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Abstract—In this paper we present a model which allows to 
co-evolve the morphology and the control system of realistically 
simulated robots (creatures).  The method proposed is based on 
an artificial ontogenetic process in which the genotype does not 
specify directly the characteristics of the creatures but rather 
the growing rules that determine how an initial artificial 
embryo will develop on a fully formed individual. More 
specifically, the creatures are generated through a 
developmental process which occurs in time and space and 
which is realized through the progressive addition of both 
structural parts and regulatory substances which affect the 
successive course of the morphogenetic process. The creatures 
are provided with a distributed control system made up of 
several independent neural controllers embedded in the 
different body parts which only have access to local sensory 
information and which coordinate through the effects of 
physical actions mediated by the external environment through 
the emission/detection of signals which diffuse locally in space. 
The analysis of evolved creatures shows how they display 
effective morphology and control mechanisms which allow 
them to walk effectively and robustly both on regular and 
irregular terrains in all the replications of the experiment. 
Moreover, the obtained results show how the possibility to 
develop such skills can be improved by also selecting 
individuals on the basis of a task-independent component 
which reward them for the ability to coordinate the movements 
of their parts.  

I. INTRODUCTION 
HE attempt to evolve complete artificial creatures (i.e. 
embodied and situated agents in which both 

morphological and control characteristics are adapted during 
the evolutionary process) has been and still represents a key 
long term goal for the Artificial Life and Evolutionary 
Robotics community. 

After the pioneering work of Karl Sims [1-2], who 
demonstrated the feasibility of the idea, and the related 
model of Lipson and Pollack [3], who demonstrated how 
complete agents evolved in simulation could enter in the 

physical world through a semi-automatic manufacturing 
process, several other researchers attempted to developed 
models that could be more effective [4]-[8], [10]. The issue 
of whether these methods can be scaled up to tackle non–
trivial problems and/or can be competitive with respect to 
alternative methods (for example with respect to methods in 
which parts of the characteristics of the robots are designed 
by the experimenter) still remains an open question.  
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The possibility to make progresses, in this respect, 
crucially depends from the possibility to identify a 
genotype-to-phenotype mapping with the following 
characteristics: evolvability, expressivity, and simplicity. By 
evolvability we mean that the probability that genetic 
variations lead to improvements of creatures’ adaptive skills 
should not be too low. By expressivity we mean that 
variations at the level of the genotype should potentially lead 
to a large number of possible alternative solutions with 
respect to both the space of possible morphologies and the 
space of possible control systems. By simplicity, we mean 
that the rules that determine the relation between the 
genotype and the phenotype should be as simple as possible 
so to avoid the need, from the point of view of the 
experimenter, to deal with too many parameters to be chosen 
and optimized. 

In this paper we describe a model which permits the co-
evolution of the morphology and the control system of 
realistically simulated artificial creatures which are evolved 
for the ability to locomote on flat and irregular terrains. The 
method is characterized by the following features: 

(i) An indirect encoding in which the genotype does not 
specify directly the characteristics of the phenotype but 
rather the way in which the embryo develop into a full 
formed individual in a realistic 3D space in which physical 
objects cannot overlap (as in most of the models referenced 
above). 

(ii) The presence of regulatory processes which are 
realized through the synthesis in space of genetic products 
which later affect the morphogenetic process (as in [9]). 

(iii) The adoption of a highly distributed approach in 
which robots are made up of several independent neural 
controllers embedded in the different body parts which only 
have access to local sensory information and which 
coordinate so to exhibit a coherent and effective behaviour. 
More precisely, the different body parts coordinate through 
the effects of physical actions mediated by the external 
environment through the emission/detection of signals 
which diffuse locally in space. 

 (iv) The adoption of a relatively simple formalism which 
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attempt to maximize the need to keep the model as simple as 
possible and the number of parameters as small as possible. 

(v) The use of a selection criterion which also includes a 
task-independent component which favor the evolution of 
the required skill. More precisely the fitness function used 
include two components which reward the robots for the 
ability to accomplish the desired task (locomote at the 
highest possible speed, in the case of the experiments 
performed) and for the ability to coordinate the movements 
of their parts (for more details see below). 

The model proposed is loosely inspired by evolutionary-
ancient biological organisms which are not provided with a 
central nervous system and by simple organisms, such us 
stick insects [18] which display a high degree of 
decentralization. Our goal, however, is not that to model 
specific biological organisms, but rather to identify general 
mechanisms which can lead to the autonomous design of 
complete and evolvable artificial systems based on local 
distributed control. In particular, we aim to investigate 
whether creatures with high distributed organization formed 
by a collection of elements, which operate independently on 
the basis of local information, are evolvable, and if this 
evolvability results in creatures capable to perform requested 
task.  

