to control
more mechanically sophisticated robots such as the
Sony Aibo [76.29].

Recently there has been successful work on evolv-
ing coupled oscillator style neural controllers for
the highly unstable dynamic problem of biped walk-
ing. Reil and Husbands [76.30] showed that accurale
physics based simulations employing physics-engine
coftware could be used 1o develop controllers able
to generate successful bipedal gaits (o2 VIDED 3745 VN
Reil et al. have now significantly developed this tech-
nology to exploits its commercial possibilities, in the
animation and games industries, for the real-time con-
trol of physically simulated three-dimensional (3-D)

Fig. 76.6 The octopod robot built by Applied Al Systems
Inc.

humanoid characters engaged in a variety of motor be-
haviors (refer 1o [76.31] for further details). Coupled
neural oscillators have been evolved also to control the
swimming pattern of articulated, snuke-like. underwa-
ter robots using physics-based simulations 176.32].
Vaughan has taken related wortk in another direc-
tion. He has successfully applied evolutionary robotics
technigues to evolve a simulation of a 3-D ten-degree-
of-freedom bipedal robot. This machine demonstrales
many of the properties of human locomotion. By using
passive dynamics and compliant tendons, it conserves
energy while walking on a flat surface. Its speed and
gail can be dynamically adjusted and it is capable of
adapting to discrepancies in both its environment and its
body’s construction [76.33}. Parameters describing the
body shape (leg segment lenpths, hip width, etc.) and
properties of a continuous dynamical nevral network
coniroller were under genetic control. The machine
started out as a passive dynamic walker [76.34] on
a slope, and then throughout the evolutionary process
the slope was gradually lowered to a flat surface. The
machine demonstrated resistance (o disturbance while
retaining passive dynamic features such as a passive
swing leg. Wischmann and Passemant independently
100k a very similar approach [76.35}. Vaughan’s orig-
inal machine did not have a torso, but he has also
successfully applied the method to a simplified (wo-
Jdimensional (2-D) machine with a torso above the hips.
When pushed, this dynamically stable bipedal machine
walks either forward or backwards just enough to re-
Jease the pressure placed on it. It is also able to adapt
10 external and internal perturbations as well as vari-
ations in body size and mass [76.36]. These biped
examples make use of the co-evolution of body mor-
phology and neural controller, an idea also used in

Evolutionary Robatics | .. 5 first Steps 2039
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carlier, more abstract, work on evolved bipedal locomo-
tion by Endo et al. [76.37]. Although possible changes
10 the body morphology are quite tightly constrained,
nonctheless this aspect was important. This theme is
covered in more detail in the later section on Evolv-
ing Bodies, which also describes recent examples of
evolved walking behaviors in the context of body-brain
co-evolution.

McHale and Husbands [76.38, 39] have compared
many forms of evolved ncural controllers for bipedal
and quadrupedal walking machines. Recurrent dynami-
cal continuous time networks and GasNets (described

76.3 Simulation and Reality

Few of the experiments in the previous section were car-
ried out entirely on physical robots because:

I. Evolution may take a long time, especially if it is
carried out on a single robot that incamates the bod-
ies of all the individuals of the evolving population.

3. The physical robot can be damaged because popula-
tiens always contain a certain number of poorly per-
forming individuats (for example, colliding against
walls) by effect of random mutations.

3. Restoring the environment to initial conditions be-
tween trails of different individuals or populations
(Tor example, replenishing the arena with objects)
may not always be feasible without human interven-
tion.

4. Evolution of morphologics and evolution of robots
that can grow during their lifetime is almost impos-
sible with today’s technology without some level of
human intervention.

For those reasons, researchers often resort to evolu-
tion in simulation and transfer the evolved controllers
to the physical robot. However, it is well known that
programs that work welt in simulations may not func-
tion properly in the real world because of differences
in sensing, actwtion, and in the dynamic interactions
between robot and environment [76.41]. This reality
gap is even more evident in adaptive approaches, such
as evolutionary robotics, where the control system and
morphology are gradually crafted through the repeated
imeractions between the robot and the environment.
Therefore, robots will evolve to match the specifici-
ties of the simulation, which differ from the real world.
Although these issues clearly rule out any simulation
based on grid worlds or pure kinematics, over the last
10 years simulation techniques have dramatically im-
proved and resulted in soliware libraries that model
reasonably well dynamical properties such as friction,

in Sect. 76.7.3) were shown 10 have advamages iy
most circumstances. The vast majority of the studjeg
mentioned above were conducted for relatively be'.
nign environments. Notwithstanding this observation
we can conclude that the more complex dynamicai
neural network architectures, with their intricate dy-
namics, generally produce a wider range of gaits ang
generate smoother, more adaptive locomotion than the
more standard use of systems based on finile-state
machines employing parameterized rules governing
the timing and coordinatien of individual leg move.
ments |76.40].

collision, mass, gravity, and inertia [76.42]. These soft-
ware tools allow one to simulate articulated robots of
variable morphology and their environment as fast as,
or faster than, real time in a desktop computer.

Nonetheless, even physics-based simulations in-
clude small discrepancies that can accumulate over
time and result in very different behavior from real-
ity (for example, a robot may get stuck against a wall
in simulmion whereas it can get free in reality, or vice
versa). Also, physics-based simulations cannot account
for diversity of response profiles of the individual sen-
sors, motors, and gears of a physical robot. Several
methods can be used to cope with these problems and
improve the quality of the transfer from simulation to
reality.

A widely used method consists of adding indepen-
dent noise to the values of the sensors provided by the
model and to the end position of the robot computed by
the simulator [76.43]. Some software librarics allow the
introduction of noise at several levels of the simulation.
This solution prevents evolution from finding solutions
that rely on the specificities of the simulation model.
Another method consists in sampling the actual sensor
values of the real robot positioned at several angles and
distances from objects of different texture. Those val-
ues are then stored in a look-up table and retrieved with
the addition of noise according to the position of the
robot in the environment [76.44]. This method proved
to be very effective for generating controllers that trans-
{er smoothly from simulation to reality. A drawback of
this sampling method is that it does not scale up well to
high-dimensional sensors (e.g., vision) or gcometrically
complicated objects.

Another method, also known as minimal simula-
tions, consists of modeling only those characteristics
of the robot and environment that are relevant for the
emergence of desired behaviors [76.45]. These char-

:




el

Evolutionary Robotics ': 76.4 Behavior as a ComplexAdaptive System 204

acteristics. which are referred w as base-set features,
should be accurately modeled in simulation, Instead, all
the other characteristics, which are referred 1o as im-
plementation aspects, should be randomly varied across
several trials of the same individual in order to ensure
that evolving individuals do not rely on implementa-
tion aspects, but rely on base-set features only. Base-set
features must also be varied to some extent across tri-
als in order 1o ensure some degree of robustness of
the individual with respect to base-set features, but
this variation should not be so large that reliably fit
controllers fail 1© evolve at all. This method allows
very fast evolution of complex robot-cnvironment situ-
ations, as in the example of the hexapod walk described
in Sect. 76.2.1. A drawback of minimal simulations is
that it is not always easy to tell in advance which are the
base-set features that are refevant for the desired behav-
ior.

Yet another method consists of the coevolution of
the robot (control and/or morphology) and of the simu-
lator parameters that are most likely to differ from the
real world and that may atfect the quality of the trans-
fer |76.46]. This method consists of coevolving two
populations, one encoding the properties of the robot
and one encoding the parameters of the simulator. Co-
evolution happens in several passes through a two-stage
process. In stage one, a randomly generated population
of robots are evolved in the default simulator and the
best individual is tested on the real robot while the time
series of sensory values are recorded. In stage two, the
population of simulators is evolved to reduce the differ-
ence between the time series recorded on the real robot
and the time series obtained by testing evolved robots
within the simulator. The best evolved simulator is then
used for stage one where a new randomly generated
population is evolved and the best individual is tested
on the real robot to generate the time series for stage

two of simulator evolution. This two-stage coevolution
is repeated several times until the error between simu-
Jated and real robot behavior is the smallest possible.
it has been shown that approximately 20 passes of the
two-stage process are sufficient to evolve a good con-
trol system that could be transferred to an articulated
robot. In that case, the real robot was used to test only
20 individuals.

A recent approach tackles the simulation to reality
transter problem by using a multi-objective formula-
tion of ER in which iwo main objectives are optimized
via a Pareto-based multi-objective evolutionary algo-
rithm: (1) the fitness and (2) the transferability 176.47].
To evaluate the transferability a simulation-to-reality
disparity measure was defined in terms of the differ-
ence in behavior between simulation and reality for
any given controller. This measure is approximated
for each member of the population and the method
has successfully been demonstrated for walking behav-
iors | 76.47].

Finally, another method consists of genetically en-
coding and evolving the learning rules of the control
system, rather than its parameters (e.g., connection
strengths). The parameters of the decoded control sys-
tem are always initialized 10 small random values at
the beginning of an individual lifetime and must self-
organize using the learning rules |76.48]. This method
prevents evolution from finding a set of control param-
cters that fit the specificities of the simulation model,
and encourages emergence of control systems that
remain adaptive to partially unknown environments.
When such an evolved individual is transferred to the
real robot, it will develop online its control parame-
ters according to the genetically evolved learning rules
and taking into account the specificities of the phys-
ical world. This method is described in more detail
in Sect. 76.7.2 on evolution of learning.

76.5 Behavior as a Complex Adaptive System

Behavior is a dynamical process resulting from nonlin-
car interactions (occurring at a fast time rate) between
the agent’s control system, its body, and the environ-
ment {76.49, 501, At any time step, the environment and
the agent~cnvironment relation influence the body and
the motor reaction of the agent, which in tum influences
the environment and/or the agent-cnvironmental rela-
tion (Fig. 76.7). Sequences of these inteructions lead
to a dynamical process where the contributions of the
different aspects (i. ¢., the robot’s control system, the
robot's body. and the environment) cannot be sepa-
rated. ‘This implics that even complete knowledge of

the elements goveming the interactions provides little
insight into the behavior emerging from these interac-
tions [76.51,52].