The analysis of the obtained results demonstrates how the 
method proposed allowed the synthesis of effective and 
robust behaviours after relatively short number of 
generations in all the replications of the experiments. 
Moreover, the analysis of the best evolved individuals 
demonstrates how the evolutionary process lead to the 
generation of a wide range of morphological structures and 
walking styles. The obtained results confirm the hypothesis 
that the use of an additional task-independent component, 
that reward the robots for coordinating the movement of 
their parts, facilitate the evolution of effective behaviours. 
Finally, the analysis of the characteristics of the robots 
throughout generations indicates that the major transitions 
during the evolutionary process typically involve significant 
variations of the robots morphology which enable the 
conditions for the synthesis and the retention of several 
adaptive variations during the immediate successive 
generations.  

II. MODEL DESCRIPTION 
In this section we describe the developmental process that 

determines how creatures develop from a single elementary 
unit into complete creatures provided with an articulated 
body, sensors, and actuators. In the following sub-sections 
we describe the genotype of creatures (initial embryo, 
growing rules and distributed control system) and the 
evolutionary process. 

A. Genotype: Embryo 
At the beginning of the developmental process, creatures 

consist of an initial  ‘embryo’.  

 
Figure  1: (a) an elementary unit; (b) the orthogonal planes representing the 
area of maximum concentration of the corresponding regulatory substances 
α, β, and γ; (c) concentration distribution of the three corresponding 
regulatory substances. 
 

Each embryo (see Figure  1) is composed of an 
elementary unit (a cupped cylinder with a length of 5.4 cm 
and a diameter of 1.4 cm), and three regulatory substances, 
(α, β, and γ) distributed inside and outside the elementary 
unit.   

The concentration of regulatory substance varies with 
respect to the distance from the plane of the maximum 
concentration. More precisely, the planes that determine the 
concentration of the three regulatory substances intersect the 
first elementary units and are oriented along the three main 
axis (Figure  1b) and the concentration of the three 
regulatory substances varies linearly along the left-right, 
dorsal-ventral and the rostral-caudal axis, respectively, with 
concentration of 1.0 on the corresponding plane which 
linearly decrease up to 0.0 for distances equal or greater than 
the maximum propagation range of the corresponding 
substance (Dα, Dβ, and Dγ).  

The first elementary unit is identical for all individuals 
and is not subjected to the evolutionary process whereas all 
data regarding regulatory substances (plane position and 
rotation, and maximum propagation) are encoded inside the 
genotype. 

B. Genotype: Growing Rules 
Each genotype encodes 15 developmental rules and a 

vector of 15 indexes which indicates the order with which 
the developmental rules are executed. 

All rules comply with the same pattern that is formed by a 
condition part and an action part which is executed in the 
location/s of the current embryo where the condition part 
holds. The condition part encodes the regulatory substances 
(within the following possibilities [α, β, γ, τ]) and the 
concentration of the substances (within the range [1.0, 0.0]) 
which leads to the execution of the action part. Since at each 
given stage of the developmental process, the condition part 
might be valid in any, one, o es: add-unit action and add-
regulatory-substance action. 



 
 

 

 
Figure  2: (a) An example of the plane in which the substance has the 
maximum distribution and of the circular surface in which the condition is 
satisfied. (b) An exemplification of the six points in which new elementary 
units can be attached. (c) An exemplification of a case in which the 
condition is satisfied at one of the ends of the elementary units. (e) An 
exemplification of the way in which the new element is attached in case (d). 

 
The add-unit action adds from 0 to 6 elementary units in 

the location/s of the current embryo in which the condition 
part hold/s. A preliminary check has been done before 
adding new elements. In particular, if new element does not 
intersect any existing elements then it will be added, 
otherwise it will be discarded. 
The parameters of this action include:  
(1)  Six binary values which encode whether or not the 

elementary units are grown along six possible 
perpendicular orientations (0°, 60°, 120°, 180°, 
240°, 300°) with respect the longitudinal axis of the 
circular surface in which the condition holds (Figure  
2a, b, c). When the condition is satisfied at one of 
the end points of the cylinder, the new elementary 
unit grows along the same axis of the elementary 
unit in which the condition is satisfied (Figure  2d, 
e).  

(2) An integer value which determines whether the new 
elementary units are connected through a fixed joint 
or a motorized joint with one degree of freedom 
(DOF) within the following possible cases (x, y, or 
z) and within the following limits [ -30°: +30°]. The 
maximum force and the maximum velocity applied 
to the motorized joint correspond to 404 Nm and 9,6 
rad/sec respectively. 

(3) A vector of values which encodes the connection 
weights and biases of the artificial neural network 
(see below) which control the corresponding DOF  
(if any). Each parameter is encoded with 8 bits and 
normalized in a floating point value in the range  
[-15.0, +15.0]. This implies that the neural network 
controllers which are generated through the same 
rule have the same characteristics whereas those that 
are generated by different rules might differ. 

The add-regulatory-substance action adds a new 
regulatory substance with a concentration which varies 
proportionally to the distance with respect to a new plane. 
This new plane is created in the point in which the condition 
is satisfied with the same orientation of the regulatory 
substance which triggered the execution of the action. 

(Figure  3). 
The parameters of the add-regulatory-substance actions 

include: 
(1) An integer value in the range [0, 3] which encodes 

the type of regulatory substance added. 
(2) A floating point value in the range [3.0, 8.0] that 

encodes the size of the plane which determines the 
diffusion of the regulatory substance.  

 
Figure  3: New source substance is added 
 

C. Genotype: Neural Controller 
Each elementary unit provided with a motorized joint 

includes a neural network controller with a fixed 
architecture consisting of five sensory neurons directly 
connected to five motor neurons (Figure  4). 

The neural controller has access to the current angular 
position of the corresponding joint and regulates the 
frequency of oscillation of the joint. Neural modules are also 
allowed to communicate between themselves by producing 
up to four different signals and by detecting the signals 
produced by other neural controllers located within a 
maximum Euclidean distance. 

 
Figure  4: The architecture of neural controller 
 

The first sensory neuron encodes the current angular 
position of the corresponding motorized joint (normalized in 
the range [-1.0, 1.0]). The other four sensory neurons 
encode how many signals produced by other neural modules 
are detected. Each neural module can produce four different 
signals (A, B, C, and D) that diffuse and can be detected up 
to a certain distance (DA, DB, DC, and DD in the case of 
signals A, B, C, and D respectively). Detection is a binary 
value, and the total sum of detected signals is normalized in 
the range [0.0, 1.0]. 

The desired position of each joint is determined by a 
sinusoidal oscillator with a frequency that is initially 
assigned randomly in the range [7.0, 14.0]Hz and that is 
later increased or decrease in each time step within the same 
range on the basis of the current output of the corresponding 
neural controller. More precisely the frequency increases in 



 
 

 

the range [0, 1.4]Hz for outputs in the range (0.5, 1.0], and 
drecreases in the range [0, -1.4]Hz, for outputs in the range 
(-0.5, -1.0]. The other four output neurons are threshold 
units which determine whether the signal A, B, C. and D are 
produced (value is 1) or not (value is 0). For more details on 
this type of neural controllers and for an analysis of how 
signals can lead to coordination in a distributed system used 
to control a robot with a fixed morphology see [13][14]. 

D. The Evolutionary Process 
The initial population consists of 100 genotypes. Each 

genotype includes a set of genes which encode the initial 
substances in the embryo, the developmental rules and the 
vector which determine the order with which rules are 
executed. Parameters are randomly generated within the 
corresponding intervals. 

The 20 best genotypes of each generation are allowed to 
reproduce by generating five copies each (elitism is applied 
in firsts five genotype only). During reproduction each gene 
is mutated (i.e. replaced with a new randomly selected value 
in the corresponding range) with a probability of 3%. 
Moreover, each element of the vector which encodes the 
indexes and the order with which developmental rules are 
expressed can be moved at the end of the vector with a 
probability of 2%.  In order to increase the level of 
variability, the 10 worst-fitting individuals are replaced by 
new randomly generated ones every 50 generations To 
introduce more variability every 50 generations the 10 
individuals with the worst fitness are replaced with new 
randomly generated ones (preliminary analysis indicate that 
this increase variability during the first generations only, 
since the probability that these randomly generated 
individuals will be selected becomes very low in successive 
generations).  

The evolutionary process lasts for 500 generations (i.e. 
the process of testing, selecting and reproducing robots is 
iterated 500 times). Each individual genotype is allowed to 
develop in a free space into the corresponding phenotype 
and is tested in the environment for 5 trials (2 trials on a flat 
terrain and 3 trials on an irregular terrain). 