An interesting property of evolutionary robotics is
that it can enable to synthesize robots displaying a cer-
tain behavioral capacity without specifying the manner
in which such capacity should be realized and/or the
combination of elementary behaviors that should be
produced and combined 1o achieve the desired overall
capacity. This allows the evolving robots to discover
and exploit behaviors that emerge [rom the interactions
between the robot control system, the robot body and
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the environment andfor from the interaction between
previously developed behavioral capacities 176.52).
The synthesis and exploitation of emergent properties,
in wrn, often allows evolving robots to discover solu-
tions that rely on refatively parsimonious control policy
and/or body structures.

For an example of how evolving robots can solve
an adaptive task on the basis of a simple control policy,
thanks to the possibility to exploit properties emerging
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Fig. 76.7 Schematization of how: (1) behavior can emerge
from several nonlinear interactions, occurring at fast time
rates, between the agent’s control system, its body, and the
environment, and (2) behavior can display a multi-level or-
ganization in which the robot/environmental interactions
and the interaction between lower-level behaviors give rise
to higher level behaviors that later affect the interactions
from which they originate
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Fig. 76.8 The environment and the robot. The environ-
ment consists of an arena of 60x35cm and contains
a cylindrical objects placed at a randomiy selected location
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from the agentfenvironmentat interactions,
sider the case of a Khepera robot placed in an areng
surrounded by walls (Fig. 76.8) that should evolve gp
ability to forage by finding and remaining close g
a food object (i.e., a cylindrical object) [76.53]. The
robot is provided with eight infrared sensors and twg
motors controlling the desired speed of the two corre-
sponding wheels. From the point of view of an external
observer, solving this problem requires robots able to:

let us ¢op-

1. Explore the environment until an obstacle is de-

tected,

Discriminate whether the obstacle detected is a wall

or a cylindrical abject.

3. Approach or avoid the object depending on the ob-
ject type,

I

A detailed analysis of the sensory patterns expe-
rienced by the robot indicated that the task of dis-
criminating the two objects is far from trivial sinee
the two classes of sensory patterns experienced by
robots close to a wall and close to cylindrical ob-
Jects overlap significantly. However, robots evolved
for the ability 10 solve this task resorted to a strat-
egy that does not require to explicitly discriminate
of the two types of objects [76.53]. This solution
(I )ATTTHRA) consists in reacting to sensory states so
that the robot/environmental dynamics converge into
a limit cycle near the cylindrical object, in which the
robot keep moving forth and back and left and right,
and not near a wall (Fig. 76.9),

a) 454 E- ; ’
B
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Fig.76.9a,b Angular trajectories of an evolved robot close
to a wall (a) and to a cylinder (b). The picture was obtained
by placing the robot at a random position in the environ-
ment, leaving it free to move for 500 cycles, and recording
its relative movements with respect 1o the two types of ob-
jects for distances smaller than 43 mm. For sake of clarity,
arrows are used to indicate the relative direction, but not
the amplitude of movements
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The possibility 1o discover and rely on these furns
of emergent bebavior allows evolving robots to find
computationally simple solutions to apparcatly com-
plex problems. Indeed, the foraging task described
above can be solved by a Khepera robot provided with
a simple reactive controller (i.e.. a feedforward neu-
ral network with eight sensory neurons that encode the
state of the corresponding infrared sensors directly con-
nected to two motor neurons that set the desired speed
of the two wheels).

76.4.1 Behavior Recombination and Re-Use

Evolving robots can recombine and re-use acquired el-
ementary hehavioral capacities to produce higher level
behaviors. This has been demonstrated in a series of
simulation experiments in which a population of hu-
manoid robots provided with an articulated arm, a cam-
era, and a touch sensor on the palm of the hand, have
been evolved for the ability to execute two-words im-
perative sentences constituted by the combination of
three action and three object words (reach, touch, move,
red-object, green-object. and blue-object) encoded by
six corresponding binary sensors |76.54].

During the evolutionary process the robots were
evaluated for the ability to comprehend seven out of
the nine possible sentences (that can be generated by
combining the three action and the three object words)
by exccuting the seven comresponding behaviors. The
robots were then post-cvaluated also on the other two
sentences not experienced during the evolutionary pro-
cess.

Some of the evolved robots were able o develop
the required skills and to generalize their capacities to
the two new sentences by executing the appropriaie cor-
responding behaviors (BMRTEIIE). Differenly from
the other individuals, the robots able to generalize
where characterized by a hierarchical organization in
which the nine behaviors were produced by combining
over time a set of elementary behaviors and in which the
same elementary behaviors was re-used to produce dif-
ferent high-level behaviors. More specifically the robots
able to generalize displayed a reach-X hehavior (that
consisted in moving the arm toward a red, or green, or
blue object), a touch behavior {that consisted in mov-
ing the hand until the object is touched irmespectively
from the color), and a move behavior (that consists in
keep moving the hand also after the object has been
touched irrespectively from the color) and combined
these lower-level behaviors in a compositional man-

ner to produce the nine required higher-level actions.
This means that. for example, the same reach red-object
behavior was used incombination with the touch or
the push behavior to produce a fouch the red-object
and a push the red-object behavior. For other works
discussing the emergence and the role of multi-level be-
havioral organizations sce {76.52].

76.4.2 Sensory-Motor Coordination

By acting robots inevitubly modify the robot-cnvi-
ronmental refation andfor the environment and conse-
quently the stimuli that they wiil experience next. By
exploiting the possibility to actively influence the per-
ceived stimuli through actions, robots can find adaptive
solutions based on parsimonious control policies. Ar-
tificial evolution constitutes an effective method for
discovering such type of solutions that are often hard
to imagine from the point of view of a human observer.
Indeed, examples of clever use of sensory-motor coor-
dination abounds in the evolutionary robotics literature.

Let us consider, for instance, the case of a Khepera
robot endowed with infrarcd and wheels speed sensors,
that can forage by ramaining close to large cylindrical
objects (food) while avoiding small cylindrical objects
(dangers) [76.55). From a passive perspective, that does
aot take into account the fat that the robot can self-select
uscful stimuli through action, the ability to discriminate
between sensory stimuli experienced near small and
large cylindrical objects requires a relatively complex
control policy since the two classes of stimuli strongly
overlap in the robot’s perceptual space. On the other
hand, the exploitation ol sensory-motor coordination
can can allow the robots to simplify the discrimination
problem.

Indeed, evolving robots tend to converge on a rather
simple solution that consists in circling around the
cylindrical objects, as soon as an object is perceived,
and in using the differential speed of the left and
right wheels sensed during the exccution of the object-
circling behavior to decide to keep circling around the
object (in the case of small differential speeds) or (o
abandon the object (in the case of large differential
speeds). Indeed, the execution of the object-circling be-
havior allows the robots to experience sensory stimuli
on the wheel sensors that are well differentiated for
small and large objects. This, in turn, allows them to
solve the object discrimination problem with a rather
simple but reliable control pelicy. For other examples
see [76.53, 56, 57
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76.5 Evolving Bodies

Most cvolutionary robotics experiments - and most
robotics experiments in general — assume that the body
plan of the robot has already been designed; an opti-
mization method is used to improve the control policy
only (The term body plan is here used 1o denote ail as-
pects of a robot’s design other than its control policy.
Such design considerations include the robot’s me-
chanical layout and maierial properties as well as its
sensor and motor distributions.). This emphasis be-
lies an assumption within the field of robotics, which
is that control policy design is non-intuitive and thus
should be automated, while choosing an appropriate
robot body plan is intwitive and thus can be manually
designed.

However, it has been shown that the. careful de-
sign of the robot’s body can have large and desirabie
impacts on its resulting behavior. For example, proper
curvature on the underside of a biped robot’s feet
(along with other settings) can allow it to walk down
a declined plane with no control policy at all (76.58].
Or, that modifications to an anthropomorphic robot
arm and hand can facilitate the evolution of active
categorical perception |76.59] (Active categorical per-
ception occurs when a robot or animal actively inter-
acts with objects of interest, and the sensory stimu-
lation resulting rom this physical interaction allows
for categorization of those objects.). These results fit
with the view of embaodied behavior, as outlined in
Fig. 76.7: because behavior arises from the interac-
tion between a robot's body and its environment, al-
ierations to the robot’s body will alter the resulting
behavior,

This suggests that it is useful to attomatically im-
prove not just a robot’s control policy but also its body
plan. Evolutionary algorithms are a uniquely well suited
1ol for this task because, unlike many tearning meth-
ads, they do not make assumptions about the structure
ol the system being optimized: the length of a robot’s
leg - or the number of legs — can be evolved just as cas-
ily as can the strength of a synaptic connection in an
artificial neural network.

76.5.1 (o-Evolving Body and Brains

The Sussex group was the first to demonsirate the
evolution of robot morphology: they evolved sensor
placements on a physical robot |76.15], although the
other aspects of the robot's body plan remain fixed,
A year later Sims [76.61 ) demonstrated an evolutionary
algorithm that improved the structure and pirameters
of the robots’ body plans and control policies. Although
Sim’s ereatures were virtual and operated in a simulated
environment, the robots exhibited a wide range of intu-
itive and non-inwitive body plans that allowed them 1o
swim, walk or compete over a limited resource 176.62].

Funes and Pollack | 76.63) demonstrated that it wis
possible to evolve three-dimensional forms in simu-
lation, build them in reality, and have the physical
structure act similarly to the originally-evolved simu-
lated structure. This was followed by work from the
same group in which robots evolved in simulation
were manufactured as physical robots using 3-D print-
ing technology {76.60] (Fig. 76.10). Although only the
plastic frame of the robot was printed and the electron-
ics and battery had to be manually added, this served
as a demonstration that, in principle, robot design could
be automated using evolutionary algorithms and robot
manulacture could be automated using rapid prototyp-
ing [76.64].

Since then, a number of rescarch groups have
cvolved robot body plans and control policies simul-
taneously for various purposes. Some researchers have
adapted this approach for studying biological ques-
tions. For example Long et al. [76.65] have evolved the
stiffness of artificial tails attached to physical swim-
ming robots: robots with tails of differing stiffness
have differing abilities to swim fast or turn weil. This
provides a unique experimental ool for investigating
how hackbones originally evolved in early vertebrates.
Clark et al. [76.66] also evolved the material propertics
of part of a robot fish, but focussed in this case on evolv-
ing the stiffness and shape of its fins in simulation. This
project had an engineering aim: the evolved fins were

Fig.76.10a,b An example

evolved robot from the GOLEM
project | 76.60. {a} The virtual robot,
as originally evolved in the simulated
environment. (b) The physical robet
comprised of a 3-D-printed plastic
frame and manually-added electronics
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manufactured and tested on physical robot fish and
were found 1o aid desirable swimming behavior.

Evolutionary algorithms can be used to explore the
space of possible robot body plans, but they can also
be used to explore metamorphosis, or how a robot’s
body plan might change over its lifetime. In recent
work Bongard 76.67] compared two approaches o
evolving walking behaviors for upright legged robots
(ETEERGE). In the first approach, upright legged
robots were evolved until successful walking was dis-
covered, In the second approach, locomution was first
evolved for legless, anguilliform robots that gradu-
ally grew legs while moving. As evolution proceeded
in this second approach, later generations of robots
gradually lost this infant legless body plan and in-
stead were born with the upright, legged body plan. It
was found that walking evolved for the upright legged
rohots more rapidly in the second approach, and that the
evolved controllers were more robust. The explanation
for this result is that the legless robot provides a form
of scaffolding that accelerates search: it is casier for
evolution to generate locomotion for the legless robot
because with the anguilliform body plan the robot can-
not [all over (Scatfolding is the phenomenon in which
a teacher introduces some aspect into the leamer’s en-
vironment that helps the learer 1o grasp a concept and
then later refine the concept when the scaffold is re-
moved | 76.68]. The canonical example of scatfolding is
training wheels for bicycles.). This locomotion strategy
is then refined subsequently by evolution to success-
fully control the upright and legged (and thus unstable)
robot.

The simultaneous evolution of robot body plans and
contro! policics offers other avenues for investigating
the relationship between body, brain and environment.
In {76.69) it was found that more complexly-shaped
robots were produced when evolved to walk over rough
terrain than when evolved to walk over flat terrain
(MMETFTEEER). This was due to the fact that robots
evolved in rough terrain evolved appendages and hooks
1o gain purchase between outcroppings and then pull or
push themselves forward.

Most recently Hiller and Lipson [76.701 have
demonstrated the evolution of soft robots: this requires
evolving not just the control policy of the robot and its
physical shape, but also the material properties of each
voxel comprising the machine. This allows for complex
three-dimensional patterning of soft and rigid material
throughout the robot, which can be exploited by evolu-
tion 1o produce locomotion [76.71]. Soft robots are an
ideal vehicle for demonstrating the power of evolution-
ary algorithms: the design and control of such machines
i highly nonintuitive, making manual design extremely
difficult.

Evalytipnary RADOUG | 76 ¢ pyglving Bodies
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76.5.2 Self-Modeling

The evolution of robot body plans can be useful not
just for robot desiga but also for increasing the adap-
tivity of a physical robot once it_has been designed
and deployed. For cxample in {76.72] it was shown
that a physical robot could be equipped with an on-
hoard simulator that the robot could use to continuously
evolve models of itself. These self-models reflect the
mechanical construction of the robot. This method was
found useful for robots that might sustain unanticipated
dJamage such as the mechanical separation of a leg: the
robot diagnoses the damage; it then evolves a simu-
lated damaged robot that accurately reflects the physical
damage: it evolves a compensatory control policy inter-
nally using the simulated, damaged robot; and finally
the physical robot uses the internally evolved compen-
satory control policy to continue moving despite its
injury. Figure 76.11 outlines this method.

Exploratory action synthesis

Self-model synthesis

arget behavior synthests
—

an
v

Fig.76.1a~f The machine begins by performing a random action
and collects the resulting sensor-motor data {a). An evolutionary
algorithm evolves a population of simulated robots that, when they
move, produce similar sensor-motor data as the physical machine
{b). Another algorithm searches for a new action for the physical
robot to perform {c). The physical robot performs the new action,
and re-evolves self-models to explain the result of the first action
and the new action ({a)). After several cycles of this self-modeling,
the best self-model is used 1o evolve new behaviors {d). Finally, the
physical robot executes these newly-evolved behaviors (e.f)
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A method for generalizing this to robot swarms
wis demonstrated in |76.73). Each robot in the swarm
maintained its own self-modeling engine, but would pe-
riodically export its best self-model and control policy
to others in the swarm. The result of this was that if one
robot was damaged and recovered, a second robot that
suffered similar damage recovered more rapidly.

Finally, instead of modeling the self, a robot could
create a model of another robot in its vicinity. Even bet-

76.6 Seeing the Light

Pioneering experiments on evolving visually guided be-
haviors were performed at Sussex University [76.75] on
a specially designed gantry robot (Fig. 76.12, see also
|apBIFEENR). Discrete-time dynamical recurrent neu-
ral networks and visual sampling morphologies were
concurrently evolved: the brain was developed in tan-
dem with the visual sensor {76.13,76,77]. The robot
was designed to allow real-world evolwtion by having
off-bourd power and processing so that the robot could
be run for long periods while being monitored by au-
tomatic fitness evaluation functions. A charge-coupled
device (CCD) camera points down towards a mirTor an-
gled at 45° as shown in Fig. 76.12. The mirror can
rotate around an axis perpendicular to the camera’s im-
age plane. The camera is suspended from the gantry,
allowing motion in the X, Y, and Z dimensions. This ef-
fectively provides an equivalent to a wheeled robot with
a forward-facing camera when only the X and ¥ dimen-
sions of translation are used. The additional dimension
allows flying behaviors to be studied.

———

Fig. 76,12 The gantry robot used in the visual discrimina-
tion task. The camera inside the top box points down at the
inclined mirror, which can be turned by the siepper motor
beneath. The lower plastic disk is suspended from a joy-
stick to detect collisions with obstacles

ter, the robot could evolve a model of the other rohog's
intentions and use this information 10 aid or thwar
the other robot’s actions, as demonstrated in {76.74),
Although the robots did not model cach other’s body
plans, this ability to model others in general is knowq
as Theory ol Mind. One could imagine how increag-
ing levels of recursion of such embedded mind reading
could provide continued evolutionary pressure toward
increasingly intelligent machines.

The apparatus was initially used in a manner sim-
ilar to the real-world experiments on navigation in the
looping maze with the miniature mobile robot described
in Sect. 76.2. A number of visually guided navigation
behaviors were successfully achieved, including navi-
gating around obstacles, tracking moving targets, and
discriminating between different objects [76.76]. The
evolutionary process was incremental. The ability to
distinguish between two different targets was evolved
on top of the single target-finding behavior. The chro-
mosome was of dynamic length so the neurocontroller
wis structurally further developed by cevelution to
achieve the new task (neurons and connections added).
In the experiment illustrated in Figs. 76.12 and 76.13,

a)

Fig.76.13a,b The shape discrimination task. {a} The posi-
tion of the robot in the arena, showing the target arca in
front of the triangle. {b) The robot camera’s field of view
showing the visual patches selected by evolution for sen-
sory input
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starting from a random position and orientation, the
robot had 10 move to the triangle rather than the rectan-
gle. This had 1o be achieved irrespective of the relative
positions of the shapes and under very noisy light-
ing conditions. Recurrent neural network controllers
were evolved in conjunction with visual sampling mor-
phologies. Only genetically specified patches from the
camera image were used (by being connected 10 in-
put neurons according to the genetic specification). The
rest of the image was thrown away. This resulted in
extremely minimal systems using only two or three
pixels of visual information, yet still able to perform
the task reliably under highly variable lighting condi-
tions | 76.13, 761

This was another example of staged, or incremental,
evolution to obtain control systems capable of solv-
ing problems that are either too complex or may profit
from an evolutionary methodology that discovers, pre-
serves, and builds upon subcomponents of the solution.
For an evolutionary method that incorporate strate-
gies to explicitly address this issue. interested readers
may refer to [76.78]. However, staged evolution re-
mains & poorly explored area of evolutionary robotics
that deserves further study and a more principled ap-
proach [76.79] in order to achieve increasingly complex
robotic systems.

76.6.1 Coevolution of Active Vision
and Feature Selection

Machine vision today can hardly compete with biolog-
ical vision despite the enormous power of computers.
One of the most remarkable — and often neglected — dif-
ferences between machine vision and biological vision
is that computers are often asked to process an entire
image in one shot and produce an immediale answer
whereas animals take time to explore the image over
time, searching for features and dynamically integrat-
ing information over time.

Active vision is the sequentiat and interactive pro-
cess of selecting and analyzing pans of a visual
scene [76.80-82]. Feature selection instead is the de-
velopment of sensitivity to relevant features in the
visual scene to which the system selectively responds,
¢.g., 176.83]. Euch of these processcs has been inves-
tigated and adopted in machine vision. However, the
combination of active vision and feature selection is
still largely uncxplored. An intriguing hypothesis is
that coevolution of active vision and feature selection
could greatly simplify the compuiational complexity of
vision-based behavior by facilitating each other’s task.

This hypothesis was investigated in a series of ex-
periments [76.84] on coevolution of active vision and
feature selection for behavioral systems cquipped with

a primitive moving retina and o deliberately simple ney.
ral architecture (Fig. 76.14). The neural architecture
was composed of an artificial reting and (WO sets of
output units. One set of output units determined the
movement and zooming factor of the retina, and the
other set of units determined the behavior of the system,
such as the response of a paitem-recognition system,
the control parameters of a robot, or the actions of a car
driver. The neural network was embedded in a behav-
ioral system and its inputfoutput values were updated
every 300 ms while its fitness was computed. Therefore,
the synaptic weights of this network were responsi-
ble for both the visual features on which the system
bhased its behavior and for the motor actions necessary
10 search for those features.