At the beginning of each trial the current phase and the 
current frequency of oscillation of each joint is set randomly 
within the corresponding range and the creature is placed at 
a height of approximately 5.5 cm from the ground (i.e. this 
implies that creatures should be able to stand on the 
posture/s in which they are able to locomote). Creatures are 
then allowed to move for 6000 time steps lasting 1.5ms 
each. 

For each time step the state of the sensors and of the 
motors of each neural controller, the torque exerted by the 
motorized joints, and the dynamics of the 
creature/environmental interaction are updated. Creature and 
creature/environmental interactions are simulated by using 
the ODE dynamical simulation engine [19]. 

The fitness formula includes two components which score 

individuals for the ability to move as fast as possible and for 
the ability to produce coordinated movements. The first 
component is calculated by measuring the Euclidean 
distance travelled by an individual during its lifetime from 
time step 2000 on (i.e. the distance travelled during the first 
phase in which the creatures fall down and start coordinating 
does not effect their fitness). The second component consists 
of the average mutual information [20] calculated between 
the current frequency of oscillation of each couple of joints. 

The total fitness is computed by normalizing, in the range 
[0.0, 1.5] the value of the two components with respect to an 
estimation of the maximum distance which can be travelled 
by a creature and with respect to the theoretical maximum of 
the mutual information, respectively. 

III. RESULTS 
In the next three sections we describe; (A) the results 

obtained by running 10 replications of the experiment based 
on the model described above, (B) the results obtained in 
other control experiments in which we analyzed the effect 
obtained by varying some of the characteristics of the model 
proposed, (C) the results obtained by analyzing the course of 
the evolutionary process. 

A. Results 
From a qualitative and quantitative analysis of the 

performance of the best individual of the last generation, in 
each replication we observed that all individuals evolve an 
ability to locomote effectively (Table 1). The average 
distance covered by individuals varies for different 
replications and achieves appreciable results in the case of 
the best replications. Performance also differs with respect 
to type of terrain (Table 1). In some replications individuals 
display an ability to move effectively on both types of 
environments. 

By analyzing the morphology of evolved creature (Figure 
5) and the number of DOFs (Table 1) we can see how the 
evolutionary process leads to a large variety of 
morphological structures. This indicates that the model 
chosen has a good level of expressiveness. As can be seen 
from the figure, the evolved morphologies show a high 
degree of symmetry. This characteristic can be explained by 
considering that in the model proposed the developmental 
process occurs in the 3D space and is governed by 
regulatory substances which have a distribution which is 
symmetrical with respect to the plane of maximum 
concentration. 

We can also observe how all evolved creatures are 
provided with morphologies which allow them to avoid 
falling on a side or tipping over, and which allow them to 
master obstacles of various sizes in irregular terrains. By 
visually inspecting the behavior of evolved creatures (see 
the movies available from http://laral.istc.cnr.it/esm/dros1-0) 
we can identify three phases: (a) an initial phase in which 
the creature falls on the terrain by assuming a certain 



 
 

 

posture, (b) an intermediate phase in which the movements 
of the joints, which are initially not-coordinated, become 
coordinated, (c) a final phase in which the creature is 
coordinated, move at its full speed, and try to compensate 
the perturbations which occur during motion (which tend to 
reduce the level of coordination). 

 
Figure 5: Morphology of the best evolved creatures of each replication of 
the experiment. Some creatures are shown on the flat and some creatures are 
shown on the irregular terrain. The grey scale colours of the segments and 
of the joints correspond to the id of the developmental rules which 

generated them. Joints of the same colour are provided with identical neural 
controllers. A true colour version of this picture is provided in the following 
web page: http://laral.istc.cnr.it/esm/dros1-0. 
 

 During the first phase, all the creatures (with the 
exception of replications r2 and r4, which are illustrated 
below) show an ability to assume a precise posture, after 
falling down on the ground, from which they are able to 
coordinate and locomote. This is accomplished thanks to the 
fact that the evolved morphologies are suitable both to stand 
on a preferred posture and to walk from that posture. Indeed, 
some of the evolved morphologies display segments which 
do not play a major role (or any role) for locomotion but 
which reduce the risk of tipping over (see for example r9). 
In some cases, creatures are able to assume more than a 
single posture from which they can locomote effectively. 
This is the case of creatures r2 and r4 which can assume two 
and four legged postures respectively, from which they can 
walk equally well. 