In a first set of experiments, the neural network was
embedded in a simulated pan-tilt camera and asked 1o
discriminate between triangles and squares of differ-
ent size that could appear at any location of a screen
(Fig. 76.15a), a perceptual task similar to that explored
with the gantry robot described in Sect. 76.5. The visual
system was free to explore the image for 60 s while con-
tinuously reporting whether the current screen showed
a triangle or a square. The fitness was proportional to

d) System ¢) Vision
behavior behavior
DO OO0 00O

¢} Proprioceptive
neurons

b} Visual scene

Fig.76.18a=f The neural architecture of the active vision
system is composed of: {a) a grid of visual neurons with
nonoverlapping receptive fields whose activation is given
by (b) the grey level of the corresponding pixels in the
image; (c) a sct of proprioceptive neurons that provide
information about the movement of the vision system:
(d} a set of outpul neurons that determine the behavior
of the system (pattern recognition, car driving, robot nav-
jzation); () a set of output neurons that determine the
hehavior of the vision system; and {f) a set of evolvable
synaptic connections. The number of neurons in each sub-
system can vary according 1o the experimental settings

Evolutionary Robotics | 76 ¢ seeing the Light  2ou7
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the amount ol correct responses accumulated over the
60 s for several sereenshots containing varous instances
of the two shapes. Evolved systems were capable of cor-
rectly identifying the type of shape with 100% accuracy
after a few seconds despite the tact that this recognition
problem is not linearly separable and that the neural net-
work does not have hidden units, which in theory are
necessary to solve nonlinearly separable tasks, Indeed,
the same neural network presented with the same set of
images and trained with supervised Jearning, but with-
out the possibility to actively explore the scene, was not
capable of solving the task. The evolved active vision
system developed sensitivity to vertical edges, oriented
edges and corners, and used its movement to search for
these features in order to tell whether the shape was
a triangle or a square. These features, which are also
found in the early visual system of almost all animals,
are invariant 1o size and location.

In a second set of experiments, the neural network
was embedded in a simulated car and was asked to drive
over several mountain circuits (Fig. 76.15b). The simu-
lator was a medified version of a car race video game.
The neural network could move the retina across the
scene seen through the windscreen at the driver’s seat
and control the steering, acceleration. and braking of the
car. The fitness was inversely proportional to the time
taken to complete the circuits without exiting the road.
Evolved networks completed all circuits with time laps
competitive to those of well-trained students controlling
the car with a joystick. The evolved network started by
searching for the edge of the road and tracked its rela-
tive position with respect to the edge of the windscreen
in order to contral steering and acceleration. This be-
havior was supposted by the development of sensitivity
to oriented edges.

In a third set of experiments, the neural network wis
embedded in a real mobile robot with a pan-tilt camera

Fig. 76.15 {a) An evolved individual explores the screen searching
for the shape and recognizes it by the presence of a vertical edge.
{b) Search for the edge of the road at the beginning of a drive over
& mountain road

that was asked to navigate in a square arena with low
walls located in an office (Fig. 76.16). The fitness wag
proportional to the amount of straight motion measured
over two minutes. Robots that hit the walls because they
watched people or other irrelevant features of the office
had lower fitness than robots that could perform long
straight paths and avoid walls of the arena. Evolved
robots tended to fixate the edge between the floor and
the walls of the arena, and twrned away from the wall
when the size ol its retinal projection became larger
than a threshold (|<SEIFLEM). This combination of
sensitivity to oriented edges and looming is also found
in the visual circuits of several insects and birds,

In a further set of experiments [76.85), the visual
pathway of the neural network was augmented by an
intermediate set of neurons whose synaptic weights
could be modified by Hebbian learning [76.86] while
the robot moved in the environment. All the other
synaptic weights were genetically encoded and evolved,
The results showed that lifelong development of the
receptive fields improved the performance of evolved
robots and allowed robust transfer of evolved neural
controllers from simulated to real robots, because the
receptive fields developed sensitivity to features cn-
countered in the environment where they happen to
be born (see also the section above on simulation and
reality). Furthermore, the tesults showed that the de-
velopment of visual receptive fields was significantly
and consisiently aifected by active vision as compared
to the development of receptive ficlds passively ex-
posed (o the same set of sample images. In other words,
robots evolved with active vision developed sensitiv-
ity to a smailer subset of features in the environment
und actively tracked those features o maintain a stable
behavior.

e -

Fig. 76.16 A mobile robot with a pan-tilt camera is asked
10 move within the walled arena in the office environment
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76.7 Computational Neuroethology

Evolutionary robotics is also used to investigate open
questions in neuroscience and cognitive science [76.87-
90} because it offers the vantage point of a behavioral
system that interacts with its environment [76.91]. Al-
though the results should be carefully considered when
drawing analogics with biological organisms, cvolu-
tionary robotics can generate and test hypotheses that
could be further investigated with mainstream neuro-
science methods.

For example, the active vision system with Hebbiun
plasticity described in the previous scction was used to
answer a question raised by Held and Hein [76.92] in
the 1960s. The authors devised the apparatus shown
in Fig. 76.17 where the free movements of a kitten
{active kitten) were transmitted to a second kiuen that
was carried in a gondola (passive kitten). The sec-
ond kitten could move its head, but its feet did not
touch the ground. Consequently, the two kitten re-
ceived almost identical visual stimulation, but only
one of them received that stimulation as a resuit of
body self-movement. After a few days in that envi-
ronment, only the active kitten displayed normal be-
havior in several visually guided tasks. The authors
suggested the hypothesis that proprioceptive motor in-
formation resulting from generation of actions was nec-
essary for the development of normal, visually guided
hehavior.

The kilten experiments were replicated by cloning
an evolved robot controller and randomly initializing
the synaptic values of the adaptive visual pathways in
both clones. One cloned robot was then feft free to move
in a square environment while the other cloned robot
was Torced to move along imposed trajectories, but was
free o control its camera position, just like the pas-
sive kitten [76.94). The results indicated that the visual
receptive fields and behaviors of passive robots differ
significantly from those of active robots. Furthermore,
passive robots that were later left free to move were no
longer capable of properly avoiding walls. A thorough
analysis of neural activation correlated with behavior
of the robot and even transplantation of neurons across
active and passive robots revealed that the poor perfor-
mance was due to the fact that passive robots could not
completely select the visual features they were exposed
to. Consequently, passive robots developed sensitivity
10 leatures that were not functional to their normal be-
havior and interfered with other dominant features in
the visual field. Whether this explanation also hold for
tiving animals remains to be further investigated, but at
least these experiments indicated that motor feedback
is not necessary to explain the pattern of pathological
behavior observed in animals and robolts.

76.7.1 Emergence of Place Cells

Let us now consider the case of an animal exploring
an enviroament and periodically retuming to its nest
to feed, It has been speculated that this type of situa-
tion requires the formation of spatial representations of
(he cavironment that allow the animal to find its way
home [76.95]. Different nevral models with various de-
arees of complexity and biological detail that could
provide such functionality have been proposed [76.96,
971.

Would a robot evolved under similar survival con-
ditions develop a spatial representation of the envi-
ronment and, if so, what type of representation would
that be? These questions were explored using the
sume Khepera robot and evolutionary methodology de-
scribed in Seet. 76,2 for reactive navigation in the
looping maze. The environment was a square arena with
a small patch on the {loor in a comer where the robot
could instantancously recharge its (simulated) battery
{(Fig. 76.18). The environmemt was located in a dark
room with a small light wower over the recharging sta-
tion.

The sensory system of the robot was composed of
eight distance sensors, two ambient-light sensors (one

fig. 76.17 The original apparatus in [76.92], where the
gross movements of a kitten moving almost freely were
transmitted to a second kitten that was carried in 2 gon-
dola, Both kitiens were allowed 10 move their head. They
received essentially the same visual stimulation because of
the unvarying pattern on the wabls and the center post of
the apparatws (after [76.93], with permission)
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on each side), one tloor-color sensor, and a sensor tor
battery charge level. The battery lasted only 20 and
had a linear discharge. The evolutionary neural net-
wotk included five fully connected internal neurons
between sensory and motor neurons. The same fitness
function described in Sect. 76.2 for navigation in the
looping maze was used, except for the middle term
which had been used to encourage siraight navigation in
the looping maze. The fitness value was computed every
300 ms and accumulated over the life span of the in-
dividual, Therefore, individuals who discovered where
the charger was could live longer and accumulate more
fitness by exploring the environment (individuals were
killed if they survived longer than 605 to limit the ex-
perimentation time).

The same physical robot evolved for 10 days and
nights as both the fitness and life span of individu-
als continued to increase (Fig. 76.19). After approx-
imately 200 generations, the robot was capable of
navigating around the environment, covering long tra-
jectories while avoiding both walls and the rechasging
arca (k@)EIEERIEA), When the battery was almost dis-
charged it initiated a straight navigation towards the
recharging area and exited immediately after battery
recharge to resume navigation. Best evolved individuals
always entered the recharging area one or two seconds
before full discharge of the battery. That implics that
robots must somehow calibrate the timing and trajec-
tory of their homing behavior depending on where they
happened to be in the environment.

In order to understand how that behavior could pos-
sibly be generated, a set of neurocthological measures

Fig. 76.18 Bird’s cye view of the arena with the light tower
over the recharging station and the Khepera robot

were performed using a laser positioning device thay
provided exact position and orientation of the robot
every 300 ms. By correlating the robot position and be-
havior with the activation of the internal neurons ip
real time while the evolved individual freely moved
in the cnvironment, it was possible to see that some
neurons spectalized for reactive bebaviors, such ag
ubstacle avoidance, forward motion, and battery mon-
itoring. Other neurons instead displayed more complex
activation patterns. One of them revealed a pattern of
activation levels that depended on whether the robot
was oriented facing the light tower or facing the op-
posite direction (Fig. 76.200. In the former case, the
activation pattern reflected zones of the environment
and paths typically followed by the robot during ex-
ploration and homing. For example, the robot trajectory
towards the recharging area never crossed the two gare
walls visible in the activation maps around the recharg-
ing station. When the robot faced the opposite direction,
the same neuron displayed a gradient ficld orthogonally
aligned with the recharging area. Fhis gradient provides
an indication of the distance from the recharging arca.
Interestingly, this pattern of activity is not significantly
atfected by the charge level of the battery.

The functioning of this neuron reminds of the clas-
sic findings on the hippocampus of the rat brain where
some neurons (also known as place cellys) sclectively
fire when the rat is in specific areas of the eaviron-
memt [76.98]. Also, the ortentation-specilic pattern of
neural activation measured on the evolved robot is rem-

a) Fitness

0 50 100 150 200
Gencrations

0 50 100 150 200 250
Generations

Fig. 76.19 {a) Average population fitness (continors line)
and fitness of the best individual (dorted fine). (b} Life span
of the best individuals measured as number of sensorimo-
tor cycles, or actions. [ndividvals start with a full batiery
which lasts 50 actions (20). if not recharged. The maxi-
mun life span is 150 actions

.

=

-_—.em oo T0

+




::: rat hippocampus, which are positioned ncarby place connected network of spiking neurons for driving
Te- cells, whose firing patterns depend on the rat head-  a vision-based robot in an arena painted with black
in ing direction with respect to an environmental land-  stripes of variable size against a white background
ed mark 176.99). Although the analogy between brains of - (Fig. 76.21). The Khepera robot used in these exper-
ne evolved robots and of biological organisms should not  iments was equipped with a vision turret composed
as be taken too literally, these resulis indicate that the two  of one linear array of grayscale photoreceptors span-
n- organisms converge towards a functionally similar neu- ning a visual field of 36°. The output values of a bank 5
ex ral strategy, which may be more efficient to address 1
of this Lypc.of si!ual?un than a strategy _thul‘ does .no.t .rely Facing fight Facing opposite cormer Vil
ot on representations (but only on reactive stralegies such ; 3
p- as random motion, light following, or dead reckon- 1 '.1
1 ing).
nt -
%= 76.7.2 Spiking Neurons Low
Y battery
te The great majority of biological neurons communicate
- using self-propagating electrical pulses called spikes,
1, bhut from an information-theoretic perspective it is not
y yet clear how information is encoded in the spike
5 train. Connectionist models [76.100], by far the most
L widespread, assume that what matters is the firing rate
y of a neuron, that is, the average quantity of spikes emit-

ted by the neuron within a relatively long time window
- (for example, over 100 ms). Alternatively, what matters l’:"" \

attery

o
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iniscent of the so-called head-direction nedrons in the

is the average number of spikes of a small population of
neurons at a give point. In these models the real-valued
output of an artificial neuron represents the firing rate,
possibly normalized relatively to the maximum attain-
able value. Pulsed models [76.101), instead, are based

Floreano and Mattinssi [76.103] evolved a fully

on the assumption that the firing time, that is, the pre-  Fig. 76.20 Activation levels (brightness propertional to activation)
cise time of emission of a single spike, may convey  of an internal neuron plotted over the environment while the robut
important information [76.102]. Spiking neuron models  was positioned at various locations in each of the four conditions
have slightly more complicated dynamics of synaptic  (facing recharging area or not, discharged battery or not). The

and membrane integration. Depending on one’s theory
of what really matters, connectionist or spiking models
are used,

However, designing circuits of spiking neurons that
display a desired functionality is still a challenging task.
The most successful results in the field of robotics ob-
1ained so far focused on the first stages of sensory pro-
cessing and on relatively simple motor control | 76. 103,
104). Despite these implementations, there are not yet
methods for developing complex spiking circuits that
could display minimally cognitive functions or learn be-
havioral abilities through autonomous interaction with
a physical environment.

Attificial evolution represents a promising method-
ology to generate networks of spiking circuits with
desired functionalities expressed as behavioral criteria
{fitness function). Evolved networks could then be ex-
amined to detect what communication modality is used
and how that correlates with observed behavior of the
robol.

vecharging area is located at the fop left corner of each map

iR iy : ‘f? i

Fig. 76.21 A network of spiking neurons is evolved to
drive the vision-based robot in the arena. The light be-
low the sotating contacts allows continuous evolution also
overnight
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of locul contrast detection filters were converied in
spikes (the stronger the contrast, the larger the num-
ber of spikes per second) sent to ten fully connected
spiking neurons implemented according to the spike re-
sponse model [76.106]. The spike series of a subset
of these neurons was translated into motor commands
(rore spikes per second corresponded to Faster rotation
of the wheel). The fitness function was the amount of
torward translation of the robot measured over 2 min.
Consequently robots that tumed in place or hit the
walls had comparatively lower fitness than robots that
could move straight and turm only to avoid walls.
The genome of these robots was a bit string that en-
coded only the sign of the neurons and the presence
of synaptic connections. Existing connections were set
to | and could not change during the lifetime of the
robot.

Evolution reliably discovered very robust spik-
ing controllers in approximately 20 generations, ap-
proximately 30h of cevolution on the real robot
(l>HUTTEET). Evolved robots could avoid not only
the walls, but any object positioned in front of them. De-
taited analysis of the best evolved controllers revealed
that neurons did not exploit time differences between
spikes, which one would have expected if optic flow
wis used to detect distance from walls. Instead, they
simply used the number of incoming spikes (firing rate)
as an indication of when to turn. When the robot per-
ceived a lot of contrast it would go straight, but when
the contrast decreased below a certain threshold (indi-
cating that it approached an object), it started to rn
away. This extremely efficient and simple result seems
10 be in contrast with theories of optic flow detection in
insects and may be worth considering as an alternative
hypothesis for vision-based behavior.

Spiking neural networks turned out to be more
cvolvable than connectionist models (at least for this
task). One possible explanation is that spiking neurons
have subthreshold dynamics that, to some extent, can
be affected by mutations without immediately affecting
the output of the network.

The robust results and compact genetic encoding
encouraged the authors to use an even simpler model of
spiking neuron so that the entire neural network could
be mapped in less than 50 bytes of memory. The evo-
tutionary algorithm was also reduced to a few lines of
code and the entire system was implemented within
a programmable intelligent computer (PIC) microcon-
troller without the need for any external computer for
data storage. The system was used for a sugar-cube
sobot (Fig, 76.22) that autonomously and reliably de-
veloped the ability to navigate around a maze in less
than an hour [76.107]. Interestingly, evolved spiking
controllers developed a pattern of connections where

spiking neurons received connections from a
patch of neighboring sensors, but not from olhers mal)
sors, and were connected only 10 neighboring spj li?n.
neurons, This pattern of connectivity is also obsewgﬁ
in biological systems and encourages specialization of
neurons 10 sensory features,

76.7.3 GasNets

This section dcscu:ibcs. another style of artificial neura)
network strongly inspired by those pants of contempo-
rary neuroscience that emphasize the complex electro.
chemical nature of real nervous systems, In particular,
they make use ot an analogue of volume signaling,
whereby neurotransmitiers freely diffuse into a rela-
tively large volume around a nerve cell, potentially
affecting many other neurons [76.108, 109]. This exotic
form of neural signaling does not sit easily with classi-
cal pictures of brain mechanisms and is forcing a radical
rethink of existing theory [76.110-113]. The class of
artificial neural networks developed o explore artifi-
cial volume signaling are known as GasNets {76.114),
These are essentially standard neural networks aug-
mented by a chemical signaling system comprising
a diffusing virtual gas which can modulate the response
of other ncurons. A number of GasNet variants, inspired
by different aspects of real nervous systems, have been
explored in an evolutionary robotics context as anifi-
cial nervous systems for mobile autonomous robots,
They have been shown to be significantly more evolv-
able, in terms of speed to a good solution, than other
forms of neural networks for a variety of robot tasks
and behaviors [76.38, 1 14—116]. They are being inves-
tigated as potentially useiul engineering tools and as
a way of gaining helpful insights into biological sys-
tems [76.112,117-119].

By analogy with biological neuronal networks, Gas-
Nets incorporale two distinct signaling mechanisms.,
one electrical and one chemical. The underlying elec-
trical network is a discrete-time-step recurrent neural
network with a variable number of nodes. These nodes

s
Fig. 76.22 The Alice sugar-cube robot equipped Wi“} the
evolutionary spiking neural network implemented within
its PIC microcontroller
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are connecied by cither excitatory or inhibitory links
{Fig. 76.23).

In addition to this underlying network in which posi-
tive and negative signals flow between units, an abstract
process loosely analogous to the diffusion of gaseous
modulators is at play. Some units can emit virtual gases
which diffuse and are capable of modulating the behav-
jor of other units by changing the profile of their out-
put functions. The networks occupy a 2-D space; the
diffusion processes mean that the relative positioning
of nodes is crucial 1o the functioning of the network.
Spatially, the gas concentration varies as an inverse ¢x-
ponential of the distance from the emitting node with
a spread governed by a parameter r with the concentra-
tion set to zero for all distances greater than r. The total
concentration of gas at a node is determined by sum-
ming the contributions from all other emitting nodes.

For mathematical convenience, in the original Gas-
Net there are two gases, one whose modulatory effect
is to increase the transfer function gain parameter and
one whose effect is 10 decrease it. Thus the gas does
not alier the electrical activity in the network directly
but rather acts by continuously changing the mapping
between input and output for individual nodes, either
directly of by stimulating the production of further vir-
wal gas. The general form of the diffusion is based on
the properties of a (real) single-source neuron is mod-
cled in detail by Philippides etal. 76.112,1 17]). The
modulation chosen is motivated by what is known of
NO modulatory effects at synapses |76.120}. For full
details see [76.114].

Various extensions of the basic GasNet have been
produced. Two in particular are strongly inspired by
contemporary neuroscience. The plexis madel is di-
rectly inspired by a type of signaling seen in the
mammalian cerebral cortex in which the NO signal
is generated by the combined action of many line
NO-producing fibers, giving a targeted clond which is
distant from the neurons from which the fiber plexus
emanates [76.118]. In the plexus GasNet, which mod-
cls this form of signaling at an abstract level, the spatial
distribution of gas concentration has been modified to
be uniform over the area of affect. The center of this
gas diffusion cloud is under genetic control and can be
distant from the controlling node (which, by analogy, is
the source of the plexus) |76.116}. All other details of
the models are identical 1o the original GasNet model.
as described earlier. The receptor GasNet incorporates
an aspect of biological ncuronal networks that has no
analog in the vast majority of artificial neural networks
(ANNS): the role of receptor molecules. Although neu-
roscience is o tong way from a full understanding of
receptor mechanisms, a number of powerful sysiems
level ideas can be abstracted.

Neuron 1

Neuron 35 0 88

£

Neuron 6

Neuron 4 Neuron 5

A GasNet. Neuron 3 is emitting gas, and modulating
neuron 2 despite there being no synaptic conneclion.