During the second phase, all creatures show an ability to 
coordinate on an effective gait (with the exception of 
creature r0 and r3 which succeeds in only part of the trials). 
Some of the creatures (r7 and r9), do not use signals and 
coordinate by only exploiting the effects of the forces 
applied to each joint, mediated by the collisions with the 
external environment, on the posture assumed by the entire 
creature and the angular position of each of its joints. These 
physical interactions, in fact, codetermine the current state 
of each joint which, in turn, affects the propriosensors of 
each corresponding neural controller and thus the output of 
the neural controller itself which determines the desired 
speed of oscillation of the corresponding joint. It is 
important to note that this ability to coordinate depends on 
two aspects: (a) an ability to modify the frequency of 
oscillation of each joint on the basis of the actual position of 
the same joint which is determined by its previous position, 
by the previous postures of the entire creature, and by the 
previous actions executed by each joint, (b) the morphology 
of the creature.  

The rest of the creatures (r0, r1, r2, r3, r4, r5, r6, r8) 
mainly exploit signals to coordinate. The analysis conducted 
indicate that coordination is achieved by producing signals 
which encode information about the current position of the 
joint emitting the signals and which are used by the neural 
controllers of the joints receiving the signal to regulate their 
speed of oscillation so to improve the coordination between 
the different part of the creature. For a detailed analysis of 
how a similar type of coordination process is achieved in 
robots with a fixed hexapod morphology provided with a 
similar distributed control system, see in [13] [14]. 

During the third phase, a qualitative observation of 
creatures’ behavior indicate that they move at their full 
speed in a coordinated manner by compensating for relative 
misalignments between the joints which originate during 
motion especially in irregular terrains. Evolved creatures 
differ significantly in the way in which they locomote (see 



 
 

 

movies available from http://laral.istc.cnr.it/esm/dros1-0). In 
particular, we can identify three families of locomotion 
styles: (1) a quadruped gait style (displayed by r0, r4, r6 and 
r9); (2) a jumping style (displayed by r1, r3, r7, r9); (3) a 
dragging style in which the effect of the friction between un-
actuated elements and the ground is minimized or 
maximized when the pulling legs are moving in the direction 
of motion or in the opposite direction (displayed by r2 and 
r5). As can be observed by inspecting the morphology and 
the behavior of evolved creature, the control mechanisms 
and the developmental rules are tightly co-adapted. 

 

Covered 
Distance (cm) 

Mutual 
Information 

 

Flat 
Terrain 

Irregular 
Terrain 

Flat 
Terrain 

Irregular 
Terrain 

DOF Signals

r0 84.4890 54.3952 0.0137 0.0054 10 4 
r1 73.3929 40.2574 1.5745 1.4689 5 4 
r2 49.8966 25.4535 1.0629 1.1363 6 4 
r3 79.1521 45.7687 0.0107 0.0090 15 4 
r4 71.6282 59.7889 0.7690 0.6650 20 4 
r5 62.1776 41.8614 0.2337 0.1038 4 4 
r6 145.091 84.8877 0.0234 0.0230 10 2 
r7 81.5839 71.2868 0.0029 0.0018 8 3 
r8 134.195 87.2367 0.0244 0.0194 14 3 
r9 46.3102 40.7141 0.0681 0.0718 8 3 
Table 1: Performance and characteristics of the best evolved individuals of 
each replication. Covered distances values indicate the average distance in 
cm covered by creatures during 4000 steps (6 sec) after 2000 step from the 
beginning of each trial. During the test creatures have been situated for 50 
trials on a flat terrain and 50 trials on a irregular terrain. Mutual information 
(DOF) values indicate the average mutual information calculated on each 
couple of joint. DOF indicate the number of DOF possessed by the 
individual. Signals indicate whether the possibility of the neural controller 
of each joint to produce signals and to regulate the current speed on the 
basis of detected signal is used or not by the evolved creature. 

B. Variations of the model and their effect 
To investigate how some of characteristics of the model 
described in the previous section influence the obtained 
results we have conducted a series of experiments in which 
we tested systematic variations of the model and in which 
variations has been retained or discarded on the basis of 
their effects in the observed results. 