Fig. 76.23 A basic GasNet showing positive {solid) and
negative (dashed) elecirical connections and a diffusing
virtual gas creating a chremical gradient

Details of the receptor variant are similar 1o the ba-
sic GasNet except there is now only one virtual gas
and each node in the network can have one of three
discrete quantities (zero, medium, maximum) of a num-
ber of possible receptors. The modulation the diffusing
neurotransmitter affects at a neuron depends on which
receptors are present. The strength of & modulation at
a node is proportional to the product of the gas concen-
tration at the node and the relevant recepror quantity. In
the original GasNet, any node that was in the path of
a diffusing transmitter would be modulated in a fixed
way. The receptor model allows site-specific modu-
lations, including no modulation (no receptors) and
multiple modulations at a single site {[76.116] for lur-
ther details).

Although most of the GasNet variants described in
this section have been successfully used in a number
of robotic tasks, their evolvability and other properties
were thoroughly compared on a version of the (gantry)
robot visual discrimination task described in Sect. 76.5,
| BSTEEETA. All aspects of the nctworks were under
genetic control: the number of nodes, the connectivity
and, in the case of the GasNets, all parameters gov-
erning volume signaling (including the position of the
nodes and whether or not they were virtual gas emit-
ters). The visual sampling morphology was also under
evolutionary control. The original basic GasNet was
found to be significantly more evolvable than a vari-
ety of other styles of connectionist neural networks as
well as a GasNet with the volume signaling disabled.
Successful GasNet controllers for this task tended to be
rather minimal, in terms of numbers of nodes and con-
nections, while possessing complex dynamics [76.1 14].
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Later expenments compannyg the basic GasNet with the
plexus and receptor variants showed the latter two to be
considerably more evolvable than the former, with the
receplor GasNet being particularly successtul [76.116].
These GasNet experiments demonstrated that the intri-
cate network dynamics made possible by the artilicial
volume signaling mechanisms can be readily harnessed
to generate adaptive behaviors in autonomous agents.
They also throw up such questions as why GasNets
are mere evolvable than many other forms of ANN
and why there is a difference in evolvability between
GasNet variants. In order to gain insight into what fac-
tors are most important in GasNet evolvability, several
other varieties were studied, including non-spatial Gas-
Nets where the diffusion process is replaced by explicit
gas connections with complex dynamics and version
with other forms of modulation and diffusion [76.119).
Detailed comparative studies of these variants with
each other, and with other forms of ANN, were per-
formed using the visual discrimination task described
above |76.116, 119].

The comparative studies revealed that the rich dy-
namics and additional timescales introduced by the
sas played an important part in enhanced evolvabil-
ity, but were not the whole story {76.116, 119]. The
particular form of modulation was also important -
multiplicative or exponential modulation (in the form
of changes to the transter function) were found to be
effective, but additive modubations were not. The for-
mer kind of modulations may well conter evolutionary
advantages by allowing nodes to be sensitive to differ-
ent ranges of input (internal and sensory} in different
contexts. The spatial embedding of the networks also
appears (o play a role in producing the most effective
coupling between the two distinet signalling processes
telectricat and chemical). By exploiting a loose, tlexi-
ble coupling butween the two processes, it is possible
to significantly reduce destructive interference between
them, allowing one 10 be rned against the other while
searching for good solutions [76.115, 116, §21]. Similar
forces may be at play in spiking neural networks, where
sub-threshold and spiking dynamics interact with cach
other, which although not yet compared to GasNets,
were shown to be more evolvable than connectionist
networks. Measurements ol the degree of coupling in
the GasNets variants versus speed of evolution sup-
ported this view [76.116]; the receptor GasNet, for

76.8 Evolution and Learning
Evolution and learning (or phylogenetic and ontoge-

netic adaptation) are two forms of biokogicai adaptation
that differ in space and ume. Evolution is a process

which the evolutionary search process has the most dj.
rect control over the degree o coupling between the sig-
naling processes, and which has a bias towards a looge
coupling, was by far the most evolvable | 76,116},

Analysis of GasNet solutions often reveals high
levels of degeneracy, with functionally equivalent sub.
networks oceurring in many different forms, some in-
volving gas and some not [76.121). Their genotype to
phenotype mapping (where the phenotype is robot be-
havior) is also highly degenerate with many different
ways of achieving the same outcome (e.g., moving node
positions, changing gas diffusion parameters or adding
new connections can all have the same eifect), This iy
especially true when variable length genotypes are used
to efficiently sculpt solutions in a search space of vari-
uble dimensions. The levels of degeneracy are generally
significantly higher than when using connectionist net-
works. These properties partly explain the robustness
and adaptability of GasNets in noisy environments and
are another important factor in their evolvability (there
are many paths to the same phenotypical outcome with
reduced probabilities of lethal mutations) {76.119, 122].
In the most successiul varieties of GasNet, multi-scale
dynamics, modulation and spatial embedding act in
concert to produce highly evolvable degenerate net-
works.

These and ongoing investigations indicate that ex-
plicitly dealing with the electrochemical nature of ner-
vous systems is likely to be an increasingly {ruitful
area of research, both for evolutionary robotics and for
neuroscience, that will likely force us to broaden our
notions of what behavior-generating mechanisms might
look like.

Because of its ability to explore whole classes of
underspecified models, ER is being increasingly used
to develop or explore neural models aimed at answer-
ing specific questions in neuroscience [76.88-90] or
to probe new theories about possible neural mecha-
nisms [76.90]. One intriguing recent hypothesis is that
one of the forms of plasticity on which the brain relies
is itself a form of evolution via natural selection acting
within neural tissue [76.123, 124]. The units of selec-
tion in this case are aclivity and connection patterns
which are copied between groups of neurons. Imespec-
tive of whether or not it occurs in nature (and it might),
this kind of mechanism could be employed in a whole
new kind of evolutionary robotics.

of selective reproduction and substitution based on
the existence of a population of individuals display-
ing variability at the genetic level. Learning, instead,
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is a set of modifications taking place within cach sin-
gle individual during its own life time. Evolution and
learning operate on different time scales. Evolution is
a form of adaptation capable of capturing relatively
slow environmental changes that might encompass sev-
eral generations (¢.g., the pereeptual characteristics of
food sources for a given species). Leamning, instead,
allows an individual to adapt to environmental modifi-
cations that are unpredictable at the generational level.
Learning might include a variety of mechanisms that
produce adaptive changes in an individual during its
lifetime, such as physical development, neural matura-
tion, variation of the connectivity between neurons, and
synaptic plasticity. Finally, whereas evolution operates
on the genotype, learning affects only the phenotype,
and phenotypic modifications cannot directly modify
the genotype.

Rescarchers have combined evolutionary tech-
niques and learning techniques (supervised or unsuper-
vised learning algorithm such us reinforcement learning
or Hebbian learning; for a review see [76.125]). These
studies have been conducted with two different pur-
poses:

1. Identifying the potential advantage of combining
these two methods from the point of view of devel-
oping robust and effective robots.

2. Understanding the role of the interaction between
learning and evolution in nature.

Within an evolutionary perspective, learning has
several different adaptive functions. First, it might al-
lows individuals to adapt to changes that oceur too
quickly 1o be tracked by evolution {76.126}. Sccondly,
learning might allows robots to use information ex-
tracted during their interaction with cavironment to
develop adaptive characters ontogenetically without
nceessarily discovering these characters through ge-
netic variations and without encoding these charucters
in their genome. To understand the importance of this
aspect, we should consider that evolutionary adaptation
is based on an explicit but concise indication of how
well an individual robot coped with its environment —
the fitness value of a robot. Ontogenetic adaptation, on
the contrary, is based on extremely rich information —
the state of the sensors while the robot interacts with
its environment. This huge amount of information en-
codes very indirectly how well an individual is doing in
different phases of its lifetime or how it should modify
its behavior to increase its fitness, However, cvolving
robots that have acquired a predisposition to exploit
this information to produce adaptive changes during
their lifetime might be able to develop adaptive char-
acteristics on the (ly, thus feading to the possibility to

produce complex phenotypes on the basis of parsimo-
nious genotypes. Finally, learning can help and guide
cvolution. Although physicul changes of the phenotype,
such as strengthening of synapses during learning, can-
not be written back into the genotype, Buldwin [76.127]
and Waddingion | 76.128] suggested that learning might
indeed affect the evolutionary course in subtle but ef-
fective ways. Baldwin’s argument was that learning
accelerates evolution because suboptimal individuals
can reproduce by acquiring during life necessary fea-
wures for survival. However, variation occurring during
successive generation might lead to the discovery of ge-
netic traits that lead (o the establishment of the same
characteristics that were previously acquired thorough
lifetime learning. This latter aspect of Baldwin's cf-
fect, namely indirect genctic assimilation of learned
traits, has been later supported by scientific evidence
and defined by Waddington [76.128] as a canalization
clfect.

Learning however. also has costs such as: (1) a de-
lay in the ability to acquire fitness (due to the need
to develop fit behavior ontogenetically), and (2) in-
creased unreliability due to the fact that the possibility
1o develop certain abilities ontogenetically is subjected
to partially unpredictable characteristics of the robot-
cnvironment interaction [76.129]. In the next two sub-
sections we describe two cxpetiments that show some
of the potential advantages of combining evolution and
learning.

76.8.1 Learning to Adapt to Fast
Environmental Variations

Consider the case of a Khepera robot that should ex-
plore an arena surounded by black or white walls
1o reach a target placed in a randomly selected loca-
tion [76.126]. Evolving robots are provided with eight
sensory neurons that encode the state of the four corre-
sponding infrared sensors and two motor neurons that
control the desired speed of the two wheels, Since the
color of the walls change every generation and since the
color significantly affects the intensity of the response
of the infrared sensors, evolving robots should develop
an ability to infer whether they are currently located in
an environment with while or black walls and learn o
modify their behavior during lifetime. That is, robots
should avoid walls only when the infrared sensors are
almost fully activated in the case of arenas with white
walls, while they should avoid walls even when the in-
frared sensors are slightly activated in the case of arenas
with black walls.