In most of test experiments, the variations considered did 
not produced significant effects. Below we restrict our 
analysis to the variations that produced the most significant 
effects on the agent’s morphology/behaviour and which 
highlights the crucial role of some of the model parameters 
or features. One of these variations concerns the 
introduction of the mutual information component in the 
fitness function. By comparing the results obtained in the 
experiment described above and in a control experiment in 
which evolving creatures were only rewarded for the ability 
to locomote, we observed that the creature evolved in the 
experiment in which the fitness include the Mutual 
Information component display better performance on the 
average but lower performance with respect to the best 

replication (Table 2). 
The comparison between the performance exhibited by 

the best individuals of all replications of the experiment with 
and without mutual information indicates that, while in the 
former case all individuals display reasonably good 
performance on both flat and irregular terrains, in the latter 
case many individuals display good performance on flat but 
rather poor performance on irregular terrains. These 
differences are also reflected in the morphology which, in 
the latter case, is generally simpler and in the behaviour 
which, in the latter case, involves jumping or rolling 
strategies but never walking strategies.  
  Flat 

Terrain 
 Uneven 

Terrain 
Ave 82.791 cm Ave. 55.165 cm Experiment 

with M.I. Best 145.091 cm Best. 84.887 cm 
     

Ave. 86.3055 cm Ave. 46.0613 cmTest 1 
without M.I. Best 149.434 cm Best. 121.839 cm

Table 2: The values indicate the average distance in cm covered during 
4000 steps (6 sec) after 2000 step from the beginning of each trial by the 
best individuals of 10 replications (Ave) and by the best individual of the 
best replication (Best) on flat and uneven terrains. All data refer to 
performance measured with respect to the distance traveled only.  
 
Overall these data indicates that the addition of mutual 
information channel the evolutionary process toward types 
of solution which are more complex with respect to the 
morphology, more robust on the average with respect to 
different environmental conditions, less sensitive to the 
characteristics of the initial population, but not necessarily 
better in terms of performance (at least in the case of this 
task/environment).  

 
Figure  6: Examples of morphology of the best evolved creatures in test 
experiments in which creatures were evolved solely on flat terrain. 
 

A second important variation consisted in the type of 
environment (flat and/or irregular) in which the creatures are 
evolved. The analysis of the results observed in a control 
experiment in which the creatures were evolved solely on 
flat terrain indicates that in this case the creatures tend to 
develop simpler morphologies which are less effective and 
which only work properly on flat terrains  (see Figure  6). 
This data indicate that the complexity of the environment 
represents a crucial prerequisite for the development of 
effective creatures. 

A third important variation consisted in increasing the 
number of orientations in which new segments can grow 
from four (0°, 90°,180°, 270°) to six (0°, 60°, 120°, 180°, 



 
 

 

240°, 300°) orientations. The analysis of the results obtained 
in a control experiment in which there were only four 
possible orientations indicates that evolved creatures are 
much less stable, on average, with respect to the baseline 
experiment. Moreover, the evolved morphologies are much 
simple and less effective with respect to the basic 
experiment. This confirms the hypothesis that the 
expressiveness of the model might play a crucial role on the 
obtained results. 

C. Analysis of the evolutionary process 
To analyze the course of the evolutionary process we 
investigate, for each replication of the experiment, how the 
performance, the morphology, and the behaviour exhibited 
by the best creatures vary throughout generations. Rather 
than analysing the characteristics of the best individuals of 
each generation, for each replication, we reconstructed the 
lineage (i.e. the 499 ancestors) of the best individual of the 
last generation which includes only the genetic variations 
which have been retained in successive generations.  

 
Figure 7 Average distance traveled and average mutual information of the 
ancestors of the best individual of the last generation of replication r0 
throughout 500 generations..The full line indicates the distance traveled in 
cm. The dotted line indicates the mutual information (normalized in the 
range [0.0, 1.5]). The four vertical lines at generation 17, 218, 313, and 328 
indicate the four major transitions with respect to morphological changes. 
The pictures at the bottom indicate the morphology of the individuals of the 
corresponding generations.  
 

The analysis of these data indicates that, as for the case of 

replication r0 (see Figure 7): 
(i) After the first generations, the morphology of the 

creatures undergoes a few crucial adaptive changes (at 
generation 17, 218, 314, and 318 in the case of r0), which 
represents crucial transition in the evolutionary process 
while remains rather stable between the phases that precede 
and follow transitions. 

(ii) Once the performance of creatures increases, the 
probability of observing variations of the morphology which 
are adaptive become progressively lower. For this reason, 
after the first part of the evolutionary process, the 
occurrence of a major transitions which produce a 
significant modification of the morphology often arise as a 
result of variations which are retained despite they are 
maladaptive but which later become adaptive thanks to the 
verification and retention of further changes (as in the case 
of the variations occurring between generation 314 and 
generation 318 in the case of r0). 