Robots were provided with a neural controller
(Fig, 76.24) including four sensory neurons that en-
coded the state of four corresponding infrared sensors;
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two motors neurons that encoded the desired speed of

the two wheels: and two teaching neurons that encoded
the teaching values used to modify the connection
weights from the sensory neurons (o the motor neurons
during the robots” lifetime. This special architecture al-
lows evolving robots 1o transform the sensory states
expericnced by the robots during their lifetime into
teaching signals that might potentially lead 1o adaptive
variations during lifetime. Analysis of evolved robots
revealed that they developed two different behaviors
that are adapied to the particular arena where they hap-
pen 1o be born (surrounded by white or black walls).
Evolving robots did not inherit an ability to behave ef-
fectively, but rather a predisposition to learn to hehave.
This predisposition to learn involves several aspects
such as a tendency to experience useful learning experi-
ences, a tendency to acquire useful adaptive characters
through learning, and a tendency to channel variations
toward different directions in different environmental
conditions [76.126].

76.8.2 Evolution of Learning

In the previous example, the evolutionary neural net-
work leamed using a standard learning rule that was
applied to all synaptic connections. Floreano and Mon-
dada [76.130] explored the possibility of genetically
encoding and evolving the learning rules associated 1o
the different synaptic connections of a neural network
embedded in a real robol. The main motivation of this
line of work was to cvolve robots capable of adapt-
ing 10 a partially unknown cavironment, rather than
robots adapted to the environment(s) seen during evo-
lution, In order to prevent evolutionary tuning of the
neural network 1o the specificities of the evolutionary
environment {which would limit transfer 10 different

Motors Teaching

Sensors

Fig. 76.24 A sclf-teaching network, The output of the two
teaching neurons is used as o teaching value for the two
maotor newurons. The weights that connect the sensory neu-
rons (o the teaching neurons do not vary during the robots’
lifetime while the weights that connect the sensory neurons
10 the motor nearons are moditied with an error-correction
algorithm

covironments or teansfer from simulation w reality),
the synaptic weight values were not genetically ep.
coded. Instead, each synaptic connection in the network
was described by three genes that defined its sign, i
leaming rule, and its learning rate (Fig. 76.25), Every
time a genome was decoded into a newral network ang
downloaded onto the robot, the synaptic strengths were
initialized to small random values and could change ac-
cording to the genetically specified rules and rates while
the robot interacted with the environment. Variations of
this methodology included a more compact genetic en-
coding where the learning properties were associated to
a neuron instead of a synapse. All synapses afferent to
a neuron used its genetically specified rules and rates,
Genes could encode four types of Hebbian learning that
were modeted upon neurophysiological data and were
complementary to each other [76.131].

Experimental results in a nontrivial, multitask en-
vitonment (Fig. 76.26, |<HERINIEE) indicated tha
this methodology has a number of significant advan-
tages with respect to the evolution of synaptic strengths
without learning |76.48]. Robots evolved faster and
obtained better fitness values, Furthermore, evolved be-
haviors were qualitatively different, notably in that they
did not exploit minimal solutions tused to the envi-
ronment (such as wming only on one side, or turning
in circles tuned to the dimensions of the evolutionary
arena). Most important, these robots displayed remark-
able adaptive propertics atter evolution, Best evolved
individuals: (1} transferred perfectly from simulated

Pre-synaptic  Post-synaptic

unit \ unit

Synapse
: — Sign :— Sign
B — Lcluming
rule
- I Strength — .
{ | | | Learning
:] 4] | rate
Genetically Adaptive
determined

Fig. 76.25 Two methods for genetically encoding a synap-
tic connection. Genetically deteemined synapses cannot
change during the lifetime of the robot. Adaptive synapses
instead are randomly initialized and can change during
lifetime of the robot according to the leaming rules and
rates specified in the geaome
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1o physical robots, (2) accomplished the task when
the light and reflection properties of the environment
were modified, (3) accomplished the sk when key
landmarks and target areas of the environment were
displaced, and (4) transierred well across morpholog-
ically different robotic platforms. In other words, these
robots were setected for their ability to solve a par-
tially unknown problem by adapting on the fly, rather
than for being 4 solution to the problem scen during
evolution.

In further experiments where the genetic code for
cach synapse of the network included one gene whose
value caused its remaining genes to be interpreted as
connection strengths or learning rules and rates, 80% of
the synapses made the choice of using learning, rein-
forcing the fact that this genetic strategy has a compar-
atively stronger adaptive power [76.131]. This nethod-
ology could also be uscd to evolve the morphology of
neural conirollers were synapses are created at runtime
and therefore their stirengths cannot be genetically spec-

76.9 Evolution of Social Behavior

In the previous sections. we limited our analysis to indi-
vidual behaviors. i. €., to the evolution of robots placed
in an environment that does not include other robots.
The evolutionary method, however, can also be applied
10 evolve social behaviors in which multiple robots
situated in the same environment interact between
themselves in cooperative or competitive mannets.

As we will see, competitive co-evolution is particu-
larly interesting from the point of view of synthesizing
progressively more complex capacities and from the
point of view of developing solutions that are robust
with respect to environmental variations. Cooperative
evolution instead is particularly interesting for the pos-
sibility to solve problems that cannot be handled by
a single robot, because of physical constraints or limited
behavioral capabilities §76.134] and to develop solu-
tions that are robust.

76.9.1 Coevolving Predator and Prey Robots

Competitive coevolution, for example the coevolution
of two populations of predator and prey robots that
are evolved for the ability w catch prey and 1o es-
cape predators, respectively, has two characteristics
that are particularly interesting (rom an evolutionary
robotics perspective. The first aspect is that the competi-
tion between populations with different interests might
spontaneously lead to a sort of incremental evolution-
ary process where evolving individuals are faced with

——

Fig. 76.26 (a} A mobile robot Khepera equipped with a vision
module can gain fitness points by staying on the grey ured only
when the light is on. The light is normally off, but it can be switched
on if the robot passes over the black area positioned on the other
side of the arena. The robot can detect ambicnt light and wall color,
but not the color of the fleor. (b) Behavior of an individual evolved
in simulation with genetic encoding of learning rules

ified [76.132). Recently, the adaptive properties of this
type of adaptive genetic encoding were conlirmed also
in the context of evolutionary spiking neurons for robot
control [76.133].

progressively more complex challenges (although this
is not necessarily the case). Indeed, in initial genera-
tions the task of the two populations is refatively simple
because opponents have simple and poorly developed
abilities on average. After a few generations, however,
the abilities of the two populations increase and, con-
sequently, the challenges for each population become
more difficult. The second aspect consists of the fact
that the environment varies across generations because
it includes other coevolving individuals. This implies
that coevolving individuals should be able to adapt to
ever-changing environments and to develop behaviors
that are robust with respect to environmental varia-
tions [76.135].

The potential advantages of competitive coevolu-
tion for evolutionary robotics have been demonstrated
by a set of experiments conducted by Floreano and
Nolfi [76.136,137] where two populations of robots
were evolved for the ability to catch prey and escape
predators, respectively (Fig. 76.27).

The results indicated that both predator and prey
robots tended to vary their behavior throughout gen-
erations without converging on a stable strategy. The
behavior displayed by individuals at each generation
tended to be tightly adapted to the counter-stralegy
exhibited by the opponent of the same generation
(YHEHE ), This evolutionary dynamic however
does not reaily lead to long-lasting progress because,
after an initial evolutionary phase, the coevolutionary
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Fig. 76.27 Experimental setup. The predator and prey
robot (from left to right) are placed in an arena surrounded
by walls and are allowed to interact for several trials start-
ing at different randomly generated orientations. Predators
are selected on the basis of the percentage of trials in which
they are able to catch (i. e., to touch) the prey, and prey on
the basis of the percentage of trials in which they were able
to escape (i e., to not be touched by) predators. Predators
have a vision system, whereas the prey have only short-
range distance sensors, but can go twice as fast as the
predator. Collision between the robots is detected by a con-
ductive belt at the base of the robots

Fig. 76.28 An s-bot and a simulated swarm-bot consisting of four
s-bots assembled in chain formation

process led to a limit cycle dynamic where the same
small sct of behavioral strategies recycled over and aver
again along generations [76.137]. This limit cycle dy-
namic can be explained by considering that prey robots
tended to vary their behavior in order to disorient preda-
tors as soon as predators become effective against the
currest bebhavioral strategies exhibited by prey robots.
However, experiments (76.138] where robots were
allowed to change their behavior on the fly on the ba-
sis of unsupervised Hebbian learning rules showed that

T ——

the evolutionary phase where coevolving robots were
able 1 produce real progress was significantly longer,
and evolved predators displayed an ability to elfectively
cope with prey exhibiting different behavieral sirate.
gies by adapting their behavior on the fly to the prey’s
behavior, Prey instead tended to display behavior thyg
changed in unpredictable ways.

Further experiments showed that competitive co.
evolution can solve problem that the evolution of a sin.
gle population cannot. Nolfi and Floreano (76.137)
demonstrated that the atiempt to evolve predators robog
for the ability to catch a fixed pre-evolved prey pro-
duced lower performance with respect to control exper-
iments where predators and prey were coevolved at the
sume time,

76.9.2 Evolving Cooperative Behavior

As testified by social insects, colonies of simple co-
operating individuals can display remarkable capaci-
ties and exhibit self-organising behaviors in which the
spatio-temporal pattern observed at the system level
emerge from numerous interactions among the indi-
vidual robots. On the other hand, designing collec-
tive robotic systems of this sort constitutes a difficult
problem due to the indirect relationship beitween the
desired group behavior and the characteristics of the
individual robots. By evaluating the robotic system as
a whole (i.e., by sclecting the robots on the basis of
the global behavior that emerge from a large number
of robot/environmental and robot/robot interactions),
Evolutionary Robotics provides a means for discover-
ing ctfective behavioral solutions and simple and robust
control policies [76.139}.

Recent research showed that teams of evolved
robols can:

I. Develop robust and effective coordinated behav-

ior [76.140, 141]

Collaborate by  assuming

role [76.141, 142] (|<REETE)

3. Display sclf-organizing properties [76.143]

4. Develop and use communicative capabili-
ties [76.144-146].

!J

complementary

Morcover, some of the research carried in this
arca demonstrated how evolutionary robotics expen-
ments can contribute to model biological phenomena,
¢.g.. 10 identify the evolutionary conditions that enable
the emergence of cooperative communicative behav-
iors [76.146] or the mechanisms enabling the evolution
ol elfective division of labour strategies {76.147]
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Here we briefly review a series of experiments
where swarm-bots [76.148), 1. e.. groups of autopomous
robots capable of assembling by physically connect-
ing together, were evolved for the ability to display
coordinated motion (EEEIEE). Each individual
robot consisted of a main platform (chassis) and tur-
ret that could actively rotate with respect to each other
(Fig. 76.28). The chassis included tracks with teethed
wheels for navigation on both rough and flat terrain,
and infrared sensors pointing 1o the ground. The tur-
ret included a gripper, sixteen light-sensors distributed
around the body, a loudspeaker, three microphones,
and a (raction sensor placed between the turret and
the chassis to detect the direction and the intensity of
the traction force that the turret exerts on the chassis,
Swarm-bots were formed by several robots provided
with identical neurai controllers and assembled together
so to form a single physical entity.

By evolving the neural controllers of these Swarm-
bots, Baldassare et al, [76.140] demonstriated how the
robots can display a robust and effective coordinated
capacities that allow the individuals to negotiate and
converge on a coherent direction and to keep mov-
ing along that direction by compensating the dis-
alignments originating during motion. Such behav-
ioral capacity was robust enough to allow a smooth
transfer from simulation 1o reality and to allow the
robots to to generalize their capacity 1o rugged ter-
rains. fn an extended experiments in which the s-bots
were also equipped with infrared sensors, speakers
and microphones. the evolved swarm-bots also showed
a capacity to avoid dangers (e.g., holes) by coordi-
nately changing direction as soon as one s-bot detected
a hole [76.149].

Evolved swarm-bots generalized their coordinated
motion capabilities also when they were tested in differ-
cnt conditions {e.g., when they were assembled in much
more numerous groups andfor in different topologies, or
when they had to also carry heavy objects by pushing
and pulleding them in a coordinated manner). Finally,
when placed in new environmental conditions (e.g., in
environment with obstacle and walls), the swarm-bots
spontaneously displayed new behavioral skills (related
to acquired skills), such as the ability 1o cooperatively
avoid obstacles, without any further adaptation. This
ability 10 display new related behaviors, in new behav-
ioral conditions, emerged as a result of the dynamical
process originating from the interaction of the same
robots with the new environmental conditions [76.142,
150].

76.9.3 Evolution of Communication

Communication represents a key aspect in collective
behaviors. Recent research in evolutionary robotics has
demonstrated how sophisticated communication capa-
hilities can emerge and evolve in population of robots
selected for the ability to perform tasks requiring coor-
dination and/or cooperation.

The analysis of these experiments indicale that
communicative interactions often originate as the re-
sult of cues, that provide useful information to other
robots, produced inadveriently during the execution of
specific behaviors {76.146, 151]. The presence of these
cues create the basis for the development of an abil-
ity to react to them in an adaptive way thus leading
to the establishment of adaptive communicative inter-
actions in which robots produce signals and react to
detected signals adaptively. The establishment of these
forms of communicative interactions then create the
adaptive conditions for the co-evolution of signalling
and response strategies [76.152] (<PRIEENIIA).

The reliability and stability of the resulting com-
munication system depend on the level of relatedness
(i. ¢., genetic similarity) between robots and the level at
which they were selected {76.146]. Robots that are ge-
netically higly refated or that are sclected on the basis of
the behavior exhibited by the group evolve reliable sig-
nals and stable communicative conventions. In contrast,
when relatedness between robots is low and selection
is acting at the level of the individuals, the evolution-
ary process might lead to the emergence of instable,
incffective and in some case deceptive communication
forms |76.153, 154].

The evolution of communication is strongly inter-
linked with the cvolution of other behavioral capac-
ities [76.155). Indeed, after all, robots need to de-
velop appropriate behaviors to access andfor generate
the information 1o be communicated and/or o react
to detected signals appropriately. The co-adaptation
of behavioral and communicative skills might lead
to prolonged innovation phases in which the devel-
opment of behavioral capacities create the adaptive
conditions for the development of communication ca-
pacities and vice versa [76.151, 152]. Moreover, the
co-adaptation of behavioral and communication capac-
ities tend to lead to highly contingent evolutionary
processes in which the capacitics possessed by the
population at a certain evolutionary phase strongly in-
fluence the outcome of the successive phases {76.152,
156] (BN TEIER).
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76.10 Evolutionary Hardware

In recent years, technology advancements have allowed
researchers 10 explore evolution of electronic circuits.
In this section, we briefly summarize some foundational
work in this direction.

76.10.1 Evolvable Hardware
Robot Controflers

In most of the work discussed so far some form of ge-
netically specified neural network, implemented in soft-
ware, has been at the center of the robot control system.
Work on a related approach of evolving control sys-
iems directly onto hardware dates back to Thompson’s
work in the mid 1990s {76.157]. In contrast to hard-
ware controliers that are designed or programmed (o
follow o well-defined sequence of instructions, evolved
hardware controllers are directly configured by evolu-
tion and then allowed to behave in real time according
to semiconductor physics. By removing standard elec-
tronics design constraints, the physics can be exploited
to produce highly nonstandard and often very efficient
and minimal systems [76.158].

Thompson |76.157] used artificial evolution to de-
sign an onboard hardware controller for a two-wheeled
autonomows mobile obot engaged in simple wall-
avoidance behavior in an empty arena. Starting from
a random orientation, and position near the wall, the
robot had to move (o the center of the arena and stay

a)

[5)

b)

0

Fig.76.29a-d Wall-avoidance behavior of & robot with an evolved
hardware controiler in virtual reality (a=c) and the real world {(d)

there using limited sensory input (Fig. 76.39). The gj.
rect current (DC) motors driving the wheels were ngg
allowed 1o run in reverse and the robol’s only sensorg
were a pair of time-of-flight sonars rigidly mounted on
the robot, peinting left and right.

Thompson’s approach made use of a so-called dy-
namic state machine (DSM) - a kind of generalized
read-only memory (ROM} implementation of a finite-
state machine where the usual constraint of strict syn-
chronization of input signals and state transitions are
relaxed (in fact put under evolutionary conirol). The
system had access to a global clock whose frequency
was also under genetic coptrol. Thus evolution deter-
mined whether cach signal was synchronized to the
clock or allowed to fiow asynchronously. This allowed
the evolving DSM to be tightly coupled to the dynam-
ics of interaction between the robot and environment
and for evolution to explore a wide range of systems
dynamics. The process took place within the robot in
a kind of virmwal reality in the sense that the real evoliv-
ing hardware controlled the real motors, but the wheels
were just spinning in the air. The movements that the
robot would have actually performed if the wheels had
been supporting it were then simulated and the sonar
echo signals that the robot was expected Lo receive were
supplied in real time to the hardware DSM. Excellent
performance was attained after 35 generations, with
good transfer from the virtual environment to the real
world (Fig. 76.29).

Shortly after this research was performed, particu-
lar types of ficld programmable gate arrays (FPGAs)
which were appropriate for evolutionary applications
became available. FPGAs are reconfigurable systems
allowing the construction of circuits built from ba-
sic logic elements. Thompson exploited their prop-
eriies to demonstrate evolution directly in the chip.
By again relaxing standard constraints, such as syn-
chronizing all elements with a central clock, he was
able to develop very novel forms of functional cir-
cuits, including a controller for a Khepera robot
using infrared sensors to avoid obstacles |76.158,
159].

Following Thompson's pioncering work, Kevmeu-
fen ctal. evolved a sobot control system using
a Boolean function approach implemented on gate-
level evolvable hacdware [76.160). This system acted
as u navigation system for a mobile robot capable of
focating and reaching a colored ball while avoiding ob-
stacles. The robot was equipped with infrared sensors
and an vision system giving the direction and distance
10 the target. A programmable logic device (PLD) was
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e L}
: used 10 implement a Boulean function in its disjunc-  robot [76.161]. Roggen ctal. devised a multicellu-
: tive form. This work demonstrated that such pate-level  far reconfigurable circuit capable of evolution, seit-
. fE cvolvable hardware was able to take advantage of the repair, and adaptation {76.162], and used it as a sub-
f’d" { correlations in the input states and 1o exhibit useful  strate for evolving spiking controllers of a wheeled
;q:‘“ : generalization abilities. thus allowing the ¢volution of  robot |76.163). Although evolved hardware controflers
& - cobust behavior in simulation {ollowed by a good trans-  are not widely used in evolutionary robotics, they still
2l fer into the real world. hold out the promise ol some very usclul properties,

In a rather different approach, Ritter ctal. used such as robustness to faults, which make them inter- >
igé: an FPGA_ implementation of an onboard evolution- csling for extreme condition applications such as space :-;
nites ary algorithm to develop a controller for a hexapod robotics. =
syn- ;:Iq'\

are =
12; 76.11 Closing Remarks
e Evolutionary robotics is a young and integrated ap- also a tool for investigating open questions in biology
“:2; proaf:h o robot dcv_elopmcnl without human inter- conc_cming e-vulutionury. dcvclqpmcnml. and h'ruin dy-
am. vention where m.achmcef changc and.ndupt- by cap- famics. Its nchnf:ss andlfecundnly make us believe that
— |tal|21.ng on the interactions wny their environment. this approach fmll c‘untmue to grow and progress to-
ems DCSpl'lc mma! :skt:pllcusm by mainstream and ugpllcd wards the creation of a new species of machines capuble
2 in robolics practitioners and even by pioncers of this ap-  of sclf—cvo‘lulmn. ) _ ‘
olv- proach l?6.l64]l, over the years the field has been To.gum a prat!cal knqw[ec!gc. interested _rcad—
cels ; cunstamly growing with new m(fll’.l()d‘i and approa‘chcs ers might use soltware }thru_ncs '-i}lCh as Imm('z-
the i for c?nlvmg more complex, efficient, and sometimes  work for autonomous robotics simulation and unalysn_s
had i surprising robotic systems. In some areas, SUC!I s mor- (FARSA) {76.165], an upcn-sof}w:m: tool that permit
\nar : phology and self-assembly, evolutionary robotics is still  to carry on evolutionary robolics experiments based
ore the most widely used and powerful approach. on a variety of robotic platforms ;mq to replicate and
Jent Evolutionary tobotics is not only a method for au-  vary some of the experiments described in this chap-
vith tomatic robot development inspired by biology, but  ter [76.166).
real
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