(iii) Mutual information tends to increase and then 
decrease during the initial and final phase of the 
evolutionary process, respectively (as in the case of r0). This 
can be explained by considering that the optimization of the 
distance travelled tend to interfere with the need to vary the 
desired speed of the joint in a coordinated manner. This data 
confirm the observation reported above which indicate that 
the attempt to maximize mutual information channel the 
evolutionary process toward the development of creatures 
which are able to coordinate the movements of their part, 
which in turn tend to lead to effective solutions. On the other 
hand the attempt to optimize mutual information interferes 
with the need to optimize the locomotion behaviour.  

IV. DISCUSSION AND FUTURE WORK 
We presented a model which allows to co-evolve the 

morphology and the control system of realistically simulated 
creatures.  The method proposed is based on an artificial 
ontogenetic process in which the genotype does not specify 
directly the characteristics of the creatures but rather the 
growing rules that determine how an initial artificial embryo 
will develop on a fully formed individual. More specifically, 
the creatures are generated through a developmental process 
which occurs in time and space and which is realized 
through the progressive addition of both structural parts and 
regulatory substances which affect the successive course of 
the morphogenetic process. The creatures are provided with 
a distributed control system made up of several independent 
neural controllers embedded in the different body parts 
which only have access to local sensory information and 
which coordinate through the effects of physical actions 
mediated by the external environment through the 
emission/detection of signals which diffuse locally in space. 

The analysis of the obtained results demonstrates how the 
method proposed allow the synthesis of effective and robust 
solutions which allow the evolved creature to effectively 
locomote both on flat and irregular terrains after relatively 



 
 

 

short number of generations in all the replications of the 
experiment. This general capability involves a capacity of 
assuming a preferred posture (by avoiding to fall on a side 
or to tip over), a capacity of coordinating the movement of 
several body parts so to produce a coherent behavior which 
allow the creatures to locomote, and a capacity to keep 
moving in a coordinated manner while compensating the 
perturbations which arise during motion and during the 
interaction with obstacles of variable size in the uneven 
terrain.  

The fact that evolving creatures display good performance 
in all replication of the environment indicates that the model 
proposed guarantees a good level of evolvability. The fact 
that the evolved creatures display a variety of different 
morphologies and a variety of behavior strategies indicates 
that the model proposed display a good level of 
expressiveness. Finally, the relative simplicity of the model 
allowed us to test several variations of the model itself in 
order to identify the features and the parameters of the 
model which play an important role.  

Interestingly, the analysis of the results obtained indicate 
than increasing the complexity of the task/environment (i.e. 
by asking the creature to locomote both on a flat and an 
irregular terrain rather than only on a flat terrain) might 
improve the performance of the evolved creatures also with 
respect to their ability to walk on a flat terrain.  

The obtained results also demonstrates how the use of a 
task-independent measures (in the case of the experiment 
reported in this paper, the possibility to reward evolving 
individuals on the basis of the average mutual information 
computed between the output of each couple of neural 
controllers) combined with task-dependent measures (in this 
case the distance traveled by creatures within a limited time 
interval) can facilitate the maximization of the task 
dependent criteria (on this point see also [21]). More 
precisely, the inclusion of the task-independent component 
in the fitness function lead to solution which are more robust 
(with respect to environmental variations) and less sensitive 
to the initial conditions which, however, are not necessarily 
better in terms of absolute performance.  

Finally, the analysis of the evolutionary process indicate 
how, after the very first generations, the morphology of 
evolved creatures tend to remain rather stable beside few 
significant changes which represent major transitions in the 
evolutionary process.  

In future work we plan to analyze in more details the 
characteristics of the evolutionary process by also 
identifying quantitative measure for analyzing how 
evolvability varies throughout generations. Moreover, we 
plan to analyze in more details how the different parts of the 
creature coordinate, which are the principles that regulate 
how the morphology and the control system are co-adapted, 
and to what extent evolved creatures rely on form of  
morphological computations [22].  

REFERENCES 
[1] K. Sims, “Evolving virtual Creatures”, Computer Graphics, vol. 28, 

pp. 15-34, 1994. 
[2] K. Sims,  “Evolving 3D morphology and behavior by competition. In 

Proc. Artificial Life IV, MIT Press, Cambridge, MA, 1994, pp 28-39. 
[3] H. Lipson and J.B. Pollack, “Automatic design and manufacture of 

artificial life forms”, Nature, vol. 406, pp. 974-978, 2000. 
[4] G.S. Hornby and J.B. Pollack, “Body-Brain Co-evolution using L-

systems as a generative encoding”. In Proc. of the Genetic and 
Evolutionary Computation, Morgan Kauffman, San Francisco, CA, 
2001, pp. 868-875. 

[5] G.S. Hornby and J.B. Pollack, “Creating High-Level Components 
with a Generative Representation for Body-Brain Evolution”, 
Artificial Life, vol. 8, no. 3, pp.223-246, 2002. 

[6] J. Ventrella, “Explorations in the emergence of morphology and 
locomotion behaviour in animated characters”, In Proc. Artificial Life 
IV, MIT Press, Cambridge, MA, 1994, pp 436-441. 

[7] M. Komosinski and S. Ulatowski, “Framsticks: Towards a Simulation 
of a Nature-Like World, Creatures and Evolution”. In Advances in 
Artificial Life, LNAI vol. 1674, J.D. Nicoud, D. Floreano and F. 
Mondada, Ed. Berlin:Springer-Verlag, 1998, pp. 261-265. 

[8] P. Eggenberger, “Evolving morphologies of simulated 3D organisms 
based on differential gene expression”, In Proc. of the Fourth 
European Conference on Artificial Life, MIT Press, Cambridge, MA, 
1997, pp 205-213. 

[9] J.C. Bongard and R. Pfeifer, “Evolving complete agents using 
artificial ontogeny”. In Morpho-functional Machines: The new species 
(Designing Embodied Intelligence). F. Hara and R. Pfeifer Ed. Berlin: 
Springer-Verlag,  2003, pp. 237-258. 

[10] K.O. Stanley and R. Miikkulainen, “A Taxonomy for artificial 
embryogeny”,  Artificial Life, vol. 9, no. 2, pp. 93-130, 2003. 

[11] S. Kumar and P.J. Bentley On Growth, Form and Computers. 
Amsterdam: Elsevier Academy Press, 2003. 

[12] S. Wischmann, M. Hulse and F. Pasemann, “(Co)evolution of 
(De)centralized neural control for a gravitationally driven machine”. 
In Advances in Artificial Life, LNAI vol. 3630, M. Capcarrere, A.A.  
Freitas, P.J. Bentley, C.G. Johnson and J. Timmis Ed. Berlin:Springer-
Verlag, 2005, pp. 179-188. 

[13] M. Mazzapioda and S. Nolfi, “Synchronization within Homogeneous 
Neural Modules Controlling a Simulated Hexapod Robot”, In Proc. 
Artificial Life X, MIT Press, Cambridge, MA, 2006, pp. 199-205. 

[14] M. Mazzapioda and S. Nolfi, “Synchronization and Gait Adaptation in 
Evolving Hexapod Robots”. In Proc. of the Nineth International 
Conference on Simulation of Adaptive Behavior - From Animals to 
Animats 9, Springer-Verlag, Germany, 2006, pp 113-125. 

[15] M.R. Elphick, G. Kemenes, K. Staras and M. O’Shea, “Behavioural 
role for nitric oxide in chemosensory activation of feeding in a 
mollusc”, Journal of Neuroscience, vol. 15, no. 11, pp. 7653-7664, 
1995. 

[16] M.R. Elphick, L. Williams and M. O’Shea, “New features of the 
locust optic lobe: evidence of a role for nitric oxid in insect vision”, 
Journal of Experimental Biology, vol. 199, pp. 2395-2407, 1996. 

[17] P. Husbands, A. Philippides, T.M.C. Smith and M. O’Shea, “Volume 
Signalling in Real and Robot Nervous Systems”, Theory in 
Biosciences, vol. 120, no. 3-4, pp. 253-269, 2001. 

[18] H. Cruse, T. Kindermann, M. Schumm, J. Dean and J. Schmitz, 
“Walknet: a biologically inspired network to control six-legged 
walking”, Neural Network, Special Issue, vol. 11, no. 7-8, pp. 1432-
1447, 1998. 

[19] Open Dynamic Engine. Available: www.ode.org 
[20] C. E. Shannon, “A Mathematical Theory of Communication”. Bell 

System Technical Journal, vol. 27, pp. 379-423, 623-656, 1948. 
[21] M. Prokopenko, V. Gerasimov and I. Tanev, “Evolving 

Spatiotemporal Coordination in a Modular Robotic System”. In Proc. 
of the Nineth International Conference on Simulation of Adaptive 
Behavior - From Animals to Animats 9, Springer-Verlag, Germany, 
2006, pp 558-569. 

[22] R. Pfeifer, F. Iida and G. Gómez, “Morphological computation for 
adaptive behaviour and cognition”. In International Congress Series, 
vol. 1291, pp. 22-29, 2006. 

 